【0001】
【発明の属する技術分野】本発明は、光触媒体およびその製造方法に関するものである。
【0002】
【従来の技術】新しい浄化方法として、光触媒を利用した浄化方法が提案されている。光触媒は、半永久的に有機物質の分解が行えるという利点があるものの、分解反応が紫外線照射部分の表面に限られる為、膜状に被覆した場合、被処理体との接触効率が悪く、吸着剤に比較して除去能力が劣るという問題がある。そこで、特許文献1、特許文献2、特許文献3には、吸着剤の吸着力と光触媒の分解力の双方の機能を利用したハイブリッド型の光触媒が提案されている。
【特許文献1】
特開平9−249824号公報
【特許文献2】
特開平10−94587号公報
【特許文献3】
特開2000−102736号公報
【0003】
【発明が解決しようとする課題】しかし、このような光触媒層においては、光を受光できる表面領域(1μm程度)では光触媒機能を発揮できるが、光触媒層を厚くしても、光触媒機能が向上せず、有効に働かなかった。このため、単位面積あたりの光触媒機能を向上させることが困難であった。
【0004】本発明の課題は、光触媒体の表面から深い領域においても光触媒機能を発現できるようにし、これによって光触媒体の単位面積あたりの光触媒機能を向上させることである。
【0005】
【課題を解決するための手段】本発明は、緻密質の光散乱粒子、および光触媒機能を持つ光触媒粒子を含むことを特徴とする、光触媒体に係るものである。
【0006】また、本発明は、基体上に、光散乱粒子、および光触媒機能を持つ光触媒粒子を含む塗布液からなる塗膜を形成し、この塗膜を少なくとも乾燥させることによって光触媒体を製造することを特徴とする、光触媒体の製造方法に係るものである。
【0007】本発明者は、光触媒体中に、光散乱機能を有する緻密質の光触媒粒子を配置することによって、光触媒体の厚さを大きくしたときにも、有効に作用する光触媒粒子を増やすことに成功した。この結果、光触媒体の表面から深い領域においても光触媒機能を発現させることができ、これによって光触媒体の単位面積あたりの光触媒機能を向上させることができる。
【0008】
【発明の実施の形態】図1は、本発明の一実施形態に係る光触媒体1を模式的に示す図である。光触媒体1は、光散乱機能を有する光散乱粒子3と、光触媒粒子2との混合物からなる。これに光4を照射すると、光が光触媒粒子3の表面で反射され、光触媒体1の深部へと向かって散乱される。そして光触媒体1の深部に存在する光触媒粒子の光触媒機能を活性化させる。
【0009】ここで、光触媒粒子を構成する物質の種類は特に限定されず、TiO2、SnO2、WO3、ZnO、SrTiO3等の光触媒物質を例示できる。アナターゼ型酸化チタンが特に好ましい。
【0010】本発明では、緻密質の光散乱粒子を光触媒粒子と併用する。この光散乱粒子は、光散乱物質からなる緻密質の粒子である。
【0011】光散乱物質としては、石英ガラス、ホウ珪酸ガラス等のガラス、シラスバルーン等の中空ガラス球、ケイソウ土、シリカが特に好ましい。
【0012】光散乱物質が多孔質であると、粒子内部での光の打ち消しが多く、光触媒粒子への光の供給量が低下するものと思われる。このため、光散乱物質の気孔率は、50%以下であることが好ましく、30%以下であることが更に好ましい。ただし中空ガラス球については内部の中空部分は含まず、ガラス部分の気孔率を指す。
【0013】光散乱粒子の粒径は限定されないが、光触媒粒子への光の供給を促進するという観点からは、1μm以上であることが好ましく、10μm以上であることが更に好ましい。しかし、光散乱粒子が大きくなりすぎると、光触媒機能に直接関与しないことから、光触媒機能がかえって低下する傾向がある。従って、この観点からは、光散乱粒子の粒径は300μm以下であることが好ましい。
【0014】光触媒粒子の粒径は限定されないが、10nm〜50nmが好ましい。また、光散乱粒子の粒径は光触媒層の膜厚の1/3〜2倍が好ましい。
【0015】また、光触媒体の活性を向上させるという観点からは、光散乱粒子:光触媒粒子の重量比率は、30:70〜3:97が好ましい。
【0016】光散乱粒子として特に好適なのは、シリカビーズ、シリカの破砕物、ガラスビーズ、ガラスの破砕物、中空ガラス球である。
【0017】光触媒体は、単独でも使用可能であるが、基体の上に設けることが好ましい。この基体の材質、形状、寸法は特に限定されない。基体の材質としては、ガラス、コージェライトやアルミナ等のセラミックス、金属、金属−セラミックス複合材料、紙を例示できる。基体の形状は、板、円筒、ハニカム状、三次元立体構造等特に限定されない。
【0018】図1の例では、光触媒粒子と光散乱粒子とが直接混合されている。しかし、光触媒粒子を含む表面層と、光散乱粒子を含む下地層とを分離することも可能である。また、この場合には、表面層中に光散乱粒子を更に添加することができ、また、下地層中に光触媒粒子を更に添加することができる。
【0019】光触媒体内にはバインダーを更に含有させることができる。このようなバインダーとしては、アルコキシシラン、シリカゾル等の無機バインダーが好ましい。
【0020】光触媒体内には吸着剤を添加することができる。このような吸着剤としては、ゼオライトや活性炭等を例示できる。
【0021】本発明の光触媒体を製造するには、例えば、基体上に、光散乱粒子、および光触媒機能を持つ光触媒粒子を含む塗布液からなる塗膜を形成し、この塗膜を少なくとも乾燥させることによって光触媒体を製造する。この塗布液の分散媒は特に限定されず、水であってよく、エタノール、プロパノール、ブタノール等のアルコールなどの有機溶媒であってよく、水と有機溶媒との混合物であってよい。また、塗布液の塗布方法は特に限定されず、ディップコート、スピンコート、スプレーコートなどであってよい。
【0022】ゾルゲル法の場合には、例えばチタンアルコキシドをアルコール等の溶媒に溶かし、アミン類を安定化分散剤として用い、酸を解膠作用の目的に添加して調整する。又、上記光触媒の坦持方法としてゾルゲル法を用いる場合、触媒活性の高いアナターゼ型にするためには、焼成を300〜700℃で行うこともできる。
【0023】
【実施例】(実施例1)
平均粒径10nmの酸化チタンを分散させた光触媒スラリ−中に、平均粒径70μmの石英破砕物を重量比で10%混ぜ、充分混合してスラリーを得た。このスラリーを、縦100mm、横100mm、厚さ1mmのガラス板(窓ガラス用ソーダガラス)の表面にディップコートし、ガラス板を取り出し、120℃で2時間乾燥した。このようなディップコートと乾燥とを繰り返し行うことによって、焼成後の光触媒層の膜厚が0.1〜50μmとなるようにした。焼成は、大気中、430℃で2時間行った。比較のため、石英破砕物を混合しない光触媒だけの試料も同様に膜厚0.1〜50μmで作製した。
【0024】図5に模式的に示す試験装置(全容積4L)を用いて、各光触媒層の光触媒機能を評価した。ガスチャンバ6上に治具10によって各試料1を固定した。循環ポンプ8を用いてガスチャンバ6内にガス7を流し、試料1に対して接触させた。石英ガラス窓9を通して光源12から矢印4のように紫外線4を照射した。
【0025】具体的には、空気−アセトアルデヒド混合ガス(調整濃度300ppm)を循環ポンプ8により5L/minで循環させ、光触媒試料1に紫外線(紫外線強度1mW/cm2)を照射し、アセトアルデヒドの分解特性から、光触媒機能を評価した。循環するガスのアセトアルデヒド濃度およびCO2濃度の測定は、サンプリング口11よりガスを抜き出し、ガスクロマトグラフを使用して行なった。
【0026】図2に試験結果を示す。横軸は光触媒層の膜厚であり。縦軸はアルデヒドの分解によって生じるCO2の平均生成速度である。試験結果から、石英破砕物を添加しない比較例の試料では、膜厚1μmまでは、CO2平均生成速度が増加したが、それ以上光触媒層を厚くしても、生成速度の増加はほとんど認められなかった。一方、石英ビーズを分散させた本発明例の試料では、膜厚50μmまでCO2生成速度が増加した。これは、光触媒層の深部まで光が有効に利用されていることを示している。
【0027】(実施例2)
平均粒径10nmの酸化チタンを分散させた光触媒スラリ−に、平均粒径100μmの石英ビーズを重量比で5%混ぜ、充分混合した後、縦100mm、横100mm、厚さ1mmのガラス板(窓ガラス用ソーダガラス)表面にすばやくディップコートし、ガラス板を取りだし、120℃で2時間乾燥した。このディップコートと乾燥とを繰り返すことによって、焼成後の膜厚が0.1〜50μmとなるように、塗工膜厚を調整した。焼成は、大気中、430℃で2時間行った。比較のため、石英ビーズの替わりにシリカゲルを同じ体積比で混合した試料も作製し、上記と同様にして焼成後の膜厚が0.1〜50μmとなるようにした。
【0028】次いで、図5の試験装置を用い、実施例1と同様にして、各試料の光触媒機能を評価した。空気−アセトアルデヒド混合ガス(調整濃度300ppm)を循環させ、光触媒に紫外線4(紫外線強度1mW/cm2)を照射し、アセトアルデヒドの分解特性から性能評価を行なった。図3、図4に試験結果を示す。
【0029】図3の横軸は膜厚を示し、縦軸はアセトアルデヒド濃度の平均減少速度を示す。一方、図4の横軸は膜厚を示し、縦軸は分解によって生じるCO2の生成速度を示す。
【0030】図3から分かるように、シリカゲルを混ぜた場合には、シリカゲルが吸着材として作用するため、循環ガス中のアセトアルデヒドガス濃度の減少速度は大きくなる。しかし、図4を参照すると、CO2増加速度は、アセトアルデヒド濃度の低下速度に比例しておらず、アセトアルデヒドの吸着だけが先行して起こっていることが確認された。
【0031】一方、図3からわかるように、石英ビーズを添加した場合には、アセトアルデヒド濃度の低下速度は相対的に小さい。これは石英ビーズにアセトアルデヒドの吸着能がないことを示している。しかし、図4から分かるよにう、石英ビーズを添加した場合には、CO2平均増加速度は相対的に大きいことが分かった。これは、石英ビーズの方がシリカゲルよりも、光触媒層の深部へと光を供給して光触媒粒子を活性化させる能力が高いことを示している。この理由は明確ではないが、シリカゲルも光を散乱する効果があるものの、シリカゲルはその内部に多数の空孔を有するため、シリカゲル内部での散乱による光の打消しが大きいものと思われる。
【0032】
【発明の効果】以上述べたように、本発明によれば、光触媒体の表面から深い領域においても光触媒機能を発現できるようにし、これによって光触媒体の単位面積あたりの光触媒機能を向上させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る光触媒体1を模式的に示す図である。
【図2】実施例1において、光触媒層の平均膜厚とCO2生成速度との関係を示すグラフである。
【図3】実施例2において、光触媒層の平均膜厚とアセトアルデヒドの平均減少速度との関係を示すグラフである。
【図4】実施例2において、光触媒層の平均膜厚と、CO2の平均生成速度との関係を示すグラフである。
【図5】本発明の実施例で使用した光触媒機能の評価装置を示す模式図である。
【符号の説明】1 光触媒体 2 光触媒粒子 3 光散乱粒子
4 光 12 光源[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst and a method for producing the same.
[0002]
2. Description of the Related Art As a new purification method, a purification method using a photocatalyst has been proposed. Although the photocatalyst has the advantage of being able to decompose organic substances semipermanently, since the decomposition reaction is limited to the surface of the UV-irradiated part, when it is coated in a film form, the contact efficiency with the object to be treated is poor, and the adsorbent There is a problem that the removal ability is inferior compared to the above. Therefore, Patent Document 1, Patent Document 2, and Patent Document 3 propose hybrid photocatalysts that use the functions of both the adsorbent adsorption force and the photocatalyst decomposition force.
[Patent Document 1]
JP-A-9-249824 [Patent Document 2]
JP-A-10-94587 [Patent Document 3]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2000-102736
However, in such a photocatalyst layer, the photocatalytic function can be exhibited in the surface region (about 1 μm) where light can be received. However, even if the photocatalyst layer is thickened, the photocatalytic function is improved. Did not work effectively. For this reason, it was difficult to improve the photocatalytic function per unit area.
An object of the present invention is to allow a photocatalytic function to be expressed even in a deep region from the surface of the photocatalyst, thereby improving the photocatalytic function per unit area of the photocatalyst.
[0005]
The present invention relates to a photocatalyst comprising a dense light-scattering particle and a photocatalyst particle having a photocatalytic function.
The present invention also provides a photocatalyst by forming a coating film comprising a coating solution containing light scattering particles and photocatalyst particles having a photocatalytic function on a substrate, and at least drying the coating film. The present invention relates to a method for producing a photocatalyst body.
The present inventor increases the number of photocatalyst particles that act effectively even when the thickness of the photocatalyst is increased by arranging dense photocatalyst particles having a light scattering function in the photocatalyst. succeeded in. As a result, the photocatalytic function can be expressed even in a deep region from the surface of the photocatalyst body, and thereby the photocatalytic function per unit area of the photocatalyst body can be improved.
[0008]
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a diagram schematically showing a photocatalyst 1 according to an embodiment of the present invention. The photocatalyst body 1 is composed of a mixture of light scattering particles 3 having a light scattering function and photocatalyst particles 2. When this is irradiated with light 4, the light is reflected on the surface of the photocatalyst particles 3 and scattered toward the deep part of the photocatalyst body 1. And the photocatalytic function of the photocatalyst particle which exists in the deep part of the photocatalyst body 1 is activated.
Here, the kind of the substance constituting the photocatalyst particles is not particularly limited, and examples thereof include photocatalytic substances such as TiO 2 , SnO 2 , WO 3 , ZnO, and SrTiO 3 . Anatase type titanium oxide is particularly preferred.
In the present invention, dense light scattering particles are used in combination with photocatalyst particles. The light scattering particles are dense particles made of a light scattering material.
As the light scattering material, quartz glass, borosilicate glass and the like, hollow glass sphere such as shirasu balloon, diatomaceous earth and silica are particularly preferable.
If the light scattering material is porous, it is likely that the amount of light cancellation inside the particles is large, and the amount of light supplied to the photocatalyst particles is reduced. For this reason, the porosity of the light scattering material is preferably 50% or less, and more preferably 30% or less. However, the hollow glass sphere does not include the hollow portion inside and indicates the porosity of the glass portion.
The particle size of the light scattering particles is not limited, but is preferably 1 μm or more and more preferably 10 μm or more from the viewpoint of promoting the supply of light to the photocatalyst particles. However, if the light scattering particles are too large, they do not directly participate in the photocatalytic function, so that the photocatalytic function tends to decrease. Therefore, from this viewpoint, the particle diameter of the light scattering particles is preferably 300 μm or less.
The particle size of the photocatalyst particles is not limited, but is preferably 10 nm to 50 nm. The particle diameter of the light scattering particles is preferably 1/3 to 2 times the film thickness of the photocatalyst layer.
From the viewpoint of improving the activity of the photocatalyst, the weight ratio of light scattering particles: photocatalyst particles is preferably 30:70 to 3:97.
Particularly suitable as light scattering particles are silica beads, crushed silica, glass beads, crushed glass, and hollow glass spheres.
The photocatalyst can be used alone, but is preferably provided on the substrate. The material, shape, and dimensions of the substrate are not particularly limited. Examples of the base material include glass, ceramics such as cordierite and alumina, metals, metal-ceramic composite materials, and paper. The shape of the substrate is not particularly limited, such as a plate, a cylinder, a honeycomb, or a three-dimensional structure.
In the example of FIG. 1, photocatalyst particles and light scattering particles are directly mixed. However, it is also possible to separate the surface layer containing photocatalyst particles from the underlayer containing light scattering particles. In this case, light scattering particles can be further added to the surface layer, and photocatalyst particles can be further added to the underlayer.
The photocatalyst can further contain a binder. As such a binder, an inorganic binder such as alkoxysilane or silica sol is preferable.
An adsorbent can be added into the photocatalyst. Examples of such an adsorbent include zeolite and activated carbon.
To produce the photocatalyst of the present invention, for example, a coating film comprising a coating solution containing light scattering particles and photocatalyst particles having a photocatalytic function is formed on a substrate, and the coating film is at least dried. Thus, a photocatalyst is produced. The dispersion medium for this coating solution is not particularly limited, and may be water, an organic solvent such as ethanol, propanol, butanol or other alcohol, or a mixture of water and an organic solvent. Moreover, the coating method of the coating liquid is not particularly limited, and may be dip coating, spin coating, spray coating, or the like.
In the case of the sol-gel method, for example, titanium alkoxide is dissolved in a solvent such as alcohol, an amine is used as a stabilizing dispersant, and an acid is added for the purpose of peptization. Moreover, when using the sol-gel method as a supporting method of the said photocatalyst, in order to make an anatase type with high catalytic activity, baking can also be performed at 300-700 degreeC.
[0023]
[Example] (Example 1)
In a photocatalyst slurry in which titanium oxide having an average particle diameter of 10 nm was dispersed, 10% by weight of quartz crushed material having an average particle diameter of 70 μm was mixed and mixed well to obtain a slurry. The slurry was dip-coated on the surface of a glass plate (soda glass for window glass) having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm, and the glass plate was taken out and dried at 120 ° C. for 2 hours. By repeatedly performing such dip coating and drying, the film thickness of the photocatalyst layer after baking was adjusted to 0.1 to 50 μm. Firing was performed in the air at 430 ° C. for 2 hours. For comparison, a sample with only a photocatalyst not mixed with crushed quartz was similarly prepared with a thickness of 0.1 to 50 μm.
The photocatalytic function of each photocatalyst layer was evaluated using a test apparatus (total volume 4 L) schematically shown in FIG. Each sample 1 was fixed on the gas chamber 6 with a jig 10. A gas 7 was caused to flow into the gas chamber 6 using the circulation pump 8 and brought into contact with the sample 1. Ultraviolet rays 4 were irradiated from a light source 12 as indicated by an arrow 4 through a quartz glass window 9.
Specifically, an air-acetaldehyde mixed gas (adjusted concentration 300 ppm) is circulated at 5 L / min by the circulation pump 8, and the photocatalyst sample 1 is irradiated with ultraviolet rays (ultraviolet intensity 1 mW / cm 2 ) to decompose acetaldehyde. The photocatalytic function was evaluated from the characteristics. The measurement of the acetaldehyde concentration and the CO 2 concentration of the circulating gas was performed by extracting the gas from the sampling port 11 and using a gas chromatograph.
FIG. 2 shows the test results. The horizontal axis is the film thickness of the photocatalyst layer. The vertical axis represents the average production rate of CO 2 generated by aldehyde decomposition. From the test results, in the sample of the comparative example in which the quartz crushed material was not added, the average CO 2 production rate increased up to a film thickness of 1 μm, but even if the photocatalyst layer was made thicker, the production rate was almost increased. There wasn't. On the other hand, in the sample of the present invention example in which quartz beads were dispersed, the CO 2 production rate increased to a film thickness of 50 μm. This indicates that light is effectively used up to the deep part of the photocatalyst layer.
Example 2
A photocatalyst slurry in which titanium oxide having an average particle diameter of 10 nm is dispersed is mixed with 5% by weight of quartz beads having an average particle diameter of 100 μm, and after mixing well, a glass plate having a length of 100 mm, a width of 100 mm, and a thickness of 1 mm (window) Soda glass for glass) was quickly dip-coated on the surface, the glass plate was taken out, and dried at 120 ° C. for 2 hours. By repeating this dip coating and drying, the coating film thickness was adjusted so that the film thickness after firing was 0.1 to 50 μm. Firing was performed in the air at 430 ° C. for 2 hours. For comparison, a sample in which silica gel was mixed in the same volume ratio instead of quartz beads was also prepared, and the film thickness after firing was 0.1 to 50 μm in the same manner as described above.
Next, the photocatalytic function of each sample was evaluated in the same manner as in Example 1 using the test apparatus shown in FIG. An air-acetaldehyde mixed gas (adjusted concentration: 300 ppm) was circulated, and the photocatalyst was irradiated with ultraviolet rays 4 (ultraviolet intensity: 1 mW / cm 2 ) to evaluate the performance from the decomposition characteristics of acetaldehyde. The test results are shown in FIGS.
In FIG. 3, the horizontal axis indicates the film thickness, and the vertical axis indicates the average rate of decrease in the acetaldehyde concentration. On the other hand, the horizontal axis of FIG. 4 indicates the film thickness, and the vertical axis indicates the production rate of CO 2 generated by decomposition.
As can be seen from FIG. 3, when silica gel is mixed, since the silica gel acts as an adsorbent, the rate of decrease in the acetaldehyde gas concentration in the circulating gas increases. However, referring to FIG. 4, it was confirmed that the CO 2 increasing rate was not proportional to the decreasing rate of the acetaldehyde concentration, and only the acetaldehyde adsorption preceded.
On the other hand, as can be seen from FIG. 3, when quartz beads are added, the rate of decrease in the acetaldehyde concentration is relatively small. This indicates that the quartz beads are not capable of adsorbing acetaldehyde. However, as can be seen from FIG. 4, it was found that when quartz beads were added, the average increase rate of CO 2 was relatively large. This indicates that quartz beads have higher ability to activate photocatalyst particles by supplying light to the deep part of the photocatalyst layer than silica gel. The reason for this is not clear, but although silica gel also has the effect of scattering light, silica gel has a large number of vacancies inside it, so it seems that the cancellation of light due to scattering inside the silica gel is large.
[0032]
As described above, according to the present invention, the photocatalytic function can be expressed even in a deep region from the surface of the photocatalyst, thereby improving the photocatalytic function per unit area of the photocatalyst. it can.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing a photocatalyst body 1 according to an embodiment of the present invention.
FIG. 2 is a graph showing the relationship between the average film thickness of the photocatalyst layer and the CO 2 production rate in Example 1.
3 is a graph showing the relationship between the average film thickness of the photocatalyst layer and the average reduction rate of acetaldehyde in Example 2. FIG.
4 is a graph showing the relationship between the average film thickness of the photocatalyst layer and the average production rate of CO 2 in Example 2. FIG.
FIG. 5 is a schematic diagram showing a photocatalytic function evaluation apparatus used in an example of the present invention.
[Explanation of Symbols] 1 Photocatalyst body 2 Photocatalyst particles 3 Light scattering particles 4 Light 12 Light source