JP5785728B2 - Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method - Google Patents

Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method Download PDF

Info

Publication number
JP5785728B2
JP5785728B2 JP2011029979A JP2011029979A JP5785728B2 JP 5785728 B2 JP5785728 B2 JP 5785728B2 JP 2011029979 A JP2011029979 A JP 2011029979A JP 2011029979 A JP2011029979 A JP 2011029979A JP 5785728 B2 JP5785728 B2 JP 5785728B2
Authority
JP
Japan
Prior art keywords
tower
supplied
recovery tower
reboiler
unsaturated nitrile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011029979A
Other languages
Japanese (ja)
Other versions
JP2012167066A (en
Inventor
善規 太田
善規 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2011029979A priority Critical patent/JP5785728B2/en
Publication of JP2012167066A publication Critical patent/JP2012167066A/en
Application granted granted Critical
Publication of JP5785728B2 publication Critical patent/JP5785728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、不飽和ニトリルの蒸留方法及び蒸留装置、並びに不飽和ニトリルの製造方法に関する。   The present invention relates to an unsaturated nitrile distillation method and distillation apparatus, and an unsaturated nitrile production method.

アクリロニトリルは、多種の不飽和ニトリルの中でも、入手できる有機化学中間体の最も重要なものの一つであり、広範な生成物、プラスチック、合成ゴム、合成繊維、土壌調整剤等の製造における主要な中間体として用いられている。多くの用途において、アクリロニトリルは高純度でなければならず、このため、商業的に流通するアクリロニトリルには、厳密な製品規格がある。   Acrylonitrile is one of the most important organic chemical intermediates available among the many types of unsaturated nitriles, and is the main intermediate in the manufacture of a wide range of products, plastics, synthetic rubbers, synthetic fibers, soil conditioners, etc. It is used as a body. In many applications, acrylonitrile must be of high purity, and thus commercially distributed acrylonitrile has strict product specifications.

プロピレン及び/又はプロパンとアンモニアと酸素とからアクリロニトリルを製造する工業的生産方法では、反応の流出物が、アクリロニトリルに加えてかなりの量のシアン化水素及びアセトニトリルを副生物として含有し、更にスクシノニトリル及びその他のニトリル類などの不純物を含有している。流出物と該流出物に含まれている副生物及び不純物との正確な組成は、アンモ酸化の反応条件及び触媒次第でかなりのばらつきを生じる。別の不飽和ニトリル製造方法の流出物も、同様に種々の副生物及び不純物を含有している。   In an industrial production process for producing acrylonitrile from propylene and / or propane, ammonia and oxygen, the reaction effluent contains significant amounts of hydrogen cyanide and acetonitrile as by-products in addition to acrylonitrile, and succinonitrile and Contains other impurities such as nitriles. The exact composition of the effluent and the by-products and impurities contained in the effluent will vary considerably depending on the reaction conditions and catalyst of the ammoxidation. Other unsaturated nitrile production effluents similarly contain various by-products and impurities.

アンモニア及び酸素を用いるプロピレンの接触アンモ酸化によるアクリロニトリルの製造においては、副生成物の1つとして、粗製アセトニトリルが生成される。粗製アセトニトリルは、アセトニトリルの他にシアン化水素、アクリロニトリル、アセトアルデヒド、アセトン、メタノール、アクロレイン、オキサゾール、シス−及びトランス−クロトノニトリル、メタクリロニトリル並びにアリルアルコールを含み得る。粗製アセトニトリルの成分の相対的な割合は、種々の条件に依存して広範囲に変化し得る。かつて、粗製アセトニトリルは焼却によって処分された。しかし、近年では、アセトニトリルは回収され、精製、販売されている。   In the production of acrylonitrile by catalytic ammoxidation of propylene with ammonia and oxygen, crude acetonitrile is produced as one of the by-products. Crude acetonitrile may include hydrogen cyanide, acrylonitrile, acetaldehyde, acetone, methanol, acrolein, oxazole, cis- and trans-crotononitrile, methacrylonitrile and allyl alcohol in addition to acetonitrile. The relative proportions of the components of crude acetonitrile can vary widely depending on various conditions. In the past, crude acetonitrile was disposed of by incineration. However, in recent years, acetonitrile has been recovered, purified and sold.

不飽和ニトリルの製造は長年に亘り工業的に実施されているが、実質的な利益を伴う改良の余地がある。これらの改良の一つは、製品規格の逸脱の減少である。不飽和ニトリルの工業的生産において、不飽和ニトリル及びその副生成物の回収・精製工程で、工程内の回収塔(蒸留塔)を安定に運転することは、製品の品質基準、つまりは不純物の含有量を低減するうえで重要であり、改善策が望まれている。
例えば、プロピレン及び/又はプロパン、アンモニア及び分子状酸素を反応させてアクリロニトリルを製造するプロセスにおいて、生成したアクリロニトリル、アセトニトリル及び青酸から、アセトニトリルを分離し、アクリロニトリル及び青酸を回収するための回収塔がある。この回収塔の塔頂からアクリロニトリル及び青酸を回収するが、このときアセトニトリルを同伴させないように運転することが、製品アクリロニトリルの規格外品をつくらないために重要である。また同時に、回収塔の塔底から余剰水を抜き出し廃水処理設備で処理するが、この塔底液中にアクリロニトリル、アセトニトリル及び青酸を混入させないように運転することが廃水処理費用を低減するために重要である。
上記事情に鑑み、本発明は、アクリロニトリル等の不飽和ニトリルを工業的に製造する際に、不飽和ニトリル及びその副生成物の回収・精製工程における回収塔の安定な運転を実現し得る、不飽和ニトリルの蒸留方法及び蒸留装置を提供することを目的とする。
さらには、アクリロニトリル等の不飽和ニトリルを工業的に製造する際に、不飽和ニトリル及びその副生成物の回収・精製工程において、回収塔を安定に運転することにより、高純度の不飽和ニトリルを長期間に亘って得ることのできる、不飽和ニトリルの製造方法を提供することを目的とする。
Although the production of unsaturated nitriles has been carried out industrially for many years, there is room for improvement with substantial benefits. One of these improvements is a reduction in product standard deviations. In industrial production of unsaturated nitriles, stable operation of the recovery tower (distillation tower) in the process of recovery and purification of unsaturated nitrile and its by-products is the product quality standard, that is, impurities It is important in reducing the content, and improvement measures are desired.
For example, in the process of producing acrylonitrile by reacting propylene and / or propane, ammonia and molecular oxygen, there is a recovery tower for separating acetonitrile from the produced acrylonitrile, acetonitrile and hydrocyanic acid and recovering acrylonitrile and hydrocyanic acid. . Acrylonitrile and hydrocyanic acid are recovered from the top of this recovery tower, but it is important to operate so as not to entrain acetonitrile at this time in order to prevent production of non-standard product acrylonitrile. At the same time, surplus water is extracted from the bottom of the recovery tower and processed in the wastewater treatment facility. It is important to reduce the cost of wastewater treatment by operating so that acrylonitrile, acetonitrile and hydrocyanic acid are not mixed in this bottom liquid. It is.
In view of the above circumstances, the present invention provides a stable operation of the recovery tower in the recovery and purification process of unsaturated nitrile and its by-products when industrially producing unsaturated nitrile such as acrylonitrile. An object is to provide a distillation method and a distillation apparatus for saturated nitrile.
Furthermore, when industrially producing unsaturated nitriles such as acrylonitrile, the recovery tower is stably operated in the recovery and purification process of unsaturated nitriles and their by-products to produce high purity unsaturated nitriles. It aims at providing the manufacturing method of an unsaturated nitrile which can be obtained over a long period of time.

通常、回収塔の中段部は塔頂及び塔底と比較し温度の変動が激しく、安定運転への影響が大きい。中段部の温度が管理温度より高い場合、塔頂よりアセトニトリルが溜出し易くなり、中段部の温度が管理温度より低い場合、塔底よりアクリロニトリル、アセトニトリル及び青酸が出易くなる。この変動の激しい部分の温度を検出して、回収塔のリボイラーに供給する熱源流量を制御することで、中段部の温度変動を小さくすることができると考えられる。しかしながら、回収塔のリボイラーに供給する熱源流量は多量であるので、この流量を制御すると回収塔の各部分の温度が変動し、中段部の温度を一定にすることは難しい。
従来、図16に示すように、回収塔の中段部の温度制御は、再沸騰器2の熱源流量調整弁19で実施してきた。流量調整弁19の制御は、回収塔中段部の温度計15の測定値見合いで行うか、流量調整弁に流量指示調整計17、温度計15に温度指示調整計16を設置し、両間を電気配線18で繋ぎ電子制御してきた。しかし、このような制御をもってしても、中段部の温度を一定に保つのは難しい。
また、従来、図17に示すように、回収塔の中段部の温度制御は、補助沸騰器3の熱源流量調整弁19で実施してきた。補助沸騰器3は再沸騰器2から流出した塔底流の一部を再加熱し、ライン13を通じて再沸騰器2に戻す。流量調整弁19の制御は、回収塔中段部の温度計15の測定値見合いで行うか、流量調整弁に流量指示調整計17、温度計15に温度指示調整計16を設置し、両間を電気配線18で繋ぎ電子制御してきた。しかし、このような制御をもってしても、中段部の温度を一定に保つのは難しい。
本発明者は、回収塔の温度制御方法を鋭意検討した結果、回収塔に第一及び第二の加熱経路を接続し、前記第二の加熱経路によって回収塔に供給する熱量を、前記第一及び第二の加熱経路によって回収塔に供給する熱量の和に対して1〜20%に制御することにより、回収塔の中段部の温度変動を小さくできることを見いだし本発明に到達した。
Usually, the middle part of the recovery tower has a large temperature fluctuation compared to the top and bottom of the tower, and the influence on stable operation is large. When the temperature of the middle stage is higher than the control temperature, acetonitrile is easily distilled from the top of the column, and when the temperature of the middle stage is lower than the control temperature, acrylonitrile, acetonitrile and hydrocyanic acid are easily output from the bottom of the tower. It is considered that the temperature fluctuation in the middle stage can be reduced by detecting the temperature of the part where the fluctuation is intense and controlling the flow rate of the heat source supplied to the reboiler of the recovery tower. However, since the flow rate of the heat source supplied to the reboiler of the recovery tower is large, if this flow rate is controlled, the temperature of each part of the recovery tower fluctuates and it is difficult to keep the temperature of the middle stage constant.
Conventionally, as shown in FIG. 16, the temperature control of the middle part of the recovery tower has been performed by the heat source flow rate adjustment valve 19 of the reboiler 2. The flow rate adjustment valve 19 is controlled based on the measured value of the thermometer 15 in the middle part of the recovery tower, or the flow rate adjustment valve 17 is installed on the flow rate adjustment valve, and the temperature indication adjustment meter 16 is installed on the thermometer 15. It has been electronically controlled by connecting with electrical wiring 18. However, even with such control, it is difficult to keep the temperature of the middle stage constant.
Conventionally, as shown in FIG. 17, the temperature control of the middle stage of the recovery tower has been performed by the heat source flow rate adjustment valve 19 of the auxiliary boiling unit 3. The auxiliary boiling device 3 reheats a part of the bottom stream flowing out from the reboiler 2 and returns it to the reboiler 2 through a line 13. The flow rate adjustment valve 19 is controlled based on the measured value of the thermometer 15 in the middle part of the recovery tower, or the flow rate adjustment valve 17 is installed on the flow rate adjustment valve, and the temperature indication adjustment meter 16 is installed on the thermometer 15. It has been electronically controlled by connecting with electrical wiring 18. However, even with such control, it is difficult to keep the temperature of the middle stage constant.
As a result of intensive studies on the temperature control method for the recovery tower, the inventor has connected the first and second heating paths to the recovery tower, and the amount of heat supplied to the recovery tower by the second heating path Further, the present inventors have found that the temperature fluctuation in the middle part of the recovery tower can be reduced by controlling it to 1 to 20% with respect to the sum of heat supplied to the recovery tower through the second heating path.

すなわち、本発明は以下のとおりである。
[1]
不飽和ニトリルを蒸留する方法であって、
第一及び第二の加熱経路が接続された回収塔により不飽和ニトリルを蒸留する工程を含み、
前記第二の加熱経路によって前記回収塔に供給する熱量を、前記第一及び第二の加熱経路によって前記回収塔に供給する熱量の和に対して1〜20%とし、
前記第一の加熱経路から再加熱した塔底流を前記回収塔に供給し、前記第二の加熱経路から水蒸気を前記回収塔に供給する不飽和ニトリルの蒸留方法。
[2]
前記水蒸気を前記回収塔の下部に供給する、上記[1]記載の蒸留方法。
[3]
前記第二の加熱経路に水蒸気を熱媒とする再沸騰器が設けられており、前記第一の加熱経路から再加熱した塔底流を前記回収塔に供給し、前記第二の加熱経路から前記再沸騰器によって加熱した塔底流及び/又は塔内流を前記回収塔に供給する、上記[1]記載の不飽和ニトリルの蒸留方法。
[4]
触媒の存在下で、プロパン、プロピレン、イソブタン及びイソブチレンからなる群から選択される少なくとも1種をアンモ酸化することにより不飽和ニトリルを含むガスを生成させる工程、
前記ガスを急冷塔内で水性液体と接触させた後、吸収塔内で水を含む液体と接触させて吸収させることにより不飽和ニトリルを含む水性混合物を得る工程、
得られた不飽和ニトリルを含む水性混合物を蒸留する工程、
を含む不飽和ニトリルの製造方法であって、
前記水性混合物から前記不飽和ニトリルを蒸留するための回収塔に、再加熱した塔底流と、水蒸気とを供給する工程を含む方法。
[5]
回収塔と、前記回収塔に接続された第一及び第二の加熱経路とを有する蒸留装置であって、
前記第二の加熱経路によって前記回収塔に供給する熱量が、前記第一及び第二の加熱経路によって前記回収塔に供給する熱量の和に対して1〜20%であり、
前記第二の加熱経路が蒸気生成装置を含み、
前記第一の加熱経路により塔底流が加熱され、当該加熱された塔底流が前記回収塔に供給され、
前記蒸気生成装置が、前記塔底流に由来しない水蒸気生成し、かつ、当該塔底流に由来しない水蒸気を前記回収塔に供給す、不飽和ニトリルの蒸留装置。
[6]
前記水蒸気は前記回収塔の下部に供給される、上記[5]記載の不飽和ニトリルの蒸留装置。
[7]
前記第二の加熱経路が水蒸気を熱媒とする再沸騰器を含み、前記第一の加熱経路により塔底流が加熱され、前記再沸騰器によって塔底流及び/又は塔内流が加熱される、上記[5]記載の不飽和ニトリルの蒸留装置。
[8]
前記再沸騰器によって塔底流及び/又は回収塔の下部の塔内流を再加熱して前記回収塔に供給する、上記[7]記載の不飽和ニトリルの蒸留装置。
[9]
反応器と、前記反応器に接続された急冷塔と、前記急冷塔に接続された吸収塔と、前記吸収塔に接続された回収塔とを有し、
前記回収塔には、再沸騰器及び蒸気生成装置が接続されており、
前記反応器内で、触媒の存在下、プロパン、プロピレン、イソブタン及びイソブチレンからなる群から選択される少なくとも1種のアンモ酸化により不飽和ニトリルを含むガスが生成され、
前記ガスは前記急冷塔内で水性液体と接触された後、前記吸収塔内で水を含む液体と接触されて不飽和ニトリルを含む水性混合物が得られ、
得られた不飽和ニトリルを含む水性混合物が回収塔内で蒸留される不飽和ニトリルの製造装置であって、
前記回収塔から流出した塔底流は前記再沸騰器によって加熱されて前記回収塔に戻され、前記蒸気生成装置で生成した水蒸気が前記回収塔に供給される不飽和ニトリルの製造装置。
That is, the present invention is as follows.
[1]
A method for distilling unsaturated nitriles, comprising:
Distilling the unsaturated nitrile through a recovery tower connected to the first and second heating paths;
The amount of heat supplied to the recovery tower by the second heating path is 1 to 20% with respect to the sum of heat amounts supplied to the recovery tower by the first and second heating paths,
An unsaturated nitrile distillation method in which a tower bottom stream reheated from the first heating path is supplied to the recovery tower, and water vapor is supplied to the recovery tower from the second heating path.
[2]
The distillation method according to [1] above, wherein the water vapor is supplied to a lower portion of the recovery tower.
[3]
A reboiler using steam as a heat medium is provided in the second heating path, and a tower bottom stream reheated from the first heating path is supplied to the recovery tower, and the second heating path The unsaturated nitrile distillation method according to the above [1], wherein a tower bottom stream and / or a tower internal stream heated by a reboiler is supplied to the recovery tower.
[4]
Producing a gas containing an unsaturated nitrile by ammoxidizing at least one selected from the group consisting of propane, propylene, isobutane and isobutylene in the presence of a catalyst;
A step of obtaining an aqueous mixture containing an unsaturated nitrile by contacting the gas with an aqueous liquid in a quenching tower and then absorbing the gas in contact with a liquid containing water in the absorption tower;
Distilling the aqueous mixture containing the resulting unsaturated nitrile,
A method for producing an unsaturated nitrile comprising:
Supplying a reheated bottom stream and water vapor to a recovery tower for distilling the unsaturated nitrile from the aqueous mixture.
[5]
A distillation apparatus having a recovery tower and first and second heating paths connected to the recovery tower,
The amount of heat supplied to the recovery tower by the second heating path is 1 to 20% with respect to the sum of heat amounts supplied to the recovery tower by the first and second heating paths,
The second heating path includes a steam generator;
The tower bottom stream is heated by the first heating path, and the heated tower bottom stream is supplied to the recovery tower,
The steam generating apparatus generates steam that is not derived from the bottoms stream, and that to supply steam which is not derived from the bottoms stream to said recovery column, distillation apparatus unsaturated nitrile.
[6]
The unsaturated nitrile distillation apparatus according to [5], wherein the water vapor is supplied to a lower portion of the recovery tower.
[7]
The second heating path includes a reboiler using steam as a heat medium, the bottom stream is heated by the first heating path, and the bottom stream and / or the inner stream is heated by the reboiler. The unsaturated nitrile distillation apparatus according to [5] above.
[8]
The unsaturated nitrile distillation apparatus according to the above [7], wherein the bottom stream and / or the inner stream at the bottom of the recovery tower is reheated by the reboiler and supplied to the recovery tower.
[9]
A reactor, a quenching tower connected to the reactor, an absorption tower connected to the quenching tower, and a recovery tower connected to the absorption tower,
A reboiler and a steam generator are connected to the recovery tower,
In the reactor, a gas containing an unsaturated nitrile is generated by at least one ammoxidation selected from the group consisting of propane, propylene, isobutane and isobutylene in the presence of a catalyst;
The gas is contacted with an aqueous liquid in the quenching tower, and then contacted with a liquid containing water in the absorption tower to obtain an aqueous mixture containing an unsaturated nitrile,
An unsaturated nitrile production apparatus in which an aqueous mixture containing the obtained unsaturated nitrile is distilled in a recovery tower,
The unsaturated nitrile manufacturing apparatus in which the bottom stream flowing out of the recovery tower is heated by the reboiler and returned to the recovery tower, and the water vapor generated by the steam generator is supplied to the recovery tower.

本発明の蒸留方法により、不飽和ニトリルの工業的製造プロセスにおいて、回収塔の塔内温度変動を抑制した安定運転が可能となる。   According to the distillation method of the present invention, stable operation with reduced temperature fluctuation in the recovery tower can be achieved in the industrial production process of unsaturated nitrile.

本実施形態の蒸留装置の一例を示す概略図である。It is the schematic which shows an example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置の別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. 本実施形態の蒸留装置のさらに別の例を示す概略図である。It is the schematic which shows another example of the distillation apparatus of this embodiment. アンモニア及び酸素を用いるプロピレンの接触アンモ酸化によるアクリロニトリル製造プロセスの概略図である。1 is a schematic diagram of an acrylonitrile production process by catalytic ammoxidation of propylene using ammonia and oxygen. FIG. 従来の蒸留装置の一例を示す概略図である。It is the schematic which shows an example of the conventional distillation apparatus. 従来の蒸留装置の別の例を示す概略図である。It is the schematic which shows another example of the conventional distillation apparatus. 実施例1における水蒸気を供給した回収塔の59段温度の経時変化を示す図である。It is a figure which shows the time-dependent change of 59-stage temperature of the collection | recovery tower which supplied the water vapor | steam in Example 1. FIG. 比較例1における水蒸気を供給していない回収塔の59段温度の経時変化を示す図である。It is a figure which shows the time-dependent change of the 59 stage temperature of the collection | recovery tower which does not supply the water vapor | steam in the comparative example 1. FIG.

以下、本発明を実施するための形態(以下、「本実施形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。装置や部材の寸法比率は図示の比率に限られるものではない。
Hereinafter, a mode for carrying out the present invention (hereinafter abbreviated as “this embodiment”) will be described in detail. In addition, this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. The dimensional ratios of the devices and members are not limited to the illustrated ratios.

本実施形態における不飽和ニトリルの蒸留方法は、不飽和ニトリルを蒸留する方法であって、第一及び第二の加熱経路が接続された回収塔により不飽和ニトリルを蒸留する工程を含み、前記第二の加熱経路によって前記回収塔に供給する熱量を、前記第一及び第二の加熱経路によって前記回収塔に供給する熱量の和に対して1〜20%とする不飽和ニトリルの蒸留方法である。
また、本実施形態における不飽和ニトリルの製造装置は、回収塔と、前記回収塔に接続された第一及び第二の加熱経路とを有する製造装置であって、前記第二の加熱経路によって前記回収塔に供給する熱量が、前記第一及び第二の加熱経路によって前記回収塔に供給する熱量の和に対して1〜20%である蒸留装置である。
The method for distilling unsaturated nitrile in the present embodiment is a method for distilling unsaturated nitrile, including a step of distilling unsaturated nitrile using a recovery tower connected to first and second heating paths, An unsaturated nitrile distillation method wherein the amount of heat supplied to the recovery tower through two heating paths is 1 to 20% of the sum of heat supplied to the recovery tower through the first and second heating paths. .
Further, the unsaturated nitrile manufacturing apparatus in the present embodiment is a manufacturing apparatus having a recovery tower and first and second heating paths connected to the recovery tower, wherein the second heating path is used to In the distillation apparatus, the amount of heat supplied to the recovery tower is 1 to 20% with respect to the sum of heat supplied to the recovery tower through the first and second heating paths.

図1は、本実施形態の蒸留装置の一例を示す概略図であり、アクリロニトリルを製造するプロセスにおいて、生成したアクリロニトリル、アセトニトリル、青酸及び水から、アセトニトリルを分離回収するための蒸留装置の一例を示す。回収塔1は第一及び第二の加熱経路が接続され、両加熱経路から熱量を供給されるようになっている。回収塔1には導入ライン4が接続されており、反応器(図示せず)で生成したガスを水に吸収させた水性混合物が導入ライン4を通じて回収塔1に入る。導入ライン4が回収塔1に接続される位置は、導入液の組成と回収塔内の組成が最も近くなるように設定するのが一般的である。
ライン4より回収塔1に供給される水性混合物中のアクリロニトリルの典型的な濃度は5〜15wt%、好ましくは5〜10wt%である。供給される水性混合物流量は、アクリロニトリルの生産量に依存するが、工業的に効率的にアクリロニトリルを生産する観点で、アクリロニトリル生産量1Tに対して2.5〜30Tとすることが好ましい。
FIG. 1 is a schematic diagram showing an example of a distillation apparatus according to the present embodiment, and shows an example of a distillation apparatus for separating and recovering acetonitrile from the produced acrylonitrile, acetonitrile, hydrocyanic acid and water in the process of producing acrylonitrile. . The recovery tower 1 is connected to the first and second heating paths, and is supplied with heat from both heating paths. An introduction line 4 is connected to the recovery tower 1, and an aqueous mixture obtained by absorbing water produced by a reactor (not shown) into the recovery tower 1 enters the recovery tower 1 through the introduction line 4. The position where the introduction line 4 is connected to the recovery tower 1 is generally set so that the composition of the introduction liquid and the composition in the recovery tower are closest.
The typical concentration of acrylonitrile in the aqueous mixture fed to the recovery tower 1 from line 4 is 5-15 wt%, preferably 5-10 wt%. The flow rate of the aqueous mixture to be supplied depends on the production amount of acrylonitrile, but is preferably 2.5 to 30 T with respect to 1 T of acrylonitrile production amount from the viewpoint of industrially producing acrylonitrile efficiently.

蒸留装置には再沸騰器2が設けられており、塔底流は塔底ライン6を通じて再沸騰器2に入り、ライン8を通じて塔底部に戻される(第一の加熱経路)。回収塔1の底部1段に接続されたライン10を通して塔内流が抜き出され、温度を下げた後、回収塔1の塔頂部にソルベント水として導入される。塔内液の温度降下により生じた熱は、プロセス内の熱交換器11の熱源として使用するのが好ましい。回収塔1では抽出蒸留によりアセトニトリルが抽出分離され、塔頂からライン5を通してアクリロニトリル、青酸及び水が抜き出され、塔サイドからライン9を通してアセトニトリルが抜き出される。
ライン9の好ましい位置は、回収塔1に供給される溶液に含まれる各成分と、その比率を想定し、各成分の沸点等を基に最適化することでおよそ決定することができる。このような計算を行うための計算機プログラムはよく知られており、回収塔の設計に使われている。一般にアセトニトリルの塔内濃度が最大となる段数の前後5段の範囲内にライン9を接続するのが好ましい。
The distillation apparatus is provided with a reboiler 2, and the bottom stream enters the reboiler 2 through the bottom line 6 and returns to the bottom of the tower through the line 8 (first heating path). The flow in the tower is extracted through a line 10 connected to the first stage of the bottom of the recovery tower 1, and after the temperature is lowered, it is introduced into the top of the recovery tower 1 as solvent water. The heat generated by the temperature drop of the liquid in the tower is preferably used as a heat source for the heat exchanger 11 in the process. In the recovery tower 1, acetonitrile is extracted and separated by extractive distillation, acrylonitrile, hydrocyanic acid and water are extracted from the top of the tower through line 5, and acetonitrile is extracted from the tower side through line 9.
A preferable position of the line 9 can be determined approximately by optimizing each component contained in the solution supplied to the recovery tower 1 and its ratio, and optimizing based on the boiling point of each component. Computer programs for performing such calculations are well known and are used in the design of recovery towers. Generally, it is preferable to connect the line 9 within a range of 5 stages before and after the number of stages in which the concentration of acetonitrile in the column becomes maximum.

回収塔1の内部構造物は特に限定されず、原則として通例の内部構造物を収容することができる。内部構造物の例として、トレイ、パッキング及び/又はラシヒリング、ポールリング等の不規則充填物、メラパック等の規則充填物が挙げられる。一般に棚段塔の場合、塔頂、塔底及び塔サイドからの排出流体の組成の管理、つまり回収塔全体での分離効率の観点で、トレイ総数は40〜150枚とするのが好ましい。
回収塔1の塔底における温度は90〜130℃が好ましく、塔頂温度は50〜80℃が好ましい。回収塔1における運転時の熱負荷は、排出流体の組成に大きく影響する中段部の温度で管理するのが好ましい。本明細書中、「中段部」とは、ライン4からライン9の間を示す。また、「温度制御部」は中段部中の一段に設定される。一般に、中段部中で塔内温度が80〜105℃になる位置に温度計を設定して温度制御部とし、温度管理をするのが好ましい。
The internal structure of the recovery tower 1 is not particularly limited, and a general internal structure can be accommodated in principle. Examples of internal structures include irregular packings such as trays, packing and / or Raschig rings and pole rings, and regular packings such as melapacks. In general, in the case of a plate tower, the total number of trays is preferably 40 to 150 from the viewpoint of managing the composition of the fluid discharged from the tower top, tower bottom and tower side, that is, from the viewpoint of separation efficiency in the entire recovery tower.
The temperature at the bottom of the recovery tower 1 is preferably 90 to 130 ° C, and the top temperature is preferably 50 to 80 ° C. The heat load during operation in the recovery tower 1 is preferably managed at the temperature of the middle stage that greatly affects the composition of the discharged fluid. In this specification, “middle part” indicates a line 4 to a line 9. Further, the “temperature control unit” is set to one stage in the middle stage. In general, it is preferable to set a thermometer at a position where the temperature in the tower is 80 to 105 ° C. in the middle stage portion to form a temperature control section and to manage the temperature.

再沸騰器2は、ライン6から流出した回収塔底流を回収塔1に供給する前に、回収塔底流を再加熱する。ライン14を通じて再沸騰器2に熱媒が供給されるが、熱媒は再沸騰器2の加熱を目的として調製された水蒸気でもよいが、プロセス内のいずれかの工程で発生する高温の蒸気(水を主成分とし、その他、反応生成物であるアセトニトリル、青酸等を微量含む)でもよい。例えば、廃水濃縮設備(図示せず)から発生する蒸気を用いることができる。もちろん、それらを併用することも可能である。適切な温度調整の観点で、好ましい熱媒の形態は蒸気であり、101〜638kPaの加圧下で100〜160℃に維持されている蒸気を連続的に循環させることにより塔底部の温度を維持することができる。
再沸騰器2で回収塔底流の一部が加熱されて、回収塔1に戻されると共に、残部の塔底流は廃水として、再沸騰器2の底部よりライン12を通して抜き出される。
The reboiler 2 reheats the recovery tower bottom stream before supplying the recovery tower bottom stream flowing out from the line 6 to the recovery tower 1. A heating medium is supplied to the reboiler 2 through the line 14, and the heating medium may be steam prepared for the purpose of heating the reboiler 2, but high-temperature steam generated at any step in the process ( It may contain water as a main component and also contains a trace amount of reaction products such as acetonitrile and hydrocyanic acid). For example, steam generated from a wastewater concentration facility (not shown) can be used. Of course, it is also possible to use them together. From the viewpoint of appropriate temperature control, the preferred heat medium is steam, and the temperature at the bottom of the column is maintained by continuously circulating steam maintained at 100 to 160 ° C. under a pressure of 101 to 638 kPa. be able to.
A part of the bottom stream of the recovery tower is heated in the reboiler 2 and returned to the recovery tower 1, and the remaining bottom stream is withdrawn from the bottom of the reboiler 2 through the line 12 as waste water.

回収塔の1の下部には、流量調整弁19を通じて水蒸気が供給される(第二の加熱経路)。温度調整の観点で、好ましい水蒸気の形態は飽和蒸気である。第一の加熱経路により蒸気再加熱した塔底流に加えて、第二の加熱経路により水蒸気も供給することで、回収塔1の塔内温度変動を有効に抑制することができる。
本明細書中、回収塔1の「下部」とは、ライン9より下を意味し、回収塔底部を包含し、塔内部に加え、再沸騰器出口ライン8も含まれる。特に、水蒸気を再沸騰器出口ラインも含む回収塔1の回収塔底部に供給する態様は、回収塔1全体の熱負荷を低くできる点で好ましい。
水蒸気によって回収塔に供給する熱量(第二の加熱経路によって回収塔に供給する熱量)は、塔底流によって回収塔に供給する熱量(第一の加熱経路によって回収塔に供給する熱量)と前記水蒸気によって回収塔に供給する熱量との和に対して1〜20%とする。水蒸気によって回収塔に供給する熱量を上記範囲に制御することで、回収塔内部の温度変動を抑制することができる。上記水蒸気によって回収塔に供給する熱量が20%を超えると、再沸騰器を用いた塔底流のみによって回収塔に熱量を供給する場合と同様に、回収塔内部の温度変動が生じることが鋭意検討の結果わかった。
Water vapor is supplied to the lower part of the recovery tower 1 through the flow rate adjusting valve 19 (second heating path). From the viewpoint of temperature adjustment, the preferred form of water vapor is saturated steam. In addition to the tower bottom flow reheated by the first heating path, the steam in the tower of the recovery tower 1 can be effectively suppressed by supplying water vapor through the second heating path.
In this specification, the “lower part” of the recovery tower 1 means below the line 9, includes the bottom of the recovery tower, and includes the reboiler outlet line 8 in addition to the inside of the tower. In particular, an aspect in which steam is supplied to the bottom of the recovery tower 1 including the reboiler outlet line is preferable in that the heat load of the entire recovery tower 1 can be reduced.
The amount of heat supplied to the recovery tower by steam (the amount of heat supplied to the recovery tower by the second heating path) is the amount of heat supplied to the recovery tower by the bottom stream (the amount of heat supplied to the recovery tower by the first heating path) and the water vapor. To 1 to 20% of the sum of the amount of heat supplied to the recovery tower. By controlling the amount of heat supplied to the recovery tower by steam within the above range, temperature fluctuations inside the recovery tower can be suppressed. When the amount of heat supplied to the recovery tower by the water vapor exceeds 20%, it is earnestly studied that the temperature fluctuation inside the recovery tower occurs as in the case where the heat quantity is supplied to the recovery tower only by the tower bottom flow using the reboiler. I understood the result.

ここで、本実施形態において、第一及び第二の加熱経路によって回収塔に供給する熱量は、以下のとおりに測定できる。
上記再沸騰器より供給される熱量は、熱媒もしくは塔底流の再沸騰器前後での温度及び圧力より算出されるエンタルピー変化量より見積もれる。上記水蒸気により供給される熱量は、供給する水蒸気の温度及び圧力より算出されるエンタルピー量より見積もれる。
Here, in this embodiment, the amount of heat supplied to the recovery tower through the first and second heating paths can be measured as follows.
The amount of heat supplied from the reboiler can be estimated from the amount of enthalpy change calculated from the temperature and pressure before and after the reboiler of the heating medium or tower bottom flow. The amount of heat supplied by the water vapor can be estimated from the amount of enthalpy calculated from the temperature and pressure of the water vapor supplied.

塔内物質の中では水が最も多く、水蒸気を熱源として塔内に供給することで塔内組成の変動を最小にできる。塔内での不純物低減の観点から、水蒸気は、回収塔に接続された蒸気生成装置にて塔底流に由来しない水から生成されるのが好ましい。   Water in the column is the most water, and fluctuations in the column composition can be minimized by supplying water vapor into the column as a heat source. From the viewpoint of reducing impurities in the tower, the water vapor is preferably generated from water that does not originate from the tower bottom flow in a steam generator connected to the recovery tower.

中段部の温度制御は水蒸気の流量調整弁19で実施することができる。流量調整弁19の制御は、回収塔中段部の温度計15の測定値見合いで行われ、好ましくは流量調整弁に流量指示調整計17、温度計15に温度指示調整計16を設置し、両間を電気配線18で繋ぎ電子制御を行う。   The temperature control of the middle stage can be performed by the steam flow rate adjustment valve 19. The flow rate adjustment valve 19 is controlled in accordance with the measured value of the thermometer 15 in the middle part of the recovery tower. Preferably, the flow rate adjustment valve 17 is installed in the flow rate adjustment valve, and the temperature indication adjustment meter 16 is installed in the thermometer 15. They are connected by electrical wiring 18 to perform electronic control.

図2は、本実施形態の蒸留装置の別の例を示す概略図である。図2に示す装置は、回収塔が上側回収塔1aと下側回収塔1bに分離されている以外、図1に示す例とほぼ同じであるので、相違点のみ以下に説明する。上側回収塔1aと下側回収塔1bとは、一体として蒸留を行うように運転される。回収塔内で降下する成分と上昇する成分は、上側回収塔1aと下側回収塔1bとの間を行き来できるように接続されている。上側回収塔1aと下側回収塔1bとは機能的に分離しているものであれば、上下が物理的に分離したものでも連続したものでもよい。導入液の組成の観点から、ライン4は、上側1aに接続されており、流入した水性混合物は下側回収塔1bと行き来しながら分離される。装置建設時の経済性の観点から、ライン9は上側回収塔1aと下側回収塔1bの間から分岐し、アセトニトリルを含む留分を流出するのが好ましい。   FIG. 2 is a schematic view showing another example of the distillation apparatus of the present embodiment. The apparatus shown in FIG. 2 is substantially the same as the example shown in FIG. 1 except that the recovery tower is separated into an upper recovery tower 1a and a lower recovery tower 1b, and only the differences will be described below. The upper recovery tower 1a and the lower recovery tower 1b are operated so as to perform distillation as a unit. The component that descends and the component that rises in the recovery tower are connected so that they can travel between the upper recovery tower 1a and the lower recovery tower 1b. As long as the upper recovery tower 1a and the lower recovery tower 1b are functionally separated, the top and bottom may be physically separated or may be continuous. From the viewpoint of the composition of the introduced liquid, the line 4 is connected to the upper side 1a, and the aqueous mixture that has flowed in is separated while coming and going from the lower recovery tower 1b. From the viewpoint of economic efficiency during construction of the apparatus, the line 9 is preferably branched from between the upper recovery tower 1a and the lower recovery tower 1b, and the fraction containing acetonitrile is discharged.

図3は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図3に示す装置は、補助沸騰器3が再沸騰器2に接続されていること以外、図1に示す例とほぼ同じであるので、相違点のみ説明する。補助沸騰器3は再沸騰器2から流出した塔底流の一部を再加熱し、ライン13を通じて再沸騰器2に戻す。熱媒はライン14を通じて補助沸騰器3に供給されている。補助沸騰器3に熱量を十分に供給しておけば、補助沸騰器3によって再加熱された塔底流が供給される再沸騰器2も加熱される。補助沸騰器3は、再沸騰器2から流出する廃水を濃縮する機能を兼ね備えている。廃水濃縮時の発生蒸気を再沸騰器2の熱媒として用いることでプロセス内の熱を有効利用することができる。
補助沸騰器3には熱媒としてライン14を通して水蒸気が供給される。伝熱面の汚れの観点から、水蒸気は、補助沸騰器3に接続された蒸気生成装置で塔底流に由来しない水から生成されるのが好ましい。
FIG. 3 is a schematic view showing still another example of the distillation apparatus of the present embodiment. Since the apparatus shown in FIG. 3 is substantially the same as the example shown in FIG. 1 except that the auxiliary boiling device 3 is connected to the reboiler 2, only the differences will be described. The auxiliary boiling device 3 reheats a part of the bottom stream flowing out from the reboiler 2 and returns it to the reboiler 2 through a line 13. The heat medium is supplied to the auxiliary boiling device 3 through the line 14. If the amount of heat is sufficiently supplied to the auxiliary boiling device 3, the reboiler 2 to which the bottom stream reheated by the auxiliary boiling device 3 is supplied is also heated. The auxiliary boiling device 3 has a function of concentrating the waste water flowing out from the reboiler 2. By using the steam generated during the concentration of the wastewater as a heating medium for the reboiler 2, the heat in the process can be used effectively.
Water vapor is supplied to the auxiliary boiling device 3 through the line 14 as a heating medium. From the viewpoint of contamination of the heat transfer surface, the water vapor is preferably generated from water that does not originate from the tower bottom flow in a steam generator connected to the auxiliary boiling device 3.

図5は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図5に示す装置は、水蒸気がライン8に供給されていること以外、図3に示す装置とほぼ同じであるので、相違点のみ次に説明する。図5に示す装置においては、水蒸気の供給位置をライン8にすることで、既存の再沸騰器を改造して水蒸気を供給する場合に、回収塔内部のノズル出しが不要のため、改造工事が簡単となる。   FIG. 5 is a schematic view showing still another example of the distillation apparatus of the present embodiment. The apparatus shown in FIG. 5 is substantially the same as the apparatus shown in FIG. 3 except that water vapor is supplied to the line 8, and only the differences will be described below. In the apparatus shown in FIG. 5, when the steam supply position is set to line 8, when the existing reboiler is remodeled and steam is supplied, it is not necessary to replace the nozzle inside the recovery tower. It will be easy.

図7は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図7に示す装置は、水蒸気が回収塔1の中で温度制御部とライン9の間に供給されていること以外、図3に示す装置とほぼ同じであるので、相違点のみ次に説明する。図7に示す装置においては、排出流体の組成管理上重要な温度制御部の近傍に水蒸気を供給することで、温度制御部の温度変動幅を底部に水蒸気を供給する場合より更に低減できる。   FIG. 7 is a schematic view showing still another example of the distillation apparatus of the present embodiment. The apparatus shown in FIG. 7 is almost the same as the apparatus shown in FIG. 3 except that water vapor is supplied between the temperature control unit and the line 9 in the recovery tower 1, and only the differences will be described next. . In the apparatus shown in FIG. 7, the temperature fluctuation range of the temperature control unit can be further reduced by supplying water vapor to the bottom by supplying water vapor in the vicinity of the temperature control unit that is important for the composition management of the discharged fluid.

図4、図6、図8は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図4、図6、図8に示す装置は、図2同様に回収塔が上側回収塔1aと下側回収塔1bに分離していること以外、それぞれ図3、図5、図7に示す装置とほぼ同じである。   4, 6 and 8 are schematic views showing still another example of the distillation apparatus of the present embodiment. The apparatus shown in FIGS. 4, 6, and 8 is the same as that shown in FIG. 2, except that the recovery tower is separated into an upper recovery tower 1a and a lower recovery tower 1b, respectively. Is almost the same.

図9は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図9に示す装置は、第二の加熱経路に第二の再沸騰器20が設けられていること以外、図1に示す例とほぼ同じであるので、相違点のみ以下に説明する。塔底流の一部は第一の再沸騰器2に流入するが、残部の更に一部は第二の再沸騰器20に流入する。第一及び第二の再沸騰器に配分する塔底流量の比については、温度調整の観点で、第二の再沸騰器に配分する塔底流量は第一の再沸騰器に配分する塔底流量の50%以下とするのが好ましい。回収塔の1の下部に設置された再沸騰器20に、流量調整弁19を通じて水蒸気が熱媒として供給される。温度調整の観点で、好ましい水蒸気の形態は飽和蒸気である。塔底の再沸騰器2で蒸気再加熱した塔底流に加えて、水蒸気を熱媒とした再沸騰器20にて塔内流を再加熱して供給することで、回収塔1の塔内温度変動をより有効に抑制することができる。流量指示調整計17を介して第二の再沸騰器20に水蒸気が供給される。流量指示調整計17は温度指示調整計16に接続されており、塔内温度に応じて水蒸気の流量が調整される。
水蒸気を熱媒とした再沸騰器を使用することは、水蒸気を直接回収塔に供給する場合より装置建設時及び運転時の経済性の観点から不利であるが、供給熱量が調整し易い点で好ましい。
特に、回収塔1の回収塔底部に水蒸気を熱媒とする再沸騰器を設置し、既存の塔底再沸騰器とともに塔底流を再加熱する態様は、回収塔1全体の熱負荷を低くできる点で好ましい。
第二の再沸騰器よって回収塔に供給する熱量は、塔底流によって回収塔に供給する熱量と前記水蒸気を熱媒とする第二の再沸騰器によって回収塔に供給する熱量との和に対して1〜20%とする。水蒸気を熱媒とする第二の再沸騰器によって回収塔に供給する熱量を上記範囲に制御することで、回収塔内部の温度変動を抑制することができる。上記第二の再沸騰器によって回収塔に供給する熱量が20%を超えると、第一の再沸騰器を用いた塔底流のみによって回収塔に熱量を供給する場合と同様に、回収塔内部の温度変動が生じることが鋭意検討の結果わかった。
FIG. 9 is a schematic view showing still another example of the distillation apparatus of the present embodiment. Since the apparatus shown in FIG. 9 is substantially the same as the example shown in FIG. 1 except that the second reboiler 20 is provided in the second heating path, only the differences will be described below. A part of the bottom stream flows into the first reboiler 2, but a further part of the remainder flows into the second reboiler 20. Regarding the ratio of the bottom flow rate allocated to the first and second reboilers, from the viewpoint of temperature adjustment, the bottom flow rate allocated to the second reboiler is allocated to the first reboiler. The flow rate is preferably 50% or less. Steam is supplied as a heat medium to the reboiler 20 installed at the lower part of the recovery tower 1 through the flow rate adjusting valve 19. From the viewpoint of temperature adjustment, the preferred form of water vapor is saturated steam. In addition to the tower bottom stream reheated in the tower bottom reboiler 2, the tower interior temperature of the recovery tower 1 is supplied by reheating the tower stream in the reboiler 20 using steam as a heating medium. The fluctuation can be suppressed more effectively. Water vapor is supplied to the second reboiler 20 via the flow rate indicating regulator 17. The flow rate indicating / adjusting meter 17 is connected to the temperature indicating / adjusting meter 16, and the flow rate of water vapor is adjusted according to the temperature in the tower.
The use of a reboiler with steam as a heat medium is more disadvantageous from the viewpoint of economics during construction and operation of the apparatus than when steam is directly supplied to the recovery tower, but the amount of heat supplied is easy to adjust. preferable.
In particular, an embodiment in which a reboiler using steam as a heat medium is installed at the bottom of the recovery tower 1 and the tower bottom flow is reheated together with the existing tower bottom reboiler can reduce the heat load of the entire recovery tower 1. This is preferable.
The amount of heat supplied to the recovery tower by the second reboiler is based on the sum of the amount of heat supplied to the recovery tower by the tower bottom flow and the amount of heat supplied to the recovery tower by the second reboiler using the steam as a heat medium. 1 to 20%. By controlling the amount of heat supplied to the recovery tower by the second reboiler using steam as a heating medium, the temperature fluctuation inside the recovery tower can be suppressed. When the amount of heat supplied to the recovery tower by the second reboiler exceeds 20%, as in the case of supplying heat to the recovery tower only by the tower bottom flow using the first reboiler, As a result of intensive studies, it was found that temperature fluctuations occur.

中段部の温度制御は水蒸気の流量調整弁19で実施することができる。流量調整弁19の制御は、回収塔1中段部の温度計15の測定値見合いで行われ、好ましくは流量調整弁に流量指示調整計17、温度計15に温度指示調整計16を設置し、両間を電気配線18で繋ぎ電子制御を行う。   The temperature control of the middle stage can be performed by the steam flow rate adjustment valve 19. The control of the flow rate adjusting valve 19 is performed in accordance with the measured value of the thermometer 15 in the middle part of the recovery tower 1, preferably the flow rate adjusting valve 17 is installed in the flow rate adjusting valve, and the temperature indicating adjuster 16 is installed in the thermometer 15, The two are connected by electrical wiring 18 to perform electronic control.

図10及び図11は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図10に示す装置は、第二の加熱経路に第二の再沸騰器20が設けられていること以外、図2に示す例とほぼ同じである。図11は、第二の加熱経路に第二の再沸騰器20が設けられていること以外、図3に示す例とほぼ同じである。   10 and 11 are schematic views showing still another example of the distillation apparatus of the present embodiment. The apparatus shown in FIG. 10 is substantially the same as the example shown in FIG. 2 except that the second reboiler 20 is provided in the second heating path. FIG. 11 is substantially the same as the example shown in FIG. 3 except that the second reboiler 20 is provided in the second heating path.

図13に示す装置は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図13に示す装置は、水蒸気を熱媒とする再沸騰器が回収塔1の中で温度制御部とライン9の間に設置されていること以外、図10に示す装置とほぼ同じであるので、相違点のみ次に説明する。図13に示す装置においては、排出流体の組成管理上重要な温度制御部の近傍の塔内流を、水蒸気を熱媒とする再沸騰器で再加熱して供給することで、温度制御部の温度変動幅を底部に水蒸気を熱媒とする再沸騰器を設置する場合より更に低減できる。   The apparatus shown in FIG. 13 is a schematic view showing still another example of the distillation apparatus of the present embodiment. The apparatus shown in FIG. 13 is substantially the same as the apparatus shown in FIG. 10 except that a reboiler using steam as a heat medium is installed between the temperature control unit and the line 9 in the recovery tower 1. Only the differences will be described next. In the apparatus shown in FIG. 13, the flow in the tower near the temperature control unit important for the composition management of the discharged fluid is reheated and supplied by a reboiler using steam as a heat medium. The temperature fluctuation range can be further reduced as compared with the case where a reboiler using steam as a heat medium is installed at the bottom.

図12、図14は、本実施形態の蒸留装置のさらに別の例を示す概略図である。図12、図14に示す装置は、図2同様に回収塔が上側回収塔1aと下側回収塔1bに分離していること以外、それぞれ図11、図13に示す装置とほぼ同じである。   12 and 14 are schematic views showing still another example of the distillation apparatus of the present embodiment. The apparatus shown in FIGS. 12 and 14 is substantially the same as the apparatus shown in FIGS. 11 and 13 except that the recovery tower is separated into an upper recovery tower 1a and a lower recovery tower 1b as in FIG.

本実施形態における不飽和ニトリルの製造方法は、
触媒の存在下で、プロパン、プロピレン、イソブタン及びイソブチレンからなる群から選択される少なくとも1種をアンモ酸化することにより不飽和ニトリルを含むガスを生成させる工程(工程A)、
前記ガスを急冷塔内で水性液体と接触させた後、吸収塔内で水を含む液体と接触させて吸収させて不飽和ニトリルを含む水性混合物を得る工程(工程B)、
得られた不飽和ニトリルを含む水性混合物を蒸留する工程(工程C)、
を含む不飽和ニトリルの製造方法であって、
前記水性混合物から前記不飽和ニトリルを蒸留するための回収塔に、再加熱した塔底流と、水蒸気とを供給する工程を含む方法である。
The method for producing an unsaturated nitrile in the present embodiment is as follows:
A step of generating a gas containing an unsaturated nitrile by ammoxidizing at least one selected from the group consisting of propane, propylene, isobutane and isobutylene in the presence of a catalyst (step A);
A step of bringing the gas into contact with an aqueous liquid in a quenching tower and then bringing it into contact with a liquid containing water in the absorption tower to absorb it to obtain an aqueous mixture containing an unsaturated nitrile (step B);
A step (step C) of distilling the aqueous mixture containing the obtained unsaturated nitrile,
A method for producing an unsaturated nitrile comprising:
The method includes a step of supplying a reheated tower bottom stream and water vapor to a recovery tower for distilling the unsaturated nitrile from the aqueous mixture.

ここで、不飽和ニトリルの製造方法は、例えば、図15に示す製造装置を用いて行うことできる。
図15は、アンモニア及び酸素を用いるプロピレンの接触アンモ酸化によるアクリロニトリル製造プロセスの概略図を示す。図15に示すように、プロピレン、アンモニア及び分子状酸素(通常は空気を用いる)は予め触媒が収容された反応器に導入され、これらが触媒と接触することによりアクリルニトリルを含むガスが生成する(工程A)。生成したガスは反応器の塔頂から流出して、急冷塔に流入し、急冷塔内で水性液体(代表的には水)と接触する工程で冷却され、高沸点有機化合物等の一部の成分は冷却水に溶出するが、アクリロニトリルを含む主生成物はガス状のまま塔頂から流出し、吸収塔に導入される。吸収塔には塔頂から吸収水が供給され、ガス中のアクリロニトリル、アセトニトリル、青酸及び水は吸収水に吸収される(工程B)。ガスに含まれる成分のうち吸収されないプロピレン及び/又はプロパン、酸素、窒素、生成した炭酸ガス及び一酸化炭素は、吸収塔の塔頂から流出する。吸収塔の塔底からは、アクリロニトリルを含む水性混合物(アクリロニトリル、アセトニトリル及び青酸を含む水溶液)が流出し、回収塔に供給され、蒸留が行われる(工程C)。
上記方法においては、プロパンの代わりに又はプロパンと共に、プロピレン、イソブタン及びイソブチレンからなる群から選択される少なくとも1種以上を用いてアンモ酸化反応を行うことができる。
また、上記蒸留工程(工程C)は、上述した方法と同様に、第一及び第二の加熱経路が接続された回収塔を用いて行うことができる。
Here, the manufacturing method of unsaturated nitrile can be performed using the manufacturing apparatus shown in FIG. 15, for example.
FIG. 15 shows a schematic diagram of a process for producing acrylonitrile by catalytic ammoxidation of propylene using ammonia and oxygen. As shown in FIG. 15, propylene, ammonia, and molecular oxygen (usually using air) are introduced into a reactor in which a catalyst is previously stored, and these come into contact with the catalyst to generate a gas containing acrylonitrile. (Process A). The generated gas flows out from the top of the reactor, flows into the quenching tower, and is cooled in the process of contacting the aqueous liquid (typically water) in the quenching tower, and some of the high-boiling organic compounds, etc. The components are eluted in the cooling water, but the main product containing acrylonitrile flows out from the top of the column in a gaseous state and is introduced into the absorption tower. Absorption water is supplied to the absorption tower from the top of the tower, and acrylonitrile, acetonitrile, hydrocyanic acid and water in the gas are absorbed into the absorption water (step B). Of the components contained in the gas, propylene and / or propane, oxygen, nitrogen, produced carbon dioxide and carbon monoxide that are not absorbed flow out from the top of the absorption tower. From the bottom of the absorption tower, an aqueous mixture containing acrylonitrile (an aqueous solution containing acrylonitrile, acetonitrile and hydrocyanic acid) flows out and is supplied to the recovery tower for distillation (step C).
In the above method, the ammoxidation reaction can be carried out using at least one selected from the group consisting of propylene, isobutane and isobutylene instead of or together with propane.
Moreover, the said distillation process (process C) can be performed using the collection | recovery tower to which the 1st and 2nd heating path | route was connected similarly to the method mentioned above.

本実施形態を実施例に基づいて具体的に説明するが、本実施形態は以下の実施例に限定されるものではない。また、本実施形態は特定数のトレイを有する塔に限定されず、トレイを有する塔にも限定されない。さらに、代替的に充填塔を使用してもよい。
実施例及び比較例において、熱量は以下のとおりに測定した。
ここで、本実施形態において、再沸騰器より供給される熱量は、熱媒もしくは塔底流の再沸騰器前後での温度及び圧力より算出されるエンタルピー変化量より見積もった。また塔内に直接供給される水蒸気により供給される熱量は、供給する水蒸気の温度及び圧力より算出されるエンタルピー量より見積もった。
Although the present embodiment will be specifically described based on examples, the present embodiment is not limited to the following examples. Further, the present embodiment is not limited to a tower having a specific number of trays, and is not limited to a tower having trays. In addition, a packed tower may alternatively be used.
In Examples and Comparative Examples, the calorific value was measured as follows.
Here, in this embodiment, the amount of heat supplied from the reboiler is estimated from the enthalpy change amount calculated from the temperature and pressure before and after the reboiler of the heating medium or the bottom flow. The amount of heat supplied by the steam supplied directly into the tower was estimated from the amount of enthalpy calculated from the temperature and pressure of the supplied steam.

[実施例1]
図6に示す蒸留装置を用いて蒸留を行った。
プロピレン、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、アクリロニトリル7.1wt%、アセトニトリル0.4wt%、青酸0.4wt%及び水92.1wt%を含む液を、回収塔の上部37段に、流量363T/hrで供給した。ただし、この回収塔はデュアルトレイを有する上部69段と下部45段の2塔に分かれており、上部側の塔の塔底と下部側の塔の塔頂は配管で繋がっていた。
塔頂よりアクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品アクリロニトリル及び製品青酸とした。塔の中段45段(2塔の間の配管)よりアセトニトリル12.2wt%及び水87.5wt%を含む液を流量4T/hrで抜き出し、その後の精製工程で蒸留分離され製品アセトニトリルとした。下段1段より抜き出した塔内液はプロセス内で熱交換し47℃まで冷却した後、この液を流量133T/hrで塔の114段に供給した。
塔底液はアセトニトリル29wt.ppb、青酸0.2wt%及び水96.3wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器を通して加熱して塔底に戻し、残りを流量17T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を1.7T/hrを基準に塔底部の再沸騰器の出口ラインに供給した。前記水蒸気1.7T/hrによって供給する熱量は、前記塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して1.3%であった。
塔頂管理温度を73℃、塔底管理温度を116℃、59段管理温度を99℃で運転した。塔内の温度管理は、59段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で2年間運転したが、製品管理上重要な59段温度において変動幅が最大5℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。図18に回収塔の59段温度の経時変化を示す。
[Example 1]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from the reaction product obtained by reacting propylene, ammonia and air, a liquid containing 7.1 wt% acrylonitrile, 0.4 wt% acetonitrile, 0.4 wt% hydrocyanic acid, and 92.1 wt% water was used. It was supplied to the upper 37 stages of the recovery tower at a flow rate of 363 T / hr. However, this recovery tower was divided into two towers having an upper 69 stage having a dual tray and a lower 45 stage, and the tower bottom of the upper tower and the tower top of the lower tower were connected by a pipe.
A mixed gas of acrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product acrylonitrile and product hydrocyanic acid. A liquid containing 12.2 wt% of acetonitrile and 87.5 wt% of water was extracted at a flow rate of 4 T / hr from the middle 45 stages of the tower (the pipe between the two towers), and was separated by distillation in the subsequent purification step to obtain product acetonitrile. The liquid in the tower extracted from the first stage of the lower stage was subjected to heat exchange in the process and cooled to 47 ° C., and then this liquid was supplied to stage 114 of the tower at a flow rate of 133 T / hr.
The bottom liquid was acetonitrile 29 wt. It contains ppb, 0.2 wt% of hydrocyanic acid, and 96.3 wt% of water. This liquid was extracted from the bottom of the column, a part was heated through a reboiler and returned to the bottom of the column, and the rest was extracted at a flow rate of 17 T / hr. .
Separately from the reheated tower bottom stream, 475 kPa of water vapor not derived from the tower bottom stream was supplied to the outlet line of the reboiler at the bottom of the tower based on 1.7 T / hr. The amount of heat supplied by the steam 1.7 T / hr was 1.3% with respect to the sum of the amount of heat supplied by the tower bottom flow and the amount of heat supplied by the steam.
The tower top management temperature was 73 ° C., the tower bottom management temperature was 116 ° C., and the 59-stage management temperature was 99 ° C. The temperature control inside the tower was 59 stages, and the reboiler conditions were kept constant, and only the amount of steam supplied to the tower bottom was implemented. Although it was operated for 2 years under these operating conditions, the fluctuation range was a maximum of 5 ° C. at 59-stage temperature, which is important for product management, and there was no deviation from the product standard due to the temperature management of the recovery tower. FIG. 18 shows the change over time in the 59-stage temperature of the recovery tower.

[実施例2]
図8に示す蒸留装置を用いて蒸留を行った。
プロピレン、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、アクリロニトリル6.6wt%、アセトニトリル0.2wt%、青酸0.1wt%及び水91.5wt%を含む液を、回収塔の上部37段に、流量165T/hrで供給した。ただし、この回収塔はデュアルトレイを有する上部69段と下部45段の2塔に分かれており、上部側の塔の塔底と下部側の塔の塔頂は配管で繋がっていた。
塔頂よりアクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品アクリロニトリル及び製品青酸とした。塔の中段45段(2塔の間の配管)よりアセトニトリル16.5wt%及び水80.5wt%を含む液を流量1.7T/hrで抜き出し、その後の精製工程で蒸留分離し、製品アセトニトリルとした。下段1段より抜き出した塔内液はプロセス内で熱交換し47℃まで冷却した後、この液を流量69T/hrで塔の114段に供給した。
塔底液は青酸0.01wt%及び水98.6wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器を通して加熱して塔底に戻し、残りを流量22T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を2.7T/hrを基準に塔46段に直接供給した。前記水蒸気2.7T/hrによって供給する熱量は、前記塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して15.0%であった。
塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。塔内の温度管理は、75段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で1.5年間運転したが、製品管理上重要な75段温度において変動幅が最大3℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。
[Example 2]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from the reaction product obtained by reacting propylene, ammonia and air, a liquid containing 6.6% by weight of acrylonitrile, 0.2% by weight of acetonitrile, 0.1% by weight of hydrocyanic acid and 91.5% by weight of water It was supplied at a flow rate of 165 T / hr to the upper 37 stages of the recovery tower. However, this recovery tower was divided into two towers having an upper 69 stage having a dual tray and a lower 45 stage, and the tower bottom of the upper tower and the tower top of the lower tower were connected by a pipe.
A mixed gas of acrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product acrylonitrile and product hydrocyanic acid. A liquid containing 16.5 wt% of acetonitrile and 80.5 wt% of water was extracted at a flow rate of 1.7 T / hr from the middle 45 stages of the tower (pipe between the two towers), and was separated by distillation in the subsequent purification step to produce product acetonitrile and did. The liquid in the tower extracted from the first stage of the lower stage was subjected to heat exchange in the process and cooled to 47 ° C., and then this liquid was supplied to stage 114 of the tower at a flow rate of 69 T / hr.
The liquid at the bottom of the tower contains 0.01% by weight of hydrocyanic acid and 98.6% by weight of water. This liquid is withdrawn from the bottom of the tower, and part of the liquid is heated through a reboiler and returned to the bottom of the tower. Extracted.
Separately from the reheated tower bottom stream, 475 kPa of water vapor not derived from the tower bottom stream was directly supplied to 46 stages of the tower based on 2.7 T / hr. The amount of heat supplied by the steam 2.7 T / hr was 15.0% with respect to the sum of the amount of heat supplied by the tower bottom flow and the amount of heat supplied by the steam.
The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. The temperature control inside the tower was 75 stages, and the reboiler condition was kept constant, and only the amount of steam supplied to the bottom of the tower was implemented. It was operated for 1.5 years under these operating conditions, but the fluctuation range was 3 ° C at 75 ° C, which is important for product management, and there was no deviation from the product standard due to the temperature management of the recovery tower. .

[実施例3]
図1に示す蒸留装置を用いて蒸留を行った。
プロピレン、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、アクリロニトリル6.4wt%、アセトニトリル0.2wt%、青酸0.6wt%及び水92.7wt%を含む液を、回収塔の82段に、流量394T/hrで供給した。ただし、この回収塔は段数110段のシーブトレイを有する回収塔であった。
塔頂よりアクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品アクリロニトリル及び製品青酸とした。塔の中段41段よりアセトニトリル18.7wt%及び水79.6wt%を含む液を流量3.3T/hrで抜き出し、その後の精製工程で蒸留分離し、製品アセトニトリルとした。下段1段より抜き出した塔内液はプロセス内で熱交換し47℃まで冷却した後、この液を流量155T/hrで塔の110段に供給した。
塔底液はアセトニトリル6ppm、青酸0.01wt%及び水99.9wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器を通して加熱して塔底に戻し、残りを流量41T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を1.1T/hrを基準に塔42段に直接供給した。前記水蒸気1.1T/hrによって供給する熱量は、前記塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して2.7%であった。
塔頂管理温度を70℃、塔底管理温度を116℃、55段管理温度を99℃で運転した。塔内の温度管理は、55段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で2年間運転したが、製品管理上重要な55段温度において変動幅が最大3℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。
[Example 3]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from a reaction product obtained by reacting propylene, ammonia and air, a liquid containing 6.4% by weight of acrylonitrile, 0.2% by weight of acetonitrile, 0.6% by weight of hydrocyanic acid, and 92.7% by weight of water is obtained. It was supplied to 82 stages of the recovery tower at a flow rate of 394 T / hr. However, this recovery tower was a recovery tower having a sieve tray having 110 plates.
A mixed gas of acrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product acrylonitrile and product hydrocyanic acid. A liquid containing 18.7 wt% of acetonitrile and 79.6 wt% of water was extracted from the middle 41 of the column at a flow rate of 3.3 T / hr, and was distilled and separated in the subsequent purification step to obtain product acetonitrile. The liquid in the tower extracted from the lower stage 1 was heat-exchanged in the process and cooled to 47 ° C., and then this liquid was supplied to the 110th stage of the tower at a flow rate of 155 T / hr.
The liquid at the bottom of the column contains 6 ppm of acetonitrile, 0.01 wt% of hydrocyanic acid and 99.9 wt% of water. This liquid is extracted from the bottom of the tower, and part of the liquid is heated through a reboiler and returned to the bottom of the tower. / Hr.
Separately from the reheated tower bottom stream, 475 kPa of water vapor not derived from the tower bottom stream was directly supplied to the 42 stage of the tower based on 1.1 T / hr. The amount of heat supplied by the steam 1.1 T / hr was 2.7% with respect to the sum of the amount of heat supplied by the tower bottom flow and the amount of heat supplied by the steam.
The tower top management temperature was 70 ° C, the tower bottom management temperature was 116 ° C, and the 55 stage management temperature was 99 ° C. The temperature control in the tower was performed for only the amount of steam supplied to the bottom of the tower while maintaining the conditions of the reboiler at a constant of 55 stages. Although it was operated for 2 years under these operating conditions, the fluctuation range was 3 ° C. at the maximum 55 stage temperature, which is important for product management, and there was no deviation from the product standard due to the temperature management of the recovery tower.

[実施例4]
図8に示す蒸留装置を用いて蒸留を行った。
ターシャリーブチルアルコール、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、メタクリロニトリル6.9wt%、アセトニトリル2.1wt%、青酸1.1wt%及び水88.8wt%を含む液を、回収塔の上部37段に、流量82T/hrで供給した。ただし、この回収塔はデュアルトレイを有する上部69段と下部45段の2塔に分かれており、上部側の塔の塔底と下部側の塔の塔頂は配管で繋がっていた。
塔頂よりメタクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品メタクリロニトリル及び製品青酸とした。塔の中段45段(2塔の間の配管)よりアセトニトリル2.7wt%及び水95.4wt%を含む液を流量64.7T/hrで抜き出し、プロセス内で熱交換後、前工程の吸収塔の吸収水として使用した。下段1段より抜き出した塔内液はプロセス内で熱交換し44℃まで冷却した後、この液を流量66T/hrで塔の114段に供給した。
塔底液は青酸0.09wt%及び水99.5wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器を通して加熱して塔底に戻し、残りを流量14T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を0.9T/hrを基準に塔46段に直接供給した。前記水蒸気0.9T/hrによって供給する熱量は、前記塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して8.2%であった。
塔頂管理温度を76℃、塔底管理温度を113℃、75段管理温度を88℃で運転した。塔内の温度管理は、75段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で1ヶ月間運転したが、製品管理上重要な75段温度において変動幅が最大3℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。
[Example 4]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from the reaction product obtained by reacting tertiary butyl alcohol, ammonia and air, methacrylonitrile 6.9 wt%, acetonitrile 2.1 wt%, cyanic acid 1.1 wt% and water 88.8 wt% Was supplied to the upper 37 stages of the recovery tower at a flow rate of 82 T / hr. However, this recovery tower was divided into two towers having an upper 69 stage having a dual tray and a lower 45 stage, and the tower bottom of the upper tower and the tower top of the lower tower were connected by a pipe.
A mixed gas of methacrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product methacrylonitrile and product hydrocyanic acid. A liquid containing 2.7 wt% of acetonitrile and 95.4 wt% of water was extracted at a flow rate of 64.7 T / hr from the middle 45 stages of the tower (piping between the two towers), and after the heat exchange in the process, the absorption tower of the previous step Used as absorbed water. The liquid in the tower extracted from the first stage of the lower stage was subjected to heat exchange in the process and cooled to 44 ° C., and then this liquid was supplied to stage 114 of the tower at a flow rate of 66 T / hr.
The bottom liquid contains 0.09 wt% of cyanic acid and 99.5 wt% of water. This liquid is extracted from the bottom of the tower, partly heated through a reboiler and returned to the bottom of the tower, and the rest at a flow rate of 14 T / hr. Extracted.
Separately from the reheated tower bottom stream, 475 kPa of water vapor not derived from the tower bottom stream was directly supplied to 46 stages of the tower based on 0.9 T / hr. The amount of heat supplied by the steam 0.9 T / hr was 8.2% with respect to the sum of the amount of heat supplied by the tower bottom flow and the amount of heat supplied by the steam.
The tower top management temperature was 76 ° C., the tower bottom management temperature was 113 ° C., and the 75 stage management temperature was 88 ° C. The temperature control inside the tower was 75 stages, and the reboiler condition was kept constant, and only the amount of steam supplied to the bottom of the tower was implemented. The operation was continued for one month under these operating conditions, but the fluctuation range was 3 ° C. at a maximum at 75-stage temperature, which is important for product management.

[実施例5]
図10に示す蒸留装置を用いて蒸留を行った。
プロピレン、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、アクリロニトリル6.6wt%、アセトニトリル0.2wt%、青酸0.1wt%及び水91.5wt%を含む液を、回収塔の上部37段に、流量128T/hrで供給した。ただし、この回収塔はデュアルトレイ、シーブトレイを有する上部69段と下部45段の2塔に分かれており、上部側の塔の塔底と下部側の塔の塔頂は配管で繋がっていた。
塔頂よりアクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品アクリロニトリル及び製品青酸とした。塔の中段45段(2塔の間の配管)よりアセトニトリル12.5wt%及び水80.5wt%を含む液を流量1.3T/hrで抜き出し、その後の精製工程で蒸留分離し、製品アセトニトリルとした。下段1段より抜き出した塔内液はプロセス内で熱交換し47℃まで冷却した後、この液を流量64T/hrで塔の114段に供給した。
塔底液は青酸0.09wt%及び水98.6wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器(第一の再沸騰器)を通して加熱して塔底に戻し、残りを流量18T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を別の再沸騰器(第二の再沸騰器)に3.3T/hrを基準に熱媒として供給して塔底流を加熱した。前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量は、前記第一の再沸騰器によって供給する熱量と前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量との和に対して19.0%であった。
塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。塔内の温度管理は、75段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で1.5年間運転したが、製品管理上重要な75段温度において変動幅が最大3℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。
[Example 5]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from the reaction product obtained by reacting propylene, ammonia and air, a liquid containing 6.6% by weight of acrylonitrile, 0.2% by weight of acetonitrile, 0.1% by weight of hydrocyanic acid and 91.5% by weight of water It was supplied at a flow rate of 128 T / hr to the upper 37 stages of the recovery tower. However, this recovery tower was divided into two towers having an upper 69 stage having a dual tray and a sheave tray and a lower 45 stage, and the tower bottom of the upper tower and the tower top of the lower tower were connected by a pipe.
A mixed gas of acrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product acrylonitrile and product hydrocyanic acid. A liquid containing 12.5 wt% of acetonitrile and 80.5 wt% of water was extracted at a flow rate of 1.3 T / hr from the middle 45 stages of the tower (pipe between the two towers), and was separated by distillation in the subsequent purification step, did. The liquid in the tower extracted from the lower stage 1 was heat-exchanged in the process and cooled to 47 ° C., and then this liquid was supplied to 114 stages of the tower at a flow rate of 64 T / hr.
The bottom liquid contains 0.09 wt% of cyanic acid and 98.6 wt% of water. This liquid is extracted from the bottom of the tower and partly heated through the reboiler (first reboiler) and returned to the bottom of the tower. The remainder was extracted at a flow rate of 18 T / hr.
Separately from the reheated tower bottom stream, 475 kPa of steam not derived from the tower bottom stream is supplied to another reboiler (second reboiler) as a heating medium based on 3.3 T / hr to heat the tower bottom stream. did. The amount of heat supplied by the second reboiler using the water vapor as a heat medium is the amount of heat supplied by the first reboiler and the amount of heat supplied by the second reboiler using the water vapor as a heat medium. It was 19.0% with respect to the sum.
The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. The temperature control inside the tower was 75 stages, and the reboiler condition was kept constant, and only the amount of steam supplied to the bottom of the tower was implemented. It was operated for 1.5 years under these operating conditions, but the fluctuation range was 3 ° C at 75 ° C, which is important for product management, and there was no deviation from the product standard due to the temperature management of the recovery tower. .

[実施例6]
図11に示す蒸留装置を用いて蒸留を行った。
プロピレン、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、アクリロニトリル6.7wt%、アセトニトリル0.2wt%、青酸0.1wt%及び水91.6wt%を含む液を、回収塔の上部82段に、流量160T/hrで供給した。ただし、この回収塔はデュアルトレイ、シーブトレイを有する上部69段と下部45段の2塔に分かれており、上部側の塔の塔底と下部側の塔の塔頂は配管で繋がっていた。
塔頂よりアクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品アクリロニトリル及び製品青酸とした。塔の中段45段(2塔の間の配管)よりアセトニトリル12.5wt%及び水80.5wt%を含む液を流量1.5T/hrで抜き出し、その後の精製工程で蒸留分離し、製品アセトニトリルとした。下段1段より抜き出した塔内液はプロセス内で熱交換し47℃まで冷却した後、この液を流量65T/hrで塔の114段に供給した。
塔底液は青酸0.07wt%及び水98.5wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器(第一の再沸騰器)を通して加熱して塔底に戻し、残りを流量18T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を別の再沸騰器(第二の再沸騰器)に0.8T/hrを基準に熱媒として供給して塔底流を加熱した。前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量は、前記第一の再沸騰器によって供給する熱量と前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量との和に対して4.1%であった。
塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。塔内の温度管理は、75段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で1年間運転したが、製品管理上重要な75段温度において変動幅が最大2℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。
[Example 6]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from the reaction product obtained by reacting propylene, ammonia and air, a liquid containing 6.7% by weight of acrylonitrile, 0.2% by weight of acetonitrile, 0.1% by weight of hydrocyanic acid and 91.6% by weight of water It was supplied to the upper 82 stages of the recovery tower at a flow rate of 160 T / hr. However, this recovery tower was divided into two towers having an upper 69 stage having a dual tray and a sheave tray and a lower 45 stage, and the tower bottom of the upper tower and the tower top of the lower tower were connected by a pipe.
A mixed gas of acrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product acrylonitrile and product hydrocyanic acid. A liquid containing 12.5 wt% of acetonitrile and 80.5 wt% of water was extracted at a flow rate of 1.5 T / hr from the middle 45 stages of the tower (the pipe between the two towers), and was separated by distillation in the subsequent purification step. did. The liquid in the tower extracted from the first stage of the lower stage was subjected to heat exchange in the process and cooled to 47 ° C., and then this liquid was supplied to the stage 114 of the tower at a flow rate of 65 T / hr.
The bottom liquid contains 0.07 wt% of cyanic acid and 98.5 wt% of water. This liquid is extracted from the bottom of the tower and partly heated through the reboiler (first reboiler) and returned to the bottom of the tower. The remainder was extracted at a flow rate of 18 T / hr.
Separately from the reheated bottom stream, 475 kPa of water vapor not derived from the bottom stream is supplied to another reboiler (second reboiler) as a heating medium based on 0.8 T / hr to heat the bottom stream. did. The amount of heat supplied by the second reboiler using the water vapor as a heat medium is the amount of heat supplied by the first reboiler and the amount of heat supplied by the second reboiler using the water vapor as a heat medium. It was 4.1% with respect to the sum.
The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. The temperature control inside the tower was 75 stages, and the reboiler condition was kept constant, and only the amount of steam supplied to the bottom of the tower was implemented. The system was operated for 1 year under these operating conditions, but the fluctuation range was 2 ° C. at a maximum of 75 ° C., which is important for product management, and stable operation was possible without any deviation from the product standard due to the temperature management of the recovery tower.

[実施例7]
図14に示す蒸留装置を用いて蒸留を行った。
プロピレン、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、アクリロニトリル6.6wt%、アセトニトリル0.2wt%、青酸0.1wt%及び水91.5wt%を含む液を、回収塔の上部82段に、流量105T/hrで供給した。ただし、この回収塔はデュアルトレイ、シーブトレイを有する上部69段と下部45段の2塔に分かれており、上部側の塔の塔底と下部側の塔の塔頂は配管で繋がっていた。
塔頂よりアクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品アクリロニトリル及び製品青酸とした。塔の中段45段(2塔の間の配管)よりアセトニトリル12.6wt%及び水80.6wt%を含む液を流量1.4T/hrで抜き出し、その後の精製工程で蒸留分離し、製品アセトニトリルとした。下段1段より抜き出した塔内液はプロセス内で熱交換し47℃まで冷却した後、この液を流量51T/hrで塔の114段に供給した。
塔底液は青酸0.07wt%及び水98.5wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器(第一の再沸騰器)を通して加熱して塔底に戻し、残りを流量18T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を別の再沸騰器(第二の再沸騰器)に3.0T/hrを基準に熱媒として供給して45段塔内流を加熱した。前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量は、前記第一の再沸騰器によって供給する熱量と前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量との和に対して16.9%であった。
塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。塔内の温度管理は、75段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で1年間運転したが、製品管理上重要な75段温度において変動幅が最大2℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。
[Example 7]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from the reaction product obtained by reacting propylene, ammonia and air, a liquid containing 6.6% by weight of acrylonitrile, 0.2% by weight of acetonitrile, 0.1% by weight of hydrocyanic acid and 91.5% by weight of water The gas was supplied to the upper 82 stages of the recovery tower at a flow rate of 105 T / hr. However, this recovery tower was divided into two towers having an upper 69 stage having a dual tray and a sheave tray and a lower 45 stage, and the tower bottom of the upper tower and the tower top of the lower tower were connected by a pipe.
A mixed gas of acrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product acrylonitrile and product hydrocyanic acid. A liquid containing 12.6 wt% of acetonitrile and 80.6 wt% of water was extracted at a flow rate of 1.4 T / hr from the middle 45 stages of the tower (the pipe between the two towers), and was separated by distillation in the subsequent purification step, did. The liquid in the tower extracted from the first stage of the lower stage was subjected to heat exchange in the process and cooled to 47 ° C., and then this liquid was supplied to the 114th stage of the tower at a flow rate of 51 T / hr.
The bottom liquid contains 0.07 wt% of cyanic acid and 98.5 wt% of water. This liquid is extracted from the bottom of the tower and partly heated through the reboiler (first reboiler) and returned to the bottom of the tower. The remainder was extracted at a flow rate of 18 T / hr.
In addition to the reheated tower bottom stream, 475 kPa of water vapor not derived from the tower bottom stream is supplied to another reboiler (second reboiler) as a heating medium on the basis of 3.0 T / hr to enter the 45-stage tower. The stream was heated. The amount of heat supplied by the second reboiler using the water vapor as a heat medium is the amount of heat supplied by the first reboiler and the amount of heat supplied by the second reboiler using the water vapor as a heat medium. It was 16.9% with respect to the sum.
The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. The temperature control inside the tower was 75 stages, and the reboiler condition was kept constant, and only the amount of steam supplied to the bottom of the tower was implemented. The system was operated for 1 year under these operating conditions, but the fluctuation range was 2 ° C. at a maximum of 75 ° C., which is important for product management, and stable operation was possible without any deviation from the product standard due to the temperature management of the recovery tower.

[実施例8]
図14に示す蒸留装置を用いて蒸留を行った。
プロピレン、アンモニア及び空気を反応させて得られた反応生成物からアセトニトリルを分離するため、アクリロニトリル6.6wt%、アセトニトリル0.2wt%、青酸0.1wt%及び水91.5wt%を含む液を、回収塔の上部82段に、流量118T/hrで供給した。ただし、この回収塔はデュアルトレイ、シーブトレイを有する上部69段と下部45段の2塔に分かれており、上部側の塔の塔底と下部側の塔の塔頂は配管で繋がっていた。
塔頂よりアクリロニトリル、青酸、水の混合ガスを抜き出し、その後の精製工程で蒸留分離し、製品アクリロニトリル及び製品青酸とした。塔の中段45段(2塔の間の配管)よりアセトニトリル12.6wt%及び水80.6wt%を含む液を流量1.3T/hrで抜き出し、その後の精製工程で蒸留分離し、製品アセトニトリルとした。下段1段より抜き出した塔内液はプロセス内で熱交換し47℃まで冷却した後、この液を流量56T/hrで塔の114段に供給した。
塔底液は青酸0.09wt%及び水98.5wt%を含んでおり、この液を塔底より抜き出し、一部は再沸騰器(第一の再沸騰器)を通して加熱して塔底に戻し、残りを流量11T/hrで抜き出した。
再加熱した塔底流とは別に、塔底流に由来しない475kPaの水蒸気を別の再沸騰器(第二の再沸騰器)に0.8T/hrを基準に熱媒として供給して45段塔内流を加熱した。前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量は、前記第一の再沸騰器によって供給する熱量と前記水蒸気を熱媒とする第二の再沸騰器によって供給する熱量との和に対して4.9%であった。
塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。塔内の温度管理は、75段見合いで、再沸騰器の条件は一定のまま、塔底への水蒸気供給量にのみ実施した。この運転条件で1年間運転したが、製品管理上重要な75段温度において変動幅が最大2℃となり、回収塔の温度管理が原因による製品規格からの逸脱がなく、安定に運転できた。
[Example 8]
Distillation was performed using the distillation apparatus shown in FIG.
In order to separate acetonitrile from the reaction product obtained by reacting propylene, ammonia and air, a liquid containing 6.6% by weight of acrylonitrile, 0.2% by weight of acetonitrile, 0.1% by weight of hydrocyanic acid and 91.5% by weight of water It was supplied at a flow rate of 118 T / hr to the upper 82 stages of the recovery tower. However, this recovery tower was divided into two towers having an upper 69 stage having a dual tray and a sheave tray and a lower 45 stage, and the tower bottom of the upper tower and the tower top of the lower tower were connected by a pipe.
A mixed gas of acrylonitrile, hydrocyanic acid, and water was extracted from the top of the column, and was separated by distillation in a subsequent purification step to obtain product acrylonitrile and product hydrocyanic acid. A liquid containing 12.6 wt% of acetonitrile and 80.6 wt% of water was extracted at a flow rate of 1.3 T / hr from the middle 45 stages of the tower (pipe between the two towers), and was separated by distillation in the subsequent purification step, did. The liquid in the tower extracted from the first stage of the lower stage was subjected to heat exchange in the process and cooled to 47 ° C., and then this liquid was supplied to the stage 114 of the tower at a flow rate of 56 T / hr.
The tower bottom liquid contains 0.09 wt% of cyanic acid and 98.5 wt% of water. This liquid is withdrawn from the tower bottom and partly heated through the reboiler (first reboiler) and returned to the tower bottom. The remainder was extracted at a flow rate of 11 T / hr.
Separately from the reheated tower bottom stream, 475 kPa of water vapor not derived from the tower bottom stream is supplied to another reboiler (second reboiler) as a heating medium on the basis of 0.8 T / hr. The stream was heated. The amount of heat supplied by the second reboiler using the water vapor as a heat medium is the amount of heat supplied by the first reboiler and the amount of heat supplied by the second reboiler using the water vapor as a heat medium. It was 4.9% with respect to the sum.
The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. The temperature control inside the tower was 75 stages, and the reboiler condition was kept constant, and only the amount of steam supplied to the bottom of the tower was implemented. The system was operated for 1 year under these operating conditions, but the fluctuation range was 2 ° C. at a maximum of 75 ° C., which is important for product management, and stable operation was possible without any deviation from the product standard due to the temperature management of the recovery tower.

[比較例1]
図6に示す回収塔において塔底部の再沸騰器の出口ラインに水蒸気を供給せず、つまり第二の加熱経路を使わないで全熱量を塔底の再沸騰器を通して供給及び調整したこと以外は、実施例1と同様の反応生成液を同一流量で、実施例1と同様の回収塔に供給した。その他の流量も実施例1と同様にし、温度、圧力も実施例1と同様にして運転した。塔頂管理温度を73℃、塔底管理温度を116℃、59段管理温度を99℃、45段管理温度を109℃で運転した。この運転条件で2年間運転したが、59段温度において変動幅が最大10℃となり、規格外の製品が一時的に発生した。図19に回収塔の59段温度の経時変化を示す。
[Comparative Example 1]
In the recovery tower shown in FIG. 6, water vapor is not supplied to the outlet line of the reboiler at the bottom of the tower, that is, the total amount of heat is supplied and adjusted through the reboiler at the bottom of the tower without using the second heating path. The same reaction product solution as in Example 1 was supplied to the same recovery tower as in Example 1 at the same flow rate. The other flow rates were the same as in Example 1, and the temperature and pressure were also operated in the same manner as in Example 1. The tower top management temperature was 73 ° C., the tower bottom management temperature was 116 ° C., the 59 stage management temperature was 99 ° C., and the 45 stage management temperature was 109 ° C. Although it was operated for 2 years under these operating conditions, the fluctuation range was a maximum of 10 ° C. at 59-stage temperature, and non-standard products were temporarily generated. FIG. 19 shows the change over time in the 59-stage temperature of the recovery tower.

[比較例2]
図8に示す回収塔において温度制御部近傍の46段に水蒸気を供給せず、つまり第二の加熱経路を使わないで全熱量を塔底の再沸騰器を通して供給及び調整したこと以外は、実施例2と同様の反応生成液を同一流量で、実施例2と同様の回収塔に供給した。その他の流量も実施例2と同様にし、温度、圧力も実施例2と同様にして運転した。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で1.5年間運転したが、75段温度において変動幅が最大7℃となり、規格外の製品が一時的に発生した。
[Comparative Example 2]
In the recovery tower shown in FIG. 8, no steam was supplied to 46 stages in the vicinity of the temperature controller, that is, the total heat was supplied and adjusted through a reboiler at the bottom of the tower without using the second heating path. The same reaction product solution as in Example 2 was supplied to the same recovery tower as in Example 2 at the same flow rate. The other flow rates were the same as in Example 2, and the temperature and pressure were also operated in the same manner as in Example 2. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 1.5 years under these operating conditions, the fluctuation range was a maximum of 7 ° C. at 75-stage temperature, and a non-standard product was temporarily generated.

[比較例3]
図1に示す回収塔において温度制御部近傍の42段に水蒸気を供給せず、つまり第二の加熱経路を使わないで全熱量を塔底の再沸騰器を通して供給及び調整したこと以外は、実施例3と同様の反応生成液を同一流量で、実施例3と同様の回収塔に供給した。その他の流量も実施例3と同様にし、温度、圧力も実施例3と同様にして運転した。塔頂管理温度を70℃、塔底管理温度を116℃、55段管理温度を99℃で運転した。この運転条件で2年間運転したが、55段温度において変動幅が最大8℃となり、規格外の製品が一時的に発生した。
[Comparative Example 3]
In the recovery tower shown in FIG. 1, no steam was supplied to the 42 stages near the temperature control section, that is, the total amount of heat was supplied and adjusted through the reboiler at the bottom of the tower without using the second heating path. The same reaction product solution as in Example 3 was supplied to the same recovery tower as in Example 3 at the same flow rate. The other flow rates were the same as in Example 3, and the temperature and pressure were also operated in the same manner as in Example 3. The tower top management temperature was 70 ° C, the tower bottom management temperature was 116 ° C, and the 55 stage management temperature was 99 ° C. Although it was operated for 2 years under these operating conditions, the fluctuation range was a maximum of 8 ° C. at 55-stage temperature, and a non-standard product was temporarily generated.

[比較例4]
図8に示す回収塔において温度制御部近傍の46段に水蒸気を供給せず、つまり第二の加熱経路を使わないで全熱量を塔底の再沸騰器を通して供給及び調整したこと以外は、実施例4と同様の反応生成液を同一流量で、実施例4と同様の回収塔に供給した。その他の流量も実施例2と同様にし、温度、圧力も実施例4と同様にして運転した。塔頂管理温度を76℃、塔底管理温度を113℃、75段管理温度を88℃で運転した。この運転条件で1ヶ月間運転したが、65段温度において変動幅が最大8℃となり、規格外の製品が一時的に発生した。
[Comparative Example 4]
In the recovery tower shown in FIG. 8, no steam was supplied to 46 stages in the vicinity of the temperature controller, that is, the total heat was supplied and adjusted through a reboiler at the bottom of the tower without using the second heating path. The same reaction product solution as in Example 4 was supplied to the same recovery tower as in Example 4 at the same flow rate. The other flow rates were the same as in Example 2, and the temperature and pressure were also operated in the same manner as in Example 4. The tower top management temperature was 76 ° C., the tower bottom management temperature was 113 ° C., and the 75 stage management temperature was 88 ° C. Although it was operated for one month under these operating conditions, the fluctuation range was a maximum of 8 ° C. at 65-stage temperature, and non-standard products were temporarily generated.

[比較例5]
図10に示す回収塔において水蒸気を熱媒とする再沸騰器を設置せず、つまり第二の加熱経路を使わないで全熱量を塔底の再沸騰器を通して供給及び調整したこと以外は、実施例5と同様の反応生成液を同一流量で、実施例5と同様の回収塔に供給した。その他の流量も実施例5と同様にし、温度、圧力も実施例5と同様にして運転した。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で1.5年間運転したが、75段温度において変動幅が最大8℃となり、規格外の製品が一時的に発生した。
[Comparative Example 5]
The recovery tower shown in FIG. 10 is not provided with a reboiler using steam as a heat medium, that is, except that the total amount of heat was supplied and adjusted through the reboiler at the bottom of the tower without using the second heating path. The same reaction product solution as in Example 5 was supplied to the same recovery tower as in Example 5 at the same flow rate. The other flow rates were the same as in Example 5, and the temperature and pressure were also operated in the same manner as in Example 5. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 1.5 years under these operating conditions, the fluctuation range was a maximum of 8 ° C. at 75-stage temperature, and a non-standard product was temporarily generated.

[比較例6]
図11に示す回収塔において水蒸気を熱媒とする再沸騰器を設置せず、つまり第二の加熱経路を使わないで全熱量を塔底の再沸騰器を通して供給及び調整したこと以外は、実施例6と同様の反応生成液を同一流量で、実施例6と同様の回収塔に供給した。その他の流量も実施例6と同様にし、温度、圧力も実施例6と同様にして運転した。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で1年間運転したが、75段温度において変動幅が最大6℃となり、規格外の製品が一時的に発生した。
[Comparative Example 6]
In the recovery tower shown in FIG. 11, a reboiler using steam as a heat medium is not installed, that is, the total amount of heat is supplied and adjusted through the reboiler at the bottom of the tower without using the second heating path. The same reaction product solution as in Example 6 was supplied to the same recovery tower as in Example 6 at the same flow rate. The other flow rates were the same as in Example 6, and the temperature and pressure were also operated in the same manner as in Example 6. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 1 year under these operating conditions, the fluctuation range was a maximum of 6 ° C. at 75 stage temperature, and a non-standard product was temporarily generated.

[比較例7]
図14に示す回収塔において水蒸気を熱媒とする再沸騰器を設置せず、つまり第二の加熱経路を使わないで全熱量を塔底の再沸騰器を通して供給及び調整したこと以外は、実施例7と同様の反応生成液を同一流量で、実施例7と同様の回収塔に供給した。その他の流量も実施例7と同様にし、温度、圧力も実施例7と同様にして運転した。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で1年間運転したが、75段温度において変動幅が最大7℃となり、規格外の製品が一時的に発生した。
[Comparative Example 7]
The recovery tower shown in FIG. 14 is not provided with a reboiler that uses steam as a heat medium, that is, except that the total amount of heat is supplied and adjusted through the reboiler at the bottom of the tower without using the second heating path. The same reaction product solution as in Example 7 was supplied to the same recovery tower as in Example 7 at the same flow rate. The other flow rates were the same as in Example 7, and the temperature and pressure were also operated in the same manner as in Example 7. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 1 year under these operating conditions, the fluctuation range became a maximum of 7 ° C. at 75 stage temperature, and a non-standard product was temporarily generated.

[比較例8]
図6に示す回収塔において塔底部の再沸騰器の出口ラインへの水蒸気供給量を32.9T/hrに変更したこと以外は、実施例1と同様の反応生成液を同一流量で、実施例1と同様の回収塔に供給した。その他の流量も実施例1と同様にし、温度、圧力も実施例1と同様にして運転した。前記水蒸気32.9T/hrによって供給する熱量は、再加熱した塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して20.3%であった。塔頂管理温度を73℃、塔底管理温度を116℃、59段管理温度を99℃、45段管理温度を109℃で運転した。この運転条件で2週間運転したが、59段温度において変動幅が最大7℃となり、規格外の製品が一時的に発生した。
[Comparative Example 8]
In the recovery tower shown in FIG. 6, the same reaction product solution as in Example 1 was used at the same flow rate except that the amount of steam supplied to the outlet line of the reboiler at the bottom of the tower was changed to 32.9 T / hr. 1 was fed to the same recovery tower. The other flow rates were the same as in Example 1, and the temperature and pressure were also operated in the same manner as in Example 1. The amount of heat supplied by the steam 32.9 T / hr was 20.3% with respect to the sum of the amount of heat supplied by the reheated tower bottom flow and the amount of heat supplied by the steam. The tower top management temperature was 73 ° C., the tower bottom management temperature was 116 ° C., the 59 stage management temperature was 99 ° C., and the 45 stage management temperature was 109 ° C. Although it was operated for 2 weeks under these operating conditions, the fluctuation range was a maximum of 7 ° C. at 59-stage temperature, and non-standard products were temporarily generated.

[比較例9]
図8に示す回収塔において塔46段への水蒸気供給量を4.1T/hrに変更したこと以外は、実施例2と同様の反応生成液を同一流量で、実施例2と同様の回収塔に供給した。その他の流量も実施例2と同様にし、温度、圧力も実施例2と同様にして運転した。前記水蒸気4.1T/hrによって供給する熱量は、再加熱した塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して21.1%であった。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で1ヶ月間運転したが、75段温度において変動幅が最大8℃となり、規格外の製品が一時的に発生した。
[Comparative Example 9]
In the recovery tower shown in FIG. 8, the same reaction product solution as in Example 2 was used at the same flow rate as in Example 2, except that the amount of steam supplied to 46 stages of towers was changed to 4.1 T / hr. Supplied to. The other flow rates were the same as in Example 2, and the temperature and pressure were also operated in the same manner as in Example 2. The amount of heat supplied by the steam 4.1 T / hr was 21.1% with respect to the sum of the amount of heat supplied by the reheated tower bottom flow and the amount of heat supplied by the steam. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 1 month under these operating conditions, the fluctuation range was a maximum of 8 ° C. at 75-stage temperature, and a non-standard product was temporarily generated.

[比較例10]
図1に示す回収塔において塔42段への水蒸気供給量を12.0T/hrに変更したこと以外は、実施例3と同様の反応生成液を同一流量で、実施例3と同様の回収塔に供給した。その他の流量も実施例3と同様にし、温度、圧力も実施例3と同様にして運転した。前記水蒸気12.0T/hrによって供給する熱量は、再加熱した塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して23.2%であった。塔頂管理温度を70℃、塔底管理温度を116℃、55段管理温度を99℃で運転した。この運転条件で1ヶ月間運転したが、55段温度において変動幅が最大10℃となり、規格外の製品が一時的に発生した。
[Comparative Example 10]
In the recovery tower shown in FIG. 1, the same reaction product solution as in Example 3 is used at the same flow rate, except that the amount of steam supplied to 42 stages of the tower is changed to 12.0 T / hr. Supplied to. The other flow rates were the same as in Example 3, and the temperature and pressure were also operated in the same manner as in Example 3. The amount of heat supplied by the steam 12.0 T / hr was 23.2% with respect to the sum of the amount of heat supplied by the reheated tower bottom flow and the amount of heat supplied by the steam. The tower top management temperature was 70 ° C, the tower bottom management temperature was 116 ° C, and the 55 stage management temperature was 99 ° C. Although it was operated for 1 month under these operating conditions, the fluctuation range reached a maximum of 10 ° C. at 55-stage temperature, and a non-standard product was temporarily generated.

[比較例11]
図8に示す回収塔において塔46段への水蒸気供給量を3.0T/hrに変更したこと以外は、実施例4と同様の反応生成液を同一流量で、実施例4と同様の回収塔に供給した。その他の流量も実施例2と同様にし、温度、圧力も実施例4と同様にして運転した。前記水蒸気3.0T/hrによって供給する熱量は、再加熱した塔底流によって供給する熱量と前記水蒸気によって供給する熱量との和に対して22.9%であった。塔頂管理温度を76℃、塔底管理温度を113℃、75段管理温度を88℃で運転した。この運転条件で2週間間運転したが、65段温度において変動幅が最大8℃となり、規格外の製品が一時的に発生した。
[Comparative Example 11]
In the recovery tower shown in FIG. 8, the same reaction product liquid as in Example 4 is used at the same flow rate, except that the amount of steam supplied to 46 stages of the tower is changed to 3.0 T / hr. Supplied to. The other flow rates were the same as in Example 2, and the temperature and pressure were also operated in the same manner as in Example 4. The amount of heat supplied by the steam 3.0 T / hr was 22.9% with respect to the sum of the amount of heat supplied by the reheated tower bottom flow and the amount of heat supplied by the steam. The tower top management temperature was 76 ° C., the tower bottom management temperature was 113 ° C., and the 75 stage management temperature was 88 ° C. Although it was operated for 2 weeks under these operating conditions, the fluctuation range reached a maximum of 8 ° C. at 65-stage temperature, and a non-standard product was temporarily generated.

[比較例12]
図10に示す回収塔において水蒸気を熱媒とする再沸騰器への水蒸気供給量を4.0T/hrに変更したこと以外は、実施例5と同様の反応生成液を同一流量で、実施例5と同様の回収塔に供給した。その他の流量も実施例5と同様にし、温度、圧力も実施例5と同様にして運転した。前記水蒸気を熱媒とする再沸騰器によって供給する熱量は、“塔底流に由来する”再沸騰器によって供給する熱量と前記水蒸気を熱媒とする再沸騰器によって供給する熱量との和に対して22.1%であった。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で1ヶ月間運転したが、75段温度において変動幅が最大9℃となり、規格外の製品が一時的に発生した。
[Comparative Example 12]
10 except that the amount of steam supplied to the reboiler using steam as a heat medium in the recovery tower shown in FIG. 10 was changed to 4.0 T / hr. 5 was supplied to the same recovery tower as in No. 5. The other flow rates were the same as in Example 5, and the temperature and pressure were also operated in the same manner as in Example 5. The amount of heat supplied by the reboiler using the steam as a heat medium is the sum of the amount of heat supplied by the reboiler “derived from the bottom stream” and the amount of heat supplied by the reboiler using the steam as a heat medium. It was 22.1%. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 1 month under these operating conditions, the fluctuation range was 9 ° C. at the 75th stage temperature, and non-standard products were temporarily generated.

[比較例13]
図11に示す回収塔において水蒸気を熱媒とする再沸騰器への水蒸気供給量を4.8T/hrに変更したこと以外は、実施例6と同様の反応生成液を同一流量で、実施例6と同様の回収塔に供給した。その他の流量も実施例6と同様にし、温度、圧力も実施例6と同様にして運転した。前記水蒸気を熱媒とする再沸騰器によって供給する熱量は、“塔底流に由来する”再沸騰器によって供給する熱量と前記水蒸気を熱媒とする再沸騰器によって供給する熱量との和に対して20.4%であった。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で2ヶ月間運転したが、75段温度において変動幅が最大7℃となり、規格外の製品が一時的に発生した。
[Comparative Example 13]
In the recovery tower shown in FIG. 11, the same reaction product solution as in Example 6 was used at the same flow rate except that the amount of steam supplied to the reboiler using steam as a heat medium was changed to 4.8 T / hr. 6 was supplied to the same recovery tower as in No. 6. The other flow rates were the same as in Example 6, and the temperature and pressure were also operated in the same manner as in Example 6. The amount of heat supplied by the reboiler using the steam as a heat medium is the sum of the amount of heat supplied by the reboiler “derived from the bottom stream” and the amount of heat supplied by the reboiler using the steam as a heat medium. It was 20.4%. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 2 months under these operating conditions, the fluctuation range became a maximum of 7 ° C. at 75 stage temperature, and a non-standard product was temporarily generated.

[比較例14]
図14に示す回収塔において水蒸気を熱媒とする再沸騰器への水蒸気供給量を4.0T/hrに変更したこと以外は、実施例7と同様の反応生成液を同一流量で、実施例7と同様の回収塔に供給した。その他の流量も実施例7と同様にし、温度、圧力も実施例7と同様にして運転した。前記水蒸気を熱媒とする再沸騰器によって供給する熱量は、“塔底流に由来する”再沸騰器によって供給する熱量と前記水蒸気を熱媒とする再沸騰器によって供給する熱量との和に対して21.3%であった。塔頂管理温度を71℃、塔底管理温度を117℃、75段管理温度を85℃で運転した。この運転条件で2週間運転したが、75段温度において変動幅が最大8℃となり、規格外の製品が一時的に発生した。
[Comparative Example 14]
14 except that the amount of steam supplied to the reboiler using steam as a heat medium in the recovery tower shown in FIG. 14 was changed to 4.0 T / hr. 7 was supplied to the same recovery tower. The other flow rates were the same as in Example 7, and the temperature and pressure were also operated in the same manner as in Example 7. The amount of heat supplied by the reboiler using the steam as a heat medium is the sum of the amount of heat supplied by the reboiler “derived from the bottom stream” and the amount of heat supplied by the reboiler using the steam as a heat medium. It was 21.3%. The tower top management temperature was 71 ° C., the tower bottom management temperature was 117 ° C., and the 75 stage management temperature was 85 ° C. Although it was operated for 2 weeks under these operating conditions, the fluctuation range was 8 ° C. at the 75th stage temperature, and non-standard products were temporarily generated.

本発明の蒸留方法及び蒸留装置は、不飽和ニトリルの工業的製造プロセスに有用に利用できる。   The distillation method and distillation apparatus of the present invention can be usefully used in the industrial production process of unsaturated nitriles.

1:回収塔
2,3:再沸騰器
11:プロセス内の熱交換器
15:回収塔内温度計
16:温度指示調整計
17:流量指示調整計
18:電気配線
19:流量調整弁
20:第二の再沸騰器
4〜10,12,13,14:ライン
1: Recovery tower 2, 3: Reboiler 11: Heat exchanger in process 15: Thermometer in recovery tower 16: Temperature indicator regulator 17: Flow indicator regulator 18: Electrical wiring 19: Flow regulator 20: No. Second reboiler 4-10, 12, 13, 14: line

Claims (9)

不飽和ニトリルを蒸留する方法であって、
第一及び第二の加熱経路が接続された回収塔により不飽和ニトリルを蒸留する工程を含み、
前記第二の加熱経路によって前記回収塔に供給する熱量を、前記第一及び第二の加熱経路によって前記回収塔に供給する熱量の和に対して1〜20%とし、
前記第一の加熱経路から再加熱した塔底流を前記回収塔に供給し、前記第二の加熱経路から水蒸気を前記回収塔に供給する不飽和ニトリルの蒸留方法。
A method for distilling unsaturated nitriles, comprising:
Distilling the unsaturated nitrile through a recovery tower connected to the first and second heating paths;
The amount of heat supplied to the recovery tower by the second heating path is 1 to 20% with respect to the sum of heat amounts supplied to the recovery tower by the first and second heating paths,
An unsaturated nitrile distillation method in which a tower bottom stream reheated from the first heating path is supplied to the recovery tower, and water vapor is supplied to the recovery tower from the second heating path.
前記水蒸気を前記回収塔の下部に供給する、請求項1記載の蒸留方法。   The distillation method according to claim 1, wherein the water vapor is supplied to a lower portion of the recovery tower. 前記第二の加熱経路に水蒸気を熱媒とする再沸騰器が設けられており、前記第一の加熱経路から再加熱した塔底流を前記回収塔に供給し、前記第二の加熱経路から前記再沸騰器によって加熱した塔底流及び/又は塔内流を前記回収塔に供給する、請求項1記載の不飽和ニトリルの蒸留方法。   A reboiler using steam as a heat medium is provided in the second heating path, and a tower bottom stream reheated from the first heating path is supplied to the recovery tower, and the second heating path The unsaturated nitrile distillation method according to claim 1, wherein a tower bottom stream and / or a tower inner stream heated by a reboiler are supplied to the recovery tower. 触媒の存在下で、プロパン、プロピレン、イソブタン及びイソブチレンからなる群から選択される少なくとも1種をアンモ酸化することにより不飽和ニトリルを含むガスを生成させる工程、
前記ガスを急冷塔内で水性液体と接触させた後、吸収塔内で水を含む液体と接触させて吸収させることにより不飽和ニトリルを含む水性混合物を得る工程、
得られた不飽和ニトリルを含む水性混合物を蒸留する工程、
を含む不飽和ニトリルの製造方法であって、
前記水性混合物から前記不飽和ニトリルを蒸留するための回収塔に、再加熱した塔底流と、水蒸気とを供給する工程を含む方法。
Producing a gas containing an unsaturated nitrile by ammoxidizing at least one selected from the group consisting of propane, propylene, isobutane and isobutylene in the presence of a catalyst;
A step of obtaining an aqueous mixture containing an unsaturated nitrile by contacting the gas with an aqueous liquid in a quenching tower and then absorbing the gas in contact with a liquid containing water in the absorption tower;
Distilling the aqueous mixture containing the resulting unsaturated nitrile,
A method for producing an unsaturated nitrile comprising:
Supplying a reheated bottom stream and water vapor to a recovery tower for distilling the unsaturated nitrile from the aqueous mixture.
回収塔と、前記回収塔に接続された第一及び第二の加熱経路とを有する蒸留装置であって、
前記第二の加熱経路によって前記回収塔に供給する熱量が、前記第一及び第二の加熱経路によって前記回収塔に供給する熱量の和に対して1〜20%であり、
前記第二の加熱経路が蒸気生成装置を含み、
前記第一の加熱経路により塔底流が加熱され、当該加熱された塔底流が前記回収塔に供給され、
前記蒸気生成装置が、前記塔底流に由来しない水蒸気生成し、かつ、当該塔底流に由来しない水蒸気を前記回収塔に供給す、不飽和ニトリルの蒸留装置。
A distillation apparatus having a recovery tower and first and second heating paths connected to the recovery tower,
The amount of heat supplied to the recovery tower by the second heating path is 1 to 20% with respect to the sum of heat amounts supplied to the recovery tower by the first and second heating paths,
The second heating path includes a steam generator;
The tower bottom stream is heated by the first heating path, and the heated tower bottom stream is supplied to the recovery tower,
The steam generating apparatus generates steam that is not derived from the bottoms stream, and that to supply steam which is not derived from the bottoms stream to said recovery column, distillation apparatus unsaturated nitrile.
前記水蒸気は前記回収塔の下部に供給される、請求項5記載の不飽和ニトリルの蒸留装置。 The unsaturated nitrile distillation apparatus according to claim 5, wherein the water vapor is supplied to a lower portion of the recovery tower. 前記第二の加熱経路が水蒸気を熱媒とする再沸騰器を含み、前記第一の加熱経路により塔底流が加熱され、前記再沸騰器によって塔底流及び/又は塔内流が加熱される、請求項5記載の不飽和ニトリルの蒸留装置。   The second heating path includes a reboiler using steam as a heat medium, the bottom stream is heated by the first heating path, and the bottom stream and / or the inner stream is heated by the reboiler. The unsaturated nitrile distillation apparatus according to claim 5. 前記再沸騰器によって塔底流及び/又は回収塔の下部の塔内流を再加熱して前記回収塔に供給する、請求項7記載の不飽和ニトリルの蒸留装置。 8. The unsaturated nitrile distillation apparatus according to claim 7, wherein a tower bottom stream and / or an inner stream at a lower part of the recovery tower are reheated by the reboiler and supplied to the recovery tower. 反応器と、前記反応器に接続された急冷塔と、前記急冷塔に接続された吸収塔と、前記吸収塔に接続された回収塔とを有し、
前記回収塔には、再沸騰器及び蒸気生成装置が接続されており、
前記反応器内で、触媒の存在下、プロパン、プロピレン、イソブタン及びイソブチレンからなる群から選択される少なくとも1種のアンモ酸化により不飽和ニトリルを含むガスが生成され、
前記ガスは前記急冷塔内で水性液体と接触された後、前記吸収塔内で水を含む液体と接触されて不飽和ニトリルを含む水性混合物が得られ、
得られた不飽和ニトリルを含む水性混合物が回収塔内で蒸留される不飽和ニトリルの製造装置であって、
前記回収塔から流出した塔底流は前記再沸騰器によって加熱されて前記回収塔に戻され、前記蒸気生成装置で生成した水蒸気が前記回収塔に供給される不飽和ニトリルの製造装置。
A reactor, a quenching tower connected to the reactor, an absorption tower connected to the quenching tower, and a recovery tower connected to the absorption tower,
A reboiler and a steam generator are connected to the recovery tower,
In the reactor, a gas containing an unsaturated nitrile is generated by at least one ammoxidation selected from the group consisting of propane, propylene, isobutane and isobutylene in the presence of a catalyst;
The gas is contacted with an aqueous liquid in the quenching tower, and then contacted with a liquid containing water in the absorption tower to obtain an aqueous mixture containing an unsaturated nitrile,
An unsaturated nitrile production apparatus in which an aqueous mixture containing the obtained unsaturated nitrile is distilled in a recovery tower,
The unsaturated nitrile manufacturing apparatus in which the bottom stream flowing out of the recovery tower is heated by the reboiler and returned to the recovery tower, and the water vapor generated by the steam generator is supplied to the recovery tower.
JP2011029979A 2011-02-15 2011-02-15 Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method Active JP5785728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011029979A JP5785728B2 (en) 2011-02-15 2011-02-15 Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011029979A JP5785728B2 (en) 2011-02-15 2011-02-15 Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method

Publications (2)

Publication Number Publication Date
JP2012167066A JP2012167066A (en) 2012-09-06
JP5785728B2 true JP5785728B2 (en) 2015-09-30

Family

ID=46971573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011029979A Active JP5785728B2 (en) 2011-02-15 2011-02-15 Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method

Country Status (1)

Country Link
JP (1) JP5785728B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892843A (en) * 2015-12-17 2017-06-27 英尼奥斯欧洲股份公司 Recovery tower is controlled

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1549743A (en) * 1975-06-16 1979-08-08 Uop Inc Method for controlling the heat input to a reboiler section of distillation column and apparatus equipped for operation under such control
JPS55104243A (en) * 1979-02-06 1980-08-09 Asahi Chem Ind Co Ltd Purification of olefinic unsaturated nitrile
JPS5953456A (en) * 1982-09-21 1984-03-28 Asahi Chem Ind Co Ltd Purification of methacrylonitrile
JPS6154201A (en) * 1984-08-22 1986-03-18 Nippon Steel Chem Co Ltd Method for starting distillation utilizing heat pump
US4690733A (en) * 1985-03-20 1987-09-01 Union Carbide Corporation Process for the separation of hydrocarbons from a mixed feedstock
US6107509A (en) * 1999-03-31 2000-08-22 The Standard Oil Company Process for the recovery of acrylonitrile and methacrylontrile
JP4454332B2 (en) * 2004-02-06 2010-04-21 ダイヤニトリックス株式会社 Distillation tower for acrylonitrile production
JP4364741B2 (en) * 2004-07-20 2009-11-18 シャープ株式会社 Image forming apparatus
JP5344741B2 (en) * 2008-08-01 2013-11-20 旭化成ケミカルズ株式会社 Purification method of acrylonitrile

Also Published As

Publication number Publication date
JP2012167066A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
KR101648653B1 (en) Method for purifying acetonitrile
JP5605921B2 (en) Purification method of acrylonitrile
KR101914914B1 (en) Method for purifying acrylonitrile, production method and distillation apparatus
US9045413B2 (en) Process for vinyl acetate production having sidecar reactor for predehydrating column
JP5605922B2 (en) Purification method of acrylonitrile
TWI421125B (en) Reactor reaction speed control method, reaction device and dimethyl ether manufacturing method
JP4959158B2 (en) Method for separating and recovering acrylonitrile
US20160046557A1 (en) Process for the preparation of vinyl acetate
JP5717280B2 (en) Purification method of acrylonitrile
JP5785728B2 (en) Unsaturated nitrile distillation method and distillation apparatus, and unsaturated nitrile production method
EP3390350B1 (en) Recovery column control
ZA200504177B (en) Method for inhibiting polymerization during the recovery and purification of unsaturated mononitriles.
EP3389810B1 (en) Recovery column control
JP6300387B1 (en) Acrylonitrile purification method, production method, and distillation apparatus
EP1419140B1 (en) Improved operation of heads column in acrylonitrile production
JP4948158B2 (en) System for obtaining (meth) acrylic acid solution and method for producing (meth) acrylic acid
NL2030511B1 (en) Integrated process for the conversion of glycerol to acrylonitrile
JP5344741B2 (en) Purification method of acrylonitrile
RU2263108C1 (en) Method for extraction of acrylonitrile, methacrylonitrile or hydrogen cyanide
TW201731569A (en) Recovery column

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R150 Certificate of patent or registration of utility model

Ref document number: 5785728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350