JP5783375B2 - Macro lens - Google Patents

Macro lens Download PDF

Info

Publication number
JP5783375B2
JP5783375B2 JP2011280282A JP2011280282A JP5783375B2 JP 5783375 B2 JP5783375 B2 JP 5783375B2 JP 2011280282 A JP2011280282 A JP 2011280282A JP 2011280282 A JP2011280282 A JP 2011280282A JP 5783375 B2 JP5783375 B2 JP 5783375B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
macro
camera shake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011280282A
Other languages
Japanese (ja)
Other versions
JP2013130724A (en
Inventor
安達 宣幸
宣幸 安達
高橋 純
純 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamron Co Ltd
Original Assignee
Tamron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamron Co Ltd filed Critical Tamron Co Ltd
Priority to JP2011280282A priority Critical patent/JP5783375B2/en
Publication of JP2013130724A publication Critical patent/JP2013130724A/en
Application granted granted Critical
Publication of JP5783375B2 publication Critical patent/JP5783375B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)
  • Lenses (AREA)

Description

本発明は、マクロレンズ、さらに詳しくは、撮影倍率が0.5倍以上であって、手振れ補正機能を持ち、マクロ撮影が可能なマクロレンズに関し、写真カメラ、ビデオカメラ、電子スチルカメラなどに好適なマクロレンズに関するものである。   The present invention relates to a macro lens, and more particularly, to a macro lens that has a shooting magnification of 0.5 times or more, has a camera shake correction function, and can perform macro shooting, and is suitable for a photographic camera, a video camera, an electronic still camera, and the like. This is related to a macro lens.

一般的に、手振れ補正機能を持ったマクロ撮影用レンズは、撮影倍率が高くなるに従い、手振れ補正による収差の変動が大きくなり、その収差を補正することが難しい。その対策として、フォーカシング時に複数のレンズ群を移動させた、いわゆるフローティング方式のレンズが提案されている。   In general, in a macro imaging lens having a camera shake correction function, the variation in aberration due to camera shake correction increases as the imaging magnification increases, and it is difficult to correct the aberration. As a countermeasure, a so-called floating lens in which a plurality of lens groups are moved during focusing has been proposed.

従来のマクロマクロレンズであって、手振れ補正機構の組み込みに好適なマクロレンズの一つは、物体側には、物体側から順に、正の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを備え、最も像側には負の屈折力を有する最終レンズ群GL を備え、無限遠から近距離物体への合焦時には、前記第1レンズ群G1および前記第2レンズ群G2が物体側に移動する近距離補正レンズにおいて、前記最終レンズ群GL のうち負の屈折力を有する一部の部分レンズ群GLPを光軸とほぼ直交する方向に移動させて防振するための変位手段を備え、最短撮影距離での撮影倍率をβM とし、前記最終レンズ群GL の焦点距離をfL とし、前記最終レンズ群GL 中の部分レンズ群GLPの焦点距離をfLPとし、防振時における前記部分レンズ群GLPの光軸と直交する方向への最大変位量の大きさを△SLPとしたとき、0.25<|βM |△SLP/|fLP|<0.10.1<fLP/fL <2の条件を満足する近距離補正レンズが提案されている(例えば、特許文献1参照)。   One of the conventional macro macro lenses that is suitable for incorporation of a camera shake correction mechanism includes, on the object side, a first lens group G1 having positive refractive power in order from the object side, and positive refraction. A second lens group G2 having a power, a final lens group GL having a negative refractive power on the most image side, and at the time of focusing from infinity to a close object, the first lens group G1 and the second lens group G2 In the short-distance correction lens in which the two lens group G2 moves toward the object side, the partial lens group GLP having a negative refractive power in the final lens group GL is moved in a direction substantially perpendicular to the optical axis to prevent vibration. And a focal length of the final lens group GL is fL, and a focal length of the partial lens group GLP in the final lens group GL is fLP. The part during shaking When the maximum displacement amount in the direction orthogonal to the optical axis of the optical group GLP is ΔSLP, 0.25 <| βM | ΔSLP / | fLP | <0.10.1 <fLP / fL <2 A short-range correction lens that satisfies the above condition has been proposed (see, for example, Patent Document 1).

従来技術であって、手振れ補正機構の組み込みに好適なマクロレンズの一つは、物体側から順に、正屈折力を有する第1レンズ群G1と、正屈折力を有する第2レンズ群G2とを有し、最も像側には負屈折力を有する最終レンズ群GL を有し、無限遠から近距離物体への合焦時には、前記第1レンズ群G1および前記第2レンズ群G2が物体側に移動し、最短撮影距離における撮影倍率βM は、0.25<|βM |を満たす近距離補正レンズにおいて、前記最終レンズ群GL 中の正屈折力を有する一部の部分レンズ群GLPを光軸とほぼ直交する方向に移動させて防振するための変位手段を備え、前記最終レンズ群GL の焦点距離をfL とし、前記最終レンズ群GL 中の前記部分レンズ群GLPの焦点距離をfLPとし、防振時における前記部分レンズ群GLPの光軸と直交する方向への最大変位量の大きさを△SLPとしたとき、△SLP/fLP<0.10.1<fLP/(−fL )<2の条件を満足するマクロレンズである(例えば、特許文献2参照)。   One macro lens that is a prior art and is suitable for incorporation of a camera shake correction mechanism includes, in order from the object side, a first lens group G1 having a positive refractive power and a second lens group G2 having a positive refractive power. The first lens group G1 and the second lens group G2 move to the object side when focusing from an infinite distance to a short distance object. In the short-distance correction lens satisfying 0.25 <| βM |, the photographing magnification βM at the shortest shooting distance is approximately equal to the partial lens group GLP having positive refractive power in the final lens group GL as the optical axis. Displacement means for moving in an orthogonal direction and providing vibration isolation is provided, the focal length of the final lens group GL is set to fL, and the focal length of the partial lens group GLP in the final lens group GL is set to fLP. Said partial lens group GL at the time A macro lens satisfying the condition of ΔSLP / fLP <0.10.1 <fLP / (− fL) <2, where ΔSLP is the maximum displacement in the direction perpendicular to the optical axis of P. Yes (see, for example, Patent Document 2).

従来技術であって、Fナンバーが1.2程度であり、画面全体の諸収差、色収差について特に2次スペクトルを良好に補正し、画面全体にわたり高い光学性能を有したマクロレンズとして、電子スチルカメラ等に搭載されるマクロレンズSLであって、物体側より順に、正の屈折力を有する前側レンズ群GFと、正の屈折力を有する後側レンズ群GRとを有し、前側レンズ群GFは、最も物体側より順に、正の屈折力を有する第1レンズ成分G1と、正の屈折力を有する第2レンズ成分G2とを有し、後側レンズ群GRは、接合レンズG89とを有し、第1及び第2レンズ成分G1,G2のアッベ数をν1、ν2とし、無限遠から撮影倍率−0.01倍に合焦するときの前側及び後側レンズ群GF,GRの移動量をγF1,γR1としたとき、次式
(ν1+ν2)/2 > 60
0.35 < γR1/γF1 < 0.80
の条件を満足すマクロレンズが提案されている(例えば、特許文献3参照)。
An electronic still camera as a macro lens having a high optical performance over the entire screen, which is a prior art and has an F-number of about 1.2, corrects the secondary spectrum particularly for various aberrations and chromatic aberrations of the entire screen. A front lens group GF having a positive refractive power and a rear lens group GR having a positive refractive power in order from the object side, and the front lens group GF includes: The first lens component G1 having a positive refractive power and the second lens component G2 having a positive refractive power are disposed in order from the most object side, and the rear lens group GR includes a cemented lens G89. The Abbe numbers of the first and second lens components G1 and G2 are ν1 and ν2, and the movement amounts of the front and rear lens groups GF and GR when focusing from infinity to a photographing magnification of −0.01 times are γF1, When γR1 Formula (ν1 + ν2) / 2> 60
0.35 <γR1 / γF1 <0.80
A macro lens that satisfies this condition has been proposed (see, for example, Patent Document 3).

特許第3531209号公報Japanese Patent No. 3531209 特許第3435873号公報Japanese Patent No. 3435873 特開2009−251398号公報JP 2009-251398 A

特許文献1に開示されているマクロレンズは、実施例がフルサイズ用のものであり、レンズ構成枚数が多く、鏡筒構成が複雑である。特許文献1に開示されているマクロレンズは,また、ガウスタイプの前群を絞りを境に分離したため、フローティング時に絞り前後のレンズ群を別体で移動させており、マクロ時に収差が残り、十分な結像性能を得ることが困難である問題がある。   The macro lens disclosed in Patent Document 1 is a full-size example, has a large number of lenses, and has a complicated lens barrel configuration. The macro lens disclosed in Patent Document 1 also separates the front group of the Gauss type from the stop, so that the lens group before and after the stop is moved separately when floating, and aberrations remain sufficiently during macro. There is a problem that it is difficult to obtain a good imaging performance.

特許文献2に開示されているマクロレンズは、特許文献1のマクロレンズ同様、ガウスタイプの前群を絞りを境に分離したため、フローティング時に絞り前後のレンズ群を別体で移動させており、マクロ域の結像性能の劣化を招く。さらに、撮像面に隣接したレンズ群中、正の屈折率を持つレンズ群で手振れ補正を行っているため、手振れ補正レンズ群の補正時の移動量が大きくなり、鏡筒径の大型化を招く。また、バックフォーカスが長いという問題がある。   The macro lens disclosed in Patent Document 2, like the macro lens of Patent Document 1, separates the front group of the Gauss type from the diaphragm, and moves the lens group before and after the diaphragm separately when floating. This results in deterioration of the imaging performance of the area. Furthermore, since the camera shake correction is performed with the lens group having a positive refractive index among the lens groups adjacent to the imaging surface, the amount of movement during the correction of the camera shake correction lens group becomes large, resulting in an increase in the lens barrel diameter. . There is also a problem that the back focus is long.

特許文献3に開示されているマクロレンズは、前群の正の屈折力を強めバックフォーカスを短くした構成であるが、その結果として前群に多数のレンズが必須となり、コンパクト性を損なっている。また、手振れ補正機構を組み込む領域を十分にとることが困難である。さらに、特許文献3に開示されているマクロレンズは、ガウスタイプの光学系の絞り前後での分離を行うことなくフローティングを行っているため、マクロ域での残存収差が少なく、高い結像性能が得られる。しかし、手振れ補正レンズ群を持たないレンズタイプであり、手振れ補正レンズ駆動系を配置するための空間をつくることが困難であるという問題がある。   The macro lens disclosed in Patent Document 3 has a configuration in which the positive refractive power of the front group is increased and the back focus is shortened. As a result, a large number of lenses are indispensable in the front group and the compactness is impaired. . In addition, it is difficult to take a sufficient area for incorporating the camera shake correction mechanism. Further, since the macro lens disclosed in Patent Document 3 is floating without performing separation before and after the stop of a Gauss type optical system, there is little residual aberration in the macro region, and high imaging performance is achieved. can get. However, this is a lens type that does not have a camera shake correction lens group, and there is a problem that it is difficult to create a space for arranging a camera shake correction lens drive system.

(発明の目的)
本発明は、従来のマクロレンズの上述した問題点に鑑みなされたものであって、撮影倍率が0.5倍以上であって、手振れ補正機構の組み込みが容易であって、コンパクトでマクロ撮影が可能なマクロレンズに関し、バックフォーカスが長く、特にマクロ撮影時の結像性能が優れた写真カメラ、ビデオカメラ、電子スチルカメラなどに好適なマクロレンズを提供することを目的とする。
本発明はまた、手振れ補正レンズの光軸直交方向の手振れ補正のための移動量が小さく、手振れ補正機構をコンパクトかつ消費電力を少なく構成できるマクロレンズを提供することを目的とする。
本発明はさらに、手振れ補正レンズ駆動系を配置するための空間を容易に形成できるマクロレンズを提供することを目的とする。
(Object of invention)
The present invention has been made in view of the above-described problems of the conventional macro lens, and has a shooting magnification of 0.5 times or more, a camera shake correction mechanism can be easily incorporated, is compact and can be used for macro shooting. An object of the present invention is to provide a macro lens suitable for a photographic camera, a video camera, an electronic still camera, etc., which has a long back focus and excellent imaging performance during macro photography.
Another object of the present invention is to provide a macro lens in which the amount of movement of the camera shake correction lens for camera shake correction in the direction orthogonal to the optical axis is small, and the camera shake correction mechanism can be configured compactly and consumes less power.
It is another object of the present invention to provide a macro lens that can easily form a space for disposing a camera shake correction lens driving system.

本発明は、
物体側から像側へと順に、正の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、そして、負の屈折力を有する第3レンズ群からなり、フォーカシングは、前記第1レンズ群と前記第2レンズ群とが、互いに異なる移動量で物体側に移動し、前記第3レンズ群の全体あるいは一部を、手振れ補正時に光軸直交方向に移動し、前記第1レンズ群は該レンズ群内に開口絞りを有し、前記開口絞りより物体側に、少なくとも1枚の正レンズと、少なくとも1枚の凹レンズを持ち、さらに、前記開口絞りより像側に、少なくとも負レンズと正レンズとの接合レンズを含み、前記第2レンズ群は一対の接合レンズからなり、以下の条件式を満足するマクロレンズ。
|β|>0.5 ・・・・・・・・・・・・・・・・・(1)
β:近軸結像倍率
である。
The present invention
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. The first lens group and the second lens group move to the object side with different movement amounts, and the whole or a part of the third lens group moves in the direction orthogonal to the optical axis during camera shake correction. The lens group has an aperture stop in the lens group, has at least one positive lens and at least one concave lens on the object side of the aperture stop, and further has at least a negative side on the image side of the aperture stop. A macro lens including a cemented lens of a lens and a positive lens, wherein the second lens group includes a pair of cemented lenses and satisfies the following conditional expression.
| Β |> 0.5 (1)
β: Paraxial imaging magnification.

本発明の条件式(1)
|β|>0.5
β:近軸結像倍率
は、マクロレンズとして使い勝手が良く、かつ技術的に製造的に一般的レベルを超えた過剰な要求をしないための条件である。
Conditional expression (1) of the present invention
| Β |> 0.5
β: Paraxial imaging magnification is a condition that is easy to use as a macro lens and that does not make excessive demands that exceed technically general levels of manufacturing.

第2レンズ群は、フォーカシングによる色収差の変動を小さくし、さらに球面収差を良好に補正するために、接合レンズである。   The second lens group is a cemented lens in order to reduce fluctuations in chromatic aberration due to focusing and to satisfactorily correct spherical aberration.

第3レンズ群中の一部あるいは全体を光軸に対して垂直方向に移動する手振れ補正レンズ群を持つ。該手振れ補正レンズ群を2分し、その物体側レンズ群を光軸と直交して移動する手振れ補正レンズ群とすることは、手振れ補正レンズ群の手振れ補正のための移動量を小さくすることができる。   A camera shake correction lens group that moves part or all of the third lens group in a direction perpendicular to the optical axis is provided. Dividing the camera shake correction lens group into two and making the object side lens group a camera shake correction lens group that moves orthogonally to the optical axis can reduce the amount of movement of the camera shake correction lens group for camera shake correction. it can.

本発明のマクロレンズによれば、撮影倍率が0.5倍以上であって、手振れ補正機構の組み込みが容易であって、コンパクトでマクロ撮影が可能で、バックフォーカスが長く、特にマクロ撮影時の結像性能が優れた写真カメラ、ビデオカメラ、電子スチルカメラなどに好適なマクロレンズを構成することができる。
本発明のマクロレンズによればまた、手振れ補正レンズの光軸直交方向の手振れ補正のための移動量が小さく、手振れ補正機構をコンパクトかつ消費電力を少なく構成できるマクロレンズを構成することができる。
本発明のマクロレンズによればさらに、手振れ補正レンズ駆動系を配置するための空間を容易に形成できるマクロレンズを構成することができる。
According to the macro lens of the present invention, the shooting magnification is 0.5 times or more, the camera shake correction mechanism can be easily incorporated, the macro shooting can be performed in a compact manner, the back focus is long, and particularly at the time of macro shooting. A macro lens suitable for a photographic camera, a video camera, an electronic still camera, or the like having excellent imaging performance can be configured.
According to the macro lens of the present invention, it is also possible to configure a macro lens in which the amount of movement of the camera shake correction lens for camera shake correction in the direction perpendicular to the optical axis is small, and the camera shake correction mechanism can be configured compactly and consumes less power.
Further, according to the macro lens of the present invention, it is possible to configure a macro lens that can easily form a space for arranging a camera shake correction lens driving system.

(本発明の実施態様)
(実施態様1)
前記本発明において、以下の条件式を満足するマクロレンズ。
0.65<F1/F<1.30 ・・・・・・・・・・・・・・(2)
F1:第1レンズ群の焦点距離
F:全系の焦点距離
(Embodiment of the present invention)
(Embodiment 1)
In the present invention, a macro lens that satisfies the following conditional expression.
0.65 <F1 / F <1.30 (2)
F1: Focal length of the first lens group
F: Focal length of the entire system

(実施態様2)
前記本発明において、以下の条件式を満足するマクロレンズ。
-0.9<RDG2/F<-0.1 ・・・・・・・・・・・・・(3)
RD2G:第2レンズ群の接合面の曲率半径
F:全系の焦点距離
(Embodiment 2)
In the present invention, a macro lens that satisfies the following conditional expression.
-0.9 <RDG2 / F <-0.1 (3)
RD2G: Radius of curvature of the cemented surface of the second lens group
F: Focal length of the entire system

(実施態様3)
前記本発明において、以下の条件式を満足するマクロレンズ。
-1.22<(R1G1+R2G1)/(R1G1-R2G1)<-0.54 ・・・・(4)
R1G1:第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
R2G1:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
F:全系の焦点距離
(Embodiment 3)
In the present invention, a macro lens that satisfies the following conditional expression.
-1.22 <(R1G1 + R2G1) / (R1G1-R2G1) <-0.54 (4)
R1G1: Object side radius of curvature of the most object side convex lens in the first lens group
R2G1: Image side curvature radius of the most object side convex lens in the first lens unit
F: Focal length of the entire system

(実施態様4)
前記第3レンズ群中、大きな空気間隔を開けて、3a群と3b群とで構成し、3a群にて手振れ補正を行い、以下の条件を満足する、請求項1又は請求項2に記載のマクロレンズ。
0.5<F3b/F<1.5 ・・・・・・・・・・・・・・(5)
F3b:3b群の焦点距離
(Embodiment 4)
The third lens group includes a 3a group and a 3b group with a large air gap, and performs camera shake correction in the 3a group, and satisfies the following conditions. Macro lens.
0.5 <F3b / F <1.5 (5)
F3b: Focal length of 3b group

(実施態様1の説明)
実施態様1は、特に、第1レンズ群が、第1レンズ群内での残存収差を小さくしつつ、さらに鏡筒全長の短縮化を図るものである。
条件式(2)の下限値を超えると、全長を短縮化することはできるが、球面収差がオーバーになり、物体距離無限遠時の結像性能の悪化を招く。
条件式(2)の上限値を超えると、球面収差と像面湾曲のアンダーになり、特にマクロ域での結像性能が悪化する。
条件式(2)に関し、好ましくは、0.7<F1/F<1.25であり、さらに好ましくは、0.75<F1/F<1.2である。
(Description of Embodiment 1)
In the first embodiment, in particular, the first lens group reduces the residual aberration in the first lens group and further shortens the entire length of the lens barrel.
When the lower limit value of conditional expression (2) is exceeded, the total length can be shortened, but the spherical aberration becomes excessive and the imaging performance at the infinite object distance is deteriorated.
If the upper limit value of conditional expression (2) is exceeded, the spherical aberration and the curvature of field will be under, and the imaging performance particularly in the macro region will deteriorate.
Regarding conditional expression (2), it is preferably 0.7 <F1 / F <1.25, and more preferably 0.75 <F1 / F <1.2.

(実施態様2の説明)
本発明は、第2レンズ前群を接合レンズとし、フォーカシングによる色収差の変動を小さくし、さらに球面収差を良好に補正している。
(Description of Embodiment 2)
In the present invention, the second lens front group is a cemented lens, variation in chromatic aberration due to focusing is reduced, and spherical aberration is corrected well.

条件式(3)の下限値を超えると、球面収差がアンダー化し、像面湾曲とのバランスが損なわれる。
条件式(3)の上限値を超えると、球面収差がオーバー化するため好ましくない。
条件式(3)において、好ましくは、-0.8<RDG2/F<-0.15である。これにより、球面収差のアンダー化を小さくすることができる。
条件式(3)において、さらに好ましくは、-0.7<RDG2/F<-0.2である。これにより、球面収差のアンダー化をさらに小さくすることができる。
If the lower limit value of conditional expression (3) is exceeded, spherical aberration will be under and balance with field curvature will be impaired.
Exceeding the upper limit value of conditional expression (3) is not preferable because spherical aberration becomes excessive.
In conditional expression (3), it is preferably −0.8 <RDG2 / F <−0.15. As a result, the underset of spherical aberration can be reduced.
In conditional expression (3), more preferably −0.7 <RDG2 / F <−0.2. As a result, the underset of spherical aberration can be further reduced.

(実施態様3の説明)
実施態様3は、第1レンズ群中の最も物体側に配置する凸レンズの形状を規定するものである。実施態様3は、特に、鏡筒外径及び全長を小さくすると共に、特に球面収差、下側光線のコマ収差の補正を良好に行うことができる。
条件式(4)の下限値を超えると、当該レンズの焦点距離が長くなり、第1レンズ群の直径が大きくなるばかりでなく、レンズ全長が長くなり好ましくない。
条件式(4)の上限値を超えると、当該レンズの屈折力が強くなり、軸外コマ収差が悪化し、結像性能の悪化を招く。
(Description of Embodiment 3)
In the third embodiment, the shape of the convex lens arranged closest to the object side in the first lens group is defined. In particular, the third embodiment can reduce the outer diameter and the total length of the lens barrel, and can satisfactorily correct the spherical aberration and the coma of the lower ray.
Exceeding the lower limit of conditional expression (4) is not preferable because the focal length of the lens is increased, the diameter of the first lens group is increased, and the entire length of the lens is increased.
When the upper limit value of conditional expression (4) is exceeded, the refractive power of the lens becomes strong, the off-axis coma aberration deteriorates, and the imaging performance deteriorates.

(実施態様4の説明)
本発明は、第3レンズ群中の一部あるいは全体を光軸に対して垂直方向に移動する防振レンズ群を持つ。第3レンズ群を、物体側の第3レンズ前群3a及び像側の第3レンズ後群3bに分け、第3レンズ前群3aを手振れ補正レンズにすることにより、手振れ補正時の手振れ補正補レンズの移動量を小さくすることができる。
(Description of Embodiment 4)
The present invention has an anti-vibration lens group that moves part or all of the third lens group in a direction perpendicular to the optical axis. The third lens group is divided into a third lens front group 3a on the object side and a third lens rear group 3b on the image side, and the third lens front group 3a is a camera shake correction lens, thereby correcting camera shake during camera shake correction. The amount of lens movement can be reduced.

第3レンズ後群3bに関する条件式(5)の下限値を超えると、手振れ補正自体の屈折力を強めなくてはならず、手振れ補正時の収差補正のみならず、光学系全体の収差補正が困難となる。
第3レンズ後群3bに関する条件式(5)の上限値を超えると、レンズ防振群の移動量は小さくなるものの、同じく手振れ補正時の収差補正が困難となり好ましくない。
If the lower limit of conditional expression (5) regarding the third lens rear group 3b is exceeded, the refractive power of camera shake correction itself must be strengthened, and not only aberration correction during camera shake correction but also aberration correction of the entire optical system. It becomes difficult.
If the upper limit value of conditional expression (5) for the third lens rear group 3b is exceeded, the movement amount of the lens vibration-proof group becomes small, but similarly, it becomes difficult to correct aberrations during camera shake correction.

第3レンズ群の構成を、物体側から負のパワー、空気間隔、正のパワーと配置すると、第3レンズ後群3bのレンズの直径を小さくすることができる。   If the configuration of the third lens group is arranged with negative power, air gap, and positive power from the object side, the diameter of the lens of the third lens rear group 3b can be reduced.

本発明に係る実施形態1のマクロレンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinity focusing state of the macro lens of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1のマクロレンズの無限遠合焦状態の縦収差図である。FIG. 3 is a longitudinal aberration diagram of the macro lens according to the first embodiment of the present invention in an infinitely focused state. 本発明に係る実施形態1のマクロレンズの撮影倍率0.5倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the macro lens of Embodiment 1 according to the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態1のマクロレンズの撮影倍率等倍時の縦収差図である。FIG. 5 is a longitudinal aberration diagram at the same magnification of the imaging magnification of the macro lens according to the first embodiment of the present invention. 本発明に係る実施形態1のマクロレンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 3 is a lateral aberration diagram without camera shake when the object distance of the macro lens of Embodiment 1 according to the present invention is infinite. 本発明に係る実施形態1のマクロレンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 5 is a lateral aberration diagram without camera shake when the imaging magnification of the macro lens of Embodiment 1 according to the present invention is 0.5 times. 本発明に係る実施形態1のマクロレンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 5 is a lateral aberration diagram without camera shake when the macro lens of Embodiment 1 according to the present invention has the same magnification as the photographing magnification. 本発明に係る実施形態1のマクロレンズの物体距離無限遠時の+方向手振れ量0.32mmの横収差図である。FIG. 6 is a lateral aberration diagram in the case of an infinite object distance of the macro lens according to Embodiment 1 of the present invention when the + direction camera shake amount is 0.32 mm. 本発明に係る実施形態1のマクロレンズの物体距離無限遠時の−方向手振れ量0.32mmの横収差図である。FIG. 6 is a lateral aberration diagram of a minus direction camera shake amount of 0.32 mm when the object distance of the macro lens of Embodiment 1 according to the present invention is infinity. 本発明に係る実施形態2のマクロレンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinity focusing state of the macro lens of Embodiment 2 which concerns on this invention. 本発明に係る実施形態2のマクロレンズの無限遠合焦状態の縦収差図である。It is a longitudinal aberration figure of the infinity focusing state of the macro lens of Embodiment 2 concerning the present invention. 本発明に係る実施形態2のマクロレンズの撮影倍率0.5倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the macro lens of Embodiment 2 according to the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態2のマクロレンズの撮影倍率等倍時の縦収差図である。It is a longitudinal aberration figure at the time of imaging magnification equal magnification of the macro lens of Embodiment 2 concerning the present invention. 本発明に係る実施形態2のマクロレンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the object distance of the macro lens of Embodiment 2 according to the present invention is infinite. 本発明に係る実施形態2のマクロレンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the imaging magnification of the macro lens of Embodiment 2 according to the present invention is 0.5 times. 本発明に係る実施形態2のマクロレンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 6 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the macro lens according to the second embodiment of the present invention. 本発明に係る実施形態2のマクロレンズの物体距離無限遠時の+方向手振れ量0.34mmの横収差図である。It is a lateral aberration diagram of the + direction hand movement amount of 0.34 mm when the object distance of the macro lens of Embodiment 2 according to the present invention is infinite. 本発明に係る実施形態2のマクロレンズの物体距離無限遠時の−方向手振れ量0.34mmの横収差図である。FIG. 10 is a lateral aberration diagram of the in-direction hand shake amount of 0.34 mm when the object distance of the macro lens of Embodiment 2 according to the present invention is infinity. 本発明に係る実施形態3のマクロレンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinity focusing state of the macro lens of Embodiment 3 which concerns on this invention. 本発明に係る実施形態3のマクロレンズの無限遠合焦状態の縦収差図である。It is a longitudinal aberration figure of the infinity focusing state of the macro lens of Embodiment 3 concerning the present invention. 本発明に係る実施形態3のマクロレンズの撮影倍率0.5倍時の縦収差図である。FIG. 6 is a longitudinal aberration diagram of the macro lens of Embodiment 3 according to the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態3のマクロレンズの撮影倍率等倍時の縦収差図である。It is a longitudinal aberration figure at the time of imaging magnification equal magnification of the macro lens of Embodiment 3 concerning the present invention. 本発明に係る実施形態3のマクロレンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the object distance of the macro lens of Embodiment 3 according to the present invention is infinity. 本発明に係る実施形態3のマクロレンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the imaging magnification of the macro lens of Embodiment 3 according to the present invention is 0.5 times. 本発明に係る実施形態3のマクロレンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the macro lens according to the third embodiment of the present invention. 本発明に係る実施形態3のマクロレンズの物体距離無限遠時の+方向手振れ量0.42mmの横収差図である。It is a lateral aberration diagram of the + direction hand movement amount of 0.42 mm when the object distance of the macro lens of Embodiment 3 according to the present invention is infinity. 本発明に係る実施形態3のマクロレンズの物体距離無限遠時の−方向手振れ量0.42mmの横収差図である。FIG. 10 is a lateral aberration diagram of a minus direction camera shake amount of 0.42 mm when the object distance of the macro lens of Embodiment 3 according to the present invention is infinity. 本発明に係る実施形態4のマクロレンズの無限遠合焦状態の断面図である。It is sectional drawing of the infinity focusing state of the macro lens of Embodiment 4 which concerns on this invention. 本発明に係る実施形態4のマクロレンズの無限遠合焦状態の縦収差図である。It is a longitudinal aberration figure of the infinity focusing state of the macro lens of Embodiment 4 concerning the present invention. 本発明に係る実施形態4のマクロレンズの撮影倍率0.5倍時の縦収差図である。FIG. 10 is a longitudinal aberration diagram of the macro lens according to Embodiment 4 of the present invention when the photographing magnification is 0.5 times. 本発明に係る実施形態4のマクロレンズの撮影倍率等倍時の縦収差図である。It is a longitudinal aberration figure at the time of imaging magnification equal magnification of the macro lens of Embodiment 4 concerning the present invention. 本発明に係る実施形態4のマクロレンズの物体距離無限遠時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the object distance of the macro lens of Embodiment 4 according to the present invention is infinite. 本発明に係る実施形態4のマクロレンズの撮影倍率0.5倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake when the shooting magnification of the macro lens of Embodiment 4 according to the present invention is 0.5. 本発明に係る実施形態4のマクロレンズの撮影倍率等倍時の手振れなしの横収差図である。FIG. 10 is a lateral aberration diagram without camera shake at the same magnification as the imaging magnification of the macro lens according to the fourth embodiment of the present invention. 本発明に係る実施形態4のマクロレンズの物体距離無限遠時の+方向手振れ量0.24mmの横収差図である。FIG. 10 is a lateral aberration diagram of the amount of camera shake in the + direction 0.24 mm when the object distance of the macro lens according to Embodiment 4 is infinite. 本発明に係る実施形態4のマクロレンズの物体距離無限遠時の−方向手振れ量0.24mmの横収差図である。FIG. 10 is a transverse aberration diagram for a macro lens of Embodiment 4 according to the present invention when the object distance is infinity and the in-direction camera shake amount is 0.24 mm.

以下に示す実施形態を示す表において、Fno.はFナンバー、fは全系の焦点距離、ωは半画角(°)、Rは曲率半径、Dはレンズ厚み、レンズ間隔、Ndはd線の屈折率、Vd線基準のアッベ数を示す。ASPHは、非球面を表す。   In the tables showing the embodiments shown below, Fno. Is the F number, f is the focal length of the entire system, ω is the half angle of view (°), R is the radius of curvature, D is the lens thickness, lens spacing, and Nd is the d line. The refractive index and the Abbe number based on the Vd line are shown. ASPH represents an aspherical surface.

(実施形態1)
実施形態1のマクロレンズは、図1に示すように、物体側から像側へと順に、正の屈折力を有する第1レンズ群LG1、正の屈折力を有する第2レンズ群LG2、そして、負の屈折力を有する第3レンズ群LG3からなり、フォーカシングは、前記第1レンズ群LG1と前記第2レンズ群LG2とが、互いに異なる移動量で物体側に移動し、前記第3レンズ群LG3の全体あるいは一部を、手振れ補正時に光軸直交方向に移動し、前記第1レンズ群LG1は該第1レンズ群LG1内に開口絞りSを有し、前記開口絞りSより物体側に、少なくとも1枚の正レンズと、少なくとも1枚の凹レンズを持ち、さらに、前記開口絞りSより像側に、少なくとも負レンズと正レンズとの接合レンズを含み、前記第2レンズ群LG2は一対の接合レンズからなる、マクロレンズである。
f=61.22 Fno:2.88 ω=13.34
R D Nd Vd
1.00000
1 24.8471 3.6865 1.61800 63.39
2 -276.6962 0.1341 1.00000
3 22.6164 2.0778 1.61800 63.39
4 41.8548 1.9406 1.00000
5 -175.2139 0.9384 1.62004 36.26
6 12.5311 0.8664 1.00000
7 12.6768 2.0108 1.67270 32.10
8 14.8413 3.2118 1.00000
9 STOP 0.0000 2.6755 1.00000
10 -20.0501 0.8043 1.59551 39.24
11 61.3040 3.0162 1.74400 44.79
12 -23.0825 0.1005 1.00000
13 57.9302 1.2735 1.60738 56.82
14 436.1196 D(14) 1.00000
15 318.1367 2.4800 1.58913 61.13
16 -20.8893 0.8043 1.70154 41.24
17 -45.5088 D(17) 1.00000
18 -223.7049 2.0108 1.72825 28.46
19 -22.5910 0.6703 1.65844 50.88
20 24.0685 6.4517 1.00000
21 26.4400 3.9546 1.48749 70.24
22 -41.7129 1.7999 1.00000
23 -35.3739 0.8043 1.59551 39.24
24 337.6153 D(24) 1.00000
(Embodiment 1)
As shown in FIG. 1, the macro lens of Embodiment 1 includes, in order from the object side to the image side, a first lens group LG1 having a positive refractive power, a second lens group LG2 having a positive refractive power, and The third lens group LG3 having a negative refractive power includes focusing. In the focusing, the first lens group LG1 and the second lens group LG2 move toward the object side with different movement amounts, and the third lens group LG3. The first lens group LG1 has an aperture stop S in the first lens group LG1, and at least closer to the object side than the aperture stop S. It has one positive lens and at least one concave lens, and further includes a cemented lens of at least a negative lens and a positive lens on the image side from the aperture stop S. The second lens group LG2 is a pair of cemented lenses. Or Made, it is a macro lens.
f = 61.22 Fno: 2.88 ω = 13.34
RD Nd Vd
1.00000
1 24.8471 3.6865 1.61800 63.39
2 -276.6962 0.1341 1.00000
3 22.6164 2.0778 1.61800 63.39
4 41.8548 1.9406 1.00000
5 -175.2139 0.9384 1.62004 36.26
6 12.5311 0.8664 1.00000
7 12.6768 2.0108 1.67270 32.10
8 14.8413 3.2118 1.00000
9 STOP 0.0000 2.6755 1.00000
10 -20.0501 0.8043 1.59551 39.24
11 61.3040 3.0162 1.74400 44.79
12 -23.0825 0.1005 1.00000
13 57.9302 1.2735 1.60738 56.82
14 436.1196 D (14) 1.00000
15 318.1367 2.4800 1.58913 61.13
16 -20.8893 0.8043 1.70154 41.24
17 -45.5088 D (17) 1.00000
18 -223.7049 2.0108 1.72825 28.46
19 -22.5910 0.6703 1.65844 50.88
20 24.0685 6.4517 1.00000
21 26.4400 3.9546 1.48749 70.24
22 -41.7129 1.7999 1.00000
23 -35.3739 0.8043 1.59551 39.24
24 337.6153 D (24) 1.00000

F INF x0.5 x1.0
D(14) 0.8043 7.8542 14.0975
D(17) 0.7158 10.5632 22.2767
D(24) 26.3541 26.3541 26.3541
F INF x0.5 x1.0
D (14) 0.8043 7.8542 14.0975
D (17) 0.7158 10.5632 22.2767
D (24) 26.3541 26.3541 26.3541

実施形態1は、第1レンズ群LG1内を、物体側から2枚の凸レンズ11,12、凹レンズ13、凸レンズ14、開口絞りS、凹凸の接合レンズ15、そして凸レンズ16とから構成し、第2レンズ群LG2は凸凹の接合レンズ17、第3レンズ群は凸凹の接合レンズ21と、凸レンズ22、凹レンズ23とから構成している。
フォーカシングにおいては、第1レンズ群LG1と第2レンズ群LG2は、物体側に繰り出す方向に移動し、第1レンズ群LG1の繰出し量は第2レンズ群LG2の操出し量より大きく、INFからマクロ端への移動量はそれぞれ、34.8mm、21.6mmである。
In the first embodiment, the first lens group LG1 is composed of two convex lenses 11, 12, a concave lens 13, a convex lens 14, an aperture stop S, a concave-convex cemented lens 15, and a convex lens 16 from the object side. The lens group LG2 is composed of a convex-concave cemented lens 17, and the third lens group is composed of a convex-concave cemented lens 21, a convex lens 22, and a concave lens 23.
In focusing, the first lens group LG1 and the second lens group LG2 move in the direction of extending toward the object side, and the amount of extension of the first lens group LG1 is larger than the amount of operation of the second lens group LG2, from INF to macro The movement amounts to the ends are 34.8 mm and 21.6 mm, respectively.

第3レンズ群LG3は、第3レンズ前群LG3aを凸凹レンズで構成して手振れ補正レンズとし、0.3度相当のカメラチルトブレに対する補正量は、0.32mmである。手振れ補正レンズは、実施形態1においては凸凹の順となっているが、凹凸の順でも本発明を有効に実施できる。
第3レンズ後群LG3bは、凸レンズ、空気間隔を明けて、凹レンズから構成している。実施形態1はすべてのレンズ面を球面で構成しているが、非球面を含めてもよい。
The third lens group LG3 includes a convex-concave lens as the third lens front group LG3a to form a camera shake correction lens, and a correction amount for camera tilt blur equivalent to 0.3 degrees is 0.32 mm. In the first embodiment, the camera shake correction lens is in the order of unevenness, but the present invention can be effectively implemented even in the order of unevenness.
The third lens rear group LG3b is composed of a convex lens and a concave lens with an air space. In the first embodiment, all lens surfaces are spherical surfaces, but aspheric surfaces may be included.

(実施形態2)
f=87.38 Fno:2.86 ω=9.42
R D Nd Vd
1 53.6967 2.5000 1.64769 33.79
2 33.9257 3.0000 1.00000
3 61.8652 3.5200 1.62041 60.29
4 -496.9001 0.2000 1.00000
5 24.6534 3.4500 1.88300 40.80
6 41.9865 0.5000 1.00000
7 27.8441 2.4400 1.64769 33.79
8 18.8112 6.2328 1.00000
9 STOP 0.0000 2.0735 1.00000
10 -247.6206 1.2000 1.68893 31.07
11 25.9805 3.7000 1.60300 65.44
12 144.1063 6.0000 1.00000
13 -1087.3184 2.2000 1.84666 23.78
14 -89.4782 D(14) 1.00000
15 251.5838 3.5000 1.60311 60.64
16 -43.0632 1.2000 1.59551 39.24
17 -110.9693 D(17) 1.00000
18 397.4439 3.6000 1.84666 23.78
19 -29.8106 1.2000 1.83400 37.16
20 33.7103 9.1663 1.00000
21 42.2978 3.4500 1.88300 40.80
22 -60.7017 1.3674 1.00000
23 -54.7245 1.2000 1.80518 25.42
24 96.2211 D(24) 1.00000
(Embodiment 2)
f = 87.38 Fno: 2.86 ω = 9.42
RD Nd Vd
1 53.6967 2.5000 1.64769 33.79
2 33.9257 3.0000 1.00000
3 61.8652 3.5200 1.62041 60.29
4 -496.9001 0.2000 1.00000
5 24.6534 3.4500 1.88300 40.80
6 41.9865 0.5000 1.00000
7 27.8441 2.4400 1.64769 33.79
8 18.8112 6.2328 1.00000
9 STOP 0.0000 2.0735 1.00000
10 -247.6206 1.2000 1.68893 31.07
11 25.9805 3.7000 1.60300 65.44
12 144.1063 6.0000 1.00000
13 -1087.3184 2.2000 1.84666 23.78
14 -89.4782 D (14) 1.00000
15 251.5838 3.5000 1.60311 60.64
16 -43.0632 1.2000 1.59551 39.24
17 -110.9693 D (17) 1.00000
18 397.4439 3.6000 1.84666 23.78
19 -29.8106 1.2000 1.83400 37.16
20 33.7103 9.1663 1.00000
21 42.2978 3.4500 1.88300 40.80
22 -60.7017 1.3674 1.00000
23 -54.7245 1.2000 1.80518 25.42
24 96.2211 D (24) 1.00000

F INF x0.5 x1.0
D(14) 1.5000 7.5518 13.1363
D(17) 1.3000 20.7306 41.6637
D(24) 39.3186 39.3186 39.3186
F INF x0.5 x1.0
D (14) 1.5000 7.5518 13.1363
D (17) 1.3000 20.7306 41.6637
D (24) 39.3186 39.3186 39.3186

実施形態2は、第1レンズ群LG1内を、物体側から凹レンズ221、2枚の凸レンズ13,214、凹レンズ214、開口絞りS、凹凸の接合レンズ215、そして凸レンズ216とから構成し、第2レンズ群LG2は凸凹の接合レンズ217から構成し、第3レンズ群LG3は凸凹の接合レンズ221と凸レンズ222,凹レンズ223とから構成している。   In the second embodiment, the first lens group LG1 includes a concave lens 221, two convex lenses 13, 214, a concave lens 214, an aperture stop S, an uneven cemented lens 215, and a convex lens 216 from the object side. The lens group LG2 is composed of a convex / concave cemented lens 217, and the third lens group LG3 is composed of a convex / concave cemented lens 221, a convex lens 222, and a concave lens 223.

フォーカシングにおいては、第1レンズ群LG1と第2レンズ群LG2は物体側に繰り出す方向に移動し、第1レンズ群LG1の繰出し量の方が第2レンズ群LG2に比べて大きく、INFからマクロ端への移動量はそれぞれ、51.9mm、40.3mmである。
第3レンズ群LG3は、凸凹レンズ222,223で構成した第3レンズ前群LG3aを手振れ補正レンズとした。0.3度相当のカメラチルト手振れに対する補正量は、0.43mmである。手振れ補正レンズは、実施形態2において凸凹の順となっているが、凹凸の順でも本発明を有効に実施できる。第3レンズ後群LG3bは、凸レンズ222、空気間隔を明けて、凹レンズ223から構成されている。
実施形態2はすべてのレンズ面を球面で構成させているが、非球面を含めてもよい。
In focusing, the first lens group LG1 and the second lens group LG2 move in the direction of extension toward the object side, and the extension amount of the first lens group LG1 is larger than that of the second lens group LG2, and the macro end from the INF. The amount of movement to is 51.9 mm and 40.3 mm, respectively.
In the third lens group LG3, the third lens front group LG3a constituted by the convex and concave lenses 222 and 223 is used as a camera shake correction lens. The correction amount for camera tilt camera shake equivalent to 0.3 degrees is 0.43 mm. The camera shake correction lens is in the order of irregularities in the second embodiment, but the present invention can also be effectively implemented in the order of irregularities. The third lens rear group LG3b includes a convex lens 222 and a concave lens 223 with an air space.
In the second embodiment, all lens surfaces are formed as spherical surfaces, but an aspherical surface may be included.

(実施形態3)
f=92.50 Fno:2.88 ω=8.89
R D Nd Vd
1 52.8502 5.0000 1.69340 55.55
2 -1122.1878 0.1500 1.00000 0.00
3 35.0908 3.5000 1.71690 54.37
4 78.6957 1.6211 1.00000 0.00
5 295.8233 10.1351 1.74466 33.87
6 24.7533 4.0589 1.00000 0.00
7 STOP 0.0000 3.3991 1.00000 0.00
8 -36.1756 1.2000 1.61340 34.87
9 565.2948 4.5000 1.87427 41.26
10 -60.3847 0.1500 1.00000 0.00
11 241.1551 2.2000 1.72501 54.00
12 -138.6730 D(12) 1.00000 0.00
13 399.0832 3.3000 1.69429 55.51
14 -35.9519 1.2000 1.66368 33.24
15 -75.4501 D(15) 1.00000 0.00
16 -211.6478 3.8000 1.72104 27.33
17 -21.9716 1.2000 1.69247 39.94
18 32.7382 7.5355 1.00000 0.00
19 38.0042 5.0000 1.51194 64.14
20 -393.1517 1.9489 1.00000 0.00
21 -68.9235 1.2000 1.87908 39.86
22 -94.4574 D(22) 1.00000 0.00
(Embodiment 3)
f = 92.50 Fno: 2.88 ω = 8.89
RD Nd Vd
1 52.8502 5.0000 1.69340 55.55
2 -1122.1878 0.1500 1.00000 0.00
3 35.0908 3.5000 1.71690 54.37
4 78.6957 1.6211 1.00000 0.00
5 295.8233 10.1351 1.74466 33.87
6 24.7533 4.0589 1.00000 0.00
7 STOP 0.0000 3.3991 1.00000 0.00
8 -36.1756 1.2000 1.61340 34.87
9 565.2948 4.5000 1.87427 41.26
10 -60.3847 0.1500 1.00000 0.00
11 241.1551 2.2000 1.72501 54.00
12 -138.6730 D (12) 1.00000 0.00
13 399.0832 3.3000 1.69429 55.51
14 -35.9519 1.2000 1.66368 33.24
15 -75.4501 D (15) 1.00000 0.00
16 -211.6478 3.8000 1.72104 27.33
17 -21.9716 1.2000 1.69247 39.94
18 32.7382 7.5355 1.00000 0.00
19 38.0042 5.0000 1.51194 64.14
20 -393.1517 1.9489 1.00000 0.00
21 -68.9235 1.2000 1.87908 39.86
22 -94.4574 D (22) 1.00000 0.00

F INF x0.5 x1.0
D(12) 1.5000 10.6295 19.4820
D(15) 0.9900 15.8939 33.0080
D(22) 39.6421 39.6876 39.7088
F INF x0.5 x1.0
D (12) 1.5000 10.6295 19.4820
D (15) 0.9900 15.8939 33.0080
D (22) 39.6421 39.6876 39.7088

実施形態3は、第1レンズ群LG1内を、物体側から2枚の凸レンズ311,312、凹レンズ313、開口絞りS、凹凸の接合レンズ315、そして凸レンズ316とから構成している。第2レンズ群LG2は、凸凹の接合レンズ317、第3レンズ群LG3は凸凹の接合レンズ321と、凸レンズ322、凹レンズ323とから構成している。
フォーカシングにおいて、第1レンズ群LG1と第2レンズ群LG2は物体側に繰り出す方向に移動し、第1レンズ群LG1の繰出し量は第2レンズ群LG2の操出し量より大きい。INFからマクロ端への移動量はそれぞれ、50.1mm、32.1mmである。
In the third embodiment, the first lens group LG1 includes two convex lenses 311 and 312, a concave lens 313, an aperture stop S, an uneven cemented lens 315, and a convex lens 316 from the object side. The second lens group LG2 includes a convex / concave cemented lens 317, and the third lens group LG3 includes a convex / concave cemented lens 321, a convex lens 322, and a concave lens 323.
In focusing, the first lens group LG1 and the second lens group LG2 move in the direction of extension toward the object side, and the extension amount of the first lens group LG1 is larger than the operation amount of the second lens group LG2. The amount of movement from the INF to the macro end is 50.1 mm and 32.1 mm, respectively.

第3レンズ群LG3は、凸凹レンズ321の第3レンズ前群LG3aによって手振れ補正を構成する。0.3度相当のカメラチルト手振れに対する補正量は0.42mmである。実施形態3の手振れ補正レンズ321は凸凹の順となっているが、凹凸の順でも本発明を有効に実施できる。
第3レンズ後群LG3bは、凸レンズ322、空気間隔を明けて、凹レンズ323から構成される。
実施形態3のすべてのレンズ面は球面で構成させているが、非球面を含めてもよい。
The third lens group LG3 constitutes camera shake correction by the third lens front group LG3a of the convex / concave lens 321. The correction amount for camera tilt camera shake equivalent to 0.3 degrees is 0.42 mm. Although the camera shake correction lens 321 of the third embodiment is in the order of unevenness, the present invention can be effectively implemented even in the order of unevenness.
The third lens rear group LG3b includes a convex lens 322 and a concave lens 323 with an air space.
Although all the lens surfaces of Embodiment 3 are formed of spherical surfaces, they may include aspherical surfaces.

(実施形態4)
f=46.35 Fno:2.88 ω13.12
R D Nd Vd
1 20.2810 2.7000 1.62291 59.82
2 -606.7962 0.1002 1.00000
3 14.9930 1.9000 1.62251 59.90
4 41.3833 1.7073 1.00000
5 556.6851 1.0000 1.64023 34.43
6 8.6442 0.6000 1.00000
7 8.1781 1.6754 1.70560 29.91
8 8.1298 2.7581 1.00000
9 STOP 0.0000 2.0000 1.00000
10 -124.4036 0.8000 1.56796 43.44
11 12.4051 2.2000 1.74301 44.92
12 -69.3579 D(12) 1.0000
13 -53.6822 1.8000 1.58872 62.08
14 -10.4117 0.8000 1.69684 40.84
15 -17.0118 D(15) 1.00000
16 -45.3442 0.5000 1.65008 55.10
17 14.4680 1.8000 1.72348 28.99
18 19.0376 7.0983 1.00000
19 23.7797 4.5000 1.53685 63.96
20 -69.5278 D(20) 1.00000
(Embodiment 4)
f = 46.35 Fno: 2.88 ω13.12
RD Nd Vd
1 20.2810 2.7000 1.62291 59.82
2 -606.7962 0.1002 1.00000
3 14.9930 1.9000 1.62251 59.90
4 41.3833 1.7073 1.00000
5 556.6851 1.0000 1.64023 34.43
6 8.6442 0.6000 1.00000
7 8.1781 1.6754 1.70560 29.91
8 8.1298 2.7581 1.00000
9 STOP 0.0000 2.0000 1.00000
10 -124.4036 0.8000 1.56796 43.44
11 12.4051 2.2000 1.74301 44.92
12 -69.3579 D (12) 1.0000
13 -53.6822 1.8000 1.58872 62.08
14 -10.4117 0.8000 1.69684 40.84
15 -17.0118 D (15) 1.00000
16 -45.3442 0.5000 1.65008 55.10
17 14.4680 1.8000 1.72348 28.99
18 19.0376 7.0983 1.00000
19 23.7797 4.5000 1.53685 63.96
20 -69.5278 D (20) 1.00000

F INF x0.5 x1.0
D(12) 1.7384 5.5626 7.1631
D(15) 1.1583 10.1484 20.7336
D(20) 14.6593 14.6593 14.6593
F INF x0.5 x1.0
D (12) 1.7384 5.5626 7.1631
D (15) 1.1583 10.1484 20.7336
D (20) 14.6593 14.6593 14.6593

実施形態4は、第1レンズ群LG1内を、物体側から2枚の凸レンズ411,412、中心肉厚の厚い凹レンズ413、凸レンズ414、開口絞りS、凹凸の接合レンズ415とから構成している。第2レンズ群LG2は、凸凹の接合レンズ417で構成されている。第3レンズ群LG3は、凹凸の接合レンズ421と凸レンズ422とから構成されている。
フォーカシングにおいては、第1レンズ群LG1と第2レンズ群LG2は、物体側に繰り出す方向に移動し、第1レンズ群LG1の繰出し量は第2レンズ群LG2の操出し量より大きい。INFからマクロ端への移動量はそれぞれ、25.0mm、19.6mmである。
In the fourth embodiment, the first lens group LG1 includes two convex lenses 411 and 412 from the object side, a thick concave lens 413, a convex lens 414, an aperture stop S, and an uneven cemented lens 415. . The second lens group LG2 is composed of a convex / concave cemented lens 417. The third lens group LG3 includes a concave-convex cemented lens 421 and a convex lens 422.
In focusing, the first lens group LG1 and the second lens group LG2 move in the direction of extension toward the object side, and the extension amount of the first lens group LG1 is larger than the operation amount of the second lens group LG2. The moving amounts from the INF to the macro end are 25.0 mm and 19.6 mm, respectively.

第3レンズ群LG3は、第3レンズ前群LG3aを凸凹レンズで構成して手振れ補正レンズとしている。0.3度相当のカメラチルト手振れに対する補正量は、0.24mmである。第3レンズ前群LG3aは凹凸のダブレット421、第3レンズ後群LG3bは1枚の凸レンズ422から構成させている。実施形態4のレンズはすべてのレンズ面を球面で構成させているが、非球面を含めてもよい。   In the third lens group LG3, the third lens front group LG3a is configured by a convex / concave lens to serve as a camera shake correction lens. The correction amount for camera tilt camera shake equivalent to 0.3 degrees is 0.24 mm. The third lens front group LG3a is constituted by an uneven doublet 421, and the third lens rear group LG3b is constituted by one convex lens 422. In the lens of the fourth embodiment, all lens surfaces are spherical surfaces, but an aspherical surface may be included.

[条件式、数値対応表]

Figure 0005783375
[Conditional expressions, numerical correspondence table]
Figure 0005783375

S 絞り
LG1 第1レンズ群
LG2 第2レンズ群
LG3 第3レンズ群
LG3a 第3レンズ前群
LG3b 第3レンズ後群
S Aperture LG1 First lens group LG2 Second lens group LG3 Third lens group LG3a Third lens front group LG3b Third lens rear group

Claims (5)

物体側から像側へと順に、正の屈折力を有する第1レンズ群、正の屈折力を有する第2レンズ群、そして、負の屈折力を有する第3レンズ群からなり、フォーカシングは、前記第1レンズ群と前記第2レンズ群とが、互いに異なる移動量で物体側に移動し、前記第3レンズ群の全体あるいは一部を、手振れ補正時に光軸直交方向に移動し、前記第1レンズ群は該レンズ群内に開口絞りを有し、前記開口絞りより物体側に、少なくとも1枚の正レンズと、少なくとも1枚の凹レンズを持ち、さらに、前記開口絞りより像側に、少なくとも負レンズと正レンズとの接合レンズを含み、前記第2レンズ群は一対の接合レンズからなり、以下の条件式を満足するマクロレンズ。
|β|>0.5 ・・・・・・・・・・・・・・・・・(1)
β:近軸結像倍率
In order from the object side to the image side, a first lens group having a positive refractive power, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. The first lens group and the second lens group move to the object side with different movement amounts, and the whole or a part of the third lens group moves in the direction orthogonal to the optical axis during camera shake correction. The lens group has an aperture stop in the lens group, has at least one positive lens and at least one concave lens on the object side of the aperture stop, and further has at least a negative side on the image side of the aperture stop. A macro lens including a cemented lens of a lens and a positive lens, wherein the second lens group includes a pair of cemented lenses and satisfies the following conditional expression.
| Β |> 0.5 (1)
β: Paraxial imaging magnification
以下の条件式を満足する、請求項1記載のマクロレンズ。
0.65<F1/F<1.30 ・・・・・・・・・・・・・・(2)
F1:第1レンズ群の焦点距離
F:全系の焦点距離
2. The macro lens according to claim 1, wherein the following conditional expression is satisfied.
0.65 <F1 / F <1.30 (2)
F1: Focal length of the first lens group
F: Focal length of the entire system
以下の条件式を満足する、請求項1又は請求項2記載のマクロレンズ。
-0.9<RDG2/F<-0.1 ・・・・・・・・・・・・・(3)
RD2G:第2レンズ群の接合面の曲率半径
F:全系の焦点距離
The macro lens according to claim 1 or 2, wherein the following conditional expression is satisfied.
-0.9 <RDG2 / F <-0.1 (3)
RD2G: Radius of curvature of the cemented surface of the second lens group
F: Focal length of the entire system
以下の条件式を満足する、請求項1ないし請求項3のうちの一項に記載のマクロレンズ。
-1.22<(R1G1+R2G1)/(R1G1-R2G1)<-0.54 ・・・・(4)
R1G1:第1レンズ群中、最も物体側の凸レンズの物体側の曲率半径
R2G1:第1レンズ群中、最も物体側の凸レンズの像側の曲率半径
F:全系の焦点距離
The macro lens according to claim 1, wherein the following conditional expression is satisfied.
-1.22 <(R1G1 + R2G1) / (R1G1-R2G1) <-0.54 (4)
R1G1: Object side radius of curvature of the most object side convex lens in the first lens group
R2G1: Image side curvature radius of the most object side convex lens in the first lens unit
F: Focal length of the entire system
前記本発明において、前記第3レンズ群中、最も大きな空気間隔を開けて、3a群と3b群とで構成し、3a群にて手振れ補正を行い、以下の条件を満足する、請求項1又は請求項2に記載のマクロレンズ。
0.5<F3b/F<1.5 ・・・・・・・・・・・・・・(5)
F3b:3b群の焦点距離
F:全系の焦点距離
In the present invention, the third lens group includes the 3a group and the 3b group with the largest air gap, and the camera shake correction is performed in the 3a group, and the following conditions are satisfied: The macro lens according to claim 2.
0.5 <F3b / F <1.5 (5)
F3b: Focal length of 3b group
F: Focal length of the entire system
JP2011280282A 2011-12-21 2011-12-21 Macro lens Expired - Fee Related JP5783375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011280282A JP5783375B2 (en) 2011-12-21 2011-12-21 Macro lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011280282A JP5783375B2 (en) 2011-12-21 2011-12-21 Macro lens

Publications (2)

Publication Number Publication Date
JP2013130724A JP2013130724A (en) 2013-07-04
JP5783375B2 true JP5783375B2 (en) 2015-09-24

Family

ID=48908317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011280282A Expired - Fee Related JP5783375B2 (en) 2011-12-21 2011-12-21 Macro lens

Country Status (1)

Country Link
JP (1) JP5783375B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6410462B2 (en) * 2014-05-12 2018-10-24 キヤノン株式会社 Optical system and imaging apparatus having the same
JP6611745B2 (en) 2017-03-15 2019-11-27 富士フイルム株式会社 Imaging lens and imaging apparatus
JP6918731B2 (en) * 2018-02-28 2021-08-11 キヤノン株式会社 Optical system and imaging device
JP7353876B2 (en) * 2019-09-05 2023-10-02 キヤノン株式会社 Optical system and imaging device having the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221765B2 (en) * 1993-04-21 2001-10-22 オリンパス光学工業株式会社 Lens that can shoot at close range

Also Published As

Publication number Publication date
JP2013130724A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP5818209B2 (en) Macro lens
JP5749629B2 (en) Inner focus telephoto lens
CN111913274B (en) Imaging optical system and imaging device
JP5890065B2 (en) Zoom lens and imaging device
CN103728715B (en) A kind of heavy caliber focal length lens combination
US9835871B2 (en) Anti-vibration optical system
JP5974101B2 (en) Wide angle lens and imaging device
JP2012242690A (en) Inner focus type lens
JP2014209144A (en) Zoom lens with image blur correction function
JP6377320B2 (en) Zoom lens and imaging device
JPH11223771A (en) Vari-focal lens system
JP2015018124A (en) Zoom lens and image capturing device
JP2014142520A (en) Imaging lens system
US11703661B2 (en) Optical system and optical apparatus
JP2014228808A5 (en)
JP2007279232A (en) Zoom lens and imaging apparatus
JP5783375B2 (en) Macro lens
JP6546076B2 (en) Wide-angle lens and imaging device
JP5217694B2 (en) Lens system and optical device
JP2014098795A (en) Variable power optical system, optical device, and method for manufacturing the variable power optical system
JP5848099B2 (en) Inner focus type large aperture telephoto macro lens with anti-vibration function
JPWO2006025130A1 (en) High magnification zoom lens
JP5462081B2 (en) Zoom lens and imaging device
JPWO2013031110A1 (en) Zoom lens and imaging device
WO2014069077A1 (en) Inner focus type lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R150 Certificate of patent or registration of utility model

Ref document number: 5783375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees