JP5783230B2 - Method for producing silicon carbide single crystal - Google Patents

Method for producing silicon carbide single crystal Download PDF

Info

Publication number
JP5783230B2
JP5783230B2 JP2013247714A JP2013247714A JP5783230B2 JP 5783230 B2 JP5783230 B2 JP 5783230B2 JP 2013247714 A JP2013247714 A JP 2013247714A JP 2013247714 A JP2013247714 A JP 2013247714A JP 5783230 B2 JP5783230 B2 JP 5783230B2
Authority
JP
Japan
Prior art keywords
crucible
heat insulating
insulating material
silicon
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013247714A
Other languages
Japanese (ja)
Other versions
JP2014043394A (en
Inventor
近藤 宏行
宏行 近藤
秀隆 鷹羽
秀隆 鷹羽
歩 安達
歩 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Toyota Motor Corp
Original Assignee
Denso Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Toyota Motor Corp filed Critical Denso Corp
Priority to JP2013247714A priority Critical patent/JP5783230B2/en
Publication of JP2014043394A publication Critical patent/JP2014043394A/en
Application granted granted Critical
Publication of JP5783230B2 publication Critical patent/JP5783230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、炭化珪素(以下、SiCという)単結晶で構成される種結晶に対して原料ガスを供給することでSiC単結晶の製造を行うSiC単結晶の製造方法に関する。   The present invention relates to a method for producing a SiC single crystal in which a raw material gas is supplied to a seed crystal composed of a silicon carbide (hereinafter referred to as SiC) single crystal to produce a SiC single crystal.

従来、昇華再結晶法によりSiC単結晶を成長させる製造装置が、例えば特許文献1で提案されている。具体的に、特許文献1では、坩堝の外周を囲むように円筒型のヒータが配置され、さらに、ヒータの外周を囲み、かつ、ヒータおよび坩堝を上下から囲むように、黒鉛製の断熱材が配置された状態でSiC単結晶を成長させる方法が提案されている。   Conventionally, for example, Patent Document 1 proposes a manufacturing apparatus for growing a SiC single crystal by a sublimation recrystallization method. Specifically, in Patent Document 1, a cylindrical heater is disposed so as to surround the outer periphery of the crucible, and further, a graphite heat insulating material is provided so as to surround the outer periphery of the heater and to surround the heater and the crucible from above and below. A method for growing a SiC single crystal in an arranged state has been proposed.

このようにSiC単結晶を成長させる際には、Siを100ppm未満しか含有していない黒鉛製の断熱材を坩堝の周囲に配置した状態でSiC単結晶の成長を開始するのが一般的である。   When growing a SiC single crystal in this way, it is common to start the growth of the SiC single crystal with a graphite heat insulating material containing less than 100 ppm of Si arranged around the crucible. .

特開2008−290885号公報JP 2008-290885 A

しかしながら、上記従来の技術では、SiC単結晶の成長を開始すると、SiC単結晶の成長温度を制御できずに不安定な成長となり、高品質なSiC単結晶を作製できないことが発明者らの実験・検討により明らかとなった。   However, in the above-described conventional technique, when the growth of the SiC single crystal is started, the growth temperature of the SiC single crystal cannot be controlled and the growth is unstable, and the inventors have made it impossible to produce a high-quality SiC single crystal.・ Clarified by examination.

本発明は上記点に鑑み、坩堝の周囲に断熱材を配置してSiC単結晶を成長させるに際し、当該SiC単結晶の安定な成長を可能とすることができるSiC単結晶の製造方法を提供することを目的とする。   In view of the above points, the present invention provides a method for producing a SiC single crystal capable of enabling stable growth of the SiC single crystal when a heat insulating material is disposed around the crucible to grow the SiC single crystal. For the purpose.

発明者らは、坩堝から漏れる昇華ガスが新品の断熱材に吸収されていくことで、断熱材の物性が刻々と変化することにより坩堝の加熱条件が刻々と変化するため、炭化珪素単結晶の成長温度が不安定になり、その結果、炭化珪素単結晶を安定して成長させることができなくなることを突き止めた。   Since the sublimation gas leaking from the crucible is absorbed by a new heat insulating material, the heating conditions of the crucible change every moment by changing the physical properties of the heat insulating material. It has been found that the growth temperature becomes unstable, and as a result, the silicon carbide single crystal cannot be grown stably.

そこで、請求項1に記載の発明では、珪素を吸収させた断熱材(11)を用意する工程と、珪素を吸収させた断熱材(11)を当該坩堝(2)の外周に当該坩堝(2)の外周を囲むように配置した状態で坩堝(2)を加熱することにより、種結晶(4)上に炭化珪素単結晶(6)を成長させる成長工程と、を含んでいることを特徴とする。   Therefore, in the invention described in claim 1, a step of preparing a heat-insulating material (11) that has absorbed silicon, and a heat-insulating material (11) that has absorbed silicon are disposed on the outer periphery of the crucible (2). And a growth step of growing the silicon carbide single crystal (6) on the seed crystal (4) by heating the crucible (2) in a state of surrounding the outer periphery of To do.

これによると、断熱材(11)は既に珪素を吸収しているので、成長工程にて当該珪素を吸収させた断熱材(11)を用いて炭化珪素単結晶(6)を成長させる際に珪素を吸収させた断熱材(11)の劣化速度が遅くなる。このため、成長工程における断熱材(11)の物性が既に安定しているので、珪素を吸収させた断熱材(11)の物性の変化による温度変化も小さくなり、坩堝(2)の温度を所望の成長温度に制御しやすくすることができる。したがって、成長工程において炭化珪素単結晶(6)の安定な成長を可能とすることができる。   According to this, since the heat insulating material (11) has already absorbed silicon, the silicon carbide single crystal (6) is grown when the silicon carbide single crystal (6) is grown using the heat insulating material (11) that has absorbed the silicon in the growth process. The deterioration rate of the heat insulating material (11) that has absorbed water becomes slow. For this reason, since the physical property of the heat insulating material (11) in the growth process is already stable, the temperature change due to the change in the physical property of the heat insulating material (11) that has absorbed silicon is reduced, and the temperature of the crucible (2) is desired. The growth temperature can be easily controlled. Therefore, stable growth of the silicon carbide single crystal (6) can be enabled in the growth process.

ここで、「珪素を吸収させる」ということは、炭素の割合に対して珪素を1%以上、50%未満吸収させた場合と定義する。珪素を1%未満しか吸収させないと、まだ断熱材の劣化は早く進み、物性の変化は大きくなるので、安定な成長ができない。一方、珪素を50%以上吸収させると、ほとんどがSiCとなってしまい、断熱効果がなくなるので、断熱材としての役割を果たさなくなる。逆に、「珪素を吸収させていない」ということは、炭素の割合に対して珪素が1%未満しか含まれていない場合と定義する。また、この炭素の割合は重量パーセントではなく、原子パーセントを意味する。すなわち、「炭素の割合に対して珪素が1%未満しか含まれていない」とは、100個を超える炭素原子の中に珪素原子が1個含まれるような割合である。   Here, “absorbing silicon” is defined as a case where silicon is absorbed by 1% or more and less than 50% with respect to the proportion of carbon. If less than 1% of silicon is absorbed, deterioration of the heat insulating material still proceeds rapidly and the change in physical properties becomes large, so that stable growth cannot be achieved. On the other hand, when 50% or more of silicon is absorbed, most of the silicon becomes SiC and the heat insulating effect is lost, so that it does not serve as a heat insulating material. On the contrary, “does not absorb silicon” is defined as a case where silicon is contained in less than 1% with respect to the carbon ratio. Also, this carbon ratio means atomic percent, not weight percent. That is, the phrase “contains less than 1% silicon relative to the carbon ratio” is a ratio such that one silicon atom is included in more than 100 carbon atoms.

また、珪素を吸収させた断熱材(11)に含まれる珪素の割合を定量分析する手段として、EPMA(Electron Plobe MicroAnalyser:電子線マイクロアナライザー)やSEM(Scanning Electron Microscope:走査型電子顕微鏡)の付随分析装置のEDX(Energy
Dispersive X-ray Spectroscopy:エネルギー分散型X線分析)等が挙げられる。
In addition, as a means for quantitatively analyzing the ratio of silicon contained in the heat-insulating material (11) that has absorbed silicon, an EPMA (Electron Probe MicroAnalyser) or SEM (Scanning Electron Microscope) is attached. Analyzer EDX (Energy
Dispersive X-ray Spectroscopy: energy dispersive X-ray analysis).

また、珪素を吸収させていない黒鉛製の断熱材(20)に含まれる微量の珪素の割合を定量分析する手段としてICP−AES(Inductively Coupled Plasma Atomic Emission
Spectrometry:誘導結合プラズマ発光分光分析)等が挙げられる。
In addition, ICP-AES (Inductively Coupled Plasma Atomic Emission) is used as a means for quantitative analysis of the proportion of trace amounts of silicon contained in the graphite heat insulating material (20) that does not absorb silicon.
Spectrometry: inductively coupled plasma emission spectroscopy).

また、請求項1に記載の発明では、珪素を吸収させた断熱材(11)を用意する工程は、坩堝(2)として容器本体(2a)に珪素含有物(21)を配置すると共に蓋体(2b)を用意し、当該坩堝(2)の外周に当該坩堝(2)の外周を囲むように珪素を吸収させていない黒鉛製の断熱材(20)を配置し、坩堝(2)を加熱することで、珪素を吸収させていない黒鉛製の断熱材(20)に珪素含有物(21)を加熱することにより坩堝(2)から漏れた昇華ガスに含まれる珪素を吸収させる工程を含んでいる。そして、成長工程では、珪素を吸収させる工程の後、坩堝(2)として容器本体(2a)に炭化珪素原料(5)を配置すると共に台座(3)に種結晶(4)を配置した坩堝(2)を用意し、珪素を吸収させる工程で得られた珪素を吸収させた断熱材(11)を当該坩堝(2)の外周に当該坩堝(2)の外周を囲むように配置した状態で坩堝(2)を加熱することにより、種結晶(4)上に炭化珪素単結晶(6)を成長させることを特徴とする。 In the first aspect of the present invention, the step of preparing the heat-insulating material (11) in which silicon is absorbed includes the step of placing the silicon-containing material (21) in the container body (2a) as the crucible (2) and the lid. (2b) is prepared, a graphite heat insulating material (20) not absorbing silicon is disposed on the outer periphery of the crucible (2) so as to surround the outer periphery of the crucible (2), and the crucible (2) is heated. And a step of absorbing silicon contained in the sublimation gas leaked from the crucible (2) by heating the silicon-containing material (21) to the graphite heat insulating material (20) not absorbing silicon. Yes. In the growth step, after the step of absorbing silicon, the crucible (2) is provided with the silicon carbide raw material (5) in the container body (2a) and the pedestal (3) with the seed crystal (4). 2) is prepared, and the heat-insulating material (11) having absorbed silicon obtained in the step of absorbing silicon is disposed in the outer periphery of the crucible (2) so as to surround the outer periphery of the crucible (2). The silicon carbide single crystal (6) is grown on the seed crystal (4) by heating (2).

このように、珪素を吸収させる工程を実行することにより、珪素を吸収させていない黒鉛製の断熱材(20)から珪素を吸収させた断熱材(11)を製造することができる。そして、珪素を吸収させる工程で製造した珪素を吸収させた断熱材(11)を用いて、成長工程で炭化珪素単結晶(6)を成長させることができる。   Thus, the heat insulating material (11) which absorbed silicon can be manufactured from the heat insulating material (20) made of graphite which has not absorbed silicon by performing the process of absorbing silicon. And a silicon carbide single crystal (6) can be grown at a growth process using the heat insulating material (11) which absorbed silicon manufactured at the process of absorbing silicon.

具体的には、請求項1に記載の発明では、珪素を吸収させる工程では、珪素を吸収させていない黒鉛製の断熱材(20)を坩堝(2)の外壁に接触させた状態で坩堝(2)から漏れた昇華ガスを珪素を吸収させていない黒鉛製の断熱材(20)に吸収させるようにしている。   Specifically, in the invention according to claim 1, in the step of absorbing silicon, a crucible (20) in which the heat insulating material made of graphite not absorbing silicon is in contact with the outer wall of the crucible (2). The sublimation gas leaked from 2) is absorbed by a graphite heat insulating material (20) that does not absorb silicon.

また、請求項2に記載の発明のように、成長工程では、珪素を吸収させた断熱材(11)を坩堝(2)の外壁に接触させた状態で坩堝(2)を加熱することにより、種結晶(4)上に炭化珪素単結晶(6)を成長させることもできる。   Further, as in the invention described in claim 2, in the growth process, by heating the crucible (2) in a state where the heat insulating material (11) having absorbed silicon is in contact with the outer wall of the crucible (2), A silicon carbide single crystal (6) can also be grown on the seed crystal (4).

上記の製造方法は、坩堝(2)の容器本体(2a)に炭化珪素原料(5)を配置し、この炭化珪素原料(5)の昇華ガスを種結晶(4)に供給する昇華再結晶法によって炭化珪素単結晶(6)を成長させる方法であるが、珪素含有ガスと、炭素含有ガスの原料ガスを種結晶(4)に供給するガス供給法においても本発明を適用できる。   In the above manufacturing method, the silicon carbide raw material (5) is disposed in the container body (2a) of the crucible (2), and the sublimation recrystallization method of supplying the sublimation gas of the silicon carbide raw material (5) to the seed crystal (4). However, the present invention can also be applied to a gas supply method in which a silicon-containing gas and a source gas of a carbon-containing gas are supplied to the seed crystal (4).

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の第1実施形態に係るSiC単結晶製造装置の断面構成図である。It is a section lineblock diagram of a SiC single crystal manufacturing device concerning a 1st embodiment of the present invention. 図1における断熱材のA−B断面のSi濃度プロファイルを示した図である。It is the figure which showed the Si concentration profile of the AB cross section of the heat insulating material in FIG. SiC単結晶の製造工程を示した図である。It is the figure which showed the manufacturing process of the SiC single crystal. 本発明の第2実施形態に係るSiC単結晶製造装置の断面構成図である。It is a section lineblock diagram of the SiC single crystal manufacturing device concerning a 2nd embodiment of the present invention.

以下、本発明の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following embodiments, the same or equivalent parts are denoted by the same reference numerals in the drawings.

(第1実施形態)
以下、本発明の第1実施形態について図を参照して説明する。図1は、本実施形態に係るSiC単結晶製造装置1の断面構成図である。この図に示されるように、SiC単結晶製造装置1は、有底円筒状の容器本体2aとこの容器本体2aを蓋閉めするための円形状の蓋体2bとによって構成された黒鉛製の中空状の坩堝2を備えている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional configuration diagram of an SiC single crystal manufacturing apparatus 1 according to the present embodiment. As shown in this figure, the SiC single crystal manufacturing apparatus 1 is a hollow graphite body constituted by a bottomed cylindrical container body 2a and a circular lid body 2b for closing the container body 2a. A crucible 2 is provided.

坩堝2のうち蓋体2bの一面(容器本体2aに対向する面)には台座3が設けられており、この台座3を介して例えば円形状のSiCの種結晶4(炭化珪素単結晶基板)が配置されている。ここで、台座3は蓋体2bとは別体のものであり、蓋体2bに一体化されていても良い。また、台座3は、蓋体2bの一面の一部が当該一面から突出した部分すなわち蓋体2bの一部でも良い。   A pedestal 3 is provided on one surface of the lid 2b of the crucible 2 (the surface facing the container body 2a), and, for example, a circular SiC seed crystal 4 (silicon carbide single crystal substrate) is provided via the pedestal 3. Is arranged. Here, the pedestal 3 is separate from the lid 2b, and may be integrated with the lid 2b. Further, the pedestal 3 may be a part of one surface of the lid 2b protruding from the one surface, that is, a part of the lid 2b.

一方、坩堝2のうち容器本体2aの底部には、昇華ガスの供給源となるSiCの粉末原料5が配置されている。そして、坩堝2内の空間のうち種結晶4と粉末原料5との間を成長空間領域として、粉末原料5からの昇華ガスが種結晶4の表面上に再結晶化して、種結晶4の表面にSiC単結晶6(炭化珪素単結晶)が成長させられる構成としている。   On the other hand, an SiC powder raw material 5 serving as a sublimation gas supply source is disposed at the bottom of the container body 2 a of the crucible 2. The sublimation gas from the powder raw material 5 is recrystallized on the surface of the seed crystal 4 by using the space between the seed crystal 4 and the powder raw material 5 in the space in the crucible 2 as a growth space region. SiC single crystal 6 (silicon carbide single crystal) is grown.

また、SiC単結晶製造装置1は、上記の坩堝2を搭載するための円板状のテーブル7と、当該テーブル7を坩堝2の中心軸を中心に回転させるための棒状のシャフト8とを備えている。   The SiC single crystal manufacturing apparatus 1 includes a disk-shaped table 7 for mounting the crucible 2 and a rod-shaped shaft 8 for rotating the table 7 around the central axis of the crucible 2. ing.

テーブル7の一面には坩堝2が配置され、テーブル7の他面には当該他面に対して垂直方向にシャフト8が延びるようにシャフト8の一端が接続されている。シャフト8の他端は図示しない回転機構に支持され、当該回転機構によってシャフト8の中心軸を中心にシャフト8が回転させられるようになっている。例えば、坩堝2の中心軸はシャフト8の中心軸上に配置されている。これにより、テーブル7および坩堝2がシャフト8の中心軸すなわち坩堝2の中心軸を中心に回転する。   The crucible 2 is disposed on one surface of the table 7, and one end of the shaft 8 is connected to the other surface of the table 7 so that the shaft 8 extends in a direction perpendicular to the other surface. The other end of the shaft 8 is supported by a rotation mechanism (not shown), and the shaft 8 is rotated around the central axis of the shaft 8 by the rotation mechanism. For example, the central axis of the crucible 2 is disposed on the central axis of the shaft 8. As a result, the table 7 and the crucible 2 rotate around the central axis of the shaft 8, that is, the central axis of the crucible 2.

さらに、坩堝2の外周を囲むように円筒型のヒータ9、10が配置されている。一方のヒータ9は、坩堝2のうち粉末原料5が配置された箇所の側面と対向するように配置され、他方のヒータ10は、坩堝2のうち種結晶4が配置された箇所の側面と対向するように配置されている。   Furthermore, cylindrical heaters 9 and 10 are arranged so as to surround the outer periphery of the crucible 2. One heater 9 is disposed to face the side surface of the crucible 2 where the powder raw material 5 is disposed, and the other heater 10 is opposed to the side surface of the crucible 2 where the seed crystal 4 is disposed. Are arranged to be.

さらに、当該坩堝2の外周に当該坩堝2の外周を囲むようにカーボンを主成分とする黒鉛製の中空円柱形状の断熱材11が配置されている。具体的には、断熱材11は、ヒータ9、10の外周を囲み、かつ、ヒータ9、10および坩堝2を上下から囲むように配置されている。この断熱材11の内部空間のうちヒータ9、10および坩堝2を囲んでいる空間がガス流動室12となる。   Further, a graphite-made hollow cylindrical heat insulating material 11 mainly composed of carbon is disposed on the outer periphery of the crucible 2 so as to surround the outer periphery of the crucible 2. Specifically, the heat insulating material 11 is disposed so as to surround the outer periphery of the heaters 9 and 10 and to surround the heaters 9 and 10 and the crucible 2 from above and below. A space surrounding the heaters 9 and 10 and the crucible 2 in the internal space of the heat insulating material 11 is a gas flow chamber 12.

このような断熱材11は多くの隙間を持った多孔質体(繊維質カーボン)であり、坩堝2やヒータ9、10の外周を囲む円筒状の外周部11aと、坩堝2やヒータ9、10の上方を塞ぐ円板状の蓋部11bと、坩堝2やヒータ9、10の下方を塞ぐ円板状の底部11cとを備えて構成されている。上記の各ヒータ9、10のうちの粉末原料5側のヒータ9は底部11cの上に配置され、このヒータ9の上に棒状部材9aが配置されている。そして、この棒状部材9aの上に台座3側のヒータ10が配置されている。つまり、ヒータ10は数本の棒状部材9aによってヒータ9の上に載せられている。   Such a heat insulating material 11 is a porous body (fibrous carbon) having many gaps, a cylindrical outer peripheral portion 11 a surrounding the outer periphery of the crucible 2 and the heaters 9 and 10, and the crucible 2 and the heaters 9 and 10. A disc-shaped lid portion 11 b that covers the upper side of the crucible, and a disc-shaped bottom portion 11 c that covers the lower side of the crucible 2 and the heaters 9 and 10. Of the heaters 9 and 10, the heater 9 on the powder raw material 5 side is disposed on the bottom portion 11 c, and a rod-shaped member 9 a is disposed on the heater 9. And the heater 10 by the side of the base 3 is arrange | positioned on this rod-shaped member 9a. That is, the heater 10 is placed on the heater 9 by several bar-like members 9a.

また、断熱材11の蓋部11bには、坩堝2の蓋体2bの中央位置、つまり種結晶4の裏面側と対応する位置に蓋部11bを貫通する測温孔11dが形成されている。さらに、断熱材11の底部11cには、上記のシャフト8が貫通する貫通孔11eが設けられており、シャフト8が底部11cを貫通した状態となっている。   Further, a temperature measuring hole 11 d penetrating the lid portion 11 b is formed in the lid portion 11 b of the heat insulating material 11 at a center position of the lid body 2 b of the crucible 2, that is, a position corresponding to the back surface side of the seed crystal 4. Furthermore, the bottom part 11c of the heat insulating material 11 is provided with a through hole 11e through which the shaft 8 penetrates, and the shaft 8 penetrates the bottom part 11c.

なお、断熱材11を構成する各部11a〜11cの厚みや坩堝2との距離(隙間)に関しては、適宜調整可能であるが、坩堝2の形状、坩堝2の内部構造、結晶成長時のヒータ9、10の温度(ヒータ内の温度分布)等によって最適な形状を選択すると好ましい。   In addition, although it can adjust suitably about the thickness of each part 11a-11c which comprises the heat insulating material 11, and the distance (gap) with the crucible 2, the shape of the crucible 2, the internal structure of the crucible 2, and the heater 9 at the time of crystal growth It is preferable to select an optimum shape according to a temperature of 10 (temperature distribution in the heater) or the like.

ここで、SiC単結晶6を成長させる際には、Si(珪素)を吸収させた断熱材11が用いられる。すなわち、断熱材11は、元々Siを含んだものである。通常の断熱材は黒鉛の多孔質材料でC(炭素)の割合に対して、Siは100ppm未満であるが、この断熱材にSiを吸収させることで、SiC単結晶6の製造を開始した後の断熱材11の劣化速度を遅い状態にしておく。これにより、断熱材11の物性を安定させ、SiC単結晶6の成長温度を制御しやすくする。物性とは、例えば熱伝導度、密度等である。   Here, when the SiC single crystal 6 is grown, the heat insulating material 11 in which Si (silicon) is absorbed is used. That is, the heat insulating material 11 originally contains Si. A normal heat insulating material is a porous graphite material, and Si is less than 100 ppm with respect to the proportion of C (carbon), but after starting production of SiC single crystal 6 by absorbing Si into this heat insulating material. The deterioration rate of the heat insulating material 11 is kept slow. Thereby, the physical property of the heat insulating material 11 is stabilized, and it becomes easy to control the growth temperature of the SiC single crystal 6. The physical properties are, for example, thermal conductivity and density.

図1に示される断熱材11の外周には高周波駆動される誘導コイル13、14が配置されている。この誘導コイル13、14に高周波の電流を流すことにより、坩堝2の外周に配置されたヒータ9、10を誘導加熱できる。なお、断熱材11と誘導コイル13、14との間に石英管を配置することによって誘導コイル13、14と坩堝2、ヒータ9、10および断熱材11とを完全に絶縁することが好ましい。   Inductive coils 13 and 14 that are driven at a high frequency are arranged on the outer periphery of the heat insulating material 11 shown in FIG. By flowing high-frequency current through the induction coils 13 and 14, the heaters 9 and 10 arranged on the outer periphery of the crucible 2 can be induction-heated. In addition, it is preferable that the induction coils 13 and 14 and the crucible 2, the heaters 9 and 10, and the heat insulating material 11 are completely insulated by disposing a quartz tube between the heat insulating material 11 and the induction coils 13 and 14.

また、これら坩堝2、ヒータ9、10、断熱材11および誘導コイル13、14は、外部チャンバ15に収容されている。この外部チャンバ15と断熱材11との間に形成される部屋がガス導入室16となる。そして、外部チャンバ15内には、雰囲気ガスとして例えば不活性ガス(Arガス等)、SiC単結晶6へのドーパントとなる窒素などの混入ガスを導入できるようにガス導入管17が設けられていると共に、混成ガスを排出できるように排気配管18が備えられている。   The crucible 2, the heaters 9 and 10, the heat insulating material 11, and the induction coils 13 and 14 are accommodated in the external chamber 15. A room formed between the external chamber 15 and the heat insulating material 11 is a gas introduction chamber 16. In the external chamber 15, a gas introduction pipe 17 is provided so that an atmosphere gas such as an inert gas (Ar gas or the like) or a mixed gas such as nitrogen serving as a dopant to the SiC single crystal 6 can be introduced. At the same time, an exhaust pipe 18 is provided so that the mixed gas can be discharged.

さらに、断熱材11を貫通してガス導入室16とガス流動室12とを連通させるように、複数個の図示しない孔が形成されている。これにより、ガス導入室16に導入された不活性ガスがガス流動室12を流れるようになっている。各孔の内側にはアルミナ、カーボンなどで作製した筒を通しても良い。   Further, a plurality of holes (not shown) are formed so as to allow the gas introduction chamber 16 and the gas flow chamber 12 to communicate with each other through the heat insulating material 11. Thereby, the inert gas introduced into the gas introduction chamber 16 flows through the gas flow chamber 12. A cylinder made of alumina, carbon, or the like may be passed inside each hole.

本実施形態では、測温孔11dを通じて台座3の温度を測定する放射温度計19が外部チャンバ15の外側に配置されている。以上が、本実施形態に係るSiC単結晶製造装置1の構成である。   In the present embodiment, a radiation thermometer 19 that measures the temperature of the pedestal 3 through the temperature measuring hole 11 d is disposed outside the external chamber 15. The above is the configuration of the SiC single crystal manufacturing apparatus 1 according to the present embodiment.

続いて、上記のような構成のSiC単結晶製造装置1によるSiC単結晶6の製造方法について説明する。本実施形態では、まず、予めSiを吸収させた断熱材11を用意する。   Then, the manufacturing method of the SiC single crystal 6 by the SiC single crystal manufacturing apparatus 1 of the above structures is demonstrated. In this embodiment, first, a heat insulating material 11 in which Si is absorbed in advance is prepared.

次に、成長工程を行う。成長工程では、坩堝2として容器本体2aに粉末原料5を配置すると共に蓋体2bに設けられた台座3に種結晶4を配置した坩堝2を用意し、この坩堝2をテーブル7の上に配置する。そして、Siを吸収させた断熱材11を当該坩堝2の外周に当該坩堝2の外周を囲むように配置する。   Next, a growth process is performed. In the growth process, a crucible 2 in which a powder raw material 5 is arranged on a container body 2a as a crucible 2 and a seed crystal 4 is arranged on a pedestal 3 provided on a lid 2b is prepared, and the crucible 2 is arranged on a table 7 To do. And the heat insulating material 11 which absorbed Si is arrange | positioned on the outer periphery of the said crucible 2 so that the outer periphery of the said crucible 2 may be enclosed.

そして、図示しない排気機構を用いて、排気配管18を通じたガス排出を行って坩堝2内を含めた外部チャンバ15内を真空にすると共に、誘導コイル13、14に通電する。これにより、ヒータ9、10を誘導加熱し、その輻射熱により坩堝2を加熱することで坩堝2内を所定温度にする。   Then, using an exhaust mechanism (not shown), gas is discharged through the exhaust pipe 18 to evacuate the external chamber 15 including the inside of the crucible 2 and energize the induction coils 13 and 14. Thereby, the heaters 9 and 10 are induction-heated, and the crucible 2 is heated to a predetermined temperature by radiant heat.

その後、ガス導入管17を通じて、例えば不活性ガス(Arガス等)、結晶へのドーパントとなる窒素などの混入ガスを流入させる。そして、種結晶4の成長面の温度および粉末原料5の温度を目標温度まで上昇させる。例えば、成長結晶を4H−SiCとする場合、粉末原料5の温度を2100〜2300℃とし、成長結晶表面の温度をそれよりも10〜100℃程度低くする。そして、シャフト8を回転させることで坩堝2を回転させる。このとき、放射温度計19を通じて坩堝2の測温を行いながら誘導コイル13、14の通電量を制御する。   Thereafter, a mixed gas such as an inert gas (Ar gas or the like) or nitrogen serving as a dopant to the crystal is introduced through the gas introduction pipe 17. And the temperature of the growth surface of the seed crystal 4 and the temperature of the powder raw material 5 are raised to target temperature. For example, when the growth crystal is 4H—SiC, the temperature of the powder raw material 5 is 2100 to 2300 ° C., and the temperature of the growth crystal surface is lowered by about 10 to 100 ° C. Then, the crucible 2 is rotated by rotating the shaft 8. At this time, the energization amounts of the induction coils 13 and 14 are controlled while measuring the temperature of the crucible 2 through the radiation thermometer 19.

そして、ガス導入管17を通じて雰囲気ガスを導入しているため、この雰囲気ガスがガス導入室16から断熱材11を通じてガス流動室12内に流動していった後、排気配管18を通じて排出される。また、結晶成長中に坩堝2から昇華ガスが漏れるが、Siを吸収させた断熱材11は既に物性が安定した状態になっているため、結晶成長中の昇華ガスによって断熱材11の物性が大きく変化することはない。このようにして、種結晶4上にSiC単結晶6を成長させる。   Since the atmospheric gas is introduced through the gas introduction pipe 17, the atmospheric gas flows from the gas introduction chamber 16 through the heat insulating material 11 into the gas flow chamber 12 and is then discharged through the exhaust pipe 18. In addition, although sublimation gas leaks from the crucible 2 during crystal growth, since the physical properties of the heat insulating material 11 that has absorbed Si are already stable, the physical properties of the heat insulating material 11 are greatly increased by the sublimation gas during crystal growth. There is no change. In this way, SiC single crystal 6 is grown on seed crystal 4.

以上説明したように、本実施形態では、Siを吸収させた断熱材11を用意し、このSiを吸収させた断熱材11を用いてSiC単結晶6を製造することが特徴となっている。   As described above, the present embodiment is characterized in that the heat insulating material 11 in which Si is absorbed is prepared, and the SiC single crystal 6 is manufactured using the heat insulating material 11 in which Si is absorbed.

このように、断熱材11は既にSiを吸収しているので、SiC単結晶6の製造を開始した後の断熱材11の劣化速度が遅くなり、断熱材11の物性つまり断熱性能が安定する。したがって、成長中の昇華ガスによって断熱材11の断熱性能が変化しにくくなり、断熱材11の物性が安定する。このため、坩堝2を所望の成長温度に制御しやすくなるので、SiC単結晶6の成長の安定化を可能とすることができる。すなわち、断熱材11の物性が変化しにくくなったことにより、坩堝2の加熱条件を一定に保持することができるため、加熱温度が安定し、ひいてはSiC単結晶6を安定成長させることができる。   Thus, since the heat insulating material 11 has already absorbed Si, the deterioration rate of the heat insulating material 11 after starting the production of the SiC single crystal 6 becomes slow, and the physical properties of the heat insulating material 11, that is, the heat insulating performance is stabilized. Therefore, the heat insulating performance of the heat insulating material 11 is hardly changed by the growing sublimation gas, and the physical properties of the heat insulating material 11 are stabilized. For this reason, since it becomes easy to control the crucible 2 to a desired growth temperature, it is possible to stabilize the growth of the SiC single crystal 6. That is, since the physical properties of the heat insulating material 11 are less likely to change, the heating conditions of the crucible 2 can be kept constant, so that the heating temperature is stable, and the SiC single crystal 6 can be stably grown.

なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、粉末原料5が特許請求の範囲の「炭化珪素原料」に対応し、ヒータ9、10が特許請求の範囲の「ヒータ」に対応する。   In addition, regarding the correspondence between the description of the present embodiment and the description of the claims, the powder raw material 5 corresponds to the “silicon carbide raw material” in the claims, and the heaters 9 and 10 have the “ Corresponds to "heater".

(第2実施形態)
本実施形態では、主に第1実施形態と異なる部分について説明する。上記第1実施形態では、Siを吸収させた断熱材11を予め用意してSiC単結晶6を製造していたが、本実施形態では、Siが含まれていない通常の新品の黒鉛製の断熱材20にSiを吸収させた後、このSiを吸収させた断熱材11を用いてSiC単結晶6を製造することが特徴となっている。すなわち、本実施形態では、SiC単結晶6を成長させる際には通常の新品の黒鉛製の断熱材は用いられず、Siを吸収させた断熱材11が用いられる。以下、図2および図3を参照して説明する。
(Second Embodiment)
In the present embodiment, parts different from the first embodiment will be mainly described. In the said 1st Embodiment, the heat insulating material 11 which absorbed Si was prepared previously, and the SiC single crystal 6 was manufactured, However, In this embodiment, the normal new insulation made from graphite which does not contain Si. It is characterized in that after the material 20 absorbs Si, the SiC single crystal 6 is manufactured using the heat insulating material 11 in which Si is absorbed. In other words, in the present embodiment, when the SiC single crystal 6 is grown, a normal new graphite heat insulating material is not used, but the heat insulating material 11 having absorbed Si is used. Hereinafter, a description will be given with reference to FIGS. 2 and 3.

図2は、図1における断熱材11のA−B断面のSi濃度プロファイルを示した図である。この図のAはSiを吸収させた断熱材11の内壁の位置であり、Bは断熱材11の外壁の位置である。   FIG. 2 is a view showing a Si concentration profile of an A-B section of the heat insulating material 11 in FIG. In this figure, A is the position of the inner wall of the heat insulating material 11 that has absorbed Si, and B is the position of the outer wall of the heat insulating material 11.

まず、通常の黒鉛製の断熱材20(図3参照)はC(炭素)の割合に対して、Siは100ppm未満でほとんど含まれていない。一方、図2に示されるように、Siを吸収させた断熱材11は、Aの位置から断熱材11の内部に向かってSi濃度が上昇する。そして、Si濃度が最も高くなる箇所があり、断熱材11のBの位置(外壁側)に向かってSi濃度が減少するというSi濃度分布になっている。   First, the normal graphite heat insulating material 20 (see FIG. 3) contains almost no Si at less than 100 ppm with respect to the proportion of C (carbon). On the other hand, as shown in FIG. 2, in the heat insulating material 11 that has absorbed Si, the Si concentration increases from the position A toward the inside of the heat insulating material 11. And there exists a location where Si density | concentration becomes the highest, and it has Si density distribution that Si density | concentration decreases toward B position (outer wall side) of the heat insulating material 11. FIG.

上述のように、黒鉛製の断熱材20は多孔質材料であり、坩堝2から漏れた昇華ガスに含まれるSiを吸収する。このため、黒鉛製の断熱材20に含まれるSi濃度が図2に示されるような分布に変化していく。すなわち、新品だった黒鉛製の断熱材20の物性(断熱性能)が、Siを吸収したことによって時間と共に変化する。言い換えると、SiC単結晶6の製造を開始した後の断熱材の劣化速度が最も速く、断熱材に含まれるSi濃度の上昇と共に劣化速度も遅くなる。このため、新品の黒鉛製の断熱材20の断熱性能は安定ではない。   As described above, the heat insulating material 20 made of graphite is a porous material and absorbs Si contained in the sublimation gas leaked from the crucible 2. For this reason, the Si concentration contained in the graphite heat insulating material 20 changes to a distribution as shown in FIG. In other words, the physical properties (heat insulation performance) of the new graphite heat insulating material 20 change with time by absorbing Si. In other words, the deterioration rate of the heat insulating material after the start of the production of the SiC single crystal 6 is the fastest, and the deterioration rate also decreases as the Si concentration contained in the heat insulating material increases. For this reason, the heat insulation performance of the new graphite heat insulating material 20 is not stable.

したがって、本実施形態では、SiC単結晶6を成長させる前に黒鉛製の断熱材20に予めSiを吸収させることにより、Siを吸収させた断熱材11の劣化速度を遅い状態にしておく。これにより、断熱材11の物性を安定させ、SiC単結晶6の成長温度を制御しやすくする。   Therefore, in the present embodiment, before the SiC single crystal 6 is grown, Si is absorbed in advance by the graphite heat insulating material 20 so as to make the deterioration rate of the heat insulating material 11 that has absorbed Si slow. Thereby, the physical property of the heat insulating material 11 is stabilized, and it becomes easy to control the growth temperature of the SiC single crystal 6.

具体的に、本実施形態では、始めに通常の新品の黒鉛製の断熱材20にSiを吸収させる工程を行い、Siを吸収させた断熱材11を用いてSiC単結晶6を成長させる成長工程を行うことでSiC単結晶6を製造する。SiC単結晶製造装置1については、黒鉛製の断熱材20や断熱材11を除いてSiを吸収させる工程と成長工程とで共通の装置を用いる。   Specifically, in the present embodiment, first, a normal new graphite heat insulating material 20 is subjected to a process of absorbing Si, and a growth process of growing the SiC single crystal 6 using the heat insulating material 11 having absorbed Si. To produce the SiC single crystal 6. For the SiC single crystal manufacturing apparatus 1, a common apparatus is used for the process of absorbing Si and the growth process except for the heat insulating material 20 and the heat insulating material 11 made of graphite.

まず、Siを吸収させる工程を行う。図3は、Siを吸収させる工程を行う際のSiC単結晶製造装置1の断面図を示したものである。なお、図3では、誘導コイル13、14や外部チャンバ15を省略してある。   First, a process of absorbing Si is performed. FIG. 3 shows a cross-sectional view of the SiC single crystal manufacturing apparatus 1 when performing a process of absorbing Si. In FIG. 3, the induction coils 13 and 14 and the external chamber 15 are omitted.

図3に示されるように、坩堝2として容器本体2aにSi含有物21を配置すると共に蓋体2bを用意する。この坩堝2をテーブル7の上に配置し、坩堝2の外周に当該坩堝2の外周を囲むように通常の新品の黒鉛製の断熱材20を配置する。   As shown in FIG. 3, the Si-containing material 21 is arranged in the container body 2 a as the crucible 2 and the lid body 2 b is prepared. The crucible 2 is arranged on the table 7, and a normal new graphite heat insulating material 20 is arranged on the outer periphery of the crucible 2 so as to surround the outer periphery of the crucible 2.

上述のように、Siを吸収させた断熱材11は、外周部11aと、蓋部11bと、底部11cとを備えて構成されており、当該断熱材11の蓋部11bには測温孔11dが形成され、底部11cには貫通孔11eが設けられている。したがって、Siを吸収させていない黒鉛製の断熱材20は、Siを吸収させた断熱材11の外周部11aに対応した外周部20aと、Siを吸収させた断熱材11の蓋部11bに対応した蓋部20bと、Siを吸収させた断熱材11の底部11cに対応した底部20cとを備えて構成されている。また、Siを吸収させていない黒鉛製の断熱材20の蓋部20bには、Siを吸収させた断熱材11の蓋部11bに対応する測温孔20dが形成され、Siを吸収させていない黒鉛製の断熱材20の底部20cにはSiを吸収させた断熱材11の貫通孔11eに対応した貫通孔20eが設けられている。   As described above, the heat insulating material 11 that has absorbed Si is configured to include the outer peripheral portion 11a, the lid portion 11b, and the bottom portion 11c, and the lid portion 11b of the heat insulating material 11 has a temperature measuring hole 11d. And a through hole 11e is provided in the bottom 11c. Therefore, the graphite heat insulating material 20 that does not absorb Si corresponds to the outer peripheral portion 20a corresponding to the outer peripheral portion 11a of the heat insulating material 11 that has absorbed Si, and the lid portion 11b of the heat insulating material 11 that has absorbed Si. And a bottom portion 20c corresponding to the bottom portion 11c of the heat insulating material 11 that has absorbed Si. Further, a temperature measuring hole 20d corresponding to the lid portion 11b of the heat insulating material 11 having absorbed Si is formed in the lid portion 20b of the graphite heat insulating material 20 that has not absorbed Si, and Si is not absorbed. A through hole 20e corresponding to the through hole 11e of the heat insulating material 11 having absorbed Si is provided in the bottom portion 20c of the heat insulating material 20 made of graphite.

ここで、「Si含有物21」は、Si粉末等のSiそのものや、Si化合物等のSiを含んだ材料を意味している。例えば、Si含有物21として粉末原料5を用いても良い。   Here, “Si-containing material 21” means Si itself such as Si powder, or a material containing Si such as Si compound. For example, the powder raw material 5 may be used as the Si-containing material 21.

この後、図示しない排気機構を用いて、排気配管18を通じたガス排出を行うことで、坩堝2内を含めた外部チャンバ15内を数百Pa〜数千Paにすると共に、誘導コイル13、14に通電することでヒータ9、10を誘導加熱し、その輻射熱により坩堝2を加熱することで坩堝2内を例えば2000℃以上にする。このとき、各誘導コイル13、14への通電の周波数もしくはパワーを変えることにより、ヒータ9、10で温度差を発生させる加熱を行えるようにしている。また、測温孔11dを通じて坩堝2の上面を放射温度計19にて測温を行いながら誘導コイル13、14の通電量を制御することで、坩堝2の温度が所望温度となるようにする。   Thereafter, by using an exhaust mechanism (not shown) to discharge gas through the exhaust pipe 18, the inside of the external chamber 15 including the inside of the crucible 2 is set to several hundred Pa to several thousand Pa, and the induction coils 13, 14. The heaters 9 and 10 are induction-heated by energizing them, and the crucible 2 is heated to, for example, 2000 ° C. or more by heating the crucible 2 with its radiant heat. At this time, by changing the frequency or power of energization to the induction coils 13 and 14, the heaters 9 and 10 can be heated to generate a temperature difference. Moreover, the temperature of the crucible 2 is controlled to a desired temperature by controlling the energization amount of the induction coils 13 and 14 while measuring the temperature of the upper surface of the crucible 2 with the radiation thermometer 19 through the temperature measuring hole 11d.

その後、ガス導入管17を通じて、例えば不活性ガス(Arガス等)、結晶へのドーパントとなる窒素などの混入ガスを流入させる。   Thereafter, a mixed gas such as an inert gas (Ar gas or the like) or nitrogen serving as a dopant to the crystal is introduced through the gas introduction pipe 17.

そして、シャフト8を回転させることで坩堝2を回転させながら、この加熱を数10時間〜数100時間行うと、坩堝2内の昇華ガスが坩堝2の外部に漏れ、ガス流動室12を介して黒鉛製の断熱材20に吸収される。これにより、図2に示されるように、黒鉛製断熱材20中のSi濃度が上昇し、昇華ガスに含まれるSiによって黒鉛製の断熱材20の一部がSiC化する箇所が出てくる。このようにして、黒鉛製の断熱材20にSiを吸収させることにより、断熱材11の物性を安定させることができる。   When the heating is performed for several tens of hours to several hundreds of hours while rotating the crucible 2 by rotating the shaft 8, the sublimation gas in the crucible 2 leaks to the outside of the crucible 2 and passes through the gas flow chamber 12. It is absorbed by the heat insulating material 20 made of graphite. As a result, as shown in FIG. 2, the Si concentration in the graphite heat insulating material 20 is increased, and a part of the graphite heat insulating material 20 is converted to SiC by Si contained in the sublimation gas. Thus, the physical property of the heat insulating material 11 can be stabilized by making the heat insulating material 20 made of graphite absorb Si.

このSiを吸収させる工程では、SiC単結晶6の成長条件と同じ条件で黒鉛製の断熱材20を熱処理することが好ましい。これにより、SiC単結晶6の成長中に黒鉛製の断熱材20が劣化していくのと同様に黒鉛製の断熱材20を劣化させることができる。したがって、SiC単結晶6の成長の際には、Siを吸収して物性が安定した状態の断熱材11を用いることになるので、坩堝2をSiC単結晶6の成長温度に制御しやすくすることができる。   In the step of absorbing Si, it is preferable to heat-treat the graphite heat insulating material 20 under the same conditions as the growth conditions of the SiC single crystal 6. Thereby, the heat insulating material 20 made of graphite can be deteriorated similarly to the deterioration of the heat insulating material 20 made of graphite during the growth of the SiC single crystal 6. Therefore, when the SiC single crystal 6 is grown, the heat insulating material 11 that absorbs Si and has stable physical properties is used. Therefore, it is easy to control the crucible 2 to the growth temperature of the SiC single crystal 6. Can do.

続いて、成長工程を行う。この場合、上記のSiを吸収させる工程で得られたSiを吸収させた断熱材11を当該坩堝2の外周に当該坩堝2の外周を囲むように配置する。そして、第1実施形態と同様に、種結晶4上にSiC単結晶6を成長させる。   Subsequently, a growth process is performed. In this case, the heat insulating material 11 having absorbed Si obtained in the step of absorbing Si is disposed on the outer periphery of the crucible 2 so as to surround the outer periphery of the crucible 2. Then, a SiC single crystal 6 is grown on the seed crystal 4 as in the first embodiment.

以上説明したように、本実施形態では、SiC単結晶6を成長させる前に、新品の黒鉛製断熱材20を予め劣化させ、Siを吸収させた断熱材11を用いてSiC単結晶6を製造することが特徴となっている。   As described above, in the present embodiment, before the SiC single crystal 6 is grown, the new graphite heat insulating material 20 is deteriorated in advance, and the SiC single crystal 6 is manufactured using the heat insulating material 11 in which Si is absorbed. It is characterized by.

このように、新品の黒鉛製の断熱材20を熱処理して予めSiを吸収させているので、断熱材11の劣化速度を遅くすることができ、断熱材11の断熱性能を安定させることができる。したがって、坩堝2の加熱条件を一定に保持することができ、ひいてはSiC単結晶6を安定成長させることができる。   Thus, since the new graphite heat insulating material 20 is heat-treated and Si is absorbed in advance, the deterioration rate of the heat insulating material 11 can be slowed down and the heat insulating performance of the heat insulating material 11 can be stabilized. . Therefore, the heating conditions of the crucible 2 can be kept constant, and consequently the SiC single crystal 6 can be stably grown.

なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、Si含有物21が特許請求の範囲の「珪素含有物」に対応する。また、本実施形態では、Siを吸収させる工程と成長工程とで共通の製造装置1を用いているため、ヒータ9、10についてもSiを吸収させる工程と成長工程で共通のものを用いている。もちろん、Siを吸収させる工程と成長工程とで異なる製造装置を用いる場合には、各製造装置に備えられたヒータが各工程でそれぞれ用いられることとなる。   As for the correspondence between the description of the present embodiment and the description of the claims, the Si-containing material 21 corresponds to the “silicon-containing material” in the claims. In the present embodiment, since the common manufacturing apparatus 1 is used for the process of absorbing Si and the growth process, the heaters 9 and 10 are also used in common for the process of absorbing Si and the growth process. . Of course, when different manufacturing apparatuses are used in the process of absorbing Si and the growth process, the heaters provided in each manufacturing apparatus are used in each process.

(第3実施形態)
本実施形態では、主に第1実施形態と異なる部分について説明する。図4は、本実施形態に係るSiC単結晶製造装置の断面構成図である。なお、図4では、外部チャンバ15を省略してある。
(Third embodiment)
In the present embodiment, parts different from the first embodiment will be mainly described. FIG. 4 is a cross-sectional configuration diagram of the SiC single crystal manufacturing apparatus according to the present embodiment. In FIG. 4, the external chamber 15 is omitted.

図4に示されるように、断熱材11は坩堝2の外壁に接触している。本実施形態では、蓋部11bの測温孔11dや底部11cの貫通孔11eを除いて、外周部11a、蓋部11b、および底部11cと坩堝2との間に隙間がないように断熱材11の全体が坩堝2の外壁に接触している。このように、断熱材11と坩堝2との間に隙間がないため、本実施形態ではガス流動室12は無い。   As shown in FIG. 4, the heat insulating material 11 is in contact with the outer wall of the crucible 2. In the present embodiment, except for the temperature measuring hole 11d of the lid portion 11b and the through hole 11e of the bottom portion 11c, the heat insulating material 11 so that there is no gap between the outer peripheral portion 11a, the lid portion 11b, and the bottom portion 11c and the crucible 2. Is in contact with the outer wall of the crucible 2. Thus, since there is no gap between the heat insulating material 11 and the crucible 2, there is no gas flow chamber 12 in this embodiment.

したがって、本実施形態では、Siを吸収させる工程では、Siを吸収させていない新品の黒鉛製の断熱材20の全体を図4に示されるように坩堝2の外壁に接触させた状態で坩堝2から漏れた昇華ガスを黒鉛製の断熱材20に吸収させることとなる。また、成長工程では、Siを吸収させた断熱材11の全体を図4に示されるように坩堝2の外壁に接触させた状態で坩堝2を加熱することにより、種結晶4上にSiC単結晶6を成長させることとなる。   Therefore, in the present embodiment, in the step of absorbing Si, the entire new graphite heat insulating material 20 not absorbing Si is in contact with the outer wall of the crucible 2 as shown in FIG. The sublimation gas leaked from the graphite is absorbed by the graphite heat insulating material 20. Further, in the growth process, the SiC single crystal is formed on the seed crystal 4 by heating the crucible 2 in a state where the entire heat insulating material 11 having absorbed Si is in contact with the outer wall of the crucible 2 as shown in FIG. 6 will be grown.

このように、坩堝2に断熱材11、20を接触させて覆う場合、断熱材11、20の周囲に例えば誘導加熱用コイルやヒータ等の加熱装置を配置し、この加熱装置を用いて坩堝2を加熱する。   As described above, when the crucible 2 is covered with the heat insulating materials 11, 20, a heating device such as an induction heating coil or a heater is disposed around the heat insulating materials 11, 20, and the crucible 2 is used by using this heating device. Heat.

以上のように、断熱材11、20全体を坩堝2の外壁に接触させた状態でSiを吸収させる工程および成長工程を実施することもできる。   As described above, the process of absorbing Si and the growth process can be performed in a state where the heat insulating materials 11 and 20 are in contact with the outer wall of the crucible 2.

(他の実施形態)
上記各実施形態では、断熱材11を外周部11a、蓋部11b、および底部11cに3分割していたが、これは断熱材11の構成の一例であり、断熱材11が2分割や4分割等で構成されていても良い。黒鉛製の断熱材20についても同様である。
(Other embodiments)
In each said embodiment, although the heat insulating material 11 was divided into 3 in the outer peripheral part 11a, the cover part 11b, and the bottom part 11c, this is an example of the structure of the heat insulating material 11, and the heat insulating material 11 is divided into 2 parts or 4 parts. Or the like. The same applies to the heat insulating material 20 made of graphite.

上記第1実施形態では、2つの誘導コイル13、14にてそれぞれ対応するヒータ9、10の温度制御を行っているが、1つの誘導コイルにより2つのヒータ9、10の両方を共に制御しても良い。もちろん、ヒータの数や誘導コイルの数はこれに限定されるものではなく、SiC単結晶製造装置1の構成に合わせて適宜決定することができる。   In the first embodiment, the temperature control of the corresponding heaters 9 and 10 is performed by the two induction coils 13 and 14, respectively. However, both of the two heaters 9 and 10 are controlled by one induction coil. Also good. Of course, the number of heaters and the number of induction coils are not limited to this, and can be appropriately determined according to the configuration of the SiC single crystal manufacturing apparatus 1.

上記第1実施形態では、誘導コイル13、14によりヒータ9、10を誘導加熱しているが、坩堝2の加熱方式は誘導加熱によるヒータの自己発熱方式でも抵抗加熱によるヒータの自己発熱方式であっても良い。   In the first embodiment, the heaters 9 and 10 are induction-heated by the induction coils 13 and 14, but the heating method of the crucible 2 is a self-heating method of the heater by induction heating or a self-heating method of the heater by resistance heating. May be.

上記第2実施形態では、Siを吸収させる工程を行った後に成長工程を行っているが、Siを吸収させる工程における黒鉛製の断熱材20と坩堝2との位置関係と成長工程における断熱材11と坩堝2との位置関係は必ずしも同じでなくても良く、大体同じような位置関係であれば良い。   In the second embodiment, the growth process is performed after the process of absorbing Si. However, the positional relationship between the graphite heat insulating material 20 and the crucible 2 in the process of absorbing Si and the heat insulating material 11 in the growth process. And the crucible 2 may not necessarily have the same positional relationship, and may be a similar positional relationship.

上記第3実施形態では、Siを吸収させる工程および成長工程の両方で坩堝2に断熱材11、20を接触させていたが、両工程で断熱材11、20を坩堝2の外壁に接触させずに、いずれか一方の工程で断熱材11、20を坩堝2に接触させるようにしても良い。また、断熱材11、20全体を坩堝2に接触させずに、断熱材11、20の一部を坩堝2に接触させても良い。   In the third embodiment, the heat insulating materials 11 and 20 are brought into contact with the crucible 2 in both the step of absorbing Si and the growth step, but the heat insulating materials 11 and 20 are not brought into contact with the outer wall of the crucible 2 in both steps. Moreover, you may make it make the heat insulating materials 11 and 20 contact the crucible 2 in any one process. Further, a part of the heat insulating materials 11 and 20 may be brought into contact with the crucible 2 without bringing the entire heat insulating materials 11 and 20 into contact with the crucible 2.

上記各実施形態では、容器本体2aの底部に予め粉末原料5を配置し、当該粉末原料5を昇華させてSiC単結晶6を成長させる昇華再結晶法を採用しているが、反応容器の中空部に原料ガスを導入することにより反応容器の中空部に台座3を配置すると共にこの台座3に配置した種結晶4にSiC単結晶6を、Si含有ガス、具体的には例えばシランガスと、C含有ガス、具体的には例えばプロパンガスを供給して成長させるガス供給法を採用しても良い。なお、坩堝2が反応容器に対応する。   In each of the above embodiments, the powder raw material 5 is arranged in advance at the bottom of the container main body 2a, and the sublimation recrystallization method in which the powder raw material 5 is sublimated to grow the SiC single crystal 6 is employed. The base 3 is disposed in the hollow portion of the reaction vessel by introducing the raw material gas into the part, and the SiC single crystal 6 is added to the seed crystal 4 disposed on the base 3 with a Si-containing gas, specifically, for example, silane gas, C You may employ | adopt the gas supply method which supplies and grows containing gas, specifically, for example, propane gas. The crucible 2 corresponds to the reaction vessel.

このようにガス供給法によりSiC単結晶6を成長させる場合、第1実施形態と同様に、Siを吸収させた断熱材11を用意しても良いし、反応容器の外周に当該反応容器の外周を囲むようにSiを吸収させていない新品の黒鉛製の断熱材20を配置し、原料ガスを反応容器の中空部に供給すると共に反応容器を加熱し、原料ガスとなるSi含有ガスとC含有ガスを供給することで、反応容器から漏れた原料ガスをSiを吸収させていない黒鉛製の断熱材20に吸収させても良い。そして、成長工程では、予めSiを吸収させた断熱材11を反応容器の外周に当該反応容器の外周を囲むように配置した状態で反応容器を加熱し、Si含有ガスとC含有ガスを供給することにより、種結晶4上にSiC単結晶6を成長させることとなる。なお、本実施形態の記載と特許請求の範囲の記載との対応関係については、Si含有ガスが特許請求の範囲の「珪素含有ガス」に対応し、C含有ガスが特許請求の範囲の「炭素含有ガス」に対応する。   When the SiC single crystal 6 is thus grown by the gas supply method, the heat insulating material 11 that has absorbed Si may be prepared as in the first embodiment, and the outer periphery of the reaction vessel may be provided on the outer periphery of the reaction vessel. A new graphite heat insulating material 20 that does not absorb Si is disposed so as to surround the substrate, and the raw material gas is supplied to the hollow portion of the reaction vessel and the reaction vessel is heated to contain the Si-containing gas and the C containing raw material gas. By supplying the gas, the raw material gas leaked from the reaction vessel may be absorbed by the graphite heat insulating material 20 that does not absorb Si. Then, in the growth step, the reaction vessel is heated in a state where the heat insulating material 11 in which Si has been absorbed in advance is arranged on the outer periphery of the reaction vessel so as to surround the outer periphery of the reaction vessel, and the Si-containing gas and the C-containing gas are supplied. As a result, the SiC single crystal 6 is grown on the seed crystal 4. As for the correspondence between the description of the present embodiment and the description of the claims, the Si-containing gas corresponds to the “silicon-containing gas” in the claims, and the C-containing gas is the “carbon” in the claims. Corresponds to “containing gas”.

また、第4実施形態のように断熱材11、20が反応容器に接触する場合には断熱材11、20にもガスを通過させる孔が設けられている。また、SiC単結晶製造装置1としてガス供給法に適した構成の装置が用いられる。例えば、ヒータ9、10は、反応容器の中空部を加熱すると共に種結晶4を加熱するものとして用いられる。   Further, when the heat insulating materials 11 and 20 are in contact with the reaction vessel as in the fourth embodiment, the heat insulating materials 11 and 20 are also provided with holes through which gas passes. Further, an apparatus having a configuration suitable for the gas supply method is used as the SiC single crystal manufacturing apparatus 1. For example, the heaters 9 and 10 are used for heating the hollow portion of the reaction vessel and heating the seed crystal 4.

2 坩堝
2a 容器本体
2b 蓋体
3 台座
4 種結晶
5 粉末原料
6 SiC単結晶
9、10 ヒータ
11 Siを吸収させた断熱材
20 Siを吸収させていない黒鉛製の断熱材
21 Si含有物

2 crucible 2a container body 2b lid 3 pedestal 4 seed crystal 5 powder raw material 6 SiC single crystal 9, 10 heater 11 heat insulating material that has absorbed Si 20 heat insulating material made of graphite that does not absorb Si 21 Si-containing material

Claims (2)

有底円筒状の容器本体(2a)と当該容器本体(2a)を蓋閉めするための蓋体(2b)を有した中空状の円柱形状をなす坩堝(2)を有し、前記蓋体(2b)に設けられた台座(3)に炭化珪素単結晶基板からなる種結晶(4)を配置すると共に前記容器本体(2a)に炭化珪素原料(5)を配置し、前記炭化珪素原料(5)の昇華ガスを供給することにより、前記種結晶(4)と前記炭化珪素原料(5)との間の空間にて構成される成長空間領域において前記種結晶(4)上に炭化珪素単結晶(6)を成長させる炭化珪素単結晶の製造方法であって、
珪素を吸収させた断熱材(11)を用意する工程と、
前記珪素を吸収させた断熱材(11)を当該坩堝(2)の外周に当該坩堝(2)の外周を囲むように配置した状態で前記坩堝(2)を加熱することにより、前記種結晶(4)上に前記炭化珪素単結晶(6)を成長させる成長工程と、を含み、
前記珪素を吸収させた断熱材(11)を用意する工程は、前記坩堝(2)として前記容器本体(2a)に珪素含有物(21)を配置すると共に前記蓋体(2b)を用意し、当該坩堝(2)の外周に当該坩堝(2)の外周を囲むように珪素を吸収させていない黒鉛製の断熱材(20)を配置し、前記坩堝(2)を加熱することで、前記珪素を吸収させていない黒鉛製の前記断熱材(20)に前記珪素含有物(21)を加熱することにより前記坩堝(2)から漏れた昇華ガスに含まれる珪素を吸収させる工程を含んでおり、
前記珪素を吸収させる工程では、前記種結晶(4)を配置せずに、前記珪素を吸収させていない黒鉛製の断熱材(20)を前記坩堝(2)の外壁に接触させた状態で前記坩堝(2)から漏れた昇華ガスを前記珪素を吸収させていない黒鉛製の断熱材(20)に吸収させ、
前記成長工程では、前記珪素を吸収させる工程の後、前記坩堝(2)として前記容器本体(2a)に前記炭化珪素原料(5)を配置すると共に前記台座(3)に前記種結晶(4)を配置した坩堝(2)を用意し、前記珪素を吸収させる工程で得られた珪素を吸収させた断熱材(11)を当該坩堝(2)の外周に当該坩堝(2)の外周を囲むように配置した状態で前記坩堝(2)を加熱することにより、前記種結晶(4)上に前記炭化珪素単結晶(6)を成長させることを特徴とする炭化珪素単結晶の製造方法。
A hollow cylindrical crucible (2) having a bottomed cylindrical container body (2a) and a lid (2b) for closing the container body (2a); A seed crystal (4) made of a silicon carbide single crystal substrate is disposed on a pedestal (3) provided in 2b), a silicon carbide raw material (5) is disposed in the container body (2a), and the silicon carbide raw material (5 ) In the growth space region constituted by the space between the seed crystal (4) and the silicon carbide raw material (5), the silicon carbide single crystal is formed on the seed crystal (4). A method for producing a silicon carbide single crystal for growing (6),
Preparing a heat insulating material (11) having absorbed silicon;
The said crucible (2) is heated in the state which has arrange | positioned the heat insulating material (11) which absorbed the said silicon to the outer periphery of the said crucible (2) so that the outer periphery of the said crucible (2) might be surrounded, 4) a growth step of growing the silicon carbide single crystal (6) thereon,
The step of preparing the heat-insulating material (11) that has absorbed silicon includes arranging the silicon-containing material (21) in the container body (2a) as the crucible (2) and preparing the lid (2b), By placing a graphite heat insulating material (20) not absorbing silicon so as to surround the outer periphery of the crucible (2) on the outer periphery of the crucible (2), and heating the crucible (2), the silicon A step of absorbing silicon contained in the sublimation gas leaked from the crucible (2) by heating the silicon-containing material (21) to the heat insulating material (20) made of graphite that has not absorbed the carbon,
In the step of absorbing silicon, without placing the seed crystal (4), the heat insulating material made of graphite (20) not absorbing silicon is in contact with the outer wall of the crucible (2). The sublimation gas leaked from the crucible (2) is absorbed in the heat insulating material (20) made of graphite not absorbing silicon.
In the growth step, after the step of absorbing silicon, the silicon carbide raw material (5) is disposed in the container body (2a) as the crucible (2) and the seed crystal (4) is disposed on the pedestal (3). A crucible (2) is prepared, and the silicon-absorbed heat insulating material (11) obtained in the step of absorbing silicon is surrounded on the outer periphery of the crucible (2). The silicon carbide single crystal (6) is grown on the seed crystal (4) by heating the crucible (2) in a state where the silicon carbide single crystal is disposed.
前記成長工程では、前記珪素を吸収させた断熱材(11)を前記坩堝(2)の外壁に接触させた状態で前記坩堝(2)を加熱することにより、前記種結晶(4)上に前記炭化珪素単結晶(6)を成長させることを特徴とする請求項1に記載の炭化珪素単結晶の製造方法。   In the growth step, the crucible (2) is heated in a state where the heat-insulating material (11) having absorbed the silicon is in contact with the outer wall of the crucible (2), whereby the seed crystal (4) is The method for producing a silicon carbide single crystal according to claim 1, wherein the silicon carbide single crystal (6) is grown.
JP2013247714A 2013-11-29 2013-11-29 Method for producing silicon carbide single crystal Active JP5783230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013247714A JP5783230B2 (en) 2013-11-29 2013-11-29 Method for producing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013247714A JP5783230B2 (en) 2013-11-29 2013-11-29 Method for producing silicon carbide single crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010086032A Division JP5544988B2 (en) 2010-04-02 2010-04-02 Method for producing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2014043394A JP2014043394A (en) 2014-03-13
JP5783230B2 true JP5783230B2 (en) 2015-09-24

Family

ID=50394949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013247714A Active JP5783230B2 (en) 2013-11-29 2013-11-29 Method for producing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP5783230B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106119954B (en) * 2016-08-31 2018-11-06 台州市一能科技有限公司 A kind of single-crystal silicon carbide manufacturing device
CN115198366B (en) * 2022-09-14 2022-11-25 青禾晶元(天津)半导体材料有限公司 Growth device and growth method of large-size silicon carbide crystals

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4585137B2 (en) * 2001-04-03 2010-11-24 新日本製鐵株式会社 Method for producing silicon carbide single crystal ingot

Also Published As

Publication number Publication date
JP2014043394A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
JP5544988B2 (en) Method for producing silicon carbide single crystal
JP5623071B2 (en) Method for producing uniformly doped SiC bulk single crystal and uniformly doped SiC substrate
JP5392169B2 (en) Method for producing silicon carbide single crystal
JP5659381B2 (en) Silicon carbide single crystal manufacturing apparatus and manufacturing method
JP2008290885A (en) Apparatus and method for producing silicon carbide single crystal
JP6111873B2 (en) Method for producing silicon carbide single crystal ingot
KR101657018B1 (en) APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
WO2011062092A1 (en) Single crystal pulling apparatus
JP2018168023A (en) Device and method for manufacturing silicon carbide single crystal ingot
JP2019189498A (en) CRUCIBLE AND SiC SINGLE CRYSTAL GROWTH DEVICE
JP2007314358A (en) Apparatus and method for producing silicon carbide single crystal
JP5783230B2 (en) Method for producing silicon carbide single crystal
JP2017041465A (en) Induction heating device
JP6628640B2 (en) Apparatus and method for producing silicon carbide single crystal ingot
JP6015397B2 (en) Method for manufacturing silicon carbide single crystal and apparatus for manufacturing the same
JP6681687B2 (en) Graphite crucible for producing silicon carbide single crystal ingot and method for producing silicon carbide single crystal ingot
JP5800010B2 (en) Method for producing silicon carbide single crystal
US11453957B2 (en) Crystal growing apparatus and crucible having a main body portion and a first portion having a radiation rate different from that of the main body portion
KR101724291B1 (en) Apparatus for growing silicon carbide single crystal using the method of reversal of Physical Vapor Transport
US20110086213A1 (en) Method of producing a silicon carbide bulk single crystal with thermal treatment, and low-impedance monocrystalline silicon carbide substrate
JP2012254892A (en) Manufacturing method and manufacturing device for single crystal
CN110777427B (en) Crystal growing device
JP2013075789A (en) Apparatus and method for producing compound semiconductor single crystal
JP5573753B2 (en) SiC growth equipment
JP5831339B2 (en) Method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5783230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250