JP5780093B2 - Scanning optical device - Google Patents

Scanning optical device Download PDF

Info

Publication number
JP5780093B2
JP5780093B2 JP2011216081A JP2011216081A JP5780093B2 JP 5780093 B2 JP5780093 B2 JP 5780093B2 JP 2011216081 A JP2011216081 A JP 2011216081A JP 2011216081 A JP2011216081 A JP 2011216081A JP 5780093 B2 JP5780093 B2 JP 5780093B2
Authority
JP
Japan
Prior art keywords
scanning direction
main scanning
lens
optical system
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011216081A
Other languages
Japanese (ja)
Other versions
JP2013076807A (en
Inventor
秀隆 星野
秀隆 星野
藤野 仁志
仁志 藤野
佳史 中村
佳史 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP2011216081A priority Critical patent/JP5780093B2/en
Publication of JP2013076807A publication Critical patent/JP2013076807A/en
Application granted granted Critical
Publication of JP5780093B2 publication Critical patent/JP5780093B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Laser Beam Printer (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Description

本発明は、電子写真方式の画像形成装置などに用いられる走査光学装置に関する。   The present invention relates to a scanning optical device used in an electrophotographic image forming apparatus.

電子写真方式の画像形成装置に用いられる走査光学装置においては、光源からの光ビームを感光体ドラムなどの被走査面上に点状に結像させ、この像を感光体ドラムの軸方向(主走査方向)に走査させる。この走査光学装置は、主走査方向に光ビームを偏向させる偏向器を有し、偏向器の前段には、入射光学系が設けられ、後段には、走査光学系が設けられる。入射光学系は、偏向器の近傍において光ビームを副走査方向に結像させるとともに、主走査方向には光ビームを略平行光にしている。一方、走査光学系は、偏向器からの光ビームを被走査面上に点状に結像させる機能を有する。   In a scanning optical device used in an electrophotographic image forming apparatus, a light beam from a light source is formed in a dot shape on a surface to be scanned such as a photosensitive drum, and this image is formed in the axial direction of the photosensitive drum (mainly Scanning in the scanning direction). This scanning optical apparatus has a deflector that deflects a light beam in the main scanning direction, and an incident optical system is provided in the front stage of the deflector, and a scanning optical system is provided in the subsequent stage. The incident optical system forms an image of the light beam in the sub-scanning direction in the vicinity of the deflector and makes the light beam substantially parallel light in the main scanning direction. On the other hand, the scanning optical system has a function of forming a light beam from the deflector in a dot shape on the surface to be scanned.

ところで、走査光学装置が用いられる環境温度が変化すると、各部の寸法変化や、光学素子の性能の変化などにより結像点が被走査面から前後にずれるという問題がある。この問題は、特に、コストダウンのために入射光学系に樹脂レンズを用いると顕著になる。この問題の解決のため、従来、特許文献1のように入射光学系に屈折面と回折面を設けて、温度変化による結像点のずれ(像面シフト)を抑える(温度補償する)ことがなされている。特許文献1においては、屈折ユニットの屈折パワーφrと回折ユニットの回折パワーφdの比φr/φdが0.6<φr/φd<0.9などの条件を満たすのが良いとされている。   By the way, when the environmental temperature at which the scanning optical device is used changes, there is a problem that the imaging point is shifted back and forth from the surface to be scanned due to a change in the dimensions of each part, a change in the performance of the optical element, and the like. This problem becomes particularly prominent when a resin lens is used in the incident optical system for cost reduction. In order to solve this problem, conventionally, a refracting surface and a diffractive surface are provided in the incident optical system as in Patent Document 1 to suppress (temperature compensation) an image point shift (image surface shift) due to a temperature change. Has been made. In Patent Document 1, it is preferable that the ratio φr / φd between the refractive power φr of the refractive unit and the diffraction power φd of the diffraction unit satisfies a condition such as 0.6 <φr / φd <0.9.

米国特許第7750933号明細書US Pat. No. 7,750,933

しかし、特許文献1の走査光学装置は、走査レンズの横倍率が大きいため、特許第3303558号公報で開示されているように偏向器の偏向面のぶれによるポリゴン面周期のジッターが大きくなるという問題がある。一方で、走査レンズの横倍率を小さくしすぎると、走査レンズと被走査面の距離が必要となり、走査光学装置の大きさをコンパクトにできないという問題もある。そして、発明者等の研究によれば、特許文献1の走査光学装置では、ジッターの減少と温度補償とが両立できないことが分かった。   However, since the scanning optical device of Patent Document 1 has a large lateral magnification of the scanning lens, as disclosed in Japanese Patent No. 3303558, there is a problem that the jitter of the polygon surface period due to the deflection of the deflecting surface of the deflector becomes large. There is. On the other hand, if the lateral magnification of the scanning lens is too small, the distance between the scanning lens and the surface to be scanned is required, and there is a problem that the size of the scanning optical device cannot be made compact. According to the researches by the inventors, it has been found that the scanning optical device of Patent Document 1 cannot achieve both jitter reduction and temperature compensation.

本発明は、以上の背景に鑑みて創案されたもので、装置のコンパクト化と、偏向器の偏向面のぶれによるジッターの抑制を実現しながら、良好な温度補償がなされた走査光学装置を提供することを目的とする。   The present invention was devised in view of the above background, and provides a scanning optical device that achieves good temperature compensation while realizing compactness of the device and suppression of jitter due to deflection of the deflecting surface of the deflector. The purpose is to do.

課題を解決する本発明は、光源と、光源からの光ビームを主走査方向に偏向する偏向手段と、光源と偏向手段の間に設けられ光源からの光ビームを主走査方向には略平行光とし、副走査方向には偏向手段近傍で結像させる入射光学系と、偏向手段により偏向された光ビームを被走査面上に点状に結像させる走査レンズとを備えた走査光学装置である。
そして、走査レンズは、主走査方向の像側主点から像点までの距離をs′、主走査方向の焦点距離をfmとして、0.2≦1−s′/fm≦0.5を満たす。
また、入射光学系は、入射面に回転対称回折面を、出射面にアナモルフィック屈折面を備えた1枚の樹脂レンズからなり、主走査方向の焦点距離をfi[mm]として、10≦fi≦22を満たす。
さらに、光学系全体の主走査方向の横倍率をmM、副走査方向の横倍率をmSとして、mMとmSの比mM/mSは、mM/mS≧1.38を満たす。
また、入射光学系の主走査方向の屈折パワーをφn、回折パワーをφdとしてφnとφdの比 φn/φdが、
g2(fi)≦φn/φd≦g1(fi)
g1(fi)= 0.015fi+1.073
g2(fi)=−0.01fi+1.184
を満たす。
The present invention that solves the problem includes a light source, a deflecting unit that deflects a light beam from the light source in the main scanning direction, and a light beam that is provided between the light source and the deflecting unit and is substantially parallel light in the main scanning direction. And a scanning optical device having an incident optical system that forms an image in the vicinity of the deflecting unit in the sub-scanning direction, and a scanning lens that forms a light beam deflected by the deflecting unit in a dot shape on the surface to be scanned. .
The scanning lens satisfies 0.2 ≦ 1-s ′ / fm ≦ 0.5, where s ′ is the distance from the image side main point in the main scanning direction to the image point, and fm is the focal length in the main scanning direction. .
Further, the incident optical system, a rotationally symmetrical diffraction surface on the incident surface, made from a single resin lens with an anamorphic refractive surface on the exit surface, the focal length in the main scanning direction as fi [mm], 10 ≦ It satisfies fi ≦ 22.
Further, assuming that the lateral magnification in the main scanning direction of the entire optical system is mM and the lateral magnification in the sub-scanning direction is mS, the ratio of mM to mS, mM / mS, satisfies mM / mS ≧ 1.38.
Further, the refractive power in the main scanning direction of the incident optical system is φn, the diffraction power is φd, and the ratio φn / φd of φn and φd is
g2 (fi) ≦ φn / φd ≦ g1 (fi)
g1 (fi) = 0.015fi + 1.073
g2 (fi) =-0.01fi + 1.184
Meet.

このような構成によると、走査レンズの横倍率(β=1−s′/fm)が、0.5以下であることでジッターを抑えることができ、0.2以上であることで装置をコンパクト化することができる。
また、主走査方向の横倍率mMと副走査方向の横倍率mSの比mM/mSが、mM/mS≧1.38を満たすことで、像面シフトを抑えることができる。
According to such a configuration, when the lateral magnification (β = 1−s ′ / fm) of the scanning lens is 0.5 or less, jitter can be suppressed, and when it is 0.2 or more, the apparatus is compact. Can be
Further, when the ratio mM / mS of the lateral magnification mM in the main scanning direction and the lateral magnification mS in the sub-scanning direction satisfies mM / mS ≧ 1.38, the image plane shift can be suppressed.

そして、屈折パワーφnと回折パワーφdの比 φn/φdが、
g2(fi)≦φn/φd≦g1(fi)
g1(fi)= 0.015fi+1.073
g2(fi)=−0.01fi+1.184
を満たすことで温度変化による像面湾曲を主走査方向および副走査方向で抑えることができる。
The ratio φn / φd between the refractive power φn and the diffraction power φd is
g2 (fi) ≦ φn / φd ≦ g1 (fi)
g1 (fi) = 0.015fi + 1.073
g2 (fi) =-0.01fi + 1.184
By satisfying the above, curvature of field due to temperature change can be suppressed in the main scanning direction and the sub-scanning direction.

このような走査光学装置において、入射光学系は、1枚の樹脂のレンズからなることが望ましい。入射光学系を1枚の樹脂レンズとすることで、製造を容易にすることができるとともに、このようなレンズを採用した場合に、温度補償の効果を有効に利用することができる。   In such a scanning optical apparatus, it is desirable that the incident optical system is composed of a single resin lens. By making the incident optical system one resin lens, the manufacturing can be facilitated, and when such a lens is adopted, the effect of temperature compensation can be effectively utilized.

本発明によれば、装置のコンパクト化と、偏向器の偏向面のぶれによるジッターの抑制を実現しながら、走査光学装置の良好な温度補償をすることができる。
できる。
According to the present invention, it is possible to achieve good temperature compensation of the scanning optical device while realizing compactness of the device and suppression of jitter due to deflection of the deflecting surface of the deflector.
it can.

一実施形態に係る走査光学装置の主走査断面図である。It is a main scanning sectional view of a scanning optical device concerning one embodiment. 走査レンズの横倍率を説明する図である。It is a figure explaining the lateral magnification of a scanning lens. 図4のグラフの作成方法を説明するための、温度変化と像面シフトの関係を示すグラフである。FIG. 5 is a graph showing a relationship between a temperature change and an image plane shift for explaining a method of creating the graph of FIG. 4. φn/φdと像面シフトの最大絶対値の関係を示すグラフである。6 is a graph showing the relationship between φn / φd and the maximum absolute value of image plane shift. 温度補償が良好になされる範囲を示すグラフである。It is a graph which shows the range where temperature compensation is made favorable. 実施例1,2の光学系のデータである。It is the data of the optical system of Example 1,2.

次に、本発明の一実施形態について、適宜図面を参照しながら詳細に説明する。
図1に示すように、一実施形態に係る走査光学装置10は、光源の一例としての半導体レーザ1、入射光学系の一例としての回折レンズ2、開口絞り3、偏向手段の一例としてのポリゴンミラー5、走査レンズの一例としてのfθレンズ6を有し、これらにより、半導体レーザ1から出射されたレーザ光を感光体ドラム9の被走査面9Aに点状に集光し、走査するように構成されている。これらの半導体レーザ1、回折レンズ2、開口絞り3、ポリゴンミラー5およびfθレンズ6は、図示しない樹脂製または金属製の筐体に固定されて配置されている。
Next, an embodiment of the present invention will be described in detail with reference to the drawings as appropriate.
As shown in FIG. 1, a scanning optical device 10 according to an embodiment includes a semiconductor laser 1 as an example of a light source, a diffractive lens 2 as an example of an incident optical system, an aperture stop 3, and a polygon mirror as an example of a deflecting unit. 5. An fθ lens 6 as an example of a scanning lens is provided, and by these, the laser beam emitted from the semiconductor laser 1 is condensed in a dot shape on the scanned surface 9A of the photosensitive drum 9 and scanned. Has been. The semiconductor laser 1, the diffraction lens 2, the aperture stop 3, the polygon mirror 5 and the fθ lens 6 are fixedly disposed on a resin or metal casing (not shown).

半導体レーザ1は、やや発散性のレーザ光(光ビーム)を発する装置である。半導体レーザ1の発光素子は、図示しない制御装置により、感光体ドラム9の被走査面9Aに露光すべき画像に対応して明滅される。   The semiconductor laser 1 is a device that emits a slightly divergent laser beam (light beam). The light emitting element of the semiconductor laser 1 is blinked corresponding to an image to be exposed on the scanned surface 9A of the photosensitive drum 9 by a control device (not shown).

回折レンズ2は、半導体レーザ1とポリゴンミラー5の間に設けられ、半導体レーザ1から出射した光ビームを、主走査方向(図1の紙面内で光ビームの進行方向に対して左右に振れる方向であり、ポリゴンミラー5により偏向される方向)には略平行光とし、副走査方向(主走査方向に直交する方向で、図1の紙面奥行き方向)にはポリゴンミラー5のミラー面5Aの近傍で結像させるレンズである。回折レンズ2は、一方の面、例えば、光ビームの入射側が回折面であり、出射側が屈折面として形成されている。回折レンズ2は、コスト削減の観点からは、望ましくは1枚の樹脂レンズからなる。もっとも、本発明にいう入射光学系は、1枚の樹脂レンズには限られず、ガラスからなるレンズであってもよいし、屈折面が少なくとも1つ、回折面が少なくとも1つある限り、レンズの枚数は問わない。   The diffractive lens 2 is provided between the semiconductor laser 1 and the polygon mirror 5, and the light beam emitted from the semiconductor laser 1 is swung to the left and right with respect to the traveling direction of the light beam in the paper plane of FIG. Near the mirror surface 5A of the polygon mirror 5 in the sub-scanning direction (the direction perpendicular to the main scanning direction and the depth direction of the drawing in FIG. 1). It is a lens that forms an image with. The diffractive lens 2 is formed such that one surface, for example, the incident side of the light beam is a diffractive surface and the exit side is a refracting surface. The diffractive lens 2 is preferably made of a single resin lens from the viewpoint of cost reduction. However, the incident optical system referred to in the present invention is not limited to a single resin lens, but may be a lens made of glass, or as long as there is at least one refracting surface and at least one diffractive surface. Any number is acceptable.

回折レンズ2は、主走査方向の焦点距離をfi[mm]として、10≦fi≦22の範囲である。焦点距離fiが10mm以上であることで、横倍率が大きくなりすぎることを抑制でき、22mm以下であることで、装置のコンパクト化を実現でき、レーザダイオードの光利用効率の低下を抑制できる。   The diffractive lens 2 is in the range of 10 ≦ fi ≦ 22 with the focal length in the main scanning direction as fi [mm]. When the focal length fi is 10 mm or more, the lateral magnification can be suppressed from becoming too large, and when the focal length fi is 22 mm or less, the apparatus can be made compact, and the decrease in the light utilization efficiency of the laser diode can be suppressed.

また、回折レンズ2は、光学系(回折レンズ2〜fθレンズ6)全体の主走査方向の横倍率をmM、副走査方向の横倍率をmSとして、mMとmSの比である倍率比mM/mSは、mM/mS≧1.38を満たす。主走査方向の倍率比mM/mSが1.38以上であることで、環境温度の変化による像面シフトの量を小さくすることができる。   The diffractive lens 2 has a magnification ratio mM / mS, which is the ratio of mM to mS, where the horizontal magnification in the main scanning direction of the entire optical system (diffraction lens 2 to fθ lens 6) is mM, and the horizontal magnification in the sub-scanning direction is mS. mS satisfies mM / mS ≧ 1.38. When the magnification ratio mM / mS in the main scanning direction is 1.38 or more, the amount of image plane shift due to a change in environmental temperature can be reduced.

さらに、本実施形態では、回折レンズ2の主走査方向の屈折パワーφn、回折パワーをφdとしてφnとφdの比 φn/φdが、
g2(fi)≦φn/φd≦g1(fi)
g1(fi)= 0.015fi+1.073
g2(fi)=−0.01fi+1.184
を満たす。後述するように、この条件を満たすことで、主走査方向および副走査方向の両方について、環境温度の変化があっても、像面シフトの量を抑えることができ、使用環境によらない、高精度な露光が可能となる。
Further, in this embodiment, the refractive power φn of the diffraction lens 2 in the main scanning direction, the diffraction power is φd, and the ratio φn / φd of φn and φd is
g2 (fi) ≦ φn / φd ≦ g1 (fi)
g1 (fi) = 0.015fi + 1.073
g2 (fi) =-0.01fi + 1.184
Meet. As will be described later, by satisfying this condition, the amount of image plane shift can be suppressed even if there is a change in the environmental temperature in both the main scanning direction and the sub-scanning direction. Accurate exposure is possible.

開口絞り3は、回折レンズ2を通過した光ビームの副走査方向の大きさを規定する開口を有する部材である。   The aperture stop 3 is a member having an aperture that defines the size of the light beam that has passed through the diffraction lens 2 in the sub-scanning direction.

ポリゴンミラー5は、複数のミラー面5Aが、回転軸5Bから等距離に配置された部材であり、図1では、6つミラー面5Aを有するものを例示している。ポリゴンミラー5は、回転軸5Bを中心に一定速度で回転され、開口絞り3を通過した光ビームを主走査方向に偏向する。   The polygon mirror 5 is a member in which a plurality of mirror surfaces 5A are arranged at an equal distance from the rotation shaft 5B, and FIG. 1 illustrates an example having six mirror surfaces 5A. The polygon mirror 5 is rotated at a constant speed around the rotation axis 5B, and deflects the light beam that has passed through the aperture stop 3 in the main scanning direction.

fθレンズ6は、本実施形態では、走査光学装置10に1つのみ設けられている。fθレンズ6は、ポリゴンミラー5で反射されることで偏向された光ビームを被走査面9A上に点状に結像させ、かつ、ポリゴンミラー5のミラー面5Aの面倒れを補正している。また、fθレンズ6は、ポリゴンミラー5で等角速度で偏向された光ビームを、被走査面9A上に等速で走査するようなfθ特性を有している。   In the present embodiment, only one fθ lens 6 is provided in the scanning optical device 10. The fθ lens 6 focuses the light beam deflected by being reflected by the polygon mirror 5 on the surface to be scanned 9 </ b> A, and corrects the tilt of the mirror surface 5 </ b> A of the polygon mirror 5. . Further, the fθ lens 6 has an fθ characteristic such that the light beam deflected at a constant angular velocity by the polygon mirror 5 is scanned on the scanned surface 9A at a constant velocity.

fθレンズ6は、図2に示すように、物点OBから主走査方向の物体側主点Hまでの距離をs、主走査方向の像側主点H′から像点IMまでの距離をs′、走査レンズの主走査方向の焦点距離をfmとして、
1/fm=1/s′−1/s
である。このとき、fθレンズ6の横倍率βは、
β=s′/s=1−s′/fm
で表される。
As shown in FIG. 2, the fθ lens 6 has a distance s from the object point OB to the object side principal point H in the main scanning direction, and a distance from the image side principal point H ′ to the image point IM in the main scanning direction. ′, Where fm is the focal length of the scanning lens in the main scanning direction,
1 / fm = 1 / s′−1 / s
It is. At this time, the lateral magnification β of the fθ lens 6 is
β = s ′ / s = 1−s ′ / fm
It is represented by

そして、本実施形態においては、主走査方向の横倍率β(=1−s′/fm)は、
0.2≦1−s′/fm≦0.5
である。横倍率βが0.2以上であることで、走査光学装置10をコンパクト化することができ、0.5以下であることで、ポリゴンミラー5のミラー面5Aの振れによるジッターを小さく抑えることができる。
In the present embodiment, the lateral magnification β (= 1−s ′ / fm) in the main scanning direction is
0.2 ≦ 1-s ′ / fm ≦ 0.5
It is. When the lateral magnification β is 0.2 or more, the scanning optical device 10 can be made compact, and when it is 0.5 or less, jitter due to shake of the mirror surface 5A of the polygon mirror 5 can be suppressed to a small value. it can.

本願の発明者等は、回折レンズ2(入射光学系)の主走査方向の屈折パワーφnと回折パワーφdの比φn/φd(以下「パワー比」という)を調整することで、環境温度の変化による像面シフトの影響について調べた。
具体的には、下記の実施例1,2などの光学系を用い、(1)倍率比mM/mS、(2)パワー比φn/φd、(3)回折レンズの主走査方向の焦点距離fiの大きさを変化させて、像面シフトの量を計算した。なお、下記の実施例1と実施例2は、(1)倍率比mM/mS=1.38、(2)パワー比φn/φd=1.15、の場合で、(3)焦点距離fiがそれぞれ22mmと10mmの場合を示している。光学系のデータは、図6に示す。
The inventors of the present application adjust the ratio φn / φd (hereinafter referred to as “power ratio”) of the refractive power φn and the diffraction power φd in the main scanning direction of the diffractive lens 2 (incident optical system), thereby changing the environmental temperature. The effect of the image plane shift due to the was investigated.
Specifically, using an optical system such as Examples 1 and 2 below, (1) magnification ratio mM / mS, (2) power ratio φn / φd, and (3) focal length fi of the diffractive lens in the main scanning direction. The amount of image plane shift was calculated by changing the size of. In the following Examples 1 and 2, (1) magnification ratio mM / mS = 1.38, (2) power ratio φn / φd = 1.15, and (3) focal length fi The cases of 22 mm and 10 mm are shown, respectively. The data of the optical system is shown in FIG.

[実施例1]
半導体レーザの波長 788[nm]
温度範囲 −5〜55[℃]
半導体レーザの波長変化率 0.25[nm/℃]
回折レンズの主走査方向の焦点距離fi 22[mm]
半導体レーザ〜回折レンズの間隔を保持する部材の線膨張係数
6.50×10−5[1/K]
光学系全体の主走査方向の横倍率mM 6.70
光学系全体の副走査方向の横倍率mS 4.85
倍率比mM/mS 1.38
回折レンズの主走査方向の屈折パワーφn 0.02468
回折レンズの主走査方向の回折パワーφd 0.02146
パワー比φn/φd 1.15
[Example 1]
Wavelength of semiconductor laser 788 [nm]
Temperature range -5 to 55 [° C]
Wavelength change rate of semiconductor laser 0.25 [nm / ° C]
Focal length fi 22 [mm] in the main scanning direction of the diffractive lens
Linear expansion coefficient of the member that maintains the distance between the semiconductor laser and the diffractive lens
6.50 × 10 −5 [1 / K]
Horizontal magnification mM in main scanning direction of entire optical system 6.70
Horizontal magnification mS in the sub-scanning direction of the entire optical system 4.85
Magnification ratio mM / mS 1.38
Refractive power φn 0.02468 in the main scanning direction of the diffractive lens
Diffraction power in the main scanning direction of the diffraction lens φd 0.02146
Power ratio φn / φd 1.15

回折面の位相関数

Figure 0005780093
=−0.010732 Phase function of diffraction surface
Figure 0005780093
C 1 = −0.010732

[実施例2]
半導体レーザの波長 788[nm]
温度範囲 −5〜55[℃]
半導体レーザの波長変化率 0.25[nm/℃]
回折レンズの主走査方向の焦点距離fi 10[mm]
半導体レーザ〜回折レンズの間隔を保持する部材の線膨張係数
6.50×10−5[1/K]
光学系全体の主走査方向の横倍率mM 15.11
光学系全体の副走査方向の横倍率mS 10.95
倍率比mM/mS 1.38
回折レンズの主走査方向の屈折パワーφn 0.05536
回折レンズの主走査方向の回折パワーφd 0.04813
パワー比φn/φd 1.15
[Example 2]
Wavelength of semiconductor laser 788 [nm]
Temperature range -5 to 55 [° C]
Wavelength change rate of semiconductor laser 0.25 [nm / ° C]
Focal length fi 10 [mm] in the main scanning direction of the diffractive lens
Linear expansion coefficient of the member that maintains the distance between the semiconductor laser and the diffractive lens
6.50 × 10 −5 [1 / K]
Horizontal magnification in the main scanning direction of the entire optical system mM 15.11
Horizontal magnification in the sub scanning direction of the entire optical system mS 10.95
Magnification ratio mM / mS 1.38
Refractive power in the main scanning direction of the diffractive lens φn 0.05536
Diffraction power in the main scanning direction of the diffractive lens φd 0.04813
Power ratio φn / φd 1.15

回折面の位相関数

Figure 0005780093
=−0.024067 Phase function of diffraction surface
Figure 0005780093
C 1 = −0.024067

一例として、パワー比φn/φd=0.8、倍率比mM/mS=1.625(実施例1,2と別の値)、fi=10mmのときの、主走査方向の像面シフトと副走査方向の像面シフトの温度依存性を、図3に示した。図3では、室温(25℃)のときの像面位置を基準として、−5℃と55℃における主走査方向の焦点位置をプロットしてある。なお、ここでの被走査面9A上の露光位置は、走査範囲の中央で、図1のように、レーザ光が被走査面9Aに対して正面から(直交して)入射する場合である。   As an example, when the power ratio φn / φd = 0.8, the magnification ratio mM / mS = 1.625 (a different value from the first and second embodiments), and fi = 10 mm, the image plane shift and the sub-scanning in the main scanning direction are performed. The temperature dependence of the image plane shift in the scanning direction is shown in FIG. In FIG. 3, the focal positions in the main scanning direction at −5 ° C. and 55 ° C. are plotted with reference to the image plane position at room temperature (25 ° C.). Here, the exposure position on the scanned surface 9A is the center of the scanning range, as shown in FIG. 1, when the laser light is incident on the scanned surface 9A from the front (orthogonally).

図3に示す温度による像面シフトの値のうち、絶対値が大きい値を選択し、図4に示すように主走査方向のパワー比φn/φdと像面シフトの最大絶対値の関係を示すグラフを作成した。例えば、図3においては、主走査方向については、−5℃のときの像面シフト3.4mmが絶対値の最大値であり、副走査方向については、55℃のときの像面シフト2.1mmが絶対値の最大値である。図4のグラフにおいては、この3.4mm(▲マーク)と2.1mm(△マーク)を、fi=10mm,mM/mS=1.625のφn/φd=0.80の位置にプロットしている。   A value having a large absolute value is selected from the values of the image plane shift due to the temperature shown in FIG. 3, and the relationship between the power ratio φn / φd in the main scanning direction and the maximum absolute value of the image plane shift is shown as shown in FIG. Created a graph. For example, in FIG. 3, an image plane shift of 3.4 mm at −5 ° C. is the maximum absolute value in the main scanning direction and an image plane shift at 55 ° C. in the sub-scanning direction is 2. 1 mm is the maximum absolute value. In the graph of FIG. 4, this 3.4 mm (▲ mark) and 2.1 mm (△ mark) are plotted at the position of φn / φd = 0.80 where fi = 10 mm and mM / mS = 1.625. Yes.

図4においては、塗り潰しのマークは主走査方向についての像面シフトであり、白抜きのマークは副走査方向についての像面シフトである。また、fi=10mmの場合は、実線で表示し、fi=22mmの場合は破線で表示している。   In FIG. 4, the filled marks are image plane shifts in the main scanning direction, and the white marks are image plane shifts in the sub-scanning direction. Further, when fi = 10 mm, it is displayed with a solid line, and when fi = 22 mm, it is displayed with a broken line.

図4に示すように、倍率比mM/mSの違いによる像面シフトの大きさについて見ると、主走査方向と副走査方向のいずれにおいても、倍率比mM/mSが小さい程、像面シフトが大きいことが分かる。そこで、倍率比mM/mSが最も小さいmM/mS=1.38について着目し、倍率比mM/mS=1.38の場合に、像面シフトが所定の基準以下になるパワー比φn/φdを検討した。
この像面シフトの所定の基準は、主走査方向について、上限を1mmとし、副走査方向について、上限を4mmとした。倍率比mM/mS=1.38の場合、この像面シフトの上限値以下になるのは、fi=10mmのときにパワー比φn/φdが1.09〜1.23の範囲であり、fi=22mmのときにパワー比φn/φd0.97〜1.41の範囲であることが分かった。この、主走査方向と副走査方向の両方で上記の基準を満たす条件の範囲を図式化したのが図5であり、fi=10〜22mmの範囲において、
g1(fi)= 0.015fi+1.073
g2(fi)=−0.01fi+1.184
として、φn/φdが、
g2(fi)≦φn/φd≦g1(fi)
を満たせばよいことが分かった。
As shown in FIG. 4, when looking at the magnitude of the image plane shift due to the difference in magnification ratio mM / mS, the smaller the magnification ratio mM / mS, the smaller the image plane shift in both the main scanning direction and the sub-scanning direction. You can see that it ’s big. Therefore, paying attention to mM / mS = 1.38 having the smallest magnification ratio mM / mS, when the magnification ratio mM / mS = 1.38, the power ratio φn / φd at which the image plane shift becomes equal to or less than a predetermined reference is set. investigated.
The predetermined reference for this image plane shift was an upper limit of 1 mm in the main scanning direction and an upper limit of 4 mm in the sub-scanning direction. When the magnification ratio is mM / mS = 1.38, the power ratio φn / φd is in the range of 1.09 to 1.23 when fi = 10 mm. It was found that the power ratio was in the range of φn / φd 0.97 to 1.41 when = 22 mm. FIG. 5 schematically illustrates the range of conditions that satisfy the above-described criteria in both the main scanning direction and the sub-scanning direction. In the range of fi = 10 to 22 mm,
g1 (fi) = 0.015fi + 1.073
g2 (fi) =-0.01fi + 1.184
Φn / φd is
g2 (fi) ≦ φn / φd ≦ g1 (fi)
It was found that it should satisfy.

上記のg1(fi),g2(fi)で示される範囲は、特許文献1で開示された範囲とは異なる。特許文献1においては、走査レンズの横倍率(β=1−s′/fm)について考慮していないため本実施形態とは異なる範囲を良好な範囲としていたが、特許文献1にの実施例においては、走査レンズの横倍率βが、0.674(特許文献1に記載の横倍率をβ=1−s′/fmで表示したときの値)と大きかったため、ポリゴンミラー5のミラー面5Aの振れによるポリゴン面周期のジッターが大きいという問題を有していた。しかし、本実施形態においては、横倍率βを特許文献2のように0.5以下としたことで、ジッターの減少を実現することができ、また、特許文献1とはパワー比φn/φdが全く異なる範囲で、温度補償された走査光学装置10を実現することができた。
また、本実施形態の走査光学装置10は、横倍率βが0.2以上であるため、fθレンズ6から被走査面9Aまでの距離を小さくでき、装置のコンパクト化を図ることができる。
The range indicated by g1 (fi) and g2 (fi) is different from the range disclosed in Patent Document 1. In Patent Document 1, since the lateral magnification (β = 1−s ′ / fm) of the scanning lens is not taken into consideration, a range different from the present embodiment is set as a favorable range, but in the example in Patent Document 1, Since the lateral magnification β of the scanning lens is as large as 0.674 (value when the lateral magnification described in Patent Document 1 is represented by β = 1−s ′ / fm), the mirror surface 5A of the polygon mirror 5 There has been a problem that the jitter of the polygonal surface period due to shake is large. However, in the present embodiment, since the lateral magnification β is set to 0.5 or less as in Patent Document 2, jitter can be reduced, and the power ratio φn / φd is different from that in Patent Document 1. The temperature-compensated scanning optical device 10 can be realized in a completely different range.
Further, since the scanning optical device 10 of the present embodiment has a lateral magnification β of 0.2 or more, the distance from the fθ lens 6 to the surface to be scanned 9A can be reduced, and the device can be made compact.

以上に本発明の実施形態について説明したが、本発明は前記した実施形態に限定されるものではない。具体的な構成については、本発明の趣旨を逸脱しない範囲で適宜変更が可能である。   Although the embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment. About a concrete structure, it can change suitably in the range which does not deviate from the meaning of this invention.

例えば、前記実施形態においては、回折レンズ2の入射側を回折面とし、出射側を屈折面としたが、これを逆にして、入射側を屈折面とし、出射側を回折面としてもよい。   For example, in the above-described embodiment, the incident side of the diffractive lens 2 is a diffractive surface and the exit side is a refracting surface, but this may be reversed, and the incident side may be a refracting surface and the exit side may be a diffractive surface.

1 半導体レーザ
2 回折レンズ
5 ポリゴンミラー
5A ミラー面
5B 回転軸
6 fθレンズ
9 感光体ドラム
9A 被走査面
10 走査光学装置
DESCRIPTION OF SYMBOLS 1 Semiconductor laser 2 Diffraction lens 5 Polygon mirror 5A Mirror surface 5B Rotating shaft 6 f (theta) lens 9 Photosensitive drum 9A Scanned surface 10 Scanning optical apparatus

Claims (1)

光源と、前記光源からの光ビームを主走査方向に偏向する偏向手段と、前記光源と前記偏向手段の間に設けられ前記光源からの光ビームを主走査方向には略平行光とし、副走査方向には偏向手段近傍で結像させる入射光学系と、前記偏向手段により偏向された光ビームを被走査面上に点状に結像させる走査レンズとを備えた走査光学装置であって、
前記走査レンズは、主走査方向の像側主点から像点までの距離をs′、主走査方向の焦点距離をfmとして、
0.2≦1−s′/fm≦0.5
を満たし、
前記入射光学系は、入射面に回転対称回折面を、出射面にアナモルフィック屈折面を備えた1枚の樹脂レンズからなり、主走査方向の焦点距離をfi[mm]として、
10≦fi≦22
を満たし、
光学系全体の主走査方向の横倍率をmM、副走査方向の横倍率をmSとして、mMとmSの比mM/mSは、
mM/mS≧1.38
を満たし、
前記入射光学系の主走査方向の屈折パワーをφn、回折パワーをφdとしてφnとφdの比φn/φdが、
g2(fi)≦φn/φd≦g1(fi)
g1(fi)= 0.015fi+1.073
g2(fi)=−0.01fi+1.184
を満たすことを特徴とする走査光学装置。
A light source, deflecting means for deflecting a light beam from the light source in the main scanning direction, and a light beam provided between the light source and the deflecting means to be substantially parallel light in the main scanning direction; A scanning optical apparatus comprising: an incident optical system that forms an image in the vicinity of a deflecting unit; and a scanning lens that forms a light beam deflected by the deflecting unit in a dot shape on a surface to be scanned;
The scanning lens has s ′ as the distance from the image side principal point to the image point in the main scanning direction, and fm as the focal length in the main scanning direction.
0.2 ≦ 1-s ′ / fm ≦ 0.5
The filling,
The incident optical system is rotationally symmetric diffractive surface on the incident surface, made from a single resin lens with an anamorphic refractive surface on the exit surface, the focal length in the main scanning direction as fi [mm],
10 ≦ fi ≦ 22
The filling,
Assuming that the lateral magnification in the main scanning direction of the entire optical system is mM and the lateral magnification in the sub-scanning direction is mS, the ratio of mM to mS, mM / mS,
mM / mS ≧ 1.38
The filling,
The ratio φn / φd between φn and φd, where the refractive power in the main scanning direction of the incident optical system is φn and the diffraction power is φd,
g2 (fi) ≦ φn / φd ≦ g1 (fi)
g1 (fi) = 0.015fi + 1.073
g2 (fi) =-0.01fi + 1.184
A scanning optical device characterized by satisfying the above.
JP2011216081A 2011-09-30 2011-09-30 Scanning optical device Active JP5780093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011216081A JP5780093B2 (en) 2011-09-30 2011-09-30 Scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011216081A JP5780093B2 (en) 2011-09-30 2011-09-30 Scanning optical device

Publications (2)

Publication Number Publication Date
JP2013076807A JP2013076807A (en) 2013-04-25
JP5780093B2 true JP5780093B2 (en) 2015-09-16

Family

ID=48480335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011216081A Active JP5780093B2 (en) 2011-09-30 2011-09-30 Scanning optical device

Country Status (1)

Country Link
JP (1) JP5780093B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6115105B2 (en) 2012-12-07 2017-04-19 ブラザー工業株式会社 Scanning optical device
CN109491077B (en) 2018-12-29 2020-11-17 珠海奔图电子有限公司 Optical scanning apparatus and electronic image forming apparatus
CN110208942B (en) * 2019-05-30 2021-09-07 珠海奔图电子有限公司 Optical scanning unit and electrophotographic image forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4395691B2 (en) * 2001-03-26 2010-01-13 コニカミノルタビジネステクノロジーズ株式会社 Laser scanner
JP4568618B2 (en) * 2005-02-23 2010-10-27 株式会社リコー Optical scanning apparatus and image forming apparatus
JP5037851B2 (en) * 2006-04-28 2012-10-03 株式会社リコー Optical scanning apparatus and image forming apparatus
KR20080103801A (en) * 2007-05-25 2008-11-28 삼성전자주식회사 Light scanning unit and electrophotograpohic image forming apparatus using the same
JP4958714B2 (en) * 2007-10-09 2012-06-20 キヤノン株式会社 Scanning optical device and image forming apparatus using the same

Also Published As

Publication number Publication date
JP2013076807A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
US8472099B2 (en) Scanning optical apparatus
JP2003202514A (en) Optical scanner and image forming apparatus
JP2000019444A (en) Optical scanning optical system and image forming device using the same
JP5780093B2 (en) Scanning optical device
JP6115105B2 (en) Scanning optical device
JP3397638B2 (en) Optical scanning optical system and image forming apparatus using the same
JPWO2011061824A1 (en) Optical scanning device
JP2007140418A (en) Light scanning device and scanning optical system
JP2012013867A (en) Scanning optical device
JP5517550B2 (en) Optical scanning device and image forming apparatus using the same
JP2004177861A (en) Optical scanning system
JP2014066951A (en) Scanning optical device
US8913313B2 (en) Scanning optical apparatus
JP5177182B2 (en) Optical scanning device
US20110242633A1 (en) Scanning optical apparatus
JP2005173221A (en) Optical scanning device and image forming apparatus
JP2017116701A (en) Scanning optical system and scanning lens
JP4106537B2 (en) Optical scanning device and laser printer device
JP2757308B2 (en) Light beam scanning optical device
JP2023032556A (en) Scanning optical device
JP2003185956A (en) Scanning optical system
JP3984998B2 (en) Optical scanning optical system and image forming apparatus using the same
JP3728256B2 (en) Scanning optical device
JP4640232B2 (en) Laser scanning device
JPH11202242A (en) Optical scanning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150629

R150 Certificate of patent or registration of utility model

Ref document number: 5780093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150