JP5779666B2 - Automotive power modules, automobiles - Google Patents

Automotive power modules, automobiles Download PDF

Info

Publication number
JP5779666B2
JP5779666B2 JP2014000048A JP2014000048A JP5779666B2 JP 5779666 B2 JP5779666 B2 JP 5779666B2 JP 2014000048 A JP2014000048 A JP 2014000048A JP 2014000048 A JP2014000048 A JP 2014000048A JP 5779666 B2 JP5779666 B2 JP 5779666B2
Authority
JP
Japan
Prior art keywords
connection
compound
solder
based layer
power module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014000048A
Other languages
Japanese (ja)
Other versions
JP2014123745A (en
Inventor
靖 池田
靖 池田
中村 真人
真人 中村
聡 松吉
松吉  聡
佐々木 康二
康二 佐々木
真二 平光
真二 平光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Power Semiconductor Device Ltd
Priority to JP2014000048A priority Critical patent/JP5779666B2/en
Publication of JP2014123745A publication Critical patent/JP2014123745A/en
Application granted granted Critical
Publication of JP5779666B2 publication Critical patent/JP5779666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Die Bonding (AREA)

Description

本発明は、半導体装置用はんだ材、これを用いた半導体装置、およびその製造方法に関し、さらに詳しくは、交流発電機の交流出力を直流出力に変換する車載用交流発電機(オルタネーター)に使用される半導体装置に関するものである。     The present invention relates to a solder material for a semiconductor device, a semiconductor device using the same, and a method for manufacturing the same, and more specifically, used for an on-vehicle AC generator (alternator) that converts an AC output of an AC generator into a DC output. The present invention relates to a semiconductor device.

車両用交流発電機に用いられる半導体装置は、例えば特許文献1に示されるように、厳しい温度サイクルに耐えるよう半導体素子と電極との熱膨張率の差に基づく熱応力を低減するような構造をしている。またエンジン近傍に設置されることから半導体装置に対して200℃の耐熱温度が要求される。そのため、半導体素子の接続には例えば固相線が300℃付近の高Pbはんだ(例えば95重量%のPbと5重量%のSnを含む固相線300℃液相線314℃のPb−Sn合金)が接続に使用される。     A semiconductor device used in an automotive alternator has a structure that reduces thermal stress based on a difference in thermal expansion coefficient between a semiconductor element and an electrode so as to withstand severe temperature cycles, as disclosed in, for example, Patent Document 1. doing. Moreover, since it is installed in the vicinity of the engine, a heat resistant temperature of 200 ° C. is required for the semiconductor device. Therefore, for connection of semiconductor elements, for example, a high Pb solder whose solidus line is around 300 ° C. (for example, a Pb—Sn alloy having a solid line of 300 ° C. and a liquidus line of 314 ° C. containing 95 wt% Pb and 5 wt% Sn) ) Is used for connection.

しかしながら、環境保護の観点から、環境負荷が大きいPbを排除した接続材料を使用した半導体装置が要求されるようになってきている。Pbを含まず高Pbはんだに近い融点を有するPbフリーはんだ材料としては、Au-20Sn(共晶、280℃)、Au-12Ge(共晶、356℃)Au-3.15Si(共晶、363℃)等のAu系材料があるが、極めて高コストである。またAu含有率が比較的少ないAu-20Snの場合、硬はんだであるため、大面積の接続では十分な応力緩衝ができず、半導体素子が破損しやすい欠点がある。     However, from the viewpoint of environmental protection, a semiconductor device using a connection material from which Pb having a large environmental load is removed has been demanded. Pb-free solder materials that do not contain Pb and have a melting point close to high Pb solder include Au-20Sn (eutectic, 280 ° C), Au-12Ge (eutectic, 356 ° C), Au-3.15Si (eutectic, 363 ° C) ) Etc., but it is very expensive. Further, in the case of Au-20Sn having a relatively small Au content, since it is a hard solder, there is a disadvantage that a sufficient stress cannot be buffered by a large area connection and the semiconductor element is easily damaged.

他のPbフリーはんだ材料としては、融点200℃以上のSn-3Ag-0.5Cu等のSn系中温はんだがあり、部品を基板に実装するために広く用いられ、150℃以下では良好な接続信頼性を有する。しかしながら、200℃以上の使用環境で長時間保持するような場合には接続界面で界面反応が進み、ボイドの形成および金属間化合物層の成長等により、接続信頼性が低下する問題がある。     Other Pb-free solder materials include Sn-based medium-temperature solders such as Sn-3Ag-0.5Cu with a melting point of 200 ° C or higher, which are widely used for mounting components on substrates, and good connection reliability at 150 ° C or lower Have However, when it is kept for a long time in an environment of use at 200 ° C. or higher, the interface reaction proceeds at the connection interface, and there is a problem that the connection reliability decreases due to the formation of voids and the growth of the intermetallic compound layer.

この問題に対し、Sn系はんだの界面反応を抑制する手法としては、例えば特許文献2のように、Cu:0.1〜2重量%、Ni:0.002〜1重量%、残部SnからなるSn系はんだを使用することによって、Cuの添加により被接続材のCu食われを抑止すると同時に、Ni添加により接続界面におけるCu6Sn5、Cu3Sn等の金属間化合物の成長を抑制することが可能であることが報告されている。また、特許文献3には、はんだバンプ形成において、被接続材表面に、Sn系はんだと反応して金属間化合物を形成する2種類の金属層を設けて、そこにSn系はんだボールを接続することで、接続界面にSnを含む2〜3種の元素からなる金属間化合物層を薄く形成することにより、界面反応を抑制することが可能であることが報告されている。     As a technique for suppressing the interfacial reaction of Sn-based solder with respect to this problem, for example, as disclosed in Patent Document 2, Sn-based solder composed of Cu: 0.1-2% by weight, Ni: 0.002-1% by weight, and the remaining Sn is used. It has been reported that it is possible to suppress Cu corrosion of connected materials by adding Cu, and at the same time, it is possible to suppress the growth of intermetallic compounds such as Cu6Sn5 and Cu3Sn at the connection interface by adding Ni. Yes. Further, in Patent Document 3, in forming solder bumps, two types of metal layers that react with Sn-based solder to form an intermetallic compound are provided on the surface of the material to be connected, and Sn-based solder balls are connected thereto. Thus, it has been reported that the interfacial reaction can be suppressed by forming a thin intermetallic compound layer composed of two or three kinds of elements including Sn at the connection interface.

特開平07−221235号公報Japanese Patent Application Laid-Open No. 07-212235 特許第3152945号公報Japanese Patent No. 3152945 特開2002−280417号公報JP 2002-280417 A

しかし、従来技術においては、以下のような問題があり、界面反応抑制が十分とはいえず、接続信頼性が低い。特に、高温下で使用される車載用交流発電機(オルタネータ)用半導体装置には従来技術で界面反応を抑制することは困難であることがわかった。     However, the conventional technology has the following problems, and the interface reaction is not sufficiently suppressed, and the connection reliability is low. In particular, it has been found that it is difficult to suppress the interfacial reaction in a conventional semiconductor device for an on-vehicle AC generator (alternator) used at high temperatures.

すなわち、上記特許文献2の場合、Ni添加により界面反応の抑制は多少期待できるが、Cu6Sn5、Cu3Snの化合物が常にCu及びSn系はんだと接しているため、200℃以上の高温下では界面反応がすすんでしまう。これにより、Cu-Sn化合物が成長しつづけ、その界面でボイド等が発生し、結果、接続信頼性の低下を招く。     In other words, in the case of the above-mentioned Patent Document 2, the suppression of the interfacial reaction can be expected somewhat by the addition of Ni, but since the Cu6Sn5 and Cu3Sn compounds are always in contact with Cu and Sn-based solder, the interfacial reaction occurs at a high temperature of 200 ° C. or higher. Proceed. As a result, the Cu—Sn compound continues to grow and voids and the like are generated at the interface, resulting in a decrease in connection reliability.

一方、上記特許文献3の場合は、はんだ最近接に形成された金属間化合物がSn系はんだと金属層との間でバリア層となるため、界面反応抑制効果は大きいと考えられるが、被接続材に予め第1の金属層と第2の金属層との2層を設ける必要があり、めっき工程の増加する、選択的に局所めっきをすることで高コストになる、電極を設けることができない構造の場合金属層形成が困難等の問題がある。また、接続面最表面に形成された金属層を接続時にSn系はんだと反応させてバリア層とする必要があるため、最表面に形成された金属層が厚いと、接続時に未反応の最表面金属層が残存してしまいバリア層の効果が十分に得られない、完全に最表面金属層を反応させるのに接続時間を長くする等のプロセスの調整が必要となるといった問題が生じる可能性がある。一方、最表面の金属層が薄い場合、界面反応を抑制するためのバリア層が薄くなり、200℃以上の高温下では十分に界面反応を抑制できないおそれがある。更に、図2のように、Sn系はんだとの反応において接続面最表面層に形成された層(例えばCu層)15の未反応部分が残存・露出する場合には、その露出部分からの酸化、腐食が起こり問題となる。一方、図3のように、接続面最表面層の残存を回避するため、仮に局所めっき等をして接続面最表面層を局所的に設けた場合、今度はSn系はんだがその下層にある金属層(例えばNi層)11まで濡れ広がるおそれが生じる。この場合、これらの間で金属間化合物(例えばNi-Sn化合物)16が形成され、この部分で界面反応がすすみ、体積変化に伴うボイドが生じてしまうおそれがある。     On the other hand, in the case of the above-mentioned Patent Document 3, since the intermetallic compound formed at the closest solder is a barrier layer between the Sn-based solder and the metal layer, it is considered that the interface reaction suppressing effect is great. It is necessary to provide two layers of a first metal layer and a second metal layer in advance on the material, which increases the plating process, and is expensive due to selective local plating, and an electrode cannot be provided. In the case of the structure, there is a problem that it is difficult to form a metal layer. In addition, since the metal layer formed on the outermost surface of the connection surface needs to be reacted with Sn-based solder at the time of connection to form a barrier layer, if the metal layer formed on the outermost surface is thick, the unreacted outermost surface at the time of connection There is a possibility that the metal layer remains and the effect of the barrier layer cannot be sufficiently obtained, and that the adjustment of the process such as extending the connection time is required to completely react the outermost metal layer. is there. On the other hand, when the outermost metal layer is thin, the barrier layer for suppressing the interfacial reaction becomes thin, and the interfacial reaction may not be sufficiently suppressed at a high temperature of 200 ° C. or higher. Further, as shown in FIG. 2, when the unreacted portion of the layer (for example, Cu layer) 15 formed on the outermost surface layer of the connection surface remains and is exposed in the reaction with the Sn-based solder, oxidation from the exposed portion is performed. Corrosion occurs and becomes a problem. On the other hand, as shown in FIG. 3, in order to avoid the remaining of the outermost surface layer of the connection surface, if the uppermost surface layer of the connection surface is locally provided by local plating or the like, this time the Sn-based solder is in the lower layer. There is a risk that the metal layer (for example, the Ni layer) 11 may be wet and spread. In this case, an intermetallic compound (for example, Ni—Sn compound) 16 is formed between them, and an interfacial reaction proceeds at this portion, which may cause a void accompanying a volume change.

本発明の目的は、環境負荷が小さく低コストで、200℃以上の高温で長時間使用しても接続信頼性を維持できる半導体素子の接続材料を提供するとともに、その接続材料を用いた半導体装置および車載用交流発電機を提供することにある。     An object of the present invention is to provide a connection material for a semiconductor element that can maintain connection reliability even if it is used at a high temperature of 200 ° C. or higher for a long time at a low environmental impact and at a low cost, and a semiconductor device using the connection material Another object is to provide an on-vehicle AC generator.

上記目的を達成するために、本願発明では、半導体素子と、第一の被接続部材と、第一の被接続部材を接続する第一の接続部材とを備えた自動車用パワーモジュールであって、第一の接続部材の半導体素子側である第一の面にはNi系層が形成されており、第一の接続部材は、Cu6-Sn5化合物と、Cu6-Sn5以外を主成分とするSn系はんだ相とを含むSn-Cu2元系はんだで構成されており、Sn系はんだ相は、Cuが3から7wt%のSn-Cu系はんだであり、Ni系層は、第一の接続部材に接続される領域が、Cu6-Sn5化合物により覆われ、第一の面に形成されたNi系層と第一の面はCu6-Sn5化合物で接続されていることを特徴とする自動車用パワーモジュールを提供する。  In order to achieve the above object, in the present invention, a power module for an automobile comprising a semiconductor element, a first connected member, and a first connecting member for connecting the first connected member, A Ni-based layer is formed on the first surface on the semiconductor element side of the first connecting member, and the first connecting member is a Sn-based material mainly composed of a Cu6-Sn5 compound and Cu6-Sn5. It is composed of Sn-Cu binary solder containing solder phase, Sn solder phase is Sn-Cu solder with 3 to 7 wt% Cu, and Ni layer is connected to the first connecting member A power module for automobiles is provided in which a region to be covered is covered with a Cu6-Sn5 compound, and a Ni-based layer formed on the first surface is connected to the first surface with a Cu6-Sn5 compound. To do.
また、本願発明では、半導体素子と、第一の被接続部材と、第一の被接続部材を接続する第一の接続部材とを備えたパワーモジュールを有する自動車であって、パワーモジュールは、第一の接続部材の半導体素子側である第一の面にはNi系層が形成されており、第一の接続部材は、Cu6-Sn5化合物と、Cu6-Sn5以外を主成分とするSn系はんだ相とを含むSn-Cu2元系はんだで構成されており、Sn系はんだ相は、Cuが3から7wt%のSn-Cu系はんだであり、Ni系層は、第一の接続部材に接続される領域が、Cu6-Sn5化合物により覆われ、第一の面に形成されたNi系層と第一の面はCu6-Sn5化合物で接続されていることを特徴とする自動車を提供する。  Further, in the present invention, an automobile having a power module including a semiconductor element, a first connected member, and a first connecting member for connecting the first connected member, A Ni-based layer is formed on the first surface of the one connecting member on the semiconductor element side, and the first connecting member is composed of a Cu6-Sn5 compound and an Sn-based solder mainly composed of other than Cu6-Sn5. It is composed of Sn-Cu binary solder containing phase, Sn-based solder phase is Sn-Cu based solder with 3 to 7 wt% Cu, and Ni-based layer is connected to the first connecting member An automobile is characterized in that a region to be covered is covered with a Cu6-Sn5 compound, and the Ni-based layer formed on the first surface and the first surface are connected with the Cu6-Sn5 compound.
また、本願発明では、半導体素子と、第一の被接続部材と、第一の被接続部材を接続する第一の接続部材とを備えた交流発電機を有する自動車であって、交流発電機は、第一の接続部材の半導体素子側である第一の面にはNi系層が形成されており、第一の接続部材は、Cu6-Sn5化合物と、Cu6-Sn5以外を主成分とするSn系はんだ相とを含むSn-Cu2元系はんだで構成されており、Sn系はんだ相は、Cuが3から7wt%のSn-Cu系はんだであり、Ni系層は、第一の接続部材に接続される領域が、Cu6-Sn5化合物により覆われ、第一の面に形成されたNi系層と第一の面はCu6-Sn5化合物で接続されていることを特徴とする自動車を提供する。  Moreover, in this invention, it is a motor vehicle which has an alternating current generator provided with the semiconductor element, the 1st to-be-connected member, and the 1st connecting member which connects a 1st to-be-connected member, Comprising: In addition, a Ni-based layer is formed on the first surface on the semiconductor element side of the first connecting member, and the first connecting member is composed of a Cu6-Sn5 compound and Sn containing Cu6-Sn5 as a main component. Sn-Cu binary solder containing a solder-based solder phase, the Sn-based solder phase is Sn-Cu solder with 3 to 7 wt% Cu, and the Ni-based layer is the first connecting member Provided is an automobile characterized in that a region to be connected is covered with a Cu6-Sn5 compound, and a Ni-based layer formed on a first surface and the first surface are connected with a Cu6-Sn5 compound.

本発明によれば、環境負荷が小さくまた200℃以上の耐熱性がある半導体装置を提供することができる。     According to the present invention, it is possible to provide a semiconductor device having a small environmental load and heat resistance of 200 ° C. or higher.

本発明の接続状況を模式的に示す断面図である。It is sectional drawing which shows typically the connection condition of this invention. 特許文献3で可能性のある接続状況を模式的に示す断面図である。It is sectional drawing which shows typically the connection condition which is possible in patent document 3. FIG. 特許文献3で可能性のある接続状況を模式的に示す断面図である。It is sectional drawing which shows typically the connection condition which is possible in patent document 3. FIG. 本発明の接続機構を模式的に示す断面図である。It is sectional drawing which shows the connection mechanism of this invention typically. 熱膨張率差緩和材として使用可能な各種材料のヤング率と降伏応力を示した図である。It is the figure which showed the Young's modulus and yield stress of various materials which can be used as a thermal expansion coefficient difference relaxation material. 本発明の接続機構を模式的に示す断面図である。It is sectional drawing which shows the connection mechanism of this invention typically. 本発明の接続機構を模式的に示す断面図である。It is sectional drawing which shows the connection mechanism of this invention typically. 本発明の半導体装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the semiconductor device of this invention. 本発明の半導体装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the semiconductor device of this invention. 接合界面のボイド形成状況を模式的に示す断面図である。It is sectional drawing which shows typically the void formation condition of a joining interface. 接合界面のボイド形成状況を模式的に示す断面図である。It is sectional drawing which shows typically the void formation condition of a joining interface. 高温放置試験後の接合界面を模式的に示す断面図である。It is sectional drawing which shows typically the joining interface after a high temperature leaving test. 高温放置試験後の接合界面を模式的に示す断面図である。It is sectional drawing which shows typically the joining interface after a high temperature leaving test. Cu-Sn2元系状態図である。It is a Cu-Sn binary system phase diagram. 本発明の半導体装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the semiconductor device of this invention. 本発明の半導体装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the semiconductor device of this invention. 本発明の半導体装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the semiconductor device of this invention.

まず、本発明の接続材料及び接続機構について図4により説明する。     First, the connection material and connection mechanism of the present invention will be described with reference to FIG.

本発明の接続材料の一例は、室温から200℃においてCu-Sn化合物(例えばCu6Sn5)の相10を含有するSn系はんだ箔17である。このはんだ箔17を用いて、Ni系めっき11を施した被接続材12を接続することにより、はんだ箔17中に相として浮いていたCu6Sn5相10がNi系めっき11上に析出あるいは移動し、Cu-Sn化合物を主体とする化合物層10が形成される。その結果、200℃以上の高温下に長時間さらされても、Cu-Sn化合物を主体とした化合物層10がNi系めっき11とSn系はんだのバリア層となり、接続界面反応による化合物層の成長及びそれに伴うボイドの形成を抑制することができる。     An example of the connection material of the present invention is an Sn-based solder foil 17 containing a phase 10 of a Cu—Sn compound (for example, Cu 6 Sn 5) from room temperature to 200 ° C. By using the solder foil 17 to connect the material 12 to which the Ni-based plating 11 is applied, the Cu6Sn5 phase 10 floating as a phase in the solder foil 17 precipitates or moves on the Ni-based plating 11. A compound layer 10 mainly composed of a Cu—Sn compound is formed. As a result, even when exposed to a high temperature of 200 ° C. or higher for a long time, the compound layer 10 mainly composed of a Cu—Sn compound becomes a barrier layer for the Ni-based plating 11 and the Sn-based solder, and the compound layer grows by a connection interface reaction. And the formation of the void accompanying it can be suppressed.

本発明の接続機構では、被接続材に少なくともNi、Ni-P、Ni-B等のNiめっきを1層設けておけばよいため、少ない工程数での接続が可能となる。また、本発明の接続機構では、形成されるバリア層の厚さは、はんだ箔に含まれるCu-Sn化合物相の量に依存するため、Cu-Sn化合物量の増減によりバリア厚の調節が可能となる。さらに、図1に示すように、はんだが濡れた接続界面にはんだ中のCu-Sn化合物10がNi系めっき11上に能動的に析出あるいは移動し、Cu-Sn化合物のバリア層が形成されるため、接続後の接続部では上記した図2及び図3での問題は生じない。     In the connection mechanism of the present invention, it is only necessary to provide at least one layer of Ni plating such as Ni, Ni-P, Ni-B, etc. on the material to be connected, so that connection with a small number of steps is possible. In the connection mechanism of the present invention, the thickness of the formed barrier layer depends on the amount of the Cu-Sn compound phase contained in the solder foil. Therefore, the barrier thickness can be adjusted by increasing or decreasing the amount of Cu-Sn compound. It becomes. Furthermore, as shown in FIG. 1, the Cu—Sn compound 10 in the solder actively precipitates or moves on the Ni-based plating 11 at the connection interface where the solder is wet, and a Cu—Sn compound barrier layer is formed. Therefore, the above-described problems in FIGS. 2 and 3 do not occur in the connection portion after connection.

ここで、本発明の接続材料のように、Cu-Sn化合物が相として含まれる状態、室温から200℃においてCu6Sn5を含有するSn系はんだの状態となる条件について、Sn-Cu2元系状態図を示す図14を用いて説明する。     Here, as in the connection material of the present invention, a state in which a Cu—Sn compound is included as a phase, a condition that becomes a state of a Sn-based solder containing Cu6Sn5 from room temperature to 200 ° C., is a Sn—Cu binary phase diagram. It demonstrates using FIG. 14 shown.

Sn-0.9CuよりCu含有量の少ない組成では、はんだが溶融して凝固する際に、共晶組成より多く含まれるSnが初晶としてまず析出し、最後にSnとCu6Sn5が共晶組織として凝固する。そのとき、Cu6Sn5は接続内部の粒界等に分散して析出するため、Ni系めっき上にバリア層状に析出しない。そのため、耐熱性が得られない。一方、Sn-0.9CuよりCu含有量が多い組成では、はんだが溶融して凝固する際に、まずCu6Sn5相が析出する。その際、Cu6Sn5がNi系めっき上に優先的に析出するために、Cu-Sn化合物のバリア層が形成される。そして、最後にSnとCu6Sn5が共晶組織として凝固する。上記のような機構でCu-Sn化合物のバリア層が形成される。     In a composition with less Cu content than Sn-0.9Cu, when the solder melts and solidifies, Sn contained more than the eutectic composition first precipitates as the primary crystal, and finally Sn and Cu6Sn5 solidify as the eutectic structure. To do. At this time, since Cu6Sn5 is dispersed and precipitated at the grain boundaries and the like inside the connection, it does not precipitate in the form of a barrier layer on the Ni-based plating. Therefore, heat resistance cannot be obtained. On the other hand, in a composition having a higher Cu content than Sn-0.9Cu, when the solder melts and solidifies, the Cu6Sn5 phase is first precipitated. At this time, since Cu6Sn5 is preferentially deposited on the Ni-based plating, a Cu-Sn compound barrier layer is formed. Finally, Sn and Cu6Sn5 solidify as a eutectic structure. The barrier layer of the Cu—Sn compound is formed by the mechanism as described above.

すなわち、本発明の接続材料としては、共晶組成よりCu6Sn5相の含有量が多い組成を選択すればよい。Sn-Cu2元系であれば、Cuが0.9wt%以上あればよいことになるが、他元素が含まれる場合には合金系によって共晶組成が異なるため、いずれの場合でも、共晶組成よりCu6Sn5相の含有量が多い組成の接続材料を選択すればよい。なお、これにより通常用されるSn-3Ag-0.5CuやSn-0.7Cuの場合では、共晶組成に比べてCu6Sn5相が少ないため、Ni系めっき上にはバリア層が形成されない。     That is, as the connection material of the present invention, a composition having a higher Cu6Sn5 phase content than the eutectic composition may be selected. If it is Sn-Cu binary system, Cu should be 0.9wt% or more, but when other elements are included, the eutectic composition differs depending on the alloy system. A connection material having a composition containing a large amount of Cu6Sn5 phase may be selected. In this case, in the case of Sn-3Ag-0.5Cu or Sn-0.7Cu that is usually used, since there are few Cu6Sn5 phases compared to the eutectic composition, no barrier layer is formed on the Ni-based plating.

以上のように、本発明の接続材料及びその接続機構について説明したが、接続材料の供給形態は箔にこだわらず、図6及び図7に示すように、ペーストやワイヤ等のいずれの形状で供給されても、接続後にNi系めっき上にCu-Sn化合物のバリア層が形成される。適宜、接続環境に応じた供給方法を選択することが可能である。     As described above, the connection material of the present invention and the connection mechanism thereof have been described. However, the connection material is supplied in any shape such as paste or wire as shown in FIGS. Even after the connection, a barrier layer of Cu—Sn compound is formed on the Ni-based plating after connection. It is possible to select a supply method according to the connection environment as appropriate.

なお、室温から200℃においてCu6Sn5相を含有するSn系はんだは、良好な濡れを得るために、好ましくは液相線温度が接続温度以下となる組成を選択すればよい。     In order to obtain good wetting, Sn-based solder containing a Cu6Sn5 phase from room temperature to 200 ° C. should preferably be selected so that the liquidus temperature is equal to or lower than the connection temperature.

次に、本発明の接続材料を用いた半導体装置及びその製造方法の一形態について、車載用交流発電機用の半導体装置を示す図8、図9を用いて説明する。     Next, one embodiment of a semiconductor device using the connection material of the present invention and a manufacturing method thereof will be described with reference to FIGS. 8 and 9 showing a semiconductor device for an on-vehicle AC generator.

図8に示す半導体装置は、半導体素子1と、半導体素子1の第一の面と本発明の接続材料を用いて形成された接続部材2を介して接続される接続部にNi系めっきを施したリード電極体7と、半導体素子1の第二の面と本発明の接続材料を用いて接続された接続部材4を介して接続される接続部にNi系めっきを施した熱膨張率差緩衝材5と、熱膨張率差緩衝材5の他方の面と本発明の接続材料を用いて接続された接続部材6を介して接続される接続部にNi系めっきを施した支持電極体3とを有する。     The semiconductor device shown in FIG. 8 performs Ni-based plating on a semiconductor element 1 and a connection portion connected to the first surface of the semiconductor element 1 via a connection member 2 formed using the connection material of the present invention. Thermal expansion coefficient difference buffer in which Ni-plating is applied to the connecting portion connected via the connecting member 4 connected to the lead electrode body 7 and the second surface of the semiconductor element 1 using the connecting material of the present invention. A support electrode body 3 in which Ni-plating is applied to a connection portion connected via a connection member 6 connected to the material 5 and the other surface of the thermal expansion coefficient difference buffer material 5 using the connection material of the present invention; Have

本発明の接続材料を用いて接続することにより、高温下での使用でも界面反応を抑制し、接続信頼性のある半導体装置を提供することができる。なお、すべての接続部で本発明の接続材料を用いず、一部他の材料の使用も可能だが、接続信頼性の観点からすべての接続部で本発明の接続材料を用いることが好ましい。この際、共晶組成よりCu6Sn5相の含有量が多い組成の接続材料であればいかなるものでもよく、各接続部で異なる材料であっても構わない。     By using the connection material of the present invention for connection, an interface reaction can be suppressed even when used at high temperatures, and a semiconductor device having connection reliability can be provided. In addition, although not using the connection material of this invention in all the connection parts, the use of a part of other materials is also possible, but it is preferable to use the connection material of this invention in all the connection parts from a viewpoint of connection reliability. At this time, any connection material having a composition having a higher Cu6Sn5 phase content than the eutectic composition may be used, and different materials may be used for each connection portion.

ここで、熱膨張率差緩衝材5としては、Al、Mg、Ag、Zn、Cu、Niのうちのいずれかを用いることができる。これらは降伏応力が小さい金属であり、惰性変形しやすい。そこで、接続部にこれらの金属を付与することにより、接続後の冷却時および温度サイクル時に接続部に被接続材の熱膨張率差により発生する応力を緩衝することができる。このとき、図5に示すように、降伏応力が75MPa以下であることが好ましい。降伏応力が100MPa以上の場合、応力を充分に緩衝できず、半導体素子に割れが発生する場合がある。厚さは、30〜500μmにすることが好ましい。厚さが、30μm以下の場合、応力を充分に緩衝できず、半導体素子および金属間化合物にクラックが発生する場合がある。厚さが、500μm以上の場合、Al、Mg、Ag、ZnはCu製の電極より熱膨張率が大きいため、熱膨張率の効果が大きくなり、信頼性の低下につながる場合がある。     Here, as the thermal expansion coefficient difference buffer material 5, any of Al, Mg, Ag, Zn, Cu, and Ni can be used. These are metals with low yield stress and are susceptible to inertial deformation. Therefore, by applying these metals to the connection portion, it is possible to buffer the stress generated by the difference in thermal expansion coefficient of the connected material at the connection portion during cooling after connection and during the temperature cycle. At this time, as shown in FIG. 5, the yield stress is preferably 75 MPa or less. When the yield stress is 100 MPa or more, the stress cannot be sufficiently buffered and the semiconductor element may be cracked. The thickness is preferably 30 to 500 μm. When the thickness is 30 μm or less, the stress cannot be sufficiently buffered, and cracks may occur in the semiconductor element and the intermetallic compound. When the thickness is 500 μm or more, Al, Mg, Ag, and Zn have a higher coefficient of thermal expansion than Cu electrodes, so that the effect of the coefficient of thermal expansion is increased, leading to a decrease in reliability.

また、熱膨張率差緩衝材5としては、Cu/インバー合金/Cu複合材、Cu/Cu2O複合材Cu-Mo合金、Ti、Mo、Wのいずれかを用いることができる。この熱膨張率差緩衝材5により、半導体素子とCu電極との間の熱膨張率差から生じる温度サイクル時及び接続後の冷却時の接続に発生する応力を緩衝することができる。このとき、厚さが薄すぎると応力を十分に緩衝できず、半導体素子および金属間化合物にクラックが発生する場合があるので、その厚さを30μm以上にすることが好ましい。     Moreover, as the thermal expansion coefficient difference buffer material 5, any one of Cu / Invar alloy / Cu composite material, Cu / Cu2O composite material Cu-Mo alloy, Ti, Mo, and W can be used. By this thermal expansion coefficient difference buffer material 5, it is possible to buffer the stress generated in the connection during the temperature cycle and the cooling after the connection resulting from the difference in the thermal expansion coefficient between the semiconductor element and the Cu electrode. At this time, if the thickness is too thin, the stress cannot be sufficiently buffered, and cracks may occur in the semiconductor element and the intermetallic compound. Therefore, the thickness is preferably 30 μm or more.

なお、Sn系はんだは高鉛はんだに比べて熱伝導率が高いため、半導体装置の低抵抗化および高放熱化の可能であり、図9のように熱膨張率緩衝材5を省略することも可能だが、高鉛はんだよりも硬いSn系はんだを使用しても十分な接続信頼性を得るべく、挿入する方が好ましい。     Since Sn-based solder has higher thermal conductivity than high-lead solder, it is possible to reduce the resistance and heat dissipation of the semiconductor device, and the thermal expansion coefficient buffer material 5 may be omitted as shown in FIG. Although it is possible, it is preferable to insert it in order to obtain sufficient connection reliability even if Sn type solder harder than high lead solder is used.

各被接続材に設けるNi系めっきとしては、上記の通り、Ni、Ni-P、Ni-B等を用いればよいが、そのめっき上に更にAuめっき、Agめっきを施しても構わない。これにより、濡れ性を向上させることができる。その場合、Au、Agといっためっき層は接続時にはんだ内部に全て拡散させることにより、下地のNi系めっき上にCu-Sn化合物のバリア層を形成することができる。     As described above, Ni, Ni—P, Ni—B or the like may be used as the Ni-based plating provided on each connected material, but Au plating or Ag plating may be further applied on the plating. Thereby, wettability can be improved. In that case, a Cu—Sn compound barrier layer can be formed on the underlying Ni-based plating by diffusing all the plating layers such as Au and Ag into the solder at the time of connection.

次に、半導体装置の製造方法について説明する。図8に示すような部材および接続部材の順序で、すなわち支持電極体3の上に、室温から200℃においてCu6Sn5相を含有するSn系はんだ箔6、熱膨張係数が11×10−6/℃の直径6.8mm、厚さ0.6mmのNiめっきCIC(Cu/Inver/Cu)クラッド材の熱膨張率差緩衝材5、室温から200℃においてCu6Sn5相を含有するSn系はんだ箔4、直径6mm厚さ0.2mmのNiめっき半導体素子1、室温から200℃においてCu6Sn5相を含有するSn系はんだ箔2、直径4.5mm厚さ0.2mmのCu板付Cuリード電極体7を積み重ね、位置合わせ治具内に置き、熱処理炉にて、窒素に水素50%を混合した還元性雰囲気で、380℃、1分の温度条件で接続し、続いて接続部周辺にシリコーンゴム8を注入後硬化させて、半導体装置を製造する。なお、接続工程は220〜450℃、還元性雰囲気で行えば、フラックスを使用しないで良好な接続を行うことができる。     Next, a method for manufacturing a semiconductor device will be described. In the order of the members and connecting members as shown in FIG. 8, that is, on the support electrode body 3, the Sn-based solder foil 6 containing the Cu6Sn5 phase from room temperature to 200 ° C. has a thermal expansion coefficient of 11 × 10 −6 / ° C. Ni-plated CIC (Cu / Inver / Cu) clad material thermal expansion coefficient buffer material 5 with a diameter of 6.8 mm, Sn-type solder foil 4 containing Cu6Sn5 phase from room temperature to 200 ° C., diameter 6 mm thick 0.2 mm Ni plated semiconductor element 1, Sn-based solder foil 2 containing Cu6Sn5 phase from room temperature to 200 ° C., Cu plate electrode 7 with a Cu plate 4.5 mm in diameter and 0.2 mm thick Place in a matching jig and connect in a heat treatment furnace in a reducing atmosphere in which 50% hydrogen is mixed with nitrogen at a temperature of 380 ° C. for 1 minute, and then inject silicone rubber 8 around the joint and cure. Thus, a semiconductor device is manufactured. In addition, if a connection process is performed at 220-450 degreeC and a reducing atmosphere, favorable connection can be performed without using a flux.

この半導体装置の温度サイクル試験および高温放置試験後の半導体素子および各部材間の接続強度を実際測定した結果を表1に示す。

Figure 0005779666
Table 1 shows the results of actual measurement of the connection strength between the semiconductor element and each member after the temperature cycle test and the high temperature storage test of this semiconductor device.
Figure 0005779666

初期接続強度の80%以上の強度を有している場合を○、80%未満の強度の場合を×で表記した。実施例1〜6の全てにおいて、−40℃(30min.)/200℃(30min.)500サイクルの温度サイクル試験後、初期接続強度の80%以上の強度を維持することを確認した。また、210℃1000hの高温放置試験後も、実施例1−6の全てにおいて初期接続強度の80%以上の強度を維持することを確認した。更に、これらについては、試験前と試験後で熱抵抗変動が10%以内であることも確認した。図12に、一例としてSn-5Cuはんだを用いて接続したサンプルを210℃1000h高温放置したときの接続界面の断面を示す。Cu-Sn化合物のバリア層により、高温放置後もNi層が消失せず残存しており、体積変化に伴うボイド形成も観察されない。     A case where the strength is 80% or more of the initial connection strength is indicated by ○, and a case where the strength is less than 80% is indicated by ×. In all of Examples 1 to 6, it was confirmed that a strength of 80% or more of the initial connection strength was maintained after a temperature cycle test of 500 cycles of −40 ° C. (30 min.) / 200 ° C. (30 min.). In addition, it was confirmed that the strength of 80% or more of the initial connection strength was maintained in all of Examples 1-6 after the high temperature standing test at 210 ° C. for 1000 hours. Further, for these, it was also confirmed that the thermal resistance fluctuation was within 10% before and after the test. FIG. 12 shows, as an example, a cross section of the connection interface when a sample connected using Sn-5Cu solder is left at a high temperature of 210 ° C. for 1000 hours. Due to the barrier layer of Cu-Sn compound, the Ni layer does not disappear even after being left at high temperature, and void formation due to volume change is not observed.

なお、上記では全体構造を同時に室温から200℃においてCu6Sn5相を含有するSn系はんだで接続するプロセスについて述べたが、熱膨張率差緩衝材5の上に、半導体素子1およびCu板付リード電極体3を室温から200℃においてCu6Sn5相を含有するSn系はんだで接続したものを作製し、続いてこれを支持電極3の上に室温から200℃においてCu6Sn5相を含有するSn系はんだで接続するなど、いくつかの部品に分けて接続しても良い。     In the above description, the process of connecting the entire structure simultaneously with Sn-based solder containing Cu6Sn5 phase from room temperature to 200 ° C. has been described. On the thermal expansion coefficient difference buffer material 5, the semiconductor element 1 and the lead electrode body with a Cu plate are provided. 3 is connected with Sn-based solder containing Cu6Sn5 phase from room temperature to 200 ° C, and then connected to support electrode 3 with Sn-based solder containing Cu6Sn5 phase from room temperature to 200 ° C. The connection may be divided into several parts.

図9に示すような部材および接続部材の順序で、すなわち支持電極体3の上に、室温から200℃においてCu6Sn5相を含有するSn系はんだ箔の接続部材4、直径6mm厚さ0.2mmのNiめっき半導体素子1、室温から200℃においてCu6Sn5相を含有するSn系はんだ箔の接続部材2、直径4.5mm厚さ0.2mmのCu板付Cuリード電極体7を積み重ね、位置合わせ治具内に置き、熱処理炉にて、窒素に水素50%を混合した還元性雰囲気で、450℃、5分の温度条件で接続し、続いて接続部周辺にシリコーンゴム8を注入後硬化させて半導体装置を作製する。     In the order of the members and connecting members as shown in FIG. 9, that is, on the support electrode body 3, the connecting member 4 of Sn-based solder foil containing Cu6Sn5 phase from room temperature to 200 ° C., having a diameter of 6 mm and a thickness of 0.2 mm Stacked Ni-plated semiconductor element 1, connecting member 2 of Sn-based solder foil containing Cu6Sn5 phase from room temperature to 200 ° C., and Cu lead electrode body 7 with a diameter of 4.5 mm and a thickness of 0.2 mm within the alignment jig Then, in a heat treatment furnace, connection is made at a temperature of 450 ° C. for 5 minutes in a reducing atmosphere in which 50% of hydrogen is mixed with nitrogen. Is made.

この半導体装置の温度サイクル試験および高温放置試験後の半導体素子および各部材間の接続強度を実際測定した結果を表1に示す。初期接続強度の80%以上の強度を有している場合を○、80%未満の強度の場合を×で表記した。実施例7〜12の全てにおいて、−40℃(30min.)/200℃(30min.)500サイクルの温度サイクル試験後、初期接続強度の80%以上の強度を維持することを確認した。また、210℃1000hの高温放置試験後も、実施例7−12の全てにおいて初期接続強度の80%以上の強度を維持することを確認した。更に、これらについては、試験前と試験後で熱抵抗変動が10%以内であることも確認した。     Table 1 shows the results of actual measurement of the connection strength between the semiconductor element and each member after the temperature cycle test and the high temperature storage test of this semiconductor device. A case where the strength is 80% or more of the initial connection strength is indicated by ○, and a case where the strength is less than 80% is indicated by ×. In all of Examples 7 to 12, after a temperature cycle test of −40 ° C. (30 min.) / 200 ° C. (30 min.) 500 cycles, it was confirmed that the strength of 80% or more of the initial connection strength was maintained. Further, it was confirmed that the strength of 80% or more of the initial connection strength was maintained in all of Examples 7-12 even after the high temperature standing test at 210 ° C. for 1000 hours. Further, for these, it was also confirmed that the thermal resistance fluctuation was within 10% before and after the test.

次に、比較例として、共晶組成よりCu6Sn5相の含有量が多くならない組成の接続材料について測定した結果を以下説明する。     Next, as a comparative example, the results of measuring a connection material having a composition in which the Cu6Sn5 phase content does not increase from the eutectic composition will be described below.

接続構造は、実施例1−6と同じである。その結果は表1に示す通り、初期接続強度の80%以上の強度を有している場合を○、80%未満の強度の場合を×で表記した。比較例1、2において、-40℃(30min.)/200℃(30min.)500サイクルの温度サイクル試験後、初期接続強度の80%以上の強度を維持することを確認した。しかしながら、210℃1000hの高温放置試験後では、比較例1、2ともに初期接続強度の80%未満の強度となった。接続断面を観察すると、図10,11のようなボイド14が接続界面に形成されていた。高温放置により界面反応が進み、化合物層の成長に伴う体積変化で生じたボイド形成により、接続強度が低下したと考えられる。図13に、一例としてSn-3Ag-0.5Cuはんだで接続したサンプルを210℃で1000h高温放置したときの接続界面の断面を示す。Cu-Sn化合物のバリア層が形成されないため、SnとNiが反応してNi層が完全に消失し、更に下地のCuまでもSnと反応しCu-Sn化合物層が厚く形成されている。その結果、大きな体積変化が生じボイドが形成され、良好な接続状況を維持することができなくなる。     The connection structure is the same as that of Example 1-6. As shown in Table 1, the results are indicated by ○ when the strength is 80% or more of the initial connection strength and by × when the strength is less than 80%. In Comparative Examples 1 and 2, after a temperature cycle test of -40 ° C. (30 min.) / 200 ° C. (30 min.) 500 cycles, it was confirmed that the strength of 80% or more of the initial connection strength was maintained. However, after the high-temperature standing test at 210 ° C. for 1000 hours, both Comparative Examples 1 and 2 had a strength of less than 80% of the initial connection strength. When the connection cross section was observed, voids 14 as shown in FIGS. 10 and 11 were formed at the connection interface. It is considered that the interfacial reaction progressed by leaving at high temperature, and the connection strength decreased due to void formation caused by the volume change accompanying the growth of the compound layer. FIG. 13 shows, as an example, a cross section of the connection interface when a sample connected with Sn-3Ag-0.5Cu solder is left at 210 ° C. for 1000 hours. Since the Cu—Sn compound barrier layer is not formed, Sn and Ni react to completely disappear the Ni layer, and even the underlying Cu reacts with Sn to form a thick Cu—Sn compound layer. As a result, a large volume change occurs, voids are formed, and a good connection state cannot be maintained.

比較例3、4においては、-40℃(30min.)/200℃(30min.)500サイクルの温度サイクル試験後、210℃1000hの高温放置試験後ともに、比較例1、2ともに初期接続強度の80%未満の強度となった。接続断面を観察すると、図10,11のようなボイド14が接続界面に形成されていた。高温放置により界面反応が進み、化合物層の成長に伴う体積変化で生じたボイド形成により、接続強度が低下したと考えられる。     In Comparative Examples 3 and 4, the initial connection strength of both Comparative Examples 1 and 2 was observed after a temperature cycle test of 500 cycles of −40 ° C. (30 min.) / 200 ° C. (30 min.) And after a high temperature storage test of 210 ° C. for 1000 hours. The strength was less than 80%. When the connection cross section was observed, voids 14 as shown in FIGS. 10 and 11 were formed at the connection interface. It is considered that the interfacial reaction progressed by leaving at high temperature, and the connection strength decreased due to void formation caused by the volume change accompanying the growth of the compound layer.

なお、比較例5は高鉛フリーはんだによる比較例であり、いずれも良好な結果となっている。     In addition, the comparative example 5 is a comparative example by a high lead free solder, and all have a favorable result.

次に、本発明の接続材料を用いた半導体装置の他の形態について、図15を用いて説明する。     Next, another embodiment of a semiconductor device using the connection material of the present invention will be described with reference to FIGS.

図15はプリント基板への部品実装の例であり、プリント基板102と、前記プリント基板102と本発明の接続材料を用いて接続され、実装された表面実装部品101と、前記プリント基板102と本発明の接続材料を用いて接続され、実装されたチップ部品103と、前記プリント基板102と本発明の接続材料を用いて接続され、実装された挿入実装部品104とを有する。図示しないが、接続される各面にはNi系めっきが施される。本発明の接続機構を用いて実装することにより、高温下でも界面反応を抑制し、接続信頼性の高い半導体装置を提供することができる。     FIG. 15 shows an example of component mounting on a printed circuit board. The printed circuit board 102, the surface mounted component 101 connected to the printed circuit board 102 using the connection material of the present invention, and mounted thereon, and the printed circuit board 102 and the book The chip component 103 is connected and mounted using the connection material of the invention, and the insertion mounting component 104 is connected and mounted using the connection material of the present invention with the printed board 102. Although not shown, Ni-based plating is applied to each surface to be connected. By mounting using the connection mechanism of the present invention, the interface reaction can be suppressed even at high temperatures, and a semiconductor device with high connection reliability can be provided.

なお、図15は表面実装部品101、チップ部品103、挿入実装部品104の全てが実装されているが、いずれか一つ又は二つだけであっても構わない。また、一部の接続においてSn-3Ag-0.5Cu等の他のはんだ材料を用いても構わない。     In FIG. 15, all of the surface mounting component 101, the chip component 103, and the insertion mounting component 104 are mounted, but any one or two of them may be mounted. Also, other solder materials such as Sn-3Ag-0.5Cu may be used in some connections.

次に、本発明の接続材料を用いた半導体装置の他の形態について、図16を用いて説明
する。
Next, another embodiment of a semiconductor device using the connection material of the present invention will be described with reference to FIGS.

図16に示す半導体装置は、半導体素子1と、半導体素子1と本発明の接続材料を用いて接続されたフレーム105と、半導体素子1に設けられた電極(図示しない)とワイヤ108により電気的に接続された外部リード107と、半導体素子1を覆うように設けられたモールド樹脂とを有する。図示しないが、接続される各面にはNi系めっきが施される。本発明の接続機構を用いることにより、高温下でも界面反応を抑制し、接続信頼性の高い半導体装置を提供することができる。     The semiconductor device shown in FIG. 16 is electrically connected by the semiconductor element 1, the frame 105 connected to the semiconductor element 1 using the connection material of the present invention, electrodes (not shown) provided on the semiconductor element 1, and wires 108. And an external lead 107 connected to, and a mold resin provided so as to cover the semiconductor element 1. Although not shown, Ni-based plating is applied to each surface to be connected. By using the connection mechanism of the present invention, an interface reaction can be suppressed even at high temperatures, and a semiconductor device with high connection reliability can be provided.

他の半導体装置の形態について、図17を用いて説明する。     Another semiconductor device mode is described with reference to FIGS.

図17に示す半導体装置は、RFモジュール等に代表される構造であり、モジュール基板109と、モジュール基板に本発明の接続材料を用いて接続された表面実装部品101と、モジュール基板に本発明の接続材料を用いて接続された半導体素子1と、モジュール基板に本発明の接続材料を用いて接続されたチップ部品と、モジュール基板1の裏面に設けられたはんだボール110とを有する。図示しないが、接続される各面にはNi系めっきが施される。本発明の接続機構を用いることにより、高温下でも界面反応を抑制し、接続信頼性の高い半導体装置を提供することができる。     The semiconductor device shown in FIG. 17 has a structure typified by an RF module or the like, and includes a module substrate 109, a surface mount component 101 connected to the module substrate using the connection material of the present invention, and a module substrate of the present invention. It has a semiconductor element 1 connected using a connection material, a chip component connected to the module substrate using the connection material of the present invention, and a solder ball 110 provided on the back surface of the module substrate 1. Although not shown, Ni-based plating is applied to each surface to be connected. By using the connection mechanism of the present invention, an interface reaction can be suppressed even at high temperatures, and a semiconductor device with high connection reliability can be provided.

なお、図15は表面実装部品101、チップ部品103、挿入実装部品104の全てが実装されているが、いずれか一つ又は二つだけであっても構わない。また、一部の接続においてSn-3Ag-0.5Cu等の他のはんだ材料を用いても構わない。     In FIG. 15, all of the surface mounting component 101, the chip component 103, and the insertion mounting component 104 are mounted, but any one or two of them may be mounted. Also, other solder materials such as Sn-3Ag-0.5Cu may be used in some connections.

以上、半導体装置の実施形態についていくつか説明したが、本発明はこれらの形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。例えば、パワートランジスタ、パワーIC、IGBT基板、RFモジュール等のフロントエンドモジュール、自動車用パワーモジュール等のダイボンディング等に用いても構わない。また、接続に用いる本発明の接続材料は、共晶組成よりCu6Sn5相の含有量が多い組成のSn系はんだであれば、その供給形態は問わず、プリント基板へのレベリング処理、部品へのディップ、印刷、箔、ワイヤ等いずれの方法でも構わない。     Although several embodiments of the semiconductor device have been described above, the present invention is not limited to these embodiments, and it goes without saying that various modifications can be made without departing from the scope of the invention. For example, it may be used for die bonding of a power transistor, a power IC, an IGBT substrate, a front end module such as an RF module, an automobile power module, or the like. In addition, if the connection material of the present invention used for connection is Sn-based solder having a composition containing more Cu6Sn5 phase than the eutectic composition, leveling treatment to the printed circuit board, dip to the component, regardless of its supply form Any method such as printing, foil, and wire may be used.

1 半導体素子、2,4,6 接続部材、3 支持電極体、5 熱膨張率差緩和材、7 リード電極、8 シリコーンゴム、10 Cu-Sn化合物、11 Niめっき、12 被接続材、13 金属間化合物、14 ボイド、15 Cu層、16 Ni-Sn化合物、17 はんだ箔、18 はんだペースト、19 はんだワイヤ、101 表面実装部品、102 プリント基板、103 チップ部品、104 挿入実装部品、105 フレーム、106 モールド樹脂、107 リード、108 ワイヤ、109 モジュール基板、110 はんだボール。
DESCRIPTION OF SYMBOLS 1 Semiconductor element, 2, 4, 6 Connecting member, 3 Support electrode body, 5 Thermal expansion coefficient difference relaxation material, 7 Lead electrode, 8 Silicone rubber, 10 Cu-Sn compound, 11 Ni plating, 12 Connected material, 13 Metal Intermetallic compound, 14 Void, 15 Cu layer, 16 Ni-Sn compound, 17 Solder foil, 18 Solder paste, 19 Solder wire, 101 Surface mount component, 102 Printed circuit board, 103 Chip component, 104 Insertion mount component, 105 Frame, 106 Mold resin, 107 leads, 108 wires, 109 module board, 110 solder balls.

Claims (15)

半導体素子と、第一の被接続部材と、前記第一の被接続部材を接続する第一の接続部材とを備えた自動車用パワーモジュールであって、
前記第一の接続部材の前記半導体素子側である第一の面にはNi系層が形成されており、
前記第一の接続部材は、Cu6-Sn5化合物と、Cu6-Sn5以外を主成分とするSn系はんだ相とを含むSn-Cu2元系はんだで構成されており、
前記Sn系はんだ相は、Cuが3から7wt%のSn-Cu系はんだであり、
前記Ni系層は、前記第一の接続部材に接続される領域が、前記Cu6-Sn5化合物により覆われ、
前記第一の面に形成されたNi系層と前記第一の面は前記Cu6-Sn5化合物で接続されていること
を特徴とする自動車用パワーモジュール。
A power module for an automobile comprising a semiconductor element, a first connected member, and a first connecting member for connecting the first connected member,
A Ni-based layer is formed on the first surface on the semiconductor element side of the first connection member,
The first connecting member is composed of a Sn-Cu binary solder containing a Cu6-Sn5 compound and a Sn-based solder phase mainly composed of other than Cu6-Sn5,
The Sn-based solder phase is Sn-Cu based solder with 3 to 7 wt% Cu,
In the Ni-based layer, a region connected to the first connection member is covered with the Cu6-Sn5 compound,
An automotive power module, wherein the Ni-based layer formed on the first surface and the first surface are connected by the Cu6-Sn5 compound.
請求項1記載の自動車用パワーモジュールであって、
第二の接続部材と、第二の被接続部材を有しており、
前記第二の被接続部材は、前記第一の接続部材と同様のSn-Cu2元系はんだで構成されており、
前記第二の接続部材の前記半導体素子側である第二の面にはNi系層が形成され、
前記Ni系層は、前記第二の接続部材に接続される領域が、前記Cu6-Sn5化合物により覆われ、
前記第二の面に形成されたNi系層と前記第一の面は前記Cu6-Sn5化合物で接続されていること
を特徴とする自動車用パワーモジュール。
The automobile power module according to claim 1,
A second connecting member and a second connected member;
The second connected member is made of Sn-Cu binary solder similar to the first connecting member,
A Ni-based layer is formed on the second surface of the second connecting member on the semiconductor element side,
In the Ni-based layer, a region connected to the second connection member is covered with the Cu6-Sn5 compound,
An automotive power module, wherein the Ni-based layer formed on the second surface and the first surface are connected by the Cu6-Sn5 compound.
請求項記載の自動車用パワーモジュールであって、
前記Ni系層は、前記第一の面または前記第二の面の表面に形成されたNi系層のめっきで構成されていること
を特徴とする自動車用パワーモジュール。
The automobile power module according to claim 2 ,
The power module for automobiles, wherein the Ni-based layer is formed by plating a Ni-based layer formed on the surface of the first surface or the second surface.
請求項1乃至3記載の自動車用パワーモジュールであって、
前記Ni系層は、NiまたはNi-PまたはNi-Bであること
を特徴とする自動車用パワーモジュール。
The automobile power module according to claim 1, wherein
The power module for automobiles, wherein the Ni-based layer is Ni, Ni-P, or Ni-B.
請求項2または3に記載の自動車用パワーモジュールであって、
前記第一の面または前記第二の面の領域の全部が、前記Ni系層及び前記Cu6−Sn5化合物との積層により覆われていること
を特徴とする自動車用パワーモジュール。
The power module for automobiles according to claim 2 or 3 ,
The automotive power module, wherein the entire area of the first surface or the second surface is covered with a laminate of the Ni-based layer and the Cu6-Sn5 compound.
請求項2、3または5に記載の自動車用パワーモジュールであって、
前記第一の面または前記第二の面の領域の全部が、前記Ni層により覆われていることを特徴とする半導体装置。
The power module for automobiles according to claim 2, 3 or 5 ,
The semiconductor device, wherein the entire area of the first surface or the second surface is covered with the Ni layer.
請求項2、3、5または6に記載の自動車用パワーモジュールであって、
前記Cu6-Sn5化合物は、前記Ni系層及び前記第一の被接続部材または前記第二の被接続部材を前記Sn系はんだ相から保護するバリア層であることを特徴とする半導体装置。
The power module for automobiles according to claim 2, 3, 5 or 6 ,
The semiconductor device, wherein the Cu6-Sn5 compound is a barrier layer that protects the Ni-based layer and the first connected member or the second connected member from the Sn-based solder phase.
請求項2、3、5乃至7のいずれか一項に記載の自動車用パワーモジュールであって、
前記第一の被接続部材または前記第二の被接続部材は、Cu製であること
を特徴とする自動車用パワーモジュール。
The automobile power module according to any one of claims 2, 3, 5 to 7 ,
The power module for automobiles, wherein the first connected member or the second connected member is made of Cu.
請求項2,3,5乃至8のいずれか一項に自動車用パワーモジュールであって、
前記第一の被接続部材または前記第二の被接続部材は、電極であること
を特徴とする自動車用パワーモジュール。
A power module for automobiles according to any one of claims 2, 3, 5 to 8 ,
The power module for automobiles, wherein the first connected member or the second connected member is an electrode.
半導体素子と、第一の被接続部材と、前記第一の被接続部材を接続する第一の接続部材とを備えたパワーモジュールを有する自動車であって、
前記パワーモジュールは、
前記第一の接続部材の前記半導体素子側である第一の面にはNi系層が形成されており、
前記第一の接続部材は、Cu6-Sn5化合物と、Cu6-Sn5以外を主成分とするSn系はんだ相とを含むSn-Cu2元系はんだで構成されており、
前記Sn系はんだ相は、Cuが3から7wt%のSn-Cu系はんだであり、
前記Ni系層は、前記第一の接続部材に接続される領域が、前記Cu6-Sn5化合物により覆われ、
前記第一の面に形成されたNi系層と前記第一の面は前記Cu6-Sn5化合物で接続されていること
を特徴とする自動車。
An automobile having a power module comprising a semiconductor element, a first connected member, and a first connecting member for connecting the first connected member,
The power module is
A Ni-based layer is formed on the first surface on the semiconductor element side of the first connection member,
The first connecting member is composed of a Sn-Cu binary solder containing a Cu6-Sn5 compound and a Sn-based solder phase mainly composed of other than Cu6-Sn5,
The Sn-based solder phase is Sn-Cu based solder with 3 to 7 wt% Cu,
In the Ni-based layer, a region connected to the first connection member is covered with the Cu6-Sn5 compound,
The Ni-based layer formed on the first surface and the first surface are connected by the Cu6-Sn5 compound.
請求項10記載の自動車であって、
前記パワーモジュールは、さらに、
第二の接続部材と、第二の被接続部材を有しており、
前記第二の被接続部材は、前記第一の接続部材と同様のSn-Cu2元系はんだで構成されており、
前記第二の接続部材の前記半導体素子側である第二の面にはNi系層が形成され、
前記Ni系層は、前記第二の接続部材に接続される領域が、前記Cu6-Sn5化合物により覆われ、
前記第二の面に形成されたNi系層と前記第一の面は前記Cu6-Sn5化合物で接続されていること
を特徴とする自動車。
The automobile according to claim 10,
The power module further includes:
A second connecting member and a second connected member;
The second connected member is made of Sn-Cu binary solder similar to the first connecting member,
A Ni-based layer is formed on the second surface of the second connecting member on the semiconductor element side,
In the Ni-based layer, a region connected to the second connection member is covered with the Cu6-Sn5 compound,
An automobile characterized in that the Ni-based layer formed on the second surface and the first surface are connected by the Cu6-Sn5 compound.
請求項11記載の自動車であって
前記Ni系層は、前記第一の面または前記第二の面の表面に形成されたNi系層のめっきで構成されていること
を特徴とする自動車。
The vehicle of claim 11, wherein,
The automobile is characterized in that the Ni-based layer is formed by plating a Ni-based layer formed on the surface of the first surface or the second surface.
半導体素子と、第一の被接続部材と、前記第一の被接続部材を接続する第一の接続部材とを備えた交流発電機を有する自動車であって、
前記交流発電機は、
前記第一の接続部材の前記半導体素子側である第一の面にはNi系層が形成されており、
前記第一の接続部材は、Cu6-Sn5化合物と、Cu6-Sn5以外を主成分とするSn系はんだ相とを含むSn-Cu2元系はんだで構成されており、
前記Sn系はんだ相は、Cuが3から7wt%のSn-Cu系はんだであり、
前記Ni系層は、前記第一の接続部材に接続される領域が、前記Cu6-Sn5化合物により覆われ、
前記第一の面に形成されたNi系層と前記第一の面は前記Cu6-Sn5化合物で接続されていること
を特徴とする自動車。
An automobile having an alternator comprising a semiconductor element, a first connected member, and a first connecting member for connecting the first connected member,
The alternator is
A Ni-based layer is formed on the first surface on the semiconductor element side of the first connection member,
The first connecting member is composed of a Sn-Cu binary solder containing a Cu6-Sn5 compound and a Sn-based solder phase mainly composed of other than Cu6-Sn5,
The Sn-based solder phase is Sn-Cu based solder with 3 to 7 wt% Cu,
In the Ni-based layer, a region connected to the first connection member is covered with the Cu6-Sn5 compound,
The Ni-based layer formed on the first surface and the first surface are connected by the Cu6-Sn5 compound.
請求項1記載の自動車であって、
前記交流発電機は、さらに、
第二の接続部材と、第二の被接続部材を有しており、
前記第二の被接続部材は、前記第一の接続部材と同様のSn-Cu2元系はんだで構成されており、
前記第二の接続部材の前記半導体素子側である第二の面にはNi系層が形成され、
前記Ni系層は、前記第二の接続部材に接続される領域が、前記Cu6-Sn5化合物により覆われ、
前記第二の面に形成されたNi系層と前記第一の面は前記Cu6-Sn5化合物で接続されていること
を特徴とする自動車。
The vehicle of claim 1 3, wherein,
The AC generator further includes:
A second connecting member and a second connected member;
The second connected member is made of Sn-Cu binary solder similar to the first connecting member,
A Ni-based layer is formed on the second surface of the second connecting member on the semiconductor element side,
In the Ni-based layer, a region connected to the second connection member is covered with the Cu6-Sn5 compound,
An automobile characterized in that the Ni-based layer formed on the second surface and the first surface are connected by the Cu6-Sn5 compound.
請求項14記載の自動車であって
前記Ni系層は、前記第一の面または前記第二の面の表面に形成されたNi系層のめっきで構成されていること
を特徴とする自動車。
The vehicle of claim 14, wherein,
The automobile is characterized in that the Ni-based layer is formed by plating a Ni-based layer formed on the surface of the first surface or the second surface.
JP2014000048A 2014-01-06 2014-01-06 Automotive power modules, automobiles Active JP5779666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000048A JP5779666B2 (en) 2014-01-06 2014-01-06 Automotive power modules, automobiles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000048A JP5779666B2 (en) 2014-01-06 2014-01-06 Automotive power modules, automobiles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010074078A Division JP5517694B2 (en) 2010-03-29 2010-03-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2014123745A JP2014123745A (en) 2014-07-03
JP5779666B2 true JP5779666B2 (en) 2015-09-16

Family

ID=51403955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000048A Active JP5779666B2 (en) 2014-01-06 2014-01-06 Automotive power modules, automobiles

Country Status (1)

Country Link
JP (1) JP5779666B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6330786B2 (en) * 2015-11-16 2018-05-30 トヨタ自動車株式会社 Manufacturing method of semiconductor device
JP7428595B2 (en) 2020-06-08 2024-02-06 日立Astemo株式会社 Semiconductor device and method for manufacturing semiconductor device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52147065A (en) * 1976-06-01 1977-12-07 Mitsubishi Electric Corp Semiconductor device
JP3660798B2 (en) * 1998-02-26 2005-06-15 京セラ株式会社 Circuit board
JP2002305213A (en) * 2000-12-21 2002-10-18 Hitachi Ltd Solder foil, semiconductor device, and electronic device
JP3910363B2 (en) * 2000-12-28 2007-04-25 富士通株式会社 External connection terminal
JP2002222708A (en) * 2001-01-24 2002-08-09 Toko Inc Small coil using lead-free solder
JP2005095977A (en) * 2003-08-26 2005-04-14 Sanyo Electric Co Ltd Circuit device
JP4271684B2 (en) * 2003-10-24 2009-06-03 日鉱金属株式会社 Nickel alloy sputtering target and nickel alloy thin film

Also Published As

Publication number Publication date
JP2014123745A (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP4569423B2 (en) Manufacturing method of semiconductor device
JP5517694B2 (en) Semiconductor device
JP2011044624A (en) Semiconductor device, and on-vehicle ac generator
JP6797797B2 (en) Ceramic metal circuit board and semiconductor device using it
TWI284375B (en) Semiconductor device and manufacturing method for semiconductor device
JP4939891B2 (en) Electronic equipment
JP5331322B2 (en) Semiconductor device
JP2002307188A (en) PRODUCT USING Zn-Al BASED SOLDER
JP6429208B2 (en) Semiconductor device and moving body
JPWO2017217145A1 (en) Solder joint
JP6810915B2 (en) Solder material
JP2011143442A (en) Power module having highly reliable solder-bonded part
JP5557788B2 (en) Manufacturing method of electronic device
JP5779666B2 (en) Automotive power modules, automobiles
JP6967252B2 (en) Manufacturing method of electronic parts and electronic parts
JP5723225B2 (en) Bonding structure
JP2003290974A (en) Joining structure of electronic circuit device and electronic parts used for the same
JP3719624B2 (en) Solder for mounting electronic components and mounting method of electronic components
JP2016025194A (en) Method of manufacturing semiconductor module, semiconductor power module, vehicle having semiconductor module, and railway vehicle having semiconductor module
JP6069135B2 (en) Power semiconductor device, method of manufacturing the same, and solder for the same
JP2011199315A (en) Metal/ceramic bonding substrate
WO2023139976A1 (en) Solder and semiconductor device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5779666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150