JP5777658B2 - Electronic component cooler - Google Patents

Electronic component cooler Download PDF

Info

Publication number
JP5777658B2
JP5777658B2 JP2013100004A JP2013100004A JP5777658B2 JP 5777658 B2 JP5777658 B2 JP 5777658B2 JP 2013100004 A JP2013100004 A JP 2013100004A JP 2013100004 A JP2013100004 A JP 2013100004A JP 5777658 B2 JP5777658 B2 JP 5777658B2
Authority
JP
Japan
Prior art keywords
refrigerant
flow path
electronic component
communication hole
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013100004A
Other languages
Japanese (ja)
Other versions
JP2014220452A (en
Inventor
阪田 一樹
一樹 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013100004A priority Critical patent/JP5777658B2/en
Publication of JP2014220452A publication Critical patent/JP2014220452A/en
Application granted granted Critical
Publication of JP5777658B2 publication Critical patent/JP5777658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、電子部品を冷却する冷却器に関し、特に、電気自動車、プラグインハイブリッド自動車などの電動化車両に搭載される車載充電器の冷却に好適な冷却器に関するものである。   The present invention relates to a cooler that cools electronic components, and more particularly, to a cooler that is suitable for cooling an in-vehicle charger mounted on an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle.

電気自動車、プラグインハイブリッド自動車などの電動化車両においては、車外の電源からの電力が車載充電器を介して主電池に充電され、インバータや走行用モータが主電池から供給される電力により駆動される。そして、車載充電器は、スイッチング素子などの発熱部品である電子部品を備えている。そこで、車載充電器に冷却器を搭載し、冷媒循環ポンプが冷却器に冷媒を送ることにより、車載充電器の電子部品を冷却していた。   In an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle, electric power from a power source outside the vehicle is charged to a main battery via an in-vehicle charger, and an inverter or a driving motor is driven by electric power supplied from the main battery. The The on-vehicle charger includes electronic components that are heat-generating components such as switching elements. Then, the cooler was mounted in the vehicle-mounted charger, and the electronic component of the vehicle-mounted charger was cooled by the refrigerant circulation pump sending the refrigerant to the cooler.

電動化車両では、主電池の充電は、100V〜200Vの商用交流電源を用いて、夜間などに長時間かけて行われる。このとき、車載充電器は動作しているが、走行用モータとインバータは停車中であるため動作していない。そこで、長時間かけて行われる充電中に、冷媒循環ポンプを連続して運転することは、冷媒循環ポンプの短寿命化をもたらす。さらには、冷媒循環ポンプが消費する電力を補う必要があり、充電時間の長時間化をもたらす。そのため、冷媒循環ポンプを間欠的に運転することが望ましい。しかし、冷媒循環ポンプを間欠的に運転するためには、冷却器には、冷媒循環ポンプの運転時における冷却性能のみならず、冷媒循環ポンプの停止時における電子部品の温度上昇を抑制する性能が要求される。   In an electric vehicle, charging of the main battery is performed over a long period of time, such as at night, using a commercial AC power source of 100V to 200V. At this time, the on-vehicle charger is operating, but the traveling motor and the inverter are not operating because they are stopped. Therefore, continuously operating the refrigerant circulation pump during charging performed over a long period of time brings about a shortened life of the refrigerant circulation pump. Furthermore, it is necessary to supplement the power consumed by the refrigerant circulation pump, resulting in a long charge time. Therefore, it is desirable to operate the refrigerant circulation pump intermittently. However, in order to operate the refrigerant circulation pump intermittently, the cooler has not only the cooling performance when the refrigerant circulation pump is operating, but also the performance that suppresses the temperature rise of the electronic components when the refrigerant circulation pump is stopped. Required.

従来の電子部品の冷却器は、上面に電子部品が取り付けられる取付面、下方が開口するように取付面に設けられた側面および電子部品の位置に対応させて取付面の裏面側に設けられた放熱フィンを有する部材と、側面に嵌合されて取り付けられる底面と、側面と底面とにより形成され、放熱フィンを含む液冷媒通路と、側面に設けられ、液冷媒通路に液冷媒を導入する入口部材および液冷媒通路から液冷媒を導出する出口部材と、を備え、放熱フィン側の底面に、入口部材から放熱フィンまでの流路および放熱フィンから出口部材までの流路に傾斜部を形成していた(例えば、特許文献1参照)。   The conventional electronic component cooler is provided on the back surface side of the mounting surface corresponding to the mounting surface on which the electronic component is mounted on the upper surface, the side surface provided on the mounting surface so that the lower side is open, and the position of the electronic component. A member having a radiation fin, a bottom surface fitted to and attached to a side surface, a side surface and a bottom surface, a liquid refrigerant passage including the radiation fin, and an inlet provided on the side surface for introducing the liquid refrigerant into the liquid refrigerant passage An outlet member for leading out the liquid refrigerant from the member and the liquid refrigerant passage, and an inclined portion is formed in the channel from the inlet member to the radiation fin and the channel from the radiation fin to the outlet member on the bottom surface on the radiation fin side. (For example, refer to Patent Document 1).

特開2006−339229号公報JP 2006-339229 A

従来の電子部品の冷却器では、放熱フィン側の底面に、入口部材から放熱フィンまでの流路および放熱フィンから出口部材までの流路に傾斜部を形成しているので、液冷媒の入口と底面および底面と液冷媒の出口とが緩やかに接続され、流路抵抗が減じられる。その結果、入口部材および出口部材の近傍での渦流等の発生が回避され、良好な冷却性能が維持される。しかしながら、従来の電子部品の冷却器では、冷媒循環ポンプの運転時の冷却性能は確保できるが、冷媒循環ポンプの停止時については、何ら考慮されていなかった。   In the conventional electronic component cooler, since the inclined portion is formed in the channel from the inlet member to the radiation fin and the channel from the radiation fin to the outlet member on the bottom surface on the radiation fin side, The bottom surface and the bottom surface are gently connected to the outlet of the liquid refrigerant, and the flow path resistance is reduced. As a result, generation of eddy currents in the vicinity of the inlet member and the outlet member is avoided, and good cooling performance is maintained. However, in the conventional cooler for electronic components, the cooling performance during operation of the refrigerant circulation pump can be ensured, but no consideration has been given to when the refrigerant circulation pump is stopped.

つまり、従来の電子部品の冷却器においては、冷媒循環ポンプの停止時、液冷媒が液冷媒通路内に滞留し、電子部品での発熱により、取付面の下部(液冷媒通路の上部)の液冷媒が加熱され、液冷媒温度が急上昇する。したがって、従来の電子部品の冷却器を車載充電器の冷却に適用した場合、冷媒循環ポンプを停止すると、液冷媒温度が急上昇するので、冷媒循環ポンプをすぐに再運転する必要が生じ、運転時間を短縮することができないという課題があった。   In other words, in a conventional electronic component cooler, when the refrigerant circulation pump is stopped, the liquid refrigerant stays in the liquid refrigerant passage, and the liquid in the lower portion of the mounting surface (upper portion of the liquid refrigerant passage) is generated by the heat generated in the electronic component. The refrigerant is heated, and the liquid refrigerant temperature rises rapidly. Therefore, when a conventional electronic component cooler is applied to cooling an in-vehicle charger, if the refrigerant circulation pump is stopped, the liquid refrigerant temperature rises rapidly, so that the refrigerant circulation pump needs to be restarted immediately, and the operation time There was a problem that it was not possible to shorten.

本発明は、このような課題を解決するためになされたものであり、冷媒の供給停止時における冷媒の温度上昇を緩慢な温度上昇にさせる冷媒流路構成とし、冷媒の供給停止時間を長くできる電子部品の冷却器を得ることを目的とする。   The present invention has been made to solve such a problem, and has a refrigerant flow path configuration in which the temperature rise of the refrigerant at the time of the refrigerant supply stop is slowed, and the refrigerant supply stop time can be extended. The purpose is to obtain a cooler for electronic components.

本発明に係る電子部品の冷却器は、筒状の周壁部および上記周壁部の他端開口を塞口する底板を有する有底筒状体に作製され、一端の開口を側方に向けて配設され、上記周壁部の下側に位置する下壁部の外面を電子部品の取付面とする本体と、上記本体内に配設され、上部流路、上記上部流路の下方に位置する下部流路および上記上部流路と上記下部流路を上記底板側で連通する連通流路を形成する仕切り板と、を備え、冷媒を上記上部流路に間欠的に供給して上記電子部品を冷却する。そして、連通穴が、上記電子部品の上方位置で、上記上部流路と上記下部流路とを連通するように上記仕切り板に形成されている。 An electronic component cooler according to the present invention is produced in a bottomed cylindrical body having a cylindrical peripheral wall portion and a bottom plate that closes the other end opening of the peripheral wall portion, and is arranged with one end opening facing sideways. A main body having an outer surface of the lower wall portion located below the peripheral wall portion as an attachment surface of the electronic component, an upper flow path disposed in the main body, and a lower portion positioned below the upper flow path comprising a partition plate for the passage and the upper channel and the lower channel to form a communication passage that communicates with the bottom plate side, a refrigerant intermittently supplied to the upper SL upper flow path of the electronic component Cooling. And the communicating hole is formed in the said partition plate so that the said upper flow path and the said lower flow path may be connected in the upper position of the said electronic component.

本発明によれば、冷媒の供給時には、冷媒が上部流路を流通し、流路方向の一側で折り返されて下部流路を流通する。そして、電子部品で発生した熱は、周壁部の下側に位置する下壁部を介して下部流路を流通する冷媒に伝達され、冷媒とともに排出されるので、電子部品を効果的に冷却でき、良好な冷却性能が確保される。   According to the present invention, at the time of supply of the refrigerant, the refrigerant flows through the upper flow path, is folded on one side in the flow path direction, and flows through the lower flow path. The heat generated in the electronic component is transmitted to the refrigerant flowing through the lower flow path via the lower wall portion located on the lower side of the peripheral wall portion and is discharged together with the refrigerant, so that the electronic component can be effectively cooled. Good cooling performance is ensured.

冷媒の供給停止時には、周壁部の下側に位置する下壁部の近傍に滞留する冷媒が、電子部品で発生した熱により暖められて上昇し、連通穴を通って上部流路内に流入する。上部流路内に流入した冷媒は冷やされて連通穴を通って下部流路内に流入し、周壁部の下側に位置する下壁部の近傍まで下降し、電子部品で発生した熱により暖められて上昇する。このように、連通穴を介して上部流路と下部流路との間に冷媒の対流が形成され、電子部品で発生した熱が上部流路と下部流路の両方の冷媒に拡散され、冷媒の温度上昇が緩慢な温度上昇となる。これにより、冷媒の供給を停止する時間を長くすることができる。したがって、冷媒を間欠的に供給するための冷媒循環ポンプの運転時間の短縮が可能となる。   When the supply of the refrigerant is stopped, the refrigerant staying in the vicinity of the lower wall portion located on the lower side of the peripheral wall portion is heated and raised by the heat generated in the electronic component, and flows into the upper flow path through the communication hole. . The refrigerant flowing into the upper flow path is cooled and flows into the lower flow path through the communication hole, descends to the vicinity of the lower wall portion located below the peripheral wall portion, and is warmed by the heat generated by the electronic component. To rise. Thus, a convection of the refrigerant is formed between the upper flow path and the lower flow path through the communication hole, and the heat generated in the electronic component is diffused to the refrigerant in both the upper flow path and the lower flow path, The temperature rise becomes a slow temperature rise. Thereby, the time which stops supply of a refrigerant | coolant can be lengthened. Therefore, the operation time of the refrigerant circulation pump for intermittently supplying the refrigerant can be shortened.

この発明の実施の形態1に係る冷却器を示す斜視図である。It is a perspective view which shows the cooler which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷却器を示す正面図である。It is a front view which shows the cooler which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る冷却器を示す断面図である。It is sectional drawing which shows the cooler which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る冷却器を示す断面図である。It is sectional drawing which shows the cooler which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る冷却器の冷媒循環ポンプの運転停止中の状態を示す断面図である。It is sectional drawing which shows the state in the operation stop of the refrigerant | coolant circulation pump of the cooler concerning Embodiment 3 of this invention. この発明の実施の形態3に係る冷却器の冷媒循環ポンプの運転中の状態を示す断面図である。It is sectional drawing which shows the state in driving | operation of the refrigerant | coolant circulation pump of the cooler which concerns on Embodiment 3 of this invention. この発明の実施の形態4に係る冷却器に用いられる樹脂成型体を示す側面図である。It is a side view which shows the resin molding used for the cooler which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係る冷却器に用いられる樹脂成型体を示す斜視図である。It is a perspective view which shows the resin molding used for the cooler which concerns on Embodiment 4 of this invention.

以下、本発明の電子部品の冷却器の好適な実施の形態について図面を用いて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of an electronic component cooler according to the invention will be described with reference to the drawings.

実施の形態1.
図1はこの発明の実施の形態1に係る冷却器を示す斜視図、図2はこの発明の実施の形態1に係る冷却器を示す正面図、図3はこの発明の実施の形態1に係る冷却器を示す断面図である。なお、図3中矢印は冷媒の流れを示している。
Embodiment 1 FIG.
1 is a perspective view showing a cooler according to Embodiment 1 of the present invention, FIG. 2 is a front view showing the cooler according to Embodiment 1 of the present invention, and FIG. 3 is according to Embodiment 1 of the present invention. It is sectional drawing which shows a cooler. In addition, the arrow in FIG. 3 has shown the flow of the refrigerant | coolant.

図1から図3において、冷却器1は、上壁部2a、下壁部2bおよび一対の側壁部2cからなる断面矩形の周壁部の他端開口を底板2dにより塞口して有底筒状体に作製され、一端の開口を側方に向けて配設され、下壁部2bの下面を電子部品12の取付面とする本体2と、本体2の底板2dから離間して相対する側壁部2c間に架設されて本体2内を上下に仕切る仕切り板3と、本体2の一端の開口を塞口するように本体2の一端に取り付けられた蓋部材5と、を備えている。これにより、本体2と蓋部材5により構成される空間が底板2d側を除いて仕切り板3により上下に2分され、上部流路4aと下部流路4bを底板2d側の連通流路4cにより連結するU字状の冷媒流路4が形成される。冷却器1は、さらに、蓋部材5に一体に形成され、上部流路4aに冷媒を供給させる冷媒入口ニップル6と、蓋部材5に一体に形成され、下部流路4bを流れた冷媒を排出させる冷媒出口ニップル7と、電子部品12の取付位置の上部に位置するように仕切り板3に形成され、上部流路4aと下部流路4bとを連通する連通穴8と、を備えている。仕切り板3は下壁部2b側に変位して本体2内に設置され、上部流路4aの流路断面積が下部流路4bの流路断面積より大きくなっている。   1 to 3, the cooler 1 has a bottomed cylindrical shape in which the other end opening of a peripheral wall portion having a rectangular cross section composed of an upper wall portion 2a, a lower wall portion 2b and a pair of side wall portions 2c is closed by a bottom plate 2d. The main body 2 which is produced in the body and is disposed with the opening at one end facing sideways, and the lower surface of the lower wall portion 2b is the mounting surface of the electronic component 12, and the side wall portion which is spaced apart from the bottom plate 2d of the main body 2 A partition plate 3 that is installed between 2 c and partitions the inside of the main body 2 up and down, and a lid member 5 that is attached to one end of the main body 2 so as to close an opening at one end of the main body 2. Thereby, the space constituted by the main body 2 and the lid member 5 is vertically divided into two by the partition plate 3 except for the bottom plate 2d side, and the upper flow path 4a and the lower flow path 4b are separated by the communication flow path 4c on the bottom plate 2d side. A U-shaped refrigerant flow path 4 to be connected is formed. The cooler 1 is further formed integrally with the lid member 5 and discharges the refrigerant that is formed integrally with the lid member 5 and the refrigerant inlet nipple 6 that supplies the refrigerant to the upper flow path 4a and flows through the lower flow path 4b. The refrigerant outlet nipple 7 is provided, and the communication plate 8 is formed in the partition plate 3 so as to be positioned above the mounting position of the electronic component 12 and communicates the upper flow path 4a and the lower flow path 4b. The partition plate 3 is displaced to the lower wall portion 2b side and installed in the main body 2, and the channel cross-sectional area of the upper channel 4a is larger than the channel cross-sectional area of the lower channel 4b.

ここで、本体2は、例えば、アルミダイカストにより作製される。しかし、本体2の下壁部2bは、電子部品12で発生した熱を下部流路4bを流れる冷媒に伝達する機能を有することから、アルミなどの良好な熱伝導性材料で作製することが望ましいが、他の部位の材料は特に限定されない。また、本体2は断面矩形に作製されているが、本体2の断面形状は矩形に限定されない。   Here, the main body 2 is produced by, for example, aluminum die casting. However, since the lower wall portion 2b of the main body 2 has a function of transmitting heat generated in the electronic component 12 to the refrigerant flowing through the lower flow path 4b, it is desirable that the lower wall portion 2b be made of a good heat conductive material such as aluminum. However, the material of other parts is not particularly limited. Moreover, although the main body 2 is produced in the cross-sectional rectangle, the cross-sectional shape of the main body 2 is not limited to a rectangle.

また、図示していないが、電気自動車、プラグインハイブリッド自動車などの電動化車両に搭載される車載充電器は、AC/DCコンバータと絶縁型DC/DCコンバータを備え、商用交流電源を用いて主電池を充電する。   Although not shown, an in-vehicle charger mounted on an electric vehicle such as an electric vehicle or a plug-in hybrid vehicle includes an AC / DC converter and an insulated DC / DC converter, and uses a commercial AC power source. Charge the battery.

冷却器1は、本体2の一端の開口を塞口する蓋部材5を側方に向け、上部流路4aおよび下部流路4bの流路方向を略水平として、かつ下壁部2bを鉛直下方に向けて電動化車両に搭載され、車載充電器のトランス、コイル、半導体素子などの発熱素子(電子部品12)が下壁部2bの取付面に取り付けられ、車載充電器の冷却に供せられる。そして、冷却水などの冷媒を、冷媒循環ポンプ(図示せず)により、冷却器1と熱交換器(図示せず)との間を循環させて、車載充電器を冷却する。   The cooler 1 has a lid member 5 that closes an opening at one end of the main body 2 facing sideways, the flow direction of the upper flow path 4a and the lower flow path 4b is substantially horizontal, and the lower wall portion 2b is vertically downward A heating element (electronic component 12) such as a transformer, a coil, or a semiconductor element of an in-vehicle charger is mounted on the mounting surface of the lower wall portion 2b to be used for cooling the in-vehicle charger. . Then, a refrigerant such as cooling water is circulated between the cooler 1 and the heat exchanger (not shown) by a refrigerant circulation pump (not shown) to cool the on-vehicle charger.

つぎに、冷却器1による冷却動作について説明する。まず、冷媒循環ポンプが運転されると、冷媒が冷却器1と熱交換器との間を循環する。そして、冷媒は、熱交換器で熱交換されて温度が下げられて冷却器1に戻される。冷却器1では、冷媒が冷媒入口ニップル6から上部流路4aに流入し、上部流路4a内を連通流路4cまで流れ、連通流路4cで流れ方向を折り返され、下部流路4b内を流れて、冷媒出口ニップル7から排出される。そして、電子部品12で発生した熱は、下壁部2bを介して下部流路4b内を流通する冷媒に伝達され、冷媒とともに冷媒出口ニップル7から排出される。これにより、電子部品12が冷却される。   Next, the cooling operation by the cooler 1 will be described. First, when the refrigerant circulation pump is operated, the refrigerant circulates between the cooler 1 and the heat exchanger. The refrigerant is heat-exchanged by the heat exchanger, the temperature is lowered, and the refrigerant is returned to the cooler 1. In the cooler 1, the refrigerant flows from the refrigerant inlet nipple 6 into the upper flow path 4a, flows in the upper flow path 4a to the communication flow path 4c, is turned back in the communication flow path 4c, and passes through the lower flow path 4b. It flows and is discharged from the refrigerant outlet nipple 7. The heat generated in the electronic component 12 is transmitted to the refrigerant flowing through the lower flow path 4b via the lower wall portion 2b, and is discharged from the refrigerant outlet nipple 7 together with the refrigerant. Thereby, the electronic component 12 is cooled.

冷媒循環ポンプの運転が停止すると、冷却器1と熱交換器との間の冷媒の循環が停止する。電子部品12で発生した熱は、下壁部2bを介して下部流路4b内に滞留する冷媒に伝達される。そして、下壁部2bの上部に滞留する冷媒が暖められて上昇し、電子部品12の上方に位置する連通穴8を通って上部流路4a内に流入する。上部流路4a内に流入した冷媒は、上部流路4a内の冷媒と熱交換して冷やされ、連通穴8を通って下部流路4b内を下壁部2bの近傍まで下降し、電子部品12で発生した熱の吸熱に供せられる。このように、下部流路4bの下壁部2b近傍で暖められて上昇し、連通穴8から上部流路4a内に流入し、上部流路4a内で冷やされて下降し、連通穴8から下部流路4b内に流入し、下部流路4bの下壁部2b近傍に戻る冷媒の対流が発生する。これにより、電子部品12で発生した熱は、下部流路4b内に滞留している冷媒のみに蓄熱されず、上部流路4aと下部流路4bの両方の冷媒に拡散されるので、冷媒の温度上昇が緩慢な温度上昇となる。   When the operation of the refrigerant circulation pump is stopped, the circulation of the refrigerant between the cooler 1 and the heat exchanger is stopped. The heat generated in the electronic component 12 is transferred to the refrigerant staying in the lower flow path 4b through the lower wall portion 2b. Then, the refrigerant staying at the upper portion of the lower wall portion 2b is warmed and rises, and flows into the upper flow path 4a through the communication hole 8 positioned above the electronic component 12. The refrigerant that has flowed into the upper flow path 4a is cooled by exchanging heat with the refrigerant in the upper flow path 4a, passes through the communication holes 8, and descends in the lower flow path 4b to the vicinity of the lower wall portion 2b. 12 is used for endothermic heat generated at 12. In this way, it is heated and raised in the vicinity of the lower wall portion 2b of the lower flow path 4b, flows into the upper flow path 4a from the communication hole 8, is cooled down in the upper flow path 4a, and descends from the communication hole 8. A refrigerant convection flows into the lower flow path 4b and returns to the vicinity of the lower wall 2b of the lower flow path 4b. Thereby, the heat generated in the electronic component 12 is not stored only in the refrigerant staying in the lower flow path 4b, but is diffused to both the upper flow path 4a and the lower flow path 4b. The temperature rise is slow.

このように、この実施の形態1によれば、冷媒循環ポンプが運転中は、熱交換器により冷やされた冷媒が冷却器1に供給されるので、良好な冷却性能が維持される。また、冷媒循環ポンプの運転停止中は、冷媒の温度上昇が緩慢な温度上昇となるので、冷媒循環ポンプの運転停止の時間を長くでき、間欠運転する冷媒循環ポンプの長寿命化が図られる。さらには、冷媒循環ポンプが消費する電力が少なくなり、充電時間の短縮が図られる。   Thus, according to the first embodiment, while the refrigerant circulation pump is in operation, the refrigerant cooled by the heat exchanger is supplied to the cooler 1, so that good cooling performance is maintained. Further, since the temperature rise of the refrigerant becomes a slow temperature increase during the operation of the refrigerant circulation pump, the operation stop time of the refrigerant circulation pump can be extended, and the life of the refrigerant circulation pump that operates intermittently can be extended. Furthermore, the power consumed by the refrigerant circulation pump is reduced, and the charging time can be shortened.

また、上部流路4aの流路断面積が下部流路4bの流路断面積より大きくなるように、仕切り板3が本体2内に配設されている。そこで、上部流路4a内の冷媒の流速が遅くなり、圧損を小さくできる。一方、下部流路4b内の冷媒の流速が速くなるので、熱伝達率が高くなり、下壁部2bに取り付けられた電子部品12を良好に冷却できる。   Further, the partition plate 3 is disposed in the main body 2 so that the cross-sectional area of the upper flow path 4a is larger than the cross-sectional area of the lower flow path 4b. Therefore, the flow rate of the refrigerant in the upper flow path 4a becomes slow, and the pressure loss can be reduced. On the other hand, since the flow rate of the refrigerant in the lower flow path 4b is increased, the heat transfer coefficient is increased, and the electronic component 12 attached to the lower wall 2b can be cooled well.

実施の形態2.
図4はこの発明の実施の形態2に係る冷却器を示す断面図である。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing a cooler according to Embodiment 2 of the present invention.

図4において、カバー9が、それぞれ、上部流路4aの下流側に開口する開口部9aを有し、連通穴8を覆うように仕切り板3の上面に取り付けられている。
なお、他の構成は上記実施の形態1と同様に構成されている。
In FIG. 4, each cover 9 has an opening 9 a that opens to the downstream side of the upper flow path 4 a, and is attached to the upper surface of the partition plate 3 so as to cover the communication hole 8.
Other configurations are the same as those in the first embodiment.

この実施の形態2では、冷媒循環ポンプの運転時には、冷媒が冷媒入口ニップル6から上部流路4aに流入し、上部流路4a内を連通流路4cまで流れ、連通流路4cで流れ方向を折り返され、下部流路4b内を流れて、冷媒出口ニップル7から排出される。そして、電子部品12で発生した熱は、下壁部2bを介して下部流路4b内を流通する冷媒に伝達され、冷媒とともに冷媒出口ニップル7から排出される。これにより、電子部品12が冷却される。   In the second embodiment, during operation of the refrigerant circulation pump, the refrigerant flows from the refrigerant inlet nipple 6 into the upper flow path 4a, flows in the upper flow path 4a to the communication flow path 4c, and the flow direction in the communication flow path 4c is changed. It is folded, flows in the lower flow path 4b, and is discharged from the refrigerant outlet nipple 7. The heat generated in the electronic component 12 is transmitted to the refrigerant flowing through the lower flow path 4b via the lower wall portion 2b, and is discharged from the refrigerant outlet nipple 7 together with the refrigerant. Thereby, the electronic component 12 is cooled.

冷媒循環ポンプの運転停止時には、下壁部2bの上部に滞留する冷媒が電子部品12で発生した熱により暖められて上昇し、電子部品12の上方に位置する連通穴8を通り、カバー9の開口部9aから上部流路4a内に流入する。そして、上部流路4a内に流入した冷媒は、上部流路4a内で冷やされて下降し、カバー9の開口部9aを通って連通穴8から下部流路4b内に流入し、下部流路4bの下壁部2b近傍に戻る。これにより、電子部品12で発生した熱は、上部流路4aと下部流路4bの両方の冷媒に拡散され、冷媒の温度上昇が緩慢な温度上昇となる。   When the operation of the refrigerant circulation pump is stopped, the refrigerant staying at the upper part of the lower wall 2b is heated and raised by the heat generated in the electronic component 12, passes through the communication hole 8 located above the electronic component 12, and passes through the cover 9 It flows into the upper flow path 4a from the opening 9a. The refrigerant flowing into the upper flow path 4a is cooled and lowered in the upper flow path 4a, flows into the lower flow path 4b from the communication hole 8 through the opening 9a of the cover 9, and then flows into the lower flow path. Return to the vicinity of the lower wall 2b of 4b. Thereby, the heat generated in the electronic component 12 is diffused in the refrigerant in both the upper flow path 4a and the lower flow path 4b, and the temperature rise of the refrigerant becomes a slow temperature rise.

したがって、この実施の形態2による冷却器1Aにおいても、上記実施の形態1と同様の効果が得られる。   Therefore, also in the cooler 1A according to the second embodiment, the same effect as in the first embodiment can be obtained.

ここで、実施の形態1による冷却器1では、上部流路4aの流路断面積が下部流路4bの流路断面積より大きくなっている。そこで、上部流路4a内を流れる冷媒の流速が遅く、上部流路4a内の静圧が高くなる。一方、下部流路4b内を流れる冷媒の流速が速く、下部流路4b内の静圧が低くなる。この上部流路4a内と下部流路4b内での静圧の差により、冷媒が上部流路4aから連通流路4cを通らずに連通穴8を通って下部流路4b内に流入してしまう。これにより、下部流路4bを流れる冷媒の流量が減少し、冷却性能が低下するおそれがある。   Here, in the cooler 1 according to Embodiment 1, the channel cross-sectional area of the upper channel 4a is larger than the channel cross-sectional area of the lower channel 4b. Therefore, the flow rate of the refrigerant flowing in the upper flow path 4a is slow, and the static pressure in the upper flow path 4a is increased. On the other hand, the flow rate of the refrigerant flowing in the lower flow path 4b is fast, and the static pressure in the lower flow path 4b is lowered. Due to the difference in static pressure between the upper channel 4a and the lower channel 4b, the refrigerant flows from the upper channel 4a through the communication hole 8 into the lower channel 4b without passing through the communication channel 4c. End up. Thereby, the flow volume of the refrigerant | coolant which flows through the lower flow path 4b reduces, and there exists a possibility that cooling performance may fall.

この実施の形態2による冷却器1Aでは、上部流路4aの流路断面積が下部流路4bの流路断面積より大きくなっているが、上部流路4a内を流れる冷媒のうち、カバー9の周囲を流れる冷媒はカバー9を迂回して流れるので、冷媒の流速が速くなり、静圧が低くなる。そこで、上部流路4a内と下部流路4b内での静圧の差に起因して、冷媒が上部流路4aから連通穴8を通って下部流路4b内に流入することが抑えられる。これにより、下部流路4bを流れる冷媒の流量が確保され、良好な冷却性能を維持することができる。   In the cooler 1A according to the second embodiment, the flow passage cross-sectional area of the upper flow passage 4a is larger than the flow passage cross-sectional area of the lower flow passage 4b. Of the refrigerant flowing in the upper flow passage 4a, the cover 9 Since the refrigerant flowing around the refrigerant flows around the cover 9, the flow rate of the refrigerant increases and the static pressure decreases. Therefore, it is possible to prevent the refrigerant from flowing from the upper flow path 4a through the communication hole 8 into the lower flow path 4b due to the difference in static pressure between the upper flow path 4a and the lower flow path 4b. Thereby, the flow volume of the refrigerant | coolant which flows through the lower flow path 4b is ensured, and favorable cooling performance can be maintained.

実施の形態3.
図5はこの発明の実施の形態3に係る冷却器の冷媒循環ポンプの運転停止中の状態を示す断面図、図6はこの発明の実施の形態3に係る冷却器の冷媒循環ポンプの運転中の状態を示す断面図である。なお、図6中矢印は冷媒の流れを示している。
Embodiment 3 FIG.
FIG. 5 is a sectional view showing a state in which the operation of the refrigerant circulation pump of the cooler according to Embodiment 3 of the present invention is stopped, and FIG. 6 is during operation of the refrigerant circulation pump of the cooler according to Embodiment 3 of the present invention. It is sectional drawing which shows this state. In addition, the arrow in FIG. 6 has shown the flow of the refrigerant | coolant.

図5および図6において、カバー10は、それぞれ、弾性部材である板ばねの薄板で作製され、端部を仕切り板3の上面の連通穴8の上流側に固着されて、連通穴8を開閉可能に配設されている。すなわち、カバー10は、上部流路4a内の冷媒の流れにより、変形して連通穴8を閉塞し、上部流路4a内の冷媒の流れがなくなると、復元して連通穴8を開放する。
なお、他の構成は上記実施の形態1と同様に構成されている。
5 and 6, the cover 10 is made of a thin plate of a leaf spring that is an elastic member, and its end is fixed to the upstream side of the communication hole 8 on the upper surface of the partition plate 3 to open and close the communication hole 8. It is arranged to be possible. That is, the cover 10 is deformed by the flow of the refrigerant in the upper flow path 4a and closes the communication hole 8, and when the flow of the refrigerant in the upper flow path 4a disappears, the cover 10 is restored and the communication hole 8 is opened.
Other configurations are the same as those in the first embodiment.

この実施の形態3による冷却器1Bでは、冷媒循環ポンプが運転中であると、図6に示されるように、上部流路4a内の冷媒の流れにより、カバー10が変形して連通穴8を閉塞する。そこで、上部流路4a内と下部流路4b内での静圧の差に起因して、冷媒が上部流路4aから連通穴8を通って下部流路4b内に流入することが阻止される。これにより、下部流路4bを流れる冷媒の流量が確保され、良好な冷却性能が維持される。   In the cooler 1B according to the third embodiment, when the refrigerant circulation pump is in operation, the cover 10 is deformed by the flow of the refrigerant in the upper flow path 4a and the communication hole 8 is opened as shown in FIG. Block. Therefore, the refrigerant is prevented from flowing into the lower flow path 4b from the upper flow path 4a through the communication hole 8 due to a difference in static pressure between the upper flow path 4a and the lower flow path 4b. . Thereby, the flow volume of the refrigerant | coolant which flows through the lower flow path 4b is ensured, and favorable cooling performance is maintained.

また、冷媒循環ポンプの運転停止中では、図5に示されるように、カバー10が復元して連通穴8を開放し、開口面積を増大する。これにより、電子部品12で発生した熱により暖められて上昇し、連通穴8から上部流路4aに流入し、上部流路4a内で冷やされて連通穴8から下部流路4bに流入し、下部流路4b内を下降する冷媒の対流が維持され、冷媒の緩慢な温度上昇が維持される。   Further, when the operation of the refrigerant circulation pump is stopped, as shown in FIG. 5, the cover 10 is restored to open the communication hole 8 to increase the opening area. Thereby, it is heated and raised by the heat generated in the electronic component 12, flows into the upper flow path 4a from the communication hole 8, is cooled in the upper flow path 4a, flows into the lower flow path 4b from the communication hole 8, The convection of the refrigerant descending in the lower flow path 4b is maintained, and the slow temperature rise of the refrigerant is maintained.

なお、上記実施の形態3では、カバー10が上部流路4a内の冷媒の流れにより変形して連通穴8を閉塞しているが、カバー10は、連通穴8を閉塞する必要はなく、連通穴8の開口面積を縮小して、上部流路4a側から下部流路4bへの冷媒の流入を抑制できればよい。   In the third embodiment, the cover 10 is deformed by the flow of the refrigerant in the upper flow path 4a and closes the communication hole 8, but the cover 10 does not need to close the communication hole 8, It is only necessary to reduce the opening area of the hole 8 and to suppress the inflow of the refrigerant from the upper flow path 4a side to the lower flow path 4b.

また、上記実施の形態3では、カバー10を板ばねの薄板で作製し、カバー10の弾性変形により連通穴8を開閉しているが、カバーを薄板で作製し、カバーの端部を、仕切り板3の上面に平行、かつ上部流路4aの流路方向と直交する軸周りに回動可能に仕切り板3の上面に取り付け、連通穴8を開閉可能に配設してもよい。この場合、冷媒循環ポンプの運転中では、上部流路4a内の冷媒の流れにより、カバーに力がかかり、カバーが回動して連通穴8を閉塞、あるいは連通穴8の開口面積を縮小し、上部流路4aから連通穴8を通って下部流路4b内に流れる冷媒の移動を阻止、或いは抑制できる。また、冷媒循環ポンプの運停止転中では、電子部品12で発生した熱で暖められた冷媒の上昇気流により、カバーが回動して連通穴8を開放する。そこで、電子部品12で発生した熱により暖められて上昇し、連通穴8から上部流路4aに流入し、上部流路4a内で冷やされて連通穴8から下部流路4bに流入し、下部流路4b内を下降する冷媒の対流が維持される。   In the third embodiment, the cover 10 is made of a thin plate of a leaf spring, and the communication hole 8 is opened and closed by elastic deformation of the cover 10, but the cover is made of a thin plate and the end of the cover is partitioned. The communication hole 8 may be arranged to be openable and closable by being attached to the upper surface of the partition plate 3 so as to be rotatable around an axis parallel to the upper surface of the plate 3 and orthogonal to the flow direction of the upper flow channel 4a. In this case, during operation of the refrigerant circulation pump, a force is applied to the cover by the flow of the refrigerant in the upper flow path 4a, and the cover rotates to close the communication hole 8 or reduce the opening area of the communication hole 8. The movement of the refrigerant flowing from the upper flow path 4a through the communication hole 8 into the lower flow path 4b can be prevented or suppressed. Further, during the operation stoppage of the refrigerant circulation pump, the cover is rotated by the rising airflow of the refrigerant heated by the heat generated in the electronic component 12 to open the communication hole 8. Therefore, it is heated and raised by the heat generated in the electronic component 12, flows into the upper flow path 4a from the communication hole 8, is cooled in the upper flow path 4a, flows into the lower flow path 4b from the communication hole 8, and The convection of the refrigerant descending in the flow path 4b is maintained.

なお、上記実施の形態1〜3では、本体および蓋部材が別部材で構成されているが、本体、仕切り板および蓋部材を例えば樹脂成型体により一体に構成し、冷媒入口ニップルを上部流路に接続するように樹脂成型体に取り付け、冷媒出口ニップルを下部流路に接続するように樹脂成型体に取り付けてもよい。また、冷媒入口ニップル、冷媒出口ニップルに替えて、流体継ぎ手、流体カプラを用いてもよい。   In the first to third embodiments, the main body and the lid member are formed as separate members. However, the main body, the partition plate, and the lid member are integrally formed of, for example, a resin molded body, and the refrigerant inlet nipple is used as the upper flow path. It may be attached to the resin molded body so as to be connected to the resin molded body, and may be attached to the resin molded body so as to connect the refrigerant outlet nipple to the lower flow path. Further, instead of the refrigerant inlet nipple and the refrigerant outlet nipple, a fluid joint or a fluid coupler may be used.

実施の形態4.
図7はこの発明の実施の形態4に係る冷却器に用いられる樹脂成型体を示す側面図、図8はこの発明の実施の形態4に係る冷却器に用いられる樹脂成型体を示す斜視図である。
Embodiment 4 FIG.
7 is a side view showing a resin molded body used in a cooler according to Embodiment 4 of the present invention, and FIG. 8 is a perspective view showing a resin molded body used in the cooler according to Embodiment 4 of the present invention. is there.

図7および図8において、樹脂成型体11は、例えばポリフェニレンサルファイド(PPS)樹脂を用いて、仕切り板3、カバー9、蓋部材5、冷媒入口ニップル6および冷媒出口ニップル7を一体にモールド成形して構成されている。   7 and 8, the resin molded body 11 is formed by integrally molding the partition plate 3, the cover 9, the lid member 5, the refrigerant inlet nipple 6 and the refrigerant outlet nipple 7 using, for example, polyphenylene sulfide (PPS) resin. Configured.

この実施の形態4では、仕切り板3を本体2(図示せず)内に差し入れ、蓋部材5を本体2の開口を塞口するように固着して、樹脂成型体11を本体2に取り付け、冷却器を構成する。したがって、冷却器を構成する部品点数が削減され、コストダウンを図ることができる。   In the fourth embodiment, the partition plate 3 is inserted into the main body 2 (not shown), the lid member 5 is fixed so as to close the opening of the main body 2, and the resin molded body 11 is attached to the main body 2. Configure the cooler. Therefore, the number of parts constituting the cooler is reduced, and the cost can be reduced.

なお、上記各実施の形態では、冷却器を車載充電器の冷却に適用するものとしているが、本冷却器は車載充電器の冷却に限定されず、例えば車両用回転電機と主電池との間に配置されて、交流を直流に変換する、或いは交流を直流に変換する電力変換器の冷却に適用してもよい。   In each of the above embodiments, the cooler is applied to the cooling of the in-vehicle charger. However, the present cooler is not limited to the cooling of the in-vehicle charger, for example, between the rotating electrical machine for the vehicle and the main battery. And may be applied to cooling of a power converter that converts alternating current to direct current or converts alternating current to direct current.

1,1A,1B 冷却器、2 本体、2b 下板、2d 底板、3 仕切り板、4a 上部流路、4b 下部流路、4c 連通流路、5 蓋部材、6 冷媒入口ニップル、7 冷媒出口ニップル、8 連通穴、9 カバー、9a 開口部、10 カバー、11 樹脂成型体、12 電子部品。   1, 1A, 1B Cooler, 2 Main body, 2b Lower plate, 2d Bottom plate, 3 Partition plate, 4a Upper flow path, 4b Lower flow path, 4c Communication flow path, 5 Lid member, 6 Refrigerant inlet nipple, 7 Refrigerant outlet nipple , 8 communication holes, 9 cover, 9a opening, 10 cover, 11 resin molding, 12 electronic component.

Claims (7)

筒状の周壁部および上記周壁部の他端開口を塞口する底板を有する有底筒状体に作製され、一端の開口を側方に向けて配設され、上記周壁部の下側に位置する下壁部の外面を電子部品の取付面とする本体と、
上記本体内に配設され、上部流路、上記上部流路の下方に位置する下部流路および上記上部流路と上記下部流路を上記底板側で連通する連通流路を形成する仕切り板と、を備え、冷媒を上記上部流路に間欠的に供給して上記電子部品を冷却する電子部品の冷却器において、
連通穴が、上記電子部品の上方位置で、上記上部流路と上記下部流路とを連通するように上記仕切り板に形成されていることを特徴とする電子部品の冷却器。
It is produced in a bottomed cylindrical body having a cylindrical peripheral wall portion and a bottom plate that closes the other end opening of the peripheral wall portion, and is disposed with the opening at one end facing sideways, and is positioned below the peripheral wall portion. A main body having the outer surface of the lower wall portion to be mounted as an electronic component mounting surface;
A partition plate disposed in the main body and forming an upper channel, a lower channel positioned below the upper channel, and a communication channel that connects the upper channel and the lower channel on the bottom plate side; the equipped, in the cooler of the electronic component for cooling the electronic components to intermittently supplied to the upper SL upper flow path of the refrigerant,
An electronic component cooler, wherein a communication hole is formed in the partition plate so as to communicate the upper flow path and the lower flow path at a position above the electronic component.
上記上部流路の流路断面積が、上記下部流路の流路断面積より大きくなっていることを特徴とする請求項1記載の電子部品の冷却器。   2. The electronic component cooler according to claim 1, wherein a flow passage cross-sectional area of the upper flow passage is larger than a flow passage cross-sectional area of the lower flow passage. カバーが、下流側に開口を有し、上記連通穴を覆うように上記仕切り板の上面に形成されていることを特徴とする請求項1又は請求項2記載の電子部品の冷却器。   The electronic component cooler according to claim 1, wherein the cover has an opening on the downstream side and is formed on an upper surface of the partition plate so as to cover the communication hole. カバーが、一端を上記仕切り板の上面の上記連通穴の上流側に取り付けられ、上記冷媒の上記上部流路への供給時には、上記連通穴を閉塞、あるいは上記連通穴の開口面積を縮小し、上記冷媒の上記上部流路への供給停止時には、上記連通穴を開放するように構成されていることを特徴とする請求項1又は請求項2記載の電子部品の冷却器。   The cover is attached at one end to the upstream side of the communication hole on the upper surface of the partition plate, and when the refrigerant is supplied to the upper flow path, the communication hole is closed, or the opening area of the communication hole is reduced, 3. The electronic component cooler according to claim 1, wherein the communication hole is configured to open when the supply of the refrigerant to the upper flow path is stopped. 上記カバーが、弾性部材により作製され、上記冷媒の上記上部流路への供給時には、上記上部流路を流通する上記冷媒の流れにより変形して上記連通穴を閉塞、あるいは上記連通穴の開口面積を縮小し、上記冷媒の上記上部流路への供給停止時には、復元して上記連通穴を開放することを特徴とする請求項4記載の電子部品の冷却器。   The cover is made of an elastic member, and when the refrigerant is supplied to the upper flow path, the cover is deformed by the flow of the refrigerant flowing through the upper flow path to block the communication hole, or the opening area of the communication hole The electronic component cooler according to claim 4, wherein when the supply of the refrigerant to the upper flow path is stopped, the communication hole is restored and the communication hole is opened. 上記本体の一端開口を塞口するように上記本体に取り付けられた蓋部材と、
上記蓋部材に形成されて上記上部流路に冷媒を供給するための冷媒入口ニップルと、
上記蓋部材に形成されて上記下部流路を流れた上記冷媒を排出するための冷媒出口リップルと、を備え、
上記仕切り板、上記蓋部材、上記冷媒入口ニップルおよび上記冷媒出口ニップルが、樹脂成型により一体に構成されていることを特徴とする請求項1から請求項5のいずれか1項に記載の電子部品の冷却器。
A lid member attached to the main body so as to close one end opening of the main body;
A refrigerant inlet nipple formed in the lid member for supplying a refrigerant to the upper flow path;
A refrigerant outlet ripple for discharging the refrigerant formed in the lid member and flowing through the lower flow path,
The electronic component according to any one of claims 1 to 5, wherein the partition plate, the lid member, the refrigerant inlet nipple, and the refrigerant outlet nipple are integrally formed by resin molding. Cooler.
上記電子部品が、電動化車両に搭載される車載充電器の電子部品であることを特徴とする請求項1から請求項6のいずれか1項に記載の電子部品の冷却器。   The electronic component cooler according to any one of claims 1 to 6, wherein the electronic component is an electronic component of an in-vehicle charger mounted on an electric vehicle.
JP2013100004A 2013-05-10 2013-05-10 Electronic component cooler Active JP5777658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013100004A JP5777658B2 (en) 2013-05-10 2013-05-10 Electronic component cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013100004A JP5777658B2 (en) 2013-05-10 2013-05-10 Electronic component cooler

Publications (2)

Publication Number Publication Date
JP2014220452A JP2014220452A (en) 2014-11-20
JP5777658B2 true JP5777658B2 (en) 2015-09-09

Family

ID=51938626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013100004A Active JP5777658B2 (en) 2013-05-10 2013-05-10 Electronic component cooler

Country Status (1)

Country Link
JP (1) JP5777658B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6201942B2 (en) * 2014-09-17 2017-09-27 トヨタ自動車株式会社 Cooler
JP6915463B2 (en) * 2017-09-01 2021-08-04 トヨタ自動車株式会社 Cooler
JP7091103B2 (en) * 2018-03-23 2022-06-27 昭和電工株式会社 Cooling system
JP2020088180A (en) * 2018-11-27 2020-06-04 三菱自動車工業株式会社 Cooling structure and electric vehicle
JP7379958B2 (en) 2019-09-03 2023-11-15 株式会社デンソー power converter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3780953B2 (en) * 2002-01-31 2006-05-31 株式会社日立製作所 Electronic circuit device with cooling device
JP2005079175A (en) * 2003-08-28 2005-03-24 Toshiba Corp Heat dissipating device
JP4881583B2 (en) * 2005-06-27 2012-02-22 株式会社豊田自動織機 Power module heat sink
JP2007035901A (en) * 2005-07-27 2007-02-08 Matsushita Electric Ind Co Ltd Heat receiver and cooling device equipped with it
JP2007115940A (en) * 2005-10-21 2007-05-10 Fuji Electric Holdings Co Ltd Thermal dissipation plate
JP5084527B2 (en) * 2008-01-23 2012-11-28 三菱電機株式会社 Heat sink and electrical equipment
JP2010278130A (en) * 2009-05-27 2010-12-09 Toyota Motor Corp Cooling device for power device, and fuel cell system
JP5455503B2 (en) * 2009-08-11 2014-03-26 モレックス インコーポレイテド Heat transport unit, electronic equipment
JP2011210776A (en) * 2010-03-29 2011-10-20 Sunarrow Ltd Liquid cooling type cooling device
JP2013084800A (en) * 2011-10-11 2013-05-09 Panasonic Corp Power conversion device

Also Published As

Publication number Publication date
JP2014220452A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5777658B2 (en) Electronic component cooler
JP5024600B2 (en) Heating element cooling structure and driving device having the structure
KR101275186B1 (en) Inverter apparatus and electric vehicle having the same
JP4325721B2 (en) Temperature control mechanism
JP5664878B2 (en) Inverter cooling structure
JP6312114B1 (en) Rotating electric machine for vehicles
KR101647912B1 (en) Device for electrically heating fluid for a motor vehicle, and related heating and/or air-conditioning apparatus
US10773568B2 (en) Fluid-heating device
WO2007094491A1 (en) Capacitor device
JP2012218557A (en) Heat medium heating device, and vehicle air conditioner equipped with the same
JP2017097986A (en) Battery cooling structure
KR102587588B1 (en) Coolant heater
JP2006339229A (en) Casing suitable for cooling of electronic component
JP5701335B2 (en) Power converter
JP6809096B2 (en) Power converter
JP6737138B2 (en) Power supply device and power supply system
JP6733405B2 (en) Electric vehicle cooling structure
JP2012131331A (en) Vehicle heating apparatus
KR102011670B1 (en) Heater for vehicle
JP2013154689A (en) Equipment for railroad vehicle
JP6845089B2 (en) Semiconductor device cooling device
KR20160089113A (en) Induction heater for vehicle
KR20200126605A (en) Power converter housing for electric vehicle or hybrid vehicle
JP2019187122A (en) Inverter and electric vehicle
JP6438452B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150707

R150 Certificate of patent or registration of utility model

Ref document number: 5777658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250