JP5775654B2 - Fine powder sand for concrete and method for producing the same - Google Patents

Fine powder sand for concrete and method for producing the same Download PDF

Info

Publication number
JP5775654B2
JP5775654B2 JP2008275904A JP2008275904A JP5775654B2 JP 5775654 B2 JP5775654 B2 JP 5775654B2 JP 2008275904 A JP2008275904 A JP 2008275904A JP 2008275904 A JP2008275904 A JP 2008275904A JP 5775654 B2 JP5775654 B2 JP 5775654B2
Authority
JP
Japan
Prior art keywords
sand
concrete
fine
particle size
fine sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008275904A
Other languages
Japanese (ja)
Other versions
JP2010100504A (en
Inventor
松永 篤
篤 松永
正治 加来
正治 加来
三上 浩
浩 三上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008275904A priority Critical patent/JP5775654B2/en
Publication of JP2010100504A publication Critical patent/JP2010100504A/en
Application granted granted Critical
Publication of JP5775654B2 publication Critical patent/JP5775654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Grinding (AREA)

Description

本発明は、コンクリート細骨材の一部として使用しても、流動性や圧縮強さが低下しないコンクリート用微粉砂及びその製造方法に関するものである。   The present invention relates to a fine sand for concrete and a method for producing the same, in which fluidity and compressive strength do not decrease even when used as part of a concrete fine aggregate.

近年、良質なコンクリート用骨材である川砂の枯欠に伴い、砕砂製造装置を用いて山砂、海砂等を破砕することより、コンクリート用砕砂を得る方法が一般的となってきている(例えば、特許文献1等)。しかしながら、この砕砂製造装置を用いる方法では、粉砕工程で発生する微粉砕砂を含んだ泥水の処理に苦慮し、土等を混ぜて粘度を調整して原料砕石採掘場所に埋め戻すなどの処理を施す必要があった。この埋戻し処理を行なわない方法として、微粉砕砂を含んだ泥水を法面緑化工法における植物生育材の原料として使用する方法が開示されている(例えば、特許文献2等)。   In recent years, with the dryness of river sand, which is a good aggregate for concrete, a method for obtaining crushed sand for concrete by crushing mountain sand, sea sand, etc. using a crushed sand production apparatus has become common ( For example, Patent Document 1). However, in the method using the crushed sand production apparatus, it is difficult to treat the muddy water containing fine crushed sand generated in the pulverization process, the soil is mixed, the viscosity is adjusted, and the process is performed such as backfilling in the raw crushed stone mining site. There was a need. As a method for not performing this backfilling treatment, a method is disclosed in which mud water containing finely pulverized sand is used as a raw material for plant growth material in the slope planting method (for example, Patent Document 2).

特開平2−102748号公報Japanese Patent Laid-Open No. 2-102748 特開2006−132186号公報JP 2006-132186 A

しかしながら、この微粉砕砂を含んだ泥水を法面緑化工法における植物生育材の原料として使用する方法では、法面緑化工事の需要量と、泥水発生量が合致すれば良いが、合致しないケースが多く、処理出来ない泥水は結局、埋め戻し処理されることになる。そこで、本発明は、砕砂製造装置を用いる方法を使用した場合に、微粉砕砂を含んだ泥水の処理を有効活用するコンクリート用微粉砂及びその製造方法を提供することを目的とする。   However, in the method of using muddy water containing finely pulverized sand as a raw material for plant growth materials in the slope revegetation method, it is sufficient that the demand for slope revegetation construction matches the amount of muddy water generated, but there are many cases where they do not match. The muddy water that cannot be treated will eventually be backfilled. Then, when using the method using a crushed sand manufacturing apparatus, this invention aims at providing the fine powder sand for concrete which uses effectively the process of the muddy water containing fine pulverized sand, and its manufacturing method.

本発明者等は、上記課題を解決するために鋭意検討した結果、処理に苦慮している微粉砕砂の平均粒子径、粒度分布等の特性を調整しコンクリート用細骨材として使用することにより、上記課題を解決することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have adjusted the characteristics such as the average particle size and particle size distribution of finely pulverized sand that is difficult to treat, and used it as a fine aggregate for concrete. The present inventors have found that the above problems can be solved and have completed the present invention.

即ち、本発明は、平均粒子径が30〜80μmであるコンクリート用微粉砂に関する。
また、本発明は、n値が2.0〜5.0であるコンクリート用微粉砂に関する。
また、本発明は、原料砂と水とを粉砕媒体が収容された円筒状ドラムに供給し、該円筒状ドラムを回転させることにより原料砂を粉砕・研磨し砕砂を得る工程と、砕砂を分級し、分級された微粉を回収し、上記のコンクリート用微粉砂を得る工程とを含むコンクリート用微粉砂の製造方法に関する。
That is, this invention relates to the fine powder sand for concrete whose average particle diameter is 30-80 micrometers.
Moreover, this invention relates to the fine sand for concrete whose n value is 2.0-5.0.
The present invention also includes a step of supplying raw material sand and water to a cylindrical drum containing a pulverizing medium, rotating the cylindrical drum to pulverize and polish the raw material sand to obtain crushed sand, and classifying the crushed sand. And collecting the classified fine powder to obtain the fine powder sand for concrete, and a method for producing the fine powder sand for concrete.

本発明のコンクリート用微粉砂は、処理に苦慮している微粉砕砂の粒子径、粒度分布等の特性を調整しコンクリート用細骨材として利用することにより、従来の良質な細骨材、例えば石灰石骨材と比較しても流動性や圧縮強さの面で遜色の少ないコンクリートを得ることが出来る。   The fine sand for concrete according to the present invention is used as a fine aggregate for concrete by adjusting characteristics such as particle size and particle size distribution of finely pulverized sand, which is difficult to treat, so that it can be used in conventional fine aggregate such as limestone. Compared to aggregates, it is possible to obtain concrete that is less inferior in terms of fluidity and compressive strength.

以下、本発明に係るコンクリート用微粉砂およびその製造方法の好適な実施形態について詳細に説明する。   Hereinafter, preferred embodiments of the fine sand for concrete according to the present invention and the production method thereof will be described in detail.

<コンクリート用微粉砂>
本発明のコンクリート用微粉砂は、コンクリートの流動性、材料分離抵抗性向上のために一般に石灰石微粉末が用いるのと同じ用途で使用出来る。具体的には細骨材の一部として使用する。
<Fine sand for concrete>
The fine sand for concrete of the present invention can be used for the same use as that of limestone fine powder generally used for improving the fluidity and material separation resistance of concrete. Specifically, it is used as a part of fine aggregate.

コンクリート用微粉砂の平均粒子径は30〜80μm、好ましくは35〜75μm、更に好ましくは40〜70μm、特に好ましくは45〜66μmである。これらの範囲内であれば、コンクリートの微粉砂として使用した場合に、材料分離が起こらず、流動性も良好で、強度も十分に得られる。   The fine particle sand for concrete has an average particle size of 30 to 80 μm, preferably 35 to 75 μm, more preferably 40 to 70 μm, and particularly preferably 45 to 66 μm. Within these ranges, material separation does not occur, fluidity is good, and sufficient strength is obtained when used as fine sand for concrete.

コンクリート用微粉砂のn値は2.0〜5.0、好ましくは2.5〜4.5、更に好ましくは3.0〜4.0、特に好ましくは3.5〜3.9である。このn値は「粉体工学会編、粉体工学便覧、初版、日刊工業新聞社、昭和61年2月28日、p7−11」に記載のRosin−Rammler線図におけるn値であり粒度分布を示す指標である。これらの範囲内であれば、コンクリートの微粉砂として使用した場合に、材料分離が起こらず、流動性も良好で、強度も十分に得られる。   The n value of the fine sand for concrete is 2.0 to 5.0, preferably 2.5 to 4.5, more preferably 3.0 to 4.0, and particularly preferably 3.5 to 3.9. This n value is the n value in the Rosin-Rammler diagram described in “Powder Engineering Society, edited by Powder Engineering Handbook, First Edition, Nikkan Kogyo Shimbun, February 28, 1986, p7-11”. It is an index showing. Within these ranges, material separation does not occur, fluidity is good, and sufficient strength is obtained when used as fine sand for concrete.

コンクリート用微粉砂のBET比表面積は3〜9m/g、好ましくは4〜8m/g、更に好ましくは5〜7m/gである。
ゆるみ見掛け密度は0.85〜1.10g/cm、好ましくは0.90〜1.00g/cmm、更に好ましくは0.92〜0.98g/cmである。
分散度は36.0〜40.0%、好ましくは36.5〜39.0%、更に好ましくは36.8〜38.0%である。
ブレーン比表面積は500〜3000cm/g、好ましくは800〜2000cm/g、更に好ましくは1000〜1500cm/gである。
密度は1.5〜3.5g/cm、好ましくは2.0〜3.0g/cm、更に好ましくは2.5〜2.8g/cmである。
BET比表面積、ゆるみ見掛け密度、分散度、ブレーン比表面積、密度が上記範囲内であれば、コンクリートの微粉砂として使用した場合に、材料分離が起こらず、流動性も良好で、強度も十分に得られる。
The BET specific surface area of the fine powder sand for concrete is 3 to 9 m 2 / g, preferably 4 to 8 m 2 / g, more preferably 5 to 7 m 2 / g.
The loose apparent density is 0.85 to 1.10 g / cm 3 , preferably 0.90 to 1.00 g / cm 3 m, and more preferably 0.92 to 0.98 g / cm 3 .
The degree of dispersion is 36.0 to 40.0%, preferably 36.5 to 39.0%, more preferably 36.8 to 38.0%.
The specific surface area of Blaine is 500 to 3000 cm 2 / g, preferably 800 to 2000 cm 2 / g, and more preferably 1000 to 1500 cm 2 / g.
The density is 1.5 to 3.5 g / cm 3 , preferably 2.0 to 3.0 g / cm 3 , more preferably 2.5 to 2.8 g / cm 3 .
If the BET specific surface area, loose apparent density, dispersity, brane specific surface area, and density are within the above ranges, material separation does not occur, fluidity is good, and strength is sufficient when used as concrete fine sand. can get.

<コンクリート用微粉砂の製造方法>
次に本発明のコンクリート用微粉砂の製造方法の好適な実施形態について説明する。
コンクリート用微粉砂の原料砂は砕砂、山砂、海砂、川砂などが使用出来る。これらの原料砂を円筒状の回転式粉砕機に水と共に投入する。回転式粉砕機の内部は粉砕媒体で充填されており、この粉砕媒体としては鉄のボールや岩石、玉石が使用可能である。特に玉石を使用すると粉砕だけでなく研磨も行われ、粒度分布が狭くBET比表面積の小さい微粉砂を得ることが可能であり、本発明のコンクリート用微粉砂の製造に好適である。原料砂と水は連続式、バッチ式の何れの方式で投入しても良いが、生産性の点から連続式が好ましい。
<Method for producing fine sand for concrete>
Next, a preferred embodiment of the method for producing fine sand for concrete of the present invention will be described.
Crude sand, mountain sand, sea sand, river sand, etc. can be used as raw material sand for fine sand for concrete. These raw material sands are put into a cylindrical rotary pulverizer together with water. The inside of the rotary crusher is filled with a grinding medium, and iron balls, rocks, or cobbles can be used as the grinding media. In particular, when cobblestone is used, not only crushing but also polishing is performed, and it is possible to obtain fine sand having a narrow particle size distribution and a small BET specific surface area, which is suitable for producing the fine sand for concrete of the present invention. The raw material sand and water may be added by either a continuous system or a batch system, but a continuous system is preferred from the viewpoint of productivity.

原料砂と水の投入量の割合は、原料砂100質量部に対して水10〜500質量部、好ましくは50〜400質量部、更に好ましくは100〜300質量部である。これらの範囲であれば本発明の範囲の平均粒子系、BET比表面積、ゆるみ見掛け密度、分散度、ブレーン比表面積を持ったコンクリート用微粉砂を得ることが可能である。   The ratio of the input amount of the raw material sand and water is 10 to 500 parts by weight, preferably 50 to 400 parts by weight, and more preferably 100 to 300 parts by weight with respect to 100 parts by weight of the raw material sand. Within these ranges, it is possible to obtain fine sand for concrete having an average particle system, BET specific surface area, loose apparent density, dispersity, and brain specific surface area within the range of the present invention.

回転式粉砕機で粉砕・研磨された微粉砂は、分級機や篩で分級する。分級によって粗粉と微粉に分かれるが、粗粉は一般のコンクリート細骨材として使用可能である。分級する粒度は10〜150μm、好ましくは20〜100μm、更に好ましくは30〜80μmである。微粉は水と微粉砂を含んだ泥水となっており、濃度は1〜20質量%、好ましくは2〜10質量%、更に好ましくは3〜8質量%である。これらの範囲であれば、微粉砂の回収率も高く、本発明の範囲の平均粒子系、BET比表面積、ゆるみ見掛け密度、分散度を持ったコンクリート用微粉砂を得ることが可能である。   Fine sand that has been pulverized and polished by a rotary pulverizer is classified by a classifier or a sieve. Although classified into coarse powder and fine powder by classification, the coarse powder can be used as a general concrete fine aggregate. The particle size to be classified is 10 to 150 μm, preferably 20 to 100 μm, more preferably 30 to 80 μm. The fine powder is muddy water containing water and fine sand, and the concentration is 1 to 20% by mass, preferably 2 to 10% by mass, and more preferably 3 to 8% by mass. Within these ranges, the fine sand recovery rate is high, and it is possible to obtain fine sand for concrete having an average particle system, BET specific surface area, loose apparent density, and dispersity within the range of the present invention.

上記工程で分級された泥水は、乾燥機や天日などで乾燥したり、単に水を切って微粉砂とする。この微粉砂、あるいは泥水をそのまま、更に分級機や篩で分級し、微粉を回収する。分級する粒度は10〜150μm、好ましくは20〜100μm、更に好ましくは30〜80μmである。更にこの微粉を分級機や篩で分級し、特定範囲の粒度の微粉を採取するとより単一粒度の微粉砂が得られ好ましい。特定範囲の粒度とは、下限が10μm、好ましくは15μm、更に好ましくは30μm、上限が150μm、好ましくは130μm、更に好ましくは80μmである。粒度範囲はこれらの範囲に100質量%入る必要はなく、90〜80質量%程度入ればよい。   The muddy water classified in the above process is dried with a drier or the sun, or simply drained into fine sand. The fine sand or muddy water is further classified as it is with a classifier or a sieve, and the fine powder is recovered. The particle size to be classified is 10 to 150 μm, preferably 20 to 100 μm, more preferably 30 to 80 μm. Further, this fine powder is classified with a classifier or a sieve, and fine powder with a specific range of particle size is collected, so that a fine particle sand with a single particle size is more preferable. The specific range of the particle size has a lower limit of 10 μm, preferably 15 μm, more preferably 30 μm, and an upper limit of 150 μm, preferably 130 μm, more preferably 80 μm. The particle size range does not need to be 100% by mass in these ranges, but may be about 90 to 80% by mass.

回収した微粉砂は、単独でコンクリート用微粉砂として用いても良いし、他の方法で製造した微粉砂と一部置換しても良く、その場合は、本発明の平均粒子系、BET比表面積、ゆるみ見掛け密度、分散度、ブレーン比表面積の範囲になるように調整することが必要である。   The recovered fine sand may be used alone as fine sand for concrete, or may be partially replaced with fine sand produced by other methods. In that case, the average particle system of the present invention, BET specific surface area Therefore, it is necessary to adjust the loose apparent density, the degree of dispersion, and the range of the specific surface area of the brain.

以下に、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES The present invention will be described in detail below using examples, but the present invention is not limited to these examples.

[1.微粉砂の調製]
(1)コンクリート用微粉砂(S1)
水100質量部に対して、砕砂200質量部を、粉砕用の砂を充填した円筒状の回転式粉砕装置に連続的に投入することにより、湿式粉砕し、分級機により約40μmで大よそ粗粉と微粉が分離出来るように分級した。分級した微粉を含む泥水を、105±5℃で24時間乾燥し、更に0.075mmの篩を通過させ、コンクリート用微粉砂を調整した。
(2)湿式砕砂ダスト(S2)
砕石をクラッシャーで乾式粉砕し、振動篩機で篩って製造した砕砂を水と共にボールミルに連続的に投入することにより、湿式粉砕し、分級機で分級した。分級した微粉を含む泥水(5質量%濃度)を105±5℃で24時間乾燥し、更に0.075mm篩を通過させ湿式砕砕ダストを調製した。
(3)乾式砕砂ダスト(S3)
砕石をクラッシャーで乾式粉砕し、振動篩機で篩った微粉をバッグフィルターで回収し、0.075mmの篩を通過させ乾式砕砂ダストを調製した。
(4)湿式砕砂ダスト網ふるい分級品(S4)
湿式砕砂ダスト(S2)を目開き32〜75μmの水篩で分級し、105±5℃で24時間乾燥し、更に0.075mmの篩を通過させ、湿式砕砂ダスト網ふるい分級品を調製した。
(5)コンクリート用微粉砂分級品A(S5)
湿式砕砂ダスト(S2)を製造する際に発生した泥水(5質量%濃度)100質量部に対して、砕砂200質量部を、粉砕用の砂を充填した円筒状の回転式粉砕装置に連続的に投入することにより、砕砂を湿式粉砕し、分級機により分級した。分級した微粉を含む泥水を、105±5℃で24時間乾燥し、更に0.075mmの篩を通過させ、コンクリート用微粉砂分級品Aを調製した。
(6)コンクリート用微粉砂分級品B(S6)
コンクリート用微粉砂分級品A(S5)を分級機で分級し、得られた40μm以上の粗粉を回収しコンクリート用微粉砂分級品Bを調製した。
(7)石灰石微粉末(S7)
比較用としてコンクリート用微粉末に良く使用される石灰石微粉末(宇部マテリアル株式会社製)を用いた。

[1. Preparation of fine sand]
(1) Fine sand for concrete (S1)
200 parts by mass of crushed sand with respect to 100 parts by mass of water are continuously put into a cylindrical rotary crusher filled with sand for crushing, wet pulverized, and roughly coarse at about 40 μm by a classifier. The powder and fine powder were classified so that they could be separated. The muddy water containing the classified fine powder was dried at 105 ± 5 ° C. for 24 hours, and passed through a 0.075 mm sieve to prepare fine sand for concrete.
(2) Wet crushed sand dust (S2)
Crushed stone was dry pulverized with a crusher, and crushed sand produced by sieving with a vibration sieve was continuously put into a ball mill together with water to wet pulverize and classify with a classifier. The muddy water (5 mass% concentration) containing the classified fine powder was dried at 105 ± 5 ° C. for 24 hours, and further passed through a 0.075 mm sieve to prepare wet crushed dust.
(3) Dry crushed sand dust (S3)
The crushed stone was dry-pulverized with a crusher, and fine powder sieved with a vibration sieve was collected with a bag filter, and passed through a 0.075 mm sieve to prepare dry crushed sand dust.
(4) Wet crushed sand dust net sieve classification product (S4)
The wet crushed sand dust (S2) was classified with a water sieve having an opening of 32 to 75 μm, dried at 105 ± 5 ° C. for 24 hours, and further passed through a 0.075 mm sieve to prepare a wet crushed sand dust net sieve classified product.
(5) Fine sand classification product A (S5) for concrete
200 parts by mass of crushed sand is continuously fed to a cylindrical rotary crusher filled with pulverized sand with respect to 100 parts by mass of muddy water (5% by mass concentration) generated in producing wet crushed sand dust (S2). The crushed sand was wet crushed by putting it into, and classified by a classifier. The muddy water containing the classified fine powder was dried at 105 ± 5 ° C. for 24 hours and further passed through a 0.075 mm sieve to prepare a fine sand classification product A for concrete.
(6) Fine sand classification product B for concrete B (S6)
The fine powder sand classification product A (S5) for concrete was classified by a classifier, and the obtained coarse powder of 40 μm or more was recovered to prepare the fine powder sand classification product B for concrete.
(7) Limestone fine powder (S7)
For comparison, limestone fine powder (manufactured by Ube Material Co., Ltd.) often used for fine powder for concrete was used.

[2.物性評価]
S1〜S7の砂の各種物性を評価した。
固め見掛け密度、分散度は、「早川総八郎編、粉体物性測定法、株式会社朝倉書店、1973年刊、p110〜117」に記載のCarr法により測定した。測定装置はホソカワミクロン株式会社製パウダーテスターPT-E型を使用した。
[2. Evaluation of the physical properties]
Various physical properties of S1 to S7 sand were evaluated.
The apparent apparent density and degree of dispersion were measured by the Carr method described in “Hayakawa Sohachiro, edited by powder physical property measurement method, Asakura Shoten Co., Ltd., published in 1973, p110-117”. As a measuring device, a powder tester PT-E type manufactured by Hosokawa Micron Corporation was used.

密度、ブレーン比表面積は、JIS R 5201「セメントの物理試験方法」に準拠して測定した。なお、ブレーン比表面積を測定する際のポロシティーは、0.400から0.700の範囲において、ポロシティーを0.010変化させた場合のブレーン比表面積の変化が2%以内となる値とし、S1は0.480、S2は0.530、S3は0.550に設定した。   Density and Blaine specific surface area were measured according to JIS R 5201 “Cement physical test method”. In addition, the porosity when measuring the Blaine specific surface area is a value in which the change in the Blaine specific surface area is within 2% when the porosity is changed by 0.010 in the range of 0.400 to 0.700, S1 was set to 0.480, S2 was set to 0.530, and S3 was set to 0.550.

BET比表面積は、JIS R 1626「ファインセラミックス粉体の気体吸着BET法による比表面積の測定方法」に準拠して測定した。具体的には、日本ベル製BELSORPminiを使用し、吸着ガスとして窒素を用い、定容法により測定した吸着等温線にBET式を適用し多点法により測定した。なお、試料の前処理は、窒素雰囲気下で200℃に加熱した。   The BET specific surface area was measured in accordance with JIS R 1626 “Measurement method of specific surface area by gas adsorption BET method of fine ceramic powder”. Specifically, BELSORPmini manufactured by Nippon Bell was used, nitrogen was used as the adsorption gas, and the BET equation was applied to the adsorption isotherm measured by the constant volume method, and measurement was performed by the multipoint method. Note that the pretreatment of the sample was heated to 200 ° C. in a nitrogen atmosphere.

平均粒子径は、レーザー回折式粒度分布測定装置[セイシン企業製、LMS−30(レーザー・マイクロ・サイザー)]を用いて測定した粒度分布より、粒子径―積算篩上質量%曲線を作成し算出し、粒子径―積算篩上質量%曲線より積算質量%が50%となる粒子径を求めた。試料分散溶媒はエタノールを用い、測定前の超音波による試料分散時間を60秒、測定時間を30秒、測定繰り返し回数は2回とした。レーザー回折方式はFraunhofer回析とMie散乱を併用した。光源は半導体レーザーで波長670nm,出力2mWとした。相対屈折率(粒子屈折率/溶媒屈折率)は1.330とした。   The average particle diameter is calculated by creating a particle diameter-integrated sieve mass% curve from the particle size distribution measured using a laser diffraction particle size distribution measuring device [manufactured by Seishin Enterprise, LMS-30 (Laser Micro Sizer)]. The particle diameter at which the integrated mass% is 50% was determined from the particle diameter-integrated mass% sieve curve. The sample dispersion solvent was ethanol, the sample dispersion time by ultrasonic before measurement was 60 seconds, the measurement time was 30 seconds, and the number of measurement repetitions was 2. The laser diffraction method used both Fraunhofer diffraction and Mie scattering. The light source was a semiconductor laser with a wavelength of 670 nm and an output of 2 mW. The relative refractive index (particle refractive index / solvent refractive index) was set to 1.330.

n値は、「粉体工学会編、粉体工学便覧、初版、日刊工業新聞社、昭和61年2月28日、p7−11」に記載のRosin−Rammler線図におけるn値であり粒度分布を示す指標である。測定は平均粒子径と同様にして行った。測定結果はRosin−Rammler線図にし、その傾きであるn値を求めた。なお、Rosin−Rammler線図は全粒子径の各測定値を最小二乗法により求めた。各種物性評価結果を表1に、粒度分布の結果を表2に示す。   The n value is the n value in the Rosen-Rammler diagram described in “Powder Engineering Association, Powder Engineering Handbook, First Edition, Nikkan Kogyo Shimbun, February 28, 1986, p7-11”, and the particle size distribution. It is an index showing. The measurement was performed in the same manner as the average particle size. The measurement result was a Rosin-Rammler diagram, and the n value that was the slope was obtained. In the Rosin-Rammler diagram, each measured value of the total particle size was obtained by the least square method. Various physical property evaluation results are shown in Table 1, and particle size distribution results are shown in Table 2.

Figure 0005775654
Figure 0005775654

Figure 0005775654
Figure 0005775654

[2.流動性の評価]
(1)使用材料
(a)セメント
普通ポルトランドセメント
(b)微粉砂
上述したS1〜S6の微粉砂、比較用として石灰石微粉末を使用した。
(c)混和剤
高性能AE減水剤(株式会社フローリック社製SF500S)を水で薄めて10倍液とした。
(d)水
上水道水
(2)練り混ぜ
練混ぜはJIS R 5201「セメントの物理試験方法」で規定されるホバートミキサを用いて、全材料を投入して、低速で60秒練混ぜた。ミキサを停止し、さじで練り鉢パドルに付着したペーストを掻き落とし、練り鉢の底のペーストを掻きあげるようにして3回かき混ぜた。その後、中速で60秒練混ぜた。
(3)セメントペーストの配合
配合を表3に示す。
[2. Evaluation of fluidity]
(1) Materials used (a) Cement Normal Portland cement (b) Fine powder sand The fine powder sands of S1 to S6 described above and limestone fine powder were used for comparison.
(C) Admixture A high-performance AE water reducing agent (SF500S manufactured by Floric Co., Ltd.) was diluted with water to give a 10-fold solution.
(D) Water Tap water (2) Kneading For kneading, all materials were charged using a Hobart mixer specified in JIS R 5201 “Cement physical test method” and kneaded at low speed for 60 seconds. The mixer was stopped, and the paste adhering to the kneading paddle was scraped off with a spoon, and the paste at the bottom of the kneading bowl was scraped up and stirred three times. Then, it kneaded for 60 seconds at medium speed.
(3) Formulation of cement paste The formulation is shown in Table 3.

Figure 0005775654
Figure 0005775654

(4)流動性評価結果
コンクリートの流動性を図る簡易試験方法として、JASS15M−13「セルフレベリング材の品質基準」によって、流動性の評価を行った。具体的にはペーストをフローコーンに詰め、フローコーンを上方に取り去ってから広がりが停止するのを待って0打フローをノギスで測定した。2回の測定し平均値を求めた。この流動性の評価結果を表4に示す。表4に示すように、平均粒子径が30〜80μm、n値が2.0〜5.0の範囲にあるコンクリート用微粉砂(実施例1〜3)はフロー値が150mm以上あり、石灰石微粉末(参考例1)と比べ同等以上の流動性を示した。
(4) Fluidity evaluation results As a simple test method for improving the fluidity of concrete, fluidity was evaluated according to JASS15M-13 "Quality Standards for Self-Leveling Material". Specifically, the paste was packed into a flow cone, and after the flow cone was removed upward, the spread was stopped and the zero stroke flow was measured with a caliper. An average value was obtained by measuring twice. Table 4 shows the evaluation results of the fluidity. As shown in Table 4, the fine powder sand for concrete (Examples 1 to 3) having an average particle diameter of 30 to 80 μm and an n value of 2.0 to 5.0 has a flow value of 150 mm or more, and limestone fine Compared to the powder (Reference Example 1), the fluidity was equivalent or better.

Figure 0005775654
Figure 0005775654

コンクリート用微粉砂(S1)の粒度分布を示す図である。It is a figure which shows the particle size distribution of fine sand for concrete (S1). 湿式砕砂ダスト(S2)の粒度分布を示す図である。It is a figure which shows the particle size distribution of wet crushed sand dust (S2). 乾式砕砂ダスト(S3)の粒度分布を示す図である。It is a figure which shows the particle size distribution of dry-type crushed sand dust (S3). 湿式砕砂ダスト網ふるい分級品(S4)の粒度分布を示す図である。It is a figure which shows the particle size distribution of wet crushed sand dust net sieve classification goods (S4). コンクリート用微粉砂分級品A(S5)の粒度分布を示す図である。It is a figure which shows the particle size distribution of the fine sand classification product A (S5) for concrete. コンクリート用微粉砂分級品B(S6)の粒度分布を示す図である。It is a figure which shows the particle size distribution of the fine sand classification product B (S6) for concrete. 石灰石微粉末(S7)の粒度分布を示す図である。It is a figure which shows the particle size distribution of a limestone fine powder (S7).

Claims (7)

平均粒子径が40〜80μm及びn値が2.0〜5.0であることを特徴とするコンクリート用微粉砂。 A fine sand for concrete having an average particle size of 40 to 80 μm and an n value of 2.0 to 5.0 . BET比表面積が3〜9m/gであることを特徴とする請求項1に記載のコンクリート用微粉砂。 The fine sand for concrete according to claim 1, wherein the BET specific surface area is 3 to 9 m 2 / g. ゆるみ見掛け密度が0.85〜1.10g/cmであることを特徴とする請求項1又は2に記載のコンクリート用微粉砂。 The fine sand for concrete according to claim 1 or 2, wherein a loose apparent density is 0.85 to 1.10 g / cm 3 . 分散度が36.0〜40.0%であることを特徴とする請求項1〜3の何れか1項に記載のコンクリート用微粉砂。 Dispersion degree is 36.0-40.0%, The fine sand for concrete according to any one of claims 1 to 3 characterized by things. ブレーン比表面積が500〜2000cm /gであることを特徴とする請求項1〜4の何れか1項に記載のコンクリート用微粉砂。 Concrete fines sand according to any one of claims 1 to 4 Blaine specific surface area, characterized in that a 500~ 2000cm 2 / g. 原料砂と水とを粉砕媒体が収容された円筒状ドラムに供給し、該円筒状ドラムを回転させることにより原料砂を粉砕・研磨し砕砂を得る工程と、
砕砂を分級し、分級された微粉を回収し、請求項1〜5のいずれか1項に記載のコンクリート用微粉砂を得る工程とを含むことを特徴とするコンクリート用微粉砂の製造方法。
Supplying raw material sand and water to a cylindrical drum containing a pulverization medium, and rotating the cylindrical drum to pulverize and polish the raw material sand to obtain crushed sand;
A method for producing fine sand for concrete, comprising: classifying crushed sand, collecting the classified fine powder, and obtaining the fine sand for concrete according to any one of claims 1 to 5 .
分級する粒度が10〜150μmであることを特徴とする請求項6に記載のコンクリート用微粉砂の製造方法。The method for producing fine sand for concrete according to claim 6, wherein the particle size to be classified is 10 to 150 µm.
JP2008275904A 2008-10-27 2008-10-27 Fine powder sand for concrete and method for producing the same Active JP5775654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008275904A JP5775654B2 (en) 2008-10-27 2008-10-27 Fine powder sand for concrete and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008275904A JP5775654B2 (en) 2008-10-27 2008-10-27 Fine powder sand for concrete and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010100504A JP2010100504A (en) 2010-05-06
JP5775654B2 true JP5775654B2 (en) 2015-09-09

Family

ID=42291499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008275904A Active JP5775654B2 (en) 2008-10-27 2008-10-27 Fine powder sand for concrete and method for producing the same

Country Status (1)

Country Link
JP (1) JP5775654B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6236899B2 (en) * 2013-06-13 2017-11-29 宇部興産株式会社 Ground conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753595B2 (en) * 1987-06-02 1995-06-07 東京電力株式会社 Manufacturing method of concrete etc.
JPH0775674B2 (en) * 1988-10-07 1995-08-16 ナカヤ実業株式会社 Crushed sand production equipment for concrete
JP2006045025A (en) * 2004-08-06 2006-02-16 Ube Ind Ltd Self-flowing hydraulic composition

Also Published As

Publication number Publication date
JP2010100504A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
TWI477322B (en) Upgraded combustion ash and its method of production
Guzzo et al. Evaluation of particle size reduction and agglomeration in dry grinding of natural quartz in a planetary ball mill
Bu et al. Differences in dry and wet grinding with a high solid concentration of coking coal using a laboratory conical ball mill: Breakage rate, morphological characterization, and induction time
Cayirli Influences of operating parameters on dry ball mill performance
JP2010533121A (en) Meteorite syenite powder with controlled particle size and its new production method
JP4485950B2 (en) Dry pulverization apparatus and dry pulverization method
CN110376347A (en) A kind of research model and its construction method of coal
JP5775655B2 (en) Concrete composition and method for producing the same
CN104619648B (en) Based on TiO2Scrub particle, and prepare and use as be based on TiO2Scrub particle method
Guven et al. Effects of grinding time on morphology and collectorless flotation of coal particles
CN102220032B (en) Dry grinding method of ultrafine heavy calcium carbonate
CN103923489A (en) Method for preparing hyper-dispersed suspending calcium carbonate emulsion
JP5775654B2 (en) Fine powder sand for concrete and method for producing the same
Deniz The effects on the grinding parameters of chemical, morphological and mineralogical properties of three different calcites in a Hardgrove mill
WO2009056530A2 (en) Precipitated silicas for storage-stable rtv-1 silicone rubber formulations without stabilizer
CN101824279B (en) High accuracy aluminum oxide polishing powder and production method thereof
Sabah et al. Effect of ball mill grinding parameters of hydrated lime fine grinding on consumed energy
JP5711189B2 (en) High quality sorting method of layered clay minerals by wet grinding and classification
CN107108355A (en) The additive ground on roller mill
JP2011005350A (en) Talc dressing method
CN109420476A (en) Coal is as the production method of depositing dust material and the method for the economic value of raising coal
JPH08506527A (en) Zirconium silicate grinding medium and fine grinding method
JPH03115144A (en) Production of highly pulverized blast-furnace cement
CN106336242A (en) Ultra-lightweight porous ceramsite supporting agent and preparation method thereof
JP2507571B2 (en) Abrasive manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5775654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250