JP5773734B2 - Board pre-inspection method - Google Patents

Board pre-inspection method Download PDF

Info

Publication number
JP5773734B2
JP5773734B2 JP2011104223A JP2011104223A JP5773734B2 JP 5773734 B2 JP5773734 B2 JP 5773734B2 JP 2011104223 A JP2011104223 A JP 2011104223A JP 2011104223 A JP2011104223 A JP 2011104223A JP 5773734 B2 JP5773734 B2 JP 5773734B2
Authority
JP
Japan
Prior art keywords
substrate
stress
heating
stage
inspection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011104223A
Other languages
Japanese (ja)
Other versions
JP2012235044A (en
Inventor
藤井 佳詞
佳詞 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2011104223A priority Critical patent/JP5773734B2/en
Publication of JP2012235044A publication Critical patent/JP2012235044A/en
Application granted granted Critical
Publication of JP5773734B2 publication Critical patent/JP5773734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、シリコンウエハやガラス基板等の基板に所定のストレスを加える工程が含まれた処理を施す前に行う基板事前検査方法に関する。   The present invention relates to a substrate preliminary inspection method that is performed before performing a process including a step of applying a predetermined stress to a substrate such as a silicon wafer or a glass substrate.

基板には、各処理室で各種処理が施される。これらの処理の中には、基板を急激に加熱する等の基板に強いストレスが加えられる工程を含むものがあり、基板が強いストレスに耐えられずに破壊することがある。   Various treatments are performed on the substrate in each treatment chamber. Some of these processes include a process in which a strong stress is applied to the substrate, such as a rapid heating of the substrate, and the substrate may break down without being able to withstand the strong stress.

ここで、基板にストレスを加えると、アコースティック・エミッション(AE)現象(固体が変形又は破壊する際に、それまで貯えられていたひずみエネルギーが解放されて弾性波を発生する現象)で基板に弾性波が発生する。そこで、従来、基板に発生する弾性波を検出するAEセンサを設け、基板の破壊で発生する弾性波をAEセンサが検出したときに直ちに処理を中止するものが知られている(例えば、特許文献1参照)。   Here, when stress is applied to the substrate, it is elastic to the substrate by an acoustic emission (AE) phenomenon (a phenomenon in which, when a solid is deformed or destroyed, the strain energy stored up to that point is released and an elastic wave is generated). A wave is generated. Therefore, conventionally, an AE sensor for detecting an elastic wave generated on a substrate is provided, and the processing is immediately stopped when the AE sensor detects an elastic wave generated by the destruction of the substrate (for example, Patent Documents). 1).

然し、基板が破壊したときは、処理室を開放して基板の破片を取り除く等の手間のかかるメンテナンス作業が必要になり、生産性が大幅に低下してしまう。   However, when the substrate is broken, laborious maintenance work such as opening the processing chamber and removing the fragments of the substrate is required, and the productivity is greatly reduced.

特開2004−28823号公報JP 2004-28823 A

本発明は、以上の点に鑑み、処理中の破壊を生ずる可能性のある基板を事前に見つけ出せるようにした基板事前検査方法を提供することをその課題としている。   In view of the above points, an object of the present invention is to provide a substrate pre-inspection method in which a substrate that may cause destruction during processing can be found in advance.

上記課題を解決するために、本発明は、基板に所定のストレスを加える工程が含まれた処理を施す前に、基板にストレスを加えるストレス印加工程と、ストレス印加工程で加えたストレスに起因するアコースティック・エミッション現象で基板に発生する弾性波を検出する検出工程とを備え、検出工程で検出した弾性波に基づいて、基板が前記所定のストレスに耐えられるか否かを判断することを特徴とする。   In order to solve the above-described problems, the present invention is caused by a stress applying step of applying stress to the substrate before performing a process including a step of applying a predetermined stress to the substrate, and stress applied in the stress applying step. A detection step of detecting an elastic wave generated in the substrate due to an acoustic emission phenomenon, and determining whether the substrate can withstand the predetermined stress based on the elastic wave detected in the detection step. To do.

本発明によれば、処理中に加えられる所定のストレスに耐えられる基板であるか否かを処理前に事前に判断できる。そして、所定のストレスに耐えられない基板は不良品として取り除くことにより、処理中に基板が破壊する可能性を可及的に低減できる。   According to the present invention, it is possible to determine in advance before processing whether a substrate can withstand a predetermined stress applied during processing. Then, by removing a substrate that cannot withstand a predetermined stress as a defective product, the possibility of the substrate being destroyed during processing can be reduced as much as possible.

ここで、基板がこれに加えるストレスで破壊する場合、先ず、基板に微小クラックが発生し、このクラックが成長して破壊に至る。従って、検出工程で検出した弾性波に、基板の破壊前に生ずる微小クラックで発生する弾性波が含まれるときは、基板が前記所定のストレスに耐えられないと判断することが望ましい。   Here, when the substrate breaks due to the stress applied thereto, first, a micro crack is generated in the substrate, and the crack grows to break. Therefore, when the elastic wave detected in the detection step includes an elastic wave generated by a micro crack generated before the substrate is broken, it is desirable to determine that the substrate cannot withstand the predetermined stress.

ところで、前記処理が、基板を吸着する吸着手段を有するステージと基板を加熱する加熱手段とを備える処理室で行う処理であって、前記所定のストレスを加える工程が、ステージに基板を吸着した状態で基板を所定の処理温度に加熱する加熱工程である場合、基板をステージに載置した状態で、加熱工程完了前にストレス印加工程及び検出工程を実行することが望ましい。   By the way, the process is a process performed in a processing chamber having a stage having an adsorption unit for adsorbing a substrate and a heating unit for heating the substrate, and the step of applying the predetermined stress adsorbs the substrate to the stage. In the heating step of heating the substrate to a predetermined processing temperature, it is desirable to execute the stress application step and the detection step before the heating step is completed with the substrate placed on the stage.

ここで、処理室とは別の場所でストレス印加工程及び検査工程を実行することも可能であるが、上記の如く処理室内のステージに基板を載置した状態でストレス印加工程及び検出工程を実行すれば、事前検査用の場所を別に確保する必要がなく、省スペース化を図ることができる。   Here, it is possible to execute the stress application process and the inspection process in a place different from the processing chamber, but the stress application process and the detection process are performed with the substrate placed on the stage in the processing chamber as described above. In this case, it is not necessary to secure a separate place for preliminary inspection, and space saving can be achieved.

但し、ストレス印加工程中にステージ上で基板が破壊すると、処理室を開放してのメンテナンス作業が必要になり、生産性が低下する。従って、ストレス印加工程で基板に加えるストレスは前記所定のストレスよりも弱くして、ストレス印加工程中に基板が破壊する可能性をできるだけ低くすることが望ましい。   However, if the substrate is destroyed on the stage during the stress application process, a maintenance operation is required with the processing chamber opened, and productivity is reduced. Therefore, it is desirable that the stress applied to the substrate in the stress application process is weaker than the predetermined stress, and the possibility that the substrate is destroyed during the stress application process is as low as possible.

この場合、ストレス印加工程は、基板をステージに吸着する工程において、ステージの表面形状に沿わない形状の基板を吸着手段の吸着力でステージの表面形状に沿うように変形させることにより行われるようにすればよい。また、加熱工程の初期段階において、基板の昇温速度をその後の昇温速度より遅くした状態で基板を加熱するか、基板を局所的に加熱することによりストレス印加工程を行うことも可能である。また、予め加熱されたステージに基板を吸着させて加熱工程を行う場合には、加熱工程の初期段階において、吸着手段による吸着力をその後の吸着力よりも弱くした状態で基板を加熱することによりストレス印加工程を行うことも可能である。これによれば、吸着工程中や加熱工程中にストレス印加工程を実行して、ストレス印加工程の追加によるサイクルタイムの増加を抑制できる。   In this case, the stress applying step is performed by deforming the substrate having a shape that does not conform to the surface shape of the stage so as to follow the surface shape of the stage by the adsorption force of the adsorption means in the step of adsorbing the substrate to the stage. do it. In addition, in the initial stage of the heating process, it is also possible to perform the stress application process by heating the substrate in a state in which the substrate heating rate is slower than the subsequent heating rate, or by locally heating the substrate. . Further, when the heating process is performed by adsorbing the substrate to a preheated stage, the substrate is heated in a state where the adsorption force by the adsorption means is weaker than the subsequent adsorption force in the initial stage of the heating process. It is also possible to perform a stress application process. According to this, an increase in cycle time due to the addition of the stress application process can be suppressed by executing the stress application process during the adsorption process or the heating process.

本発明の実施に用いる設備を示す説明図。Explanatory drawing which shows the installation used for implementation of this invention. ステージに基板を吸着するときの基板の変形を示す説明図。Explanatory drawing which shows a deformation | transformation of a board | substrate when adsorb | sucking a board | substrate to a stage. 処理室とは別の場所に配置する事前検査用設備の一例を示す説明図。Explanatory drawing which shows an example of the equipment for a preliminary inspection arrange | positioned in a place different from a process chamber. 処理室とは別の場所に配置する事前検査用設備の変形例を示す説明図。Explanatory drawing which shows the modification of the equipment for preliminary inspection arrange | positioned in a place different from a process chamber. 処理室とは別の場所に配置する事前検査用設備の他の変形例を示す説明図。Explanatory drawing which shows the other modification of the equipment for preliminary inspection arrange | positioned in a place different from a process chamber.

図1を参照して、1は、シリコンウエハから成る基板Sに、基板Sを所定の処理温度(例えば、400℃)に加熱する工程を含むベーキング等の処理を施す処理室を示している。処理室1の底部は蓋板2で閉塞されており、図外の真空ポンプにより処理室1を真空状態にする。蓋板2上には、基板Sを載置するステージ3が設けられている。ステージ3には、基板Sを吸着する静電チャックから成る吸着手段(図示省略)と、基板Sを加熱する加熱手段(図示省略)とが組み込まれている。加熱手段は、ヒータや、ステージ3表面に形成した細かな凹部と基板Sとの間に加熱ガスを流す手段等で構成される。尚、加熱手段をステージ3に組み込まずに、ステージ3の上方空間に配置した加熱ランプ等で加熱手段を構成することも可能である。また、処理室1を真空状態にしないのであれば、吸着手段として真空チャックを用いてもよい。   Referring to FIG. 1, reference numeral 1 denotes a processing chamber in which a substrate S made of a silicon wafer is subjected to processing such as baking including a step of heating the substrate S to a predetermined processing temperature (for example, 400 ° C.). The bottom of the processing chamber 1 is closed with a cover plate 2, and the processing chamber 1 is brought into a vacuum state by a vacuum pump (not shown). A stage 3 on which the substrate S is placed is provided on the lid plate 2. The stage 3 incorporates suction means (not shown) made of an electrostatic chuck that sucks the substrate S and heating means (not shown) that heats the substrate S. The heating means includes a heater, a means for flowing a heating gas between the substrate S and a fine recess formed on the surface of the stage 3. It is also possible to configure the heating means with a heating lamp or the like disposed in the space above the stage 3 without incorporating the heating means into the stage 3. Further, if the processing chamber 1 is not in a vacuum state, a vacuum chuck may be used as the suction means.

基板Sの処理に際しては、先ず、図外の搬送ロボットにより処理室1に基板Sを搬入してステージ3に載置する。次に、基板Sを吸着手段によりステージ3の表面に吸着し、この状態で加熱手段により基板Sを処理温度に加熱する加熱工程を実行する。   When processing the substrate S, first, the substrate S is loaded into the processing chamber 1 by a transfer robot (not shown) and placed on the stage 3. Next, a heating step is performed in which the substrate S is adsorbed on the surface of the stage 3 by the adsorbing means, and the substrate S is heated to the processing temperature by the heating means in this state.

このように基板Sを加熱すると、基板Sがステージ3への吸着により拘束された状態で熱膨張し、基板Sにストレスが加わる。そして、基板Sを処理温度まで急激に加熱すると、基板Sに加えられるストレスが強くなって、基板Sの破壊を生ずることがある。   When the substrate S is heated in this way, the substrate S is thermally expanded in a state where it is restrained by adsorption to the stage 3, and stress is applied to the substrate S. When the substrate S is rapidly heated to the processing temperature, the stress applied to the substrate S becomes strong and the substrate S may be destroyed.

ここで、基板Sにストレスを加えると、アコースティック・エミッション(AE)現象で基板Sに弾性波が発生する。そして、この弾性波は、ステージ3を介して蓋板2に伝播する。そこで、蓋板2の下面に、弾性波を検出するAEセンサ4をエポキシ系接着剤等で固定している。尚、AEセンサ4は、ステージ3に固定してもよい。   Here, when stress is applied to the substrate S, an elastic wave is generated in the substrate S due to an acoustic emission (AE) phenomenon. This elastic wave propagates to the cover plate 2 via the stage 3. Therefore, the AE sensor 4 for detecting elastic waves is fixed to the lower surface of the cover plate 2 with an epoxy adhesive or the like. The AE sensor 4 may be fixed to the stage 3.

基板Sの破壊を生じたとき、AEセンサ4の検出信号をフーリエ変換して得た周波数スペクトルの波形は、100kHz〜1MHzの高周波領域の複数の周波数でピークを持つ独特の波形となる。そして、周波数スペクトルの波形分析から基板Sの破壊による弾性波が発生したと判別されたときは、それ以上の処理を中止するようにしている。   When the substrate S is destroyed, the waveform of the frequency spectrum obtained by Fourier transforming the detection signal of the AE sensor 4 is a unique waveform having peaks at a plurality of frequencies in a high frequency region of 100 kHz to 1 MHz. When it is determined from the waveform analysis of the frequency spectrum that an elastic wave due to the destruction of the substrate S has occurred, further processing is stopped.

然し、ステージ3上で基板Sが一旦破壊すると、処理室1を開放して基板Sの破片を取り除く等の手間のかかるメンテナンス作業が必要になり、生産性が大幅に低下してしまう。   However, once the substrate S is destroyed on the stage 3, laborious maintenance work such as opening the processing chamber 1 and removing fragments of the substrate S is required, and the productivity is greatly reduced.

そこで、本実施形態では、基板Sをステージ3に載置した状態で、加熱工程完了前に、基板Sにストレスを加えるストレス印加工程と、ストレス印加工程で加えたストレスに起因するAE現象で基板Sに発生する弾性波をAEセンサ4により検出する検出工程とを備える事前検査を行い、検出工程で検出した弾性波に基づいて、基板Sが加熱工程で加えられる強いストレスに耐えられるか否かを判断している。以下、事前検査について具体的に説明する。   Therefore, in the present embodiment, the substrate S is placed on the stage 3 and the stress application step of applying stress to the substrate S and the AE phenomenon caused by the stress applied in the stress application step before the heating step is completed. Whether or not the substrate S can withstand strong stress applied in the heating process based on the elastic wave detected in the detection process. Judging. Hereinafter, the preliminary inspection will be specifically described.

基板Sは、成膜等の前処理の影響で図2(a)に示す如く反りを生ずることがある。この場合、基板Sをステージ3に吸着する工程において、ステージ3の表面形状に沿わない形状の基板Sが吸着手段の吸着力で図2(b)に示す如くステージ3の表面形状に沿うように変形する。また、ステージ3の加工精度の関係でステージ3の表面に凹凸が残ることもあり、この場合も、吸着工程で基板Sがステージ3の表面形状に沿うように変形する。そこで、吸着工程における基板Sの変形により基板Sにストレスを加えることで第1のストレス印加工程を実行するようにしている。   The substrate S may be warped as shown in FIG. 2A due to the influence of pretreatment such as film formation. In this case, in the step of adsorbing the substrate S to the stage 3, the substrate S having a shape that does not follow the surface shape of the stage 3 is aligned with the surface shape of the stage 3 as shown in FIG. Deform. In addition, irregularities may remain on the surface of the stage 3 due to the processing accuracy of the stage 3, and in this case, the substrate S is deformed so as to follow the surface shape of the stage 3 in the adsorption process. Therefore, the first stress applying step is executed by applying stress to the substrate S due to the deformation of the substrate S in the adsorption step.

また、吸着工程完了後、加熱工程の初期段階(具体的には、基板Sの温度が処理温度よりも低い所定の検査温度(例えば、常温+100℃)に上昇するまでの間)において、基板Sの昇温速度をその後の昇温速度よりも遅くした状態で基板Sを加熱することにより第2のストレス印加工程を実行するようにしている。例えば、ステージ3の表面に加熱ガスを流して基板Sを加熱する場合、加熱工程の途中まで加熱ガスの供給圧力を低くして基板Sの昇温速度を遅くし、その後、加熱ガスの供給圧力を高めて基板Sの昇温速度を速くする。   In addition, after completion of the adsorption process, in the initial stage of the heating process (specifically, until the temperature of the substrate S rises to a predetermined inspection temperature (for example, normal temperature + 100 ° C.) lower than the processing temperature). The second stress application step is performed by heating the substrate S in a state where the temperature increase rate is slower than the subsequent temperature increase rate. For example, when heating the substrate S by flowing a heating gas over the surface of the stage 3, the heating gas supply pressure is lowered to the middle of the heating step to slow the temperature rise rate of the substrate S, and then the heating gas supply pressure is increased. To increase the heating rate of the substrate S.

尚、第1のストレス印加工程で基板Sに加えられるストレスは、基板吸着後に行う加熱工程で基板Sに加えられるストレスよりも弱くなる。また、第2のストレス印加工程で基板Sに加えられるストレスも、基板Sの昇温速度を遅くするため、昇温速度を速くする加熱工程の後半部で基板Sに加えられるストレスよりも弱くなる。従って、第1と第2の各ストレス印加工程で基板Sが破壊する可能性は極低くなる。更に、吸着工程中や加熱工程中に第1や第2のストレス印加工程を実行するため、ストレス印加工程の追加によるサイクルタイムの増加を抑制できる。   Note that the stress applied to the substrate S in the first stress applying step is weaker than the stress applied to the substrate S in the heating step performed after the substrate adsorption. Further, the stress applied to the substrate S in the second stress applying step is also weaker than the stress applied to the substrate S in the latter half of the heating step in which the temperature rising rate is increased because the temperature rising rate of the substrate S is slowed down. . Therefore, the possibility that the substrate S is destroyed in the first and second stress application steps is extremely low. Furthermore, since the first and second stress application steps are performed during the adsorption step and the heating step, an increase in cycle time due to the addition of the stress application step can be suppressed.

尚、加熱工程の初期段階で基板Sを局所的に加熱し、この局所加熱時の基板Sの加熱部分と非加熱部分との熱膨張差により基板Sにストレスを加えることで第2のストレス印加工程を実行することも可能である。   The substrate S is locally heated in the initial stage of the heating process, and a second stress is applied by applying stress to the substrate S due to a difference in thermal expansion between the heated portion and the non-heated portion of the substrate S during the local heating. It is also possible to carry out the process.

ここで、各ストレス印加工程において、基板Sに微小クラックを生ずると、その後の加熱工程で基板Sにより強いストレスが加えられたときに、微小クラックが成長して基板Sの破壊を生ずる可能性が高い。微小クラックを生ずると、AEセンサ4の検出信号をフーリエ変換して得た周波数スペクトルの波形は、基板Sが破壊したときとピーク強度が異なるものの、100kHz〜1MHzの高周波領域の複数の周波数でピークを持つ独特の波形となる。   Here, if a micro crack is generated in the substrate S in each stress application process, the micro crack may grow and cause the destruction of the substrate S when a strong stress is applied to the substrate S in the subsequent heating process. high. When a microcrack occurs, the waveform of the frequency spectrum obtained by Fourier transforming the detection signal of the AE sensor 4 peaks at a plurality of frequencies in a high frequency region of 100 kHz to 1 MHz, although the peak intensity is different from that when the substrate S is broken. It has a unique waveform.

そこで、第1と第2の各ストレス印加工程で基板Sに発生した弾性波をAEセンサ4で検出し、検出弾性波の周波数スペクトルの100kHz〜1MHzの高周波領域における波形分析を行い、検出弾性波に微小クラックで発生する弾性波が含まれるか否かを判別する。具体的には、周波数スペクトル波形の各種パラメータ(ピーク周波数、ピーク強度、立ち上がり時間、減衰時間等)について微小クラック発生時のそれと比較して一致度を演算し、一致度が所定の閾値以上であれば、微小クラックが発生したと判断する。この場合は、基板Sが加熱工程で加えられるストレスに耐えられないと判断して、加熱工程を中止し、基板Sを搬送ロボットにより処理室1から搬出して取り除く。これにより、ステージ3上で基板Sが破壊する可能性を可及的に低減できる。   Therefore, the elastic wave generated on the substrate S in each of the first and second stress applying steps is detected by the AE sensor 4, and the waveform analysis in the high frequency region of 100 kHz to 1 MHz of the frequency spectrum of the detected elastic wave is performed, and the detected elastic wave is detected. It is determined whether or not an elastic wave generated by a microcrack is included. Specifically, the degree of coincidence is calculated for various parameters (peak frequency, peak intensity, rise time, decay time, etc.) of the frequency spectrum waveform compared to that at the time of occurrence of a microcrack, and the degree of coincidence is not less than a predetermined threshold. If so, it is determined that a microcrack has occurred. In this case, it is determined that the substrate S cannot withstand the stress applied in the heating process, the heating process is stopped, and the substrate S is removed from the processing chamber 1 by the transfer robot. Thereby, possibility that the board | substrate S will destroy on the stage 3 can be reduced as much as possible.

ところで、第1のストレス印加工程で微小クラックが発生した場合は、基板Sの搬出に先立って吸着手段による基板Sの吸着を解除するが、この際、ステージ3の表面形状に沿うように変形していた基板Sが跳ね返り、跳ね返りによる衝撃で微小クラックが成長して基板Sが破壊する可能性がある。ここで、基板Sの跳ね返りによる衝撃は、吸着力が強いほど大きくなる。そこで、吸着解除時の基板Sの跳ね返りによる破壊を抑制するために、第1のストレス印加工程では、基板Sの吸着力を弱くし、微小クラックが発生しなかった場合に、吸着力を正規の値まで高めることが望ましい。   By the way, when a micro crack is generated in the first stress application step, the adsorption of the substrate S by the adsorption unit is released prior to carrying out the substrate S. At this time, the substrate S is deformed so as to follow the surface shape of the stage 3. There is a possibility that the substrate S that has been bounced back and micro cracks grow due to the impact of the bounce and the substrate S is destroyed. Here, the impact caused by the rebound of the substrate S increases as the suction force increases. Therefore, in order to suppress the breakage due to the rebound of the substrate S when the suction is released, in the first stress application step, when the suction force of the substrate S is weakened and no microcracks are generated, the suction force is set to a normal value. It is desirable to increase to the value.

また、予め高温に加熱されたステージ3に基板Sを吸着させて加熱工程を行うこともある。この場合、加熱工程の初期段階において、吸着手段による吸着力をその後の吸着力よりも弱くした状態で基板Sを加熱することにより第2のストレス印加工程を実行することも可能である。即ち、吸着力を弱くすれば、基板Sをその熱膨張に逆らって押え込む拘束力が減少するため、加熱工程の後半部で基板Sに加えられるストレスよりも弱いストレスを基板Sに加えてストレス印加工程を実行することができる。   Also, the heating process may be performed by adsorbing the substrate S to the stage 3 heated to a high temperature in advance. In this case, in the initial stage of the heating process, it is possible to execute the second stress applying process by heating the substrate S in a state where the suction force by the suction means is weaker than the subsequent suction force. That is, if the attracting force is weakened, the restraining force for pressing the substrate S against its thermal expansion decreases, so that a stress that is weaker than the stress applied to the substrate S in the latter half of the heating process is applied to the substrate S. An application process can be performed.

尚、処理室1とは別の事前検査用の場所に基板Sを吸着加熱するステージを配置して、上記第1のストレス印加工程や上記第2のストレス印加工程を実行するようにしてもよい。   It should be noted that a stage for attracting and heating the substrate S may be arranged at a place for preliminary inspection different from the processing chamber 1 to execute the first stress applying step and the second stress applying step. .

また、事前検査用の場所に図3に示す設備を配置して、事前検査を行うことも可能である。この設備は、基板Sを支持する複数のピン部11aを有する支持部材11と、基板Sに接触するように、支持部材11にばね12aを介して支持されるAEセンサ12と、基板Sに向けて超音波(例えば、39kHz)を放射する発振器13とを備えている。尚、AEセンサ12は、何れかのピン部11aの上端部に取付けてもよい。   Moreover, it is also possible to arrange the equipment shown in FIG. 3 in a place for preliminary inspection and perform preliminary inspection. This equipment includes a support member 11 having a plurality of pin portions 11a for supporting the substrate S, an AE sensor 12 supported by the support member 11 via a spring 12a so as to contact the substrate S, and the substrate S. And an oscillator 13 that emits ultrasonic waves (for example, 39 kHz). In addition, you may attach the AE sensor 12 to the upper end part of either pin part 11a.

大気中で発振器13から超音波を放射すると、基板Sが超音波を受けて振動し、基板Sにストレスが加えられて、このストレスに起因するAE現象で基板Sに発生する弾性波がAEセンサ12で検出される。そして、検出弾性波の周波数スペクトルの100kHz〜1MHzの高周波領域における波形分析を行い、検出弾性波に微小クラックで発生する弾性波が含まれると判別されたときは、基板Sがその後の処理で加えられるストレスに耐えられないと判断して、この基板Sに対する以後の処理を中止する。   When ultrasonic waves are radiated from the oscillator 13 in the atmosphere, the substrate S receives the ultrasonic waves and vibrates, stress is applied to the substrate S, and elastic waves generated on the substrate S due to the AE phenomenon caused by the stress are generated by the AE sensor. 12 is detected. Then, a waveform analysis in a high frequency region of 100 kHz to 1 MHz of the frequency spectrum of the detected elastic wave is performed, and when it is determined that the detected elastic wave includes an elastic wave generated by a microcrack, the substrate S is added in the subsequent processing. It is determined that it cannot withstand the stress, and the subsequent processing for the substrate S is stopped.

また、事前検査用の場所に配置する設備は図4に示すものであってもよい。この設備は、基板Sを支持する上面の環状突起21aを有する支持部材21と、基板Sの上方に対向するフレーム22に取り付けた、基板Sに向けて超音波を放射する発振器23と、基板Sから放射される超音波を受信する受信器24とを備えている。   Moreover, the equipment arranged at the place for the preliminary inspection may be as shown in FIG. This equipment includes a support member 21 having an annular protrusion 21a on the upper surface that supports the substrate S, an oscillator 23 that is attached to a frame 22 facing the substrate S and radiates ultrasonic waves toward the substrate S, and a substrate S. And a receiver 24 for receiving ultrasonic waves emitted from the receiver.

大気中で発振器23から超音波を放射すると、基板Sが超音波を受けて振動し、基板Sにストレスが加えられて、このストレスに起因するAE現象で基板Sに発生する弾性波が空気中を超音波として伝播して受信器24により検出される。但し、受信器24は、基板Sで反射された超音波も検出してしまう。そこで、発振器23からの超音波放射を短周期(例えば、10ms)でオンオフし、超音波放射をオフした直後に基板Sから放射される超音波を受信器24で検出する。そして、この検出超音波の周波数スペクトルの波形分析を行い、検出超音波に微小クラックで発生する弾性波に起因する超音波が含まれると判別されたときは、基板Sがその後の処理で加えられるストレスに耐えられないと判断して、この基板Sに対する以後の処理を中止する。   When ultrasonic waves are radiated from the oscillator 23 in the atmosphere, the substrate S receives the ultrasonic waves and vibrates, stress is applied to the substrate S, and elastic waves generated in the substrate S due to the AE phenomenon due to the stress are generated in the air. Is propagated as an ultrasonic wave and detected by the receiver 24. However, the receiver 24 also detects the ultrasonic wave reflected by the substrate S. Therefore, the ultrasonic radiation from the oscillator 23 is turned on / off in a short cycle (for example, 10 ms), and the ultrasonic wave radiated from the substrate S is detected by the receiver 24 immediately after the ultrasonic radiation is turned off. Then, a waveform analysis of the frequency spectrum of the detected ultrasonic wave is performed, and when it is determined that the detected ultrasonic wave includes an ultrasonic wave caused by an elastic wave generated by a microcrack, the substrate S is added in the subsequent processing. It is determined that the substrate cannot be tolerated, and the subsequent processing for the substrate S is stopped.

尚、図3に示した支持部材11の少なくともピン部11aや、図4に示した支持部材21の環状突起21aは、高周波振動を伝達し難い樹脂やゴムで形成することが望ましい。これによれば、支持部材11,21からの外乱振動を除去でき、検査精度が向上する。   Note that at least the pin portion 11a of the support member 11 shown in FIG. 3 and the annular protrusion 21a of the support member 21 shown in FIG. 4 are desirably formed of resin or rubber that is difficult to transmit high-frequency vibrations. According to this, disturbance vibration from the support members 11 and 21 can be removed, and the inspection accuracy is improved.

また、図5に示す如く、基板Sを容器Cに上下複数枚収納した状態で事前検査を行うことも可能である。この場合、超音波の発信部と受信部とを有するプローブ31を容器Cに接近させた状態で図示省略した昇降機構により、容器C内の各基板Sと同レベルの位置に順に移動させる。そして、各位置において、プローブ31からの超音波放射を短周期でオンオフし、超音波放射をオフした直後に基板Sから放射される超音波をプローブ31で検出する。次に、上記と同様に検出超音波の周波数スペクトルの波形分析を行い、検出超音波に微小クラックで発生する弾性波に起因する超音波が含まれると判別されたときは、基板Sがその後の処理で加えられるストレスに耐えられないと判断して、この基板Sに対する以後の処理を中止する。   In addition, as shown in FIG. 5, it is possible to perform a preliminary inspection in a state where a plurality of substrates S are accommodated in a container C. In this case, the probe 31 having the ultrasonic wave transmitting section and the receiving section is moved to the same level as each substrate S in the container C by an elevator mechanism (not shown) in a state where the probe 31 is brought close to the container C. Then, at each position, the ultrasonic radiation from the probe 31 is turned on and off in a short cycle, and the ultrasonic wave emitted from the substrate S is detected by the probe 31 immediately after the ultrasonic radiation is turned off. Next, a waveform analysis of the frequency spectrum of the detected ultrasonic wave is performed in the same manner as described above, and when it is determined that the detected ultrasonic wave includes an ultrasonic wave caused by an elastic wave generated by a microcrack, the substrate S Since it is determined that it cannot withstand the stress applied by the processing, the subsequent processing on the substrate S is stopped.

以上、本発明の実施形態について図面を参照して説明したが、本発明はこれに限定されない。例えば、上記実施形態は、シリコンウエハから成る基板の事前検査に本発明を適用したものであるが、ガラス基板やガリウム基板等のシリコンウエハ以外の基板の事前検査にも同様に本発明を適用できる。   As mentioned above, although embodiment of this invention was described with reference to drawings, this invention is not limited to this. For example, in the above-described embodiment, the present invention is applied to a preliminary inspection of a substrate made of a silicon wafer, but the present invention can be similarly applied to a preliminary inspection of a substrate other than a silicon wafer such as a glass substrate or a gallium substrate. .

また、図3〜図5に示す実施形態では、基板Sにストレスを加えるために超音波を放射しているが、音波を放射してもよく、更には、基板上下に差圧を生じさせて基板に反りを発生させたり、或いは、基板のエッジを挟んで基板を反らせたり、引張ったり、圧縮させたり、揺らしたりして基板にストレスを加えることも可能である。   In the embodiment shown in FIGS. 3 to 5, ultrasonic waves are radiated to apply stress to the substrate S. However, sound waves may be radiated, and furthermore, a differential pressure is generated above and below the substrate. It is also possible to apply a stress to the substrate by causing the substrate to warp, or warping, pulling, compressing, or shaking the substrate across the edge of the substrate.

また、上記実施形態において、基板Sに所定のストレスが加えられる工程は加熱工程であるが、高温の基板を冷却する冷却工程を含む処理や、基板に熱以外の物理的ストレスを加える工程を含む処理を施す前に行う事前検査にも同様に本発明を適用できる。   Moreover, in the said embodiment, although the process in which predetermined | prescribed stress is added to the board | substrate S is a heating process, the process including the cooling process which cools a high temperature board | substrate, and the process of applying physical stress other than heat to a board | substrate are included. The present invention can be similarly applied to a preliminary inspection performed before processing.

S…基板、1…処理室、3…ステージ、4,12…AEセンサ。
S ... substrate, 1 ... processing chamber, 3 ... stage, 4, 12 ... AE sensor.

Claims (6)

基板に所定のストレスを加える工程が含まれた処理を施す前に、基板にストレスを加えるストレス印加工程と、ストレス印加工程で加えたストレスに起因するアコースティック・エミッション現象で基板に発生する弾性波を検出する検出工程とを備え、検出工程で検出した弾性波に基づいて、基板が前記所定のストレスに耐えられるか否かを判断する基板事前検査方法において、
前記処理は、基板を吸着する吸着手段を有するステージと基板を加熱する加熱手段とを備える処理室で行う処理であって、前記所定のストレスを加える工程は、ステージに基板を吸着した状態で基板を所定の処理温度に加熱する加熱工程であり、基板をステージに載置した状態で、加熱工程完了前に前記ストレス印加工程及び検出工程を実行し、このストレス印加工程は、基板を加熱することで基板に加えるストレスが前記所定のストレスよりも弱くなるように行われることを特徴とする基板事前検査方法。
Before performing a process that includes a step of applying a predetermined stress to the substrate, a stress applying step of applying stress to the substrate and an acoustic wave generated on the substrate by an acoustic emission phenomenon caused by the stress applied in the stress applying step. A substrate pre-inspection method for determining whether the substrate can withstand the predetermined stress based on the elastic wave detected in the detection step .
The process is a process performed in a processing chamber including a stage having an adsorption unit that adsorbs a substrate and a heating unit that heats the substrate, and the step of applying the predetermined stress is performed while the substrate is adsorbed on the stage. The stress applying step and the detecting step are performed before the heating step is completed in a state where the substrate is placed on the stage, and the stress applying step heats the substrate. And a substrate pre-inspection method, wherein the stress applied to the substrate is weaker than the predetermined stress .
前記検出工程で検出した弾性波に、基板の破壊前に生ずる微小クラックで発生する弾性波が含まれるときは、基板が前記所定のストレスに耐えられないと判断することを特徴とする請求項1記載の基板事前検査方法 2. The elastic wave detected in the detection step includes an elastic wave generated by a micro crack generated before the substrate is broken, and it is determined that the substrate cannot withstand the predetermined stress. The substrate pre-inspection method described . 記ストレス印加工程は、基板を前記ステージに吸着する工程において、ステージの表面形状に沿わない形状の基板を前記吸着手段の吸着力でステージの表面形状に沿うように変形させることにより行われることを特徴とする請求項記載の基板事前検査方法。 Before SL stress application step is the in the step of adsorbing the substrate to the stage is carried out by deforming along the substrate shape does not follow the surface shape of a stage on the surface shape of the stage in the suction force of the suction means The substrate preliminary inspection method according to claim 1 . 前記ストレス印加工程は、前記加熱工程の初期段階において、基板の昇温速度をその後の昇温速度より遅くした状態で基板を加熱することにより行われることを特徴とする請求項記載の基板事前検査方法。 The stress application step in the initial stage of the heating step, the substrate advance according to claim 1, characterized in that is carried out by heating the substrate heating rate of the substrate in a subsequent state of being slower than the heating rate of the Inspection method. 前記ストレス印加工程は、前記加熱工程の初期段階において、基板を局所的に加熱することにより行われることを特徴とする請求項記載の基板事前検査方法。 The stress application step in the initial stage of the heating step, substrate pre-inspection method according to claim 1, wherein the is performed by locally heating the substrate. め加熱されたステージに基板を吸着させて前記加熱工程を行うものにおいて、前記ストレス印加工程は、加熱工程の初期段階において、前記吸着手段による吸着力をその後の吸着力よりも弱くした状態で基板を加熱することにより行われることを特徴とする請求項1記載の基板事前検査方法。 In those performing the heating step by adsorbing the substrate to a pre-Me heated stage, the stress application step in the initial stage of the heating step, the suction force by the suction means in the subsequent state of being weaker than the suction force The substrate preliminary inspection method according to claim 1, wherein the substrate preliminary inspection method is performed by heating the substrate.
JP2011104223A 2011-05-09 2011-05-09 Board pre-inspection method Active JP5773734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104223A JP5773734B2 (en) 2011-05-09 2011-05-09 Board pre-inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104223A JP5773734B2 (en) 2011-05-09 2011-05-09 Board pre-inspection method

Publications (2)

Publication Number Publication Date
JP2012235044A JP2012235044A (en) 2012-11-29
JP5773734B2 true JP5773734B2 (en) 2015-09-02

Family

ID=47435069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104223A Active JP5773734B2 (en) 2011-05-09 2011-05-09 Board pre-inspection method

Country Status (1)

Country Link
JP (1) JP5773734B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043640B2 (en) * 2013-01-30 2016-12-14 株式会社アルバック Substrate adsorption detection method
JP6616941B2 (en) * 2013-11-29 2019-12-04 花王株式会社 Anti-inflammatory agent and melanin production inhibitor
JP6626283B2 (en) 2015-07-24 2019-12-25 キオクシア株式会社 Imprint equipment
JP7070319B2 (en) * 2018-10-17 2022-05-18 日本製鉄株式会社 AE wave measurement method and measuring device
JP7238841B2 (en) * 2020-03-31 2023-03-14 トヨタ自動車株式会社 PRESSURE INSPECTION METHOD AND PRESSURE INSPECTION DEVICE
JP7259796B2 (en) * 2020-03-31 2023-04-18 トヨタ自動車株式会社 PRESSURE INSPECTION METHOD AND PRESSURE INSPECTION DEVICE
CN117470968A (en) * 2023-11-10 2024-01-30 武汉路通市政工程质量检测中心有限公司 Method and system for monitoring fracture of prestressed reinforcement in prestressed concrete structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3699349B2 (en) * 1990-12-25 2005-09-28 日本碍子株式会社 Wafer adsorption heating device
JP2000121615A (en) * 1998-10-14 2000-04-28 Sharp Corp Manufacture of electronic component and its manufacturing device
JP3889938B2 (en) * 2001-05-18 2007-03-07 シャープ株式会社 Solar cell internal crack inspection system
JP2004022585A (en) * 2002-06-12 2004-01-22 Ngk Spark Plug Co Ltd Electrostatic chuck
JP3883910B2 (en) * 2002-06-26 2007-02-21 株式会社アルバック Work processing device
JP4692895B2 (en) * 2006-07-26 2011-06-01 株式会社島津製作所 TFT substrate inspection apparatus and TFT substrate inspection method
JP2011007750A (en) * 2009-06-29 2011-01-13 Kyocera Corp Detection method of crack of wafer, and detection device therefor

Also Published As

Publication number Publication date
JP2012235044A (en) 2012-11-29

Similar Documents

Publication Publication Date Title
JP5773734B2 (en) Board pre-inspection method
JP6348500B2 (en) Adsorption stage, bonding apparatus, and manufacturing method of bonding substrate
US6578423B2 (en) Acoustic detection of dechucking and apparatus therefor
EP2933828B1 (en) Method for transferring a useful layer
WO2004038779A1 (en) Expansion method and device
JP2004304066A (en) Method of manufacturing semiconductor device
JP2012526275A5 (en)
US9240388B2 (en) Semiconductor manufacturing device and semiconductor manufacturing method
US7846749B2 (en) Method and device for monitoring a heat treatment of a microtechnological substrate
JP6178683B2 (en) Adsorption stage, pasting device, and pasting method
TWI755505B (en) sheet expansion device
JP3967089B2 (en) Substrate screening apparatus and substrate screening method
JP2011205084A (en) Device for detecting crack of wafer, method of detecting the crack, device and method for manufacturing solar cell or semiconductor element, and solar cell or semiconductor element
JP3883910B2 (en) Work processing device
US12002697B2 (en) Method for detecting the splitting of a substrate weakened by implanting atomic species
JP2009117867A (en) Method of manufacturing semiconductor apparatus
JP6043640B2 (en) Substrate adsorption detection method
JPH04736A (en) Wafer pushing-up device
JP5633470B2 (en) Manufacturing method of semiconductor device
JP2017203654A (en) Chip discrimination method
JP6043675B2 (en) Wafer processing method
US20240063022A1 (en) Wafer bonding process with reduced overlay distortion
JP2000121615A (en) Manufacture of electronic component and its manufacturing device
JPWO2012073319A1 (en) Ultrasonic vibration bonding equipment
JP2010153513A (en) Substrate treatment apparatus, substrate-bonding apparatus, substrate treatment method, substrate-bonding method, and semiconductor device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150630

R150 Certificate of patent or registration of utility model

Ref document number: 5773734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250