JP5773419B2 - Gas sensor and gas detector - Google Patents

Gas sensor and gas detector Download PDF

Info

Publication number
JP5773419B2
JP5773419B2 JP2011117796A JP2011117796A JP5773419B2 JP 5773419 B2 JP5773419 B2 JP 5773419B2 JP 2011117796 A JP2011117796 A JP 2011117796A JP 2011117796 A JP2011117796 A JP 2011117796A JP 5773419 B2 JP5773419 B2 JP 5773419B2
Authority
JP
Japan
Prior art keywords
gas
activated carbon
oxidation catalyst
sensor
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011117796A
Other languages
Japanese (ja)
Other versions
JP2012247240A (en
Inventor
井澤 邦之
邦之 井澤
謙一 吉岡
謙一 吉岡
千純 北川
千純 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Figaro Engineering Inc
Original Assignee
Figaro Engineering Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Figaro Engineering Inc filed Critical Figaro Engineering Inc
Priority to JP2011117796A priority Critical patent/JP5773419B2/en
Publication of JP2012247240A publication Critical patent/JP2012247240A/en
Application granted granted Critical
Publication of JP5773419B2 publication Critical patent/JP5773419B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

この発明はMEMSガスセンサによるガスの検出に関し、特に有機溶媒等による被毒の防止に関する。   The present invention relates to gas detection by a MEMS gas sensor, and particularly to prevention of poisoning by an organic solvent or the like.

発明者らはシリコン基板上での微細加工を用いたガスセンサ(MEMSセンサということがある)を開発中で、特にSnO2厚膜によりメタンを検出するセンサを開発中である。MEMSセンサは活性炭フィルを備えて有機溶媒等の雑ガスを除去し、例えば30秒周期で0.1秒間500℃付近に加熱されてメタンを検出し、他は室温に放置される。発明者は、このMEMSセンサが高濃度のエタノールに長時間曝されると被毒されることを見出した。そして被毒に関する実験から、
・ エタノールは活性炭フィルタを通過してSnO2膜に達し、
・ SnO2膜のメタン中の抵抗値も水素中の抵抗値も空気中の抵抗値も増加し、
・ メタン感度(空気中の抵抗値とメタン中の抵抗値との比)が減少し、
・ メタンの検出温度(470℃)に30秒毎に0.1秒間加熱されるだけでは、吸着したエタノールを完全に燃焼させるには不十分である、
ことが判明した。
The inventors are developing a gas sensor using a microfabrication on a silicon substrate (sometimes referred to as a MEMS sensor), and in particular developing a sensor that detects methane using a SnO2 thick film. The MEMS sensor is equipped with an activated carbon fill to remove miscellaneous gases such as organic solvents, and is heated to around 500 ° C. for 0.1 seconds in a cycle of 30 seconds, for example, to detect methane, and the others are left at room temperature. The inventor has found that this MEMS sensor is poisoned when exposed to a high concentration of ethanol for a long time. And from experiments on poisoning,
・ Ethanol passes through the activated carbon filter and reaches the SnO2 membrane.
・ The resistance value of SnO2 film in methane, resistance in hydrogen, and resistance in air increased.
・ Methane sensitivity (ratio of resistance in air to resistance in methane) decreases,
・ It is not enough to completely burn the adsorbed ethanol by heating to the detection temperature of methane (470 ℃) every 30 seconds for 0.1 second.
It has been found.

エタノールによる被毒への対策として、メタン検出温度への加熱時間を長くすることは消費電力の点で難しい。SnO2膜を酸化活性の高い遷移金属酸化物膜で被覆することは、遷移金属がSnO2中に拡散し、特性を変える可能性がある点で好ましくない。活性炭の量を増すと、耐被毒性能の向上の効果が小さい割りに、通気抵抗が大きく増加する点で好ましくない。発明者は、既存のMEMSセンサの構成を基本的に変えずに、通気抵抗の増大が僅かで、かつコストの増加が小さいようにしながら、エタノール等による被毒を防止することを検討し、この発明に至った。   As a measure against poisoning with ethanol, it is difficult in terms of power consumption to increase the heating time to the methane detection temperature. Covering the SnO2 film with a transition metal oxide film having high oxidation activity is not preferable because the transition metal may diffuse into SnO2 and change the characteristics. Increasing the amount of activated carbon is not preferable in that the ventilation resistance greatly increases while the effect of improving the poisoning resistance is small. The inventor studied the prevention of poisoning by ethanol or the like while keeping the configuration of the existing MEMS sensor basically unchanged and making the increase in ventilation resistance small and the increase in cost small. Invented.

関連する先行技術を示す。特許文献1(JP2825149)は、接触燃焼式ガスセンサに、活性炭とPtとをセルロースに混合したシロキサンガスのフィルタを設けることを提案している。しかしながら特許文献1は、エタノール等による被毒にも、MEMSタイプのガスセンサにも、またSnO2膜を用いたセンサにも言及していない。   Related prior art is shown. Patent Document 1 (JP2825149) proposes that a catalytic combustion gas sensor is provided with a siloxane gas filter in which activated carbon and Pt are mixed with cellulose. However, Patent Document 1 does not mention poisoning with ethanol or the like, a MEMS type gas sensor, or a sensor using a SnO2 film.

JP2825149JP2825149

この発明の課題は、有機溶媒等によるガスセンサの被毒を、簡単な構成により防止することにある。   An object of the present invention is to prevent poisoning of a gas sensor by an organic solvent or the like with a simple configuration.

この発明は、シリコン基板表面の絶縁膜に、SnO2膜とSnO2膜に接続されている電極とヒータを備えるガス検知部が設けられ、前記ガス検知部の周囲で前記絶縁膜の底部に空洞が設けられ、前記シリコン基板がハウジングに収容されているガスセンサにおいて、
前記ハウジングに、活性炭でありかつ貴金属を含まない有機溶媒の吸着剤と、貴金属担持の活性炭である有機溶媒の酸化触媒とが、ハウジングの外側から内側へ吸着剤、酸化触媒の順に設けられ、被検出雰囲気を前記吸着剤と前記酸化触媒とを介してガス検知部へ導くようにされていることを特徴とする。
In the present invention, the insulating film on the surface of the silicon substrate is provided with a SnO2 film, a gas detection unit including an electrode connected to the SnO2 film and a heater, and a cavity is provided around the gas detection unit at the bottom of the insulating film In the gas sensor in which the silicon substrate is accommodated in a housing,
An adsorbent of an organic solvent that is activated carbon and does not contain a noble metal and an oxidation catalyst of an organic solvent that is an activated carbon supporting a noble metal are provided in the housing in order of the adsorbent and the oxidation catalyst. The detection atmosphere is guided to the gas detection unit through the adsorbent and the oxidation catalyst.

活性炭-Pt、活性炭-Pd、活性炭-RuO2、カーボンブラック-Pt、Fe2O3-Au、LaCoO3-Pt、LaCrO3-Pt、MnO2-CuO-Pt等の酸化触媒は、室温でもエタノール酸化活性を有している。そこで活性炭-Pt、活性炭-Pd、活性炭-RuO2等の貴金属担持の活性炭である酸化触媒をハウジングに設けることにより、エタノール等の有機溶媒を除去し、ガス検知部の被毒を防止できる。
酸化触媒の前段に吸着剤を設けることにより、吸着剤、酸化触媒、ガス検知部の順に被検出雰囲気が導入されるようにすると、吸着剤で処理できなかった少量の有機溶媒を酸化触媒で処理すればよいので、酸化触媒の負担が軽くなる。従ってPt等の貴金属担持の酸化触媒を効率的に利用できる。
特に活性炭と貴金属担持の活性炭とを組み合わせると、フィルタの基本材料を活性炭に統一できる。
またSnO2膜と電極とをヒータで加熱するガス検知部の場合、γアルミナ等にPt等を担持した触媒に比べ、SnO2が温和な酸化触媒であるため、エタノール等による被毒の影響が特に著しい。このため酸化触媒により被毒を防止する意義が大きい。
Oxidation catalysts such as activated carbon-Pt, activated carbon-Pd, activated carbon-RuO2, carbon black-Pt, Fe2O3-Au, LaCoO3-Pt, LaCrO3-Pt, MnO2-CuO-Pt have ethanol oxidation activity even at room temperature. . Therefore, by providing the housing with an oxidation catalyst that is activated carbon supporting noble metals such as activated carbon-Pt, activated carbon-Pd, activated carbon-RuO2, organic solvents such as ethanol can be removed, and poisoning of the gas detection unit can be prevented.
If an atmosphere to be detected is introduced in the order of adsorbent, oxidation catalyst, and gas detector by providing an adsorbent before the oxidation catalyst, a small amount of organic solvent that could not be treated with the adsorbent is treated with the oxidation catalyst. This reduces the burden on the oxidation catalyst. Therefore, a noble metal-supported oxidation catalyst such as Pt can be used efficiently.
In particular, the combination of activated carbon and precious metal-supported activated carbon makes it possible to unify the basic filter material into activated carbon.
In addition, in the case of a gas detector that heats the SnO2 film and the electrode with a heater, SnO2 is a mild oxidation catalyst compared to a catalyst in which Pt or the like is supported on γ-alumina or the like, so the influence of poisoning by ethanol or the like is particularly significant . For this reason, it is significant to prevent poisoning with an oxidation catalyst.

またこの発明は、シリコン基板表面の絶縁膜に、SnO2膜とSnO2膜に接続されている電極とヒータを備えるガス検知部が設けられ、前記ガス検知部の周囲で前記絶縁膜の底部に空洞が設けられ、前記シリコン基板がハウジングに収容されているガスセンサと、電源と、ガスセンサの駆動回路とを備えるガス検出装置において、
前記ハウジングに、活性炭でありかつ貴金属を含まない有機溶媒の吸着剤と、貴金属担持の活性炭である有機溶媒の酸化触媒とが、ハウジングの外側から内側へ吸着剤、酸化触媒の順に設けられ、被検出雰囲気を前記吸着剤と前記酸化触媒とを介してガス検知部へ導くようにされ、
前記駆動回路は、前記ヒータへの電力を、有機溶媒をガス検知部から蒸発もしくは酸化するのに適した低レベルと、検出対象ガスの検出に適した高レベルと、0レベルとの間で変化させるように構成されていることを特徴とする。
なおこの明細書において、ガスセンサに関する記載はそのままガス検出装置にも当てはまる。
Further, according to the present invention, the insulating film on the surface of the silicon substrate is provided with a SnO2 film, a gas detection unit including an electrode connected to the SnO2 film and a heater, and a cavity is formed around the gas detection unit at the bottom of the insulating film. In a gas detection apparatus comprising: a gas sensor in which the silicon substrate is housed in a housing; a power source; and a drive circuit for the gas sensor.
An adsorbent of an organic solvent that is activated carbon and does not contain a noble metal and an oxidation catalyst of an organic solvent that is an activated carbon supporting a noble metal are provided in the housing in order of the adsorbent and the oxidation catalyst. The detection atmosphere is guided to the gas detection unit via the adsorbent and the oxidation catalyst,
The drive circuit changes the power to the heater between a low level suitable for evaporating or oxidizing the organic solvent from the gas detection unit, a high level suitable for detection of the detection target gas, and a zero level. It is comprised so that it may make it.
In this specification, the description relating to the gas sensor also applies to the gas detection device as it is.

このようにすると、酸化触媒により有機溶媒を酸化することと、低レベルで有機溶媒をガス検知部から蒸発させあるいは酸化することとの組み合わせにより、被毒を著しく小さくできる。また低レベルの温度は例えば60〜200℃で、好ましくは60〜120℃、特に好ましくは70〜110℃と低いので、消費電力の増加は許容範囲内である。この明細書において、〜により範囲を示した場合は、下限以上で上限以下であることを意味する。
In this way, poisoning can be significantly reduced by a combination of oxidizing the organic solvent with the oxidation catalyst and evaporating or oxidizing the organic solvent from the gas detector at a low level. The low level temperature is, for example, 60 to 200 ° C., preferably 60 to 120 ° C., particularly preferably 70 to 110 ° C., so that the increase in power consumption is within an allowable range. In this specification, when a range is indicated by ~, it means that it is not less than the lower limit and not more than the upper limit.

ガスセンサの断面図Cross section of gas sensor センサ本体の断面図Cross section of sensor body ガス検出装置のブロック図Block diagram of gas detector 実施例でのガスセンサの加熱パターンを示す波形図で、1)は加熱電力を,2)はガス検知部の温度を示す。It is a wave form diagram which shows the heating pattern of the gas sensor in an Example, 1) shows heating power and 2) shows the temperature of a gas detection part. 実施例のアルゴリズムを示すフローチャートThe flowchart which shows the algorithm of an Example 1日2時間ずつ2日間、3000ppmのエタノールに曝した際の、ガスセンサのキャップ内のガス濃度を示す特性図Characteristic chart showing the gas concentration in the cap of the gas sensor when exposed to 3000ppm ethanol for 2 days a day for 2 days 1日20分ずつ28日間3000ppmのエタノールに曝した際の、センサ特性の変化を示す特性図で、センサは120mgの活性炭と30mgの活性炭-Pt触媒を備え、100℃×0.4秒-470℃×0.1秒-室温29.5秒の順に駆動A characteristic diagram showing changes in sensor characteristics when exposed to 3000 ppm ethanol for 20 days a day for 20 minutes. The sensor is equipped with 120 mg activated carbon and 30 mg activated carbon-Pt catalyst, 100 ° C x 0.4 seconds-470 ° C x Drive in order of 0.1 seconds-room temperature 29.5 seconds 1日20分ずつ28日間3000ppmのエタノールに曝した際の、センサ特性の変化を示す特性図で、センサは120mgの活性炭と30mgの活性炭-Pt触媒を備え、470℃×0.1秒と室温29.9秒とに交互に駆動A characteristic diagram showing changes in sensor characteristics when exposed to 3000 ppm ethanol for 20 days a day for 20 minutes. The sensor is equipped with 120 mg activated carbon and 30 mg activated carbon-Pt catalyst, 470 ° C x 0.1 seconds, room temperature 29.9 seconds Drive alternately with 1日20分ずつ21日間3000ppmのエタノールに曝した際の、センサ特性の変化を示す特性図で、センサは150mgの活性炭を備え、470℃×0.1秒と室温29.9秒とに交互に駆動A characteristic diagram showing changes in sensor characteristics when exposed to 3000 ppm of ethanol for 20 minutes a day for 21 days. The sensor is equipped with 150 mg of activated carbon and is driven alternately at 470 ° C x 0.1 seconds and at room temperature 29.9 seconds.

以下に本発明を実施するための最適実施例を示すが、本発明は実施例により限定されるものではなく、明細書及び図面の記載に当業者に公知の事項を加えて変形できる。   BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an optimum embodiment for carrying out the present invention will be shown, but the present invention is not limited to the embodiment, and can be modified by adding matters known to those skilled in the art to the description of the specification and drawings.

図1〜図9に実施例とその特性を示す。図において、2はガスセンサで、MEMSタイプのセンサ本体4をベースに固着し、センサ本体4の図示しないパッドをピン13にリード線11により接続してある。そしてキャップ12とベース10で囲まれたスペースに、センサ本体4が配置されている。14は粒状、シート状等の活性炭から成る吸着剤、16は例えば粒状あるいはシート状の活性炭-Ptから成る酸化触媒、18は吸着剤14と酸化触媒16を固定するための不織布で、紙あるいは多孔質の合成樹脂フィルム等でも良く、吸着剤14と酸化触媒16とがシート状の場合は不織布18は不要である。19は図1での下側の不織布18を押さえる押さえリングである。ガスセンサ2の構造、形状、材料は、MEMSタイプのガスセンサで、外部からセンサ本体4へ至る通気路の外側に吸着剤14が、中間に酸化触媒16が、内側にセンサ本体4が置かれている点が重要で、他の点は任意である。   1 to 9 show examples and their characteristics. In the figure, reference numeral 2 denotes a gas sensor, in which a MEMS type sensor body 4 is fixed to a base, and a pad (not shown) of the sensor body 4 is connected to a pin 13 by a lead wire 11. The sensor body 4 is disposed in a space surrounded by the cap 12 and the base 10. 14 is an adsorbent made of granular or sheet-like activated carbon, 16 is an oxidation catalyst made of, for example, granular or sheet-like activated carbon-Pt, 18 is a nonwoven fabric for fixing the adsorbent 14 and the oxidation catalyst 16, and is made of paper or porous If the adsorbent 14 and the oxidation catalyst 16 are in the form of a sheet, the nonwoven fabric 18 is not necessary. Reference numeral 19 denotes a pressing ring for pressing the lower nonwoven fabric 18 in FIG. The structure, shape, and material of the gas sensor 2 is a MEMS type gas sensor. An adsorbent 14 is placed outside the air passage from the outside to the sensor body 4, an oxidation catalyst 16 is placed in the middle, and the sensor body 4 is placed inside. Points are important and other points are optional.

吸着剤14はここでは粒状活性炭で、形状は粒状でもシート状でも良い。酸化触媒16はここでは粒状の活性炭-Ptであるが、シート状の活性炭にPtを担持しても良い。また活性炭-Pd、活性炭-RuO2等の酸化触媒でも良く、これらは室温でエタノール酸化活性を有する酸化触媒である。室温でエタノール等の有機溶媒を酸化するため、酸化触媒16はPt,Au,Pd,Rh,RuO2等の貴金属を活性炭から成る担体に担持した触媒とする。吸着剤14を前段に配置することにより、酸化触媒の負担を軽減し、その必要量を少なくできる。また吸着剤14の材料を酸化触媒16の担体とすることにより、材料を統一できる。 Here, the adsorbent 14 is granular activated carbon , and the shape may be granular or sheet-like. The oxidation catalyst 16 is granular activated carbon-Pt here, but Pt may be supported on sheet-like activated carbon . The activated carbon -Pd, may be in an oxidation catalyst such as activated carbon -RuO2, which are oxidation catalyst with ethanol oxidizing activity at room temperature. In order to oxidize an organic solvent such as ethanol at room temperature, the oxidation catalyst 16 is a catalyst in which a noble metal such as Pt, Au, Pd, Rh, RuO2 is supported on a support made of activated carbon . By arranging the adsorbent 14 in the preceding stage, the burden on the oxidation catalyst can be reduced and the required amount can be reduced. Moreover, the material can be unified by using the material of the adsorbent 14 as the carrier of the oxidation catalyst 16.

図2はセンサ本体4の構造を示し、シリコン基板20の一面にシリカ、酸化タンタル等の絶縁膜22が設けられ、絶縁膜22の底部に空洞21がある。Pt膜等の膜状のヒータ6が空洞21の上部で絶縁膜22上に設けられ、第2の絶縁膜23で被覆されている。絶縁膜23上に例えば一対のPt膜から成る電極24,24とSnO2膜8とが設けられている。なおヒータ6を一方の電極に兼用しても良い。実施例ではSnO2膜8の膜厚は30μmで、SnO2の100mass%に対し1.5mass%のPdを含んでいる。センサ2の構造、材料は任意で、SnO2に代えてWO3、In2O3等の他の金属酸化物半導体を用いても良い。またγアルミナ等の担体にPt等の触媒を担持し、可燃性ガスの燃焼熱を検出する接触燃焼式ガスセンサとしても良い。しかし発明者の経験によると、エタノール等による被毒はSnO2等の金属酸化物半導体ガスセンサで深刻で、接触燃焼式ガスセンサでは軽微であった。これは、接触燃焼式ガスセンサではエタノール等への酸化能力が充分に高いため、被毒が弱くなるためと考えられる。   FIG. 2 shows the structure of the sensor body 4. An insulating film 22 such as silica or tantalum oxide is provided on one surface of the silicon substrate 20, and a cavity 21 is provided at the bottom of the insulating film 22. A film-like heater 6 such as a Pt film is provided on the insulating film 22 above the cavity 21, and is covered with the second insulating film 23. On the insulating film 23, for example, electrodes 24 and 24 made of a pair of Pt films and an SnO2 film 8 are provided. The heater 6 may also be used as one electrode. In the embodiment, the thickness of the SnO 2 film 8 is 30 μm, and contains 1.5 mass% of Pd with respect to 100 mass% of SnO 2. The structure and material of the sensor 2 are arbitrary, and other metal oxide semiconductors such as WO3 and In2O3 may be used instead of SnO2. Further, a catalytic combustion type gas sensor for detecting a combustion heat of a combustible gas by supporting a catalyst such as Pt on a carrier such as γ-alumina may be used. However, according to the inventor's experience, poisoning with ethanol or the like was serious in a metal oxide semiconductor gas sensor such as SnO2, and was minor in a catalytic combustion type gas sensor. This is presumably because the catalytic combustion gas sensor has a sufficiently high ability to oxidize to ethanol or the like, so that poisoning is weakened.

図3にガス検出装置30の回路構成を示す。31は負荷抵抗でSnO2膜8に接続され、32は電源としての電池である。34はガスセンサ2の駆動回路としてのマイクロコンピュータで、ヒータドライブ36,検出回路38,スタート回路40として作用する。ヒータドライブ36は例えばPWM(パルス幅変調制御)によりヒータ6への電力を制御し、例えば低レベル(0.4秒間)、高レベル(0.1秒間)、0レベルの順に例えば30秒周期でヒータ6を駆動する。検出回路38はヒータ電力が高レベルでのSnO2膜8の抵抗値、あるいはこれに相当する量、実施例ではSnO2膜8に加わる電圧から、検出対象ガスのメタンを検出する。SnO2膜8の抵抗値あるいはこれに相当する量をセンサ出力と呼び、検出回路38はADコンバータを備えてSnO2膜の抵抗値等を求め、これを適宜の基準値と比較することにより、メタン濃度を求める。検出回路38は、低レベルでのセンサ出力からエタノール等の有機溶媒の濃度を求めても良い。スタート回路40は、停止していたガス検出装置30を起動する際に、例えば図示しないスイッチ等により電池32とマイクロコンピュータ34とが接続された際に、常時の0.4秒よりも長い1秒〜20秒間、実施例では4秒間、センサ2を低レベルに加熱するように、ヒータドライブ36に信号を送る。   FIG. 3 shows a circuit configuration of the gas detection device 30. A load resistor 31 is connected to the SnO2 film 8, and a battery 32 is a power source. Reference numeral 34 denotes a microcomputer as a drive circuit for the gas sensor 2, which acts as a heater drive 36, a detection circuit 38, and a start circuit 40. The heater drive 36 controls the power to the heater 6 by, for example, PWM (pulse width modulation control), and drives the heater 6 in a cycle of, for example, 30 seconds in the order of low level (0.4 seconds), high level (0.1 seconds), and 0 level. To do. The detection circuit 38 detects methane, which is a detection target gas, from the resistance value of the SnO2 film 8 when the heater power is at a high level, or an amount corresponding thereto, in the embodiment, the voltage applied to the SnO2 film 8. The resistance value of the SnO2 film 8 or an amount corresponding thereto is called a sensor output, and the detection circuit 38 is provided with an AD converter to determine the resistance value of the SnO2 film and compare it with an appropriate reference value to obtain the methane concentration. Ask for. The detection circuit 38 may obtain the concentration of an organic solvent such as ethanol from the sensor output at a low level. When starting the gas detection device 30 that has been stopped, the start circuit 40, for example, when the battery 32 and the microcomputer 34 are connected by a switch (not shown) or the like, is 1 second to 20 seconds longer than the usual 0.4 seconds. A signal is sent to the heater drive 36 to heat the sensor 2 to a low level for a second, in the example, 4 seconds.

図4、図5にガスセンサ2の駆動アルゴリズムを示す。ここでは低レベルでのSnO2膜8の温度を100℃、高レベルでのSnO2膜8の温度を470℃とする。高レベルでの温度は例えば300℃〜550℃とする。またセンサを所定のレベルあるいは温度に加熱するとは、SnO2膜8を所定の電力であるいは所定の温度へ加熱することである。電源を投入した際に、例えば4秒間、好ましくは1〜20秒間、センサを低レベルに加熱し、放置中にSnO2膜8に蓄積した有機溶媒を蒸発もしくは酸化する(ステップ1)。次いで例えば30秒周期で、ガスセンサ2を駆動し、最初の0.4秒間、好ましくは最初の0.1〜2秒間低レベルに(ステップ2)、次の0.1秒間、好ましくは次の0.02秒間〜0.5秒間高レベルに加熱し(ステップ5)、残る区間はヒータをオフ(ステップ6)する。30秒周期とするのはメタンの検出遅れを30秒程度とするためで、周期は例えば5秒〜10分とする。   4 and 5 show the driving algorithm of the gas sensor 2. Here, the temperature of the SnO2 film 8 at the low level is 100 ° C., and the temperature of the SnO2 film 8 at the high level is 470 ° C. The temperature at the high level is, for example, 300 ° C. to 550 ° C. Also, heating the sensor to a predetermined level or temperature means heating the SnO2 film 8 with a predetermined power or to a predetermined temperature. When the power is turned on, the sensor is heated to a low level, for example, for 4 seconds, preferably 1 to 20 seconds, and the organic solvent accumulated in the SnO2 film 8 during standing is evaporated or oxidized (step 1). Then, for example, in a 30 second cycle, the gas sensor 2 is driven, and the low level is set for the first 0.4 seconds, preferably the first 0.1 to 2 seconds (step 2), and then the high level for the next 0.1 seconds, preferably the next 0.02 seconds to 0.5 seconds. (Step 5), and in the remaining section, the heater is turned off (step 6). The period of 30 seconds is to make the detection delay of methane about 30 seconds, and the period is, for example, 5 seconds to 10 minutes.

吸着剤14はエタノール等の有機溶媒とシリコーン蒸気等の他の被毒ガスを吸着する。吸着剤14を通過するほど高濃度の被毒ガスが長時間存在することが考えられるのは、エタノール等の有機溶媒の場合である。有機溶媒が吸着剤14を通過すると、低濃度の有機溶媒が長時間、酸化触媒16へ到達する。酸化触媒16は有機溶媒を酸化し、センサ本体へ到達する有機溶媒の量を少なくする。低レベルへの加熱でセンサは例えば100℃に加熱される。エタノール等の有機溶媒は沸点が一般に100℃弱なので、有機溶媒は100℃でセンサ本体4から蒸発し、あるいは貴金属を担持したSnO2により酸化される。このため有機溶媒が、縮合等によりセンサ本体から脱離が困難な物質に変化することを、防止できる。   The adsorbent 14 adsorbs organic solvents such as ethanol and other poisoning gases such as silicone vapor. It is conceivable that a poison gas having a higher concentration as it passes through the adsorbent 14 exists for a longer time in the case of an organic solvent such as ethanol. When the organic solvent passes through the adsorbent 14, the low concentration organic solvent reaches the oxidation catalyst 16 for a long time. The oxidation catalyst 16 oxidizes the organic solvent and reduces the amount of the organic solvent that reaches the sensor body. The sensor is heated to, for example, 100 ° C. by heating to a low level. Since an organic solvent such as ethanol generally has a boiling point of slightly less than 100 ° C., the organic solvent evaporates from the sensor body 4 at 100 ° C. or is oxidized by SnO 2 supporting a noble metal. For this reason, it is possible to prevent the organic solvent from changing from the sensor body to a substance that is difficult to desorb due to condensation or the like.

ガスセンサ2は、低レベルの加熱温度で有機溶媒への感度を持つので、低レベルであるいは低レベルと高レベルとの中間の温度で有機溶媒の濃度を求めて、所定値以上の場合は次回以降も低レベルへの加熱を行い、所定値未満の場合は次回以降は低レベルへの加熱を省略しても良い(ステップ2,3)。この判定は例えば100周期毎に、好ましくは10〜1000周期毎に行う。ステップ2,3の意味は消費電力を節減することにあり、問題点はセンサに有機溶媒を蓄積させる可能性がある点で、ステップ2,3を省略しても良い。   Since the gas sensor 2 has sensitivity to an organic solvent at a low level of heating temperature, the concentration of the organic solvent is obtained at a low level or an intermediate temperature between the low level and the high level. Also, heating to a low level is performed, and if it is less than a predetermined value, heating to a low level may be omitted from the next time (steps 2 and 3). This determination is performed, for example, every 100 cycles, preferably every 10 to 1000 cycles. The meaning of steps 2 and 3 is to save power consumption, and the problem is that there is a possibility that the organic solvent is accumulated in the sensor, so steps 2 and 3 may be omitted.

図6〜図9にガスセンサ2の特性を示す。吸着剤としての活性炭と酸化触媒としての活性炭−Ptの総量を150mg/センサとし、
・ 150mg全部を単なる活性炭として酸化触媒を設けない従来例、
・ 20mgを活性炭−Pt、130mgを単なる活性炭とした実施例、
・ 30mgを活性炭−Pt、120mgを単なる活性炭とした実施例、
の3種類のガスセンサを製造した。なお活性炭−Pt中のPt濃度は5質量%である。酸化触媒16の貴金属量は、センサ当たりで例えば0.5〜5mgが好ましい。キャップ内のガス濃度を求めるため、メタンセンサの代わりに、MEMSタイプのエタノールセンサ(SnO2膜の貴金属含有量をエタノール検出用に少なくし、動作温度を常時300℃としたもの)を配置し、2日間、1日2時間ずつ3000ppmのエタノールに曝した。キャップ内のガス濃度(エタノール換算)を図6に示す。活性炭のみでは数十ppmのエタノールがキャップ内に存在するが、活性炭-Ptを追加することにより、キャップ内のエタノール濃度は10ppm未満となり、またエタノール濃度が増加するまでのタイムラグが長くなる。以上のように活性炭-Ptは、キャップ内の有機溶媒濃度の最大値を低下させ、かつ有機溶媒濃度が増加するまでの時間を長くする。
The characteristics of the gas sensor 2 are shown in FIGS. The total amount of activated carbon as adsorbent and activated carbon-Pt as the oxidation catalyst is 150 mg / sensor,
・ Conventional example in which all 150mg is simply activated carbon and no oxidation catalyst is provided,
An example in which 20 mg is activated carbon-Pt and 130 mg is simply activated carbon,
Examples where 30 mg is activated carbon-Pt and 120 mg is simply activated carbon,
Three types of gas sensors were manufactured. The Pt concentration in activated carbon-Pt is 5% by mass. The amount of noble metal of the oxidation catalyst 16 is preferably 0.5 to 5 mg per sensor, for example. In order to obtain the gas concentration in the cap, instead of the methane sensor, a MEMS type ethanol sensor (with a noble metal content in the SnO2 film reduced for ethanol detection and an operating temperature of 300 ° C at all times) was placed. Daily exposure to 3000 ppm ethanol for 2 hours a day. FIG. 6 shows the gas concentration in the cap (in terms of ethanol). With activated carbon alone, ethanol of several tens of ppm exists in the cap, but by adding activated carbon-Pt, the ethanol concentration in the cap becomes less than 10 ppm and the time lag until the ethanol concentration increases is lengthened. As described above, the activated carbon-Pt decreases the maximum value of the organic solvent concentration in the cap and lengthens the time until the organic solvent concentration increases.

図7は、120mgの粒状活性炭と30mgの活性炭-Pt(Pt5質量%)とを有するセンサを、100℃に0.4秒、470℃に0.1秒、室温に29.5秒放置する30秒周期で駆動しながら、毎日20分ずつ3000ppmのエタノールに曝した際の特性を示す。図8は、図7と同じセンサを470℃に0.1秒間と室温に29.5秒間の30秒周期で駆動しながら、毎日20分ずつ3000ppmのエタノールに曝した際の特性を示す。図9は、活性炭150mgのみを有するセンサ(酸化触媒無し)を470℃に0.1秒間と室温に29.5秒間の30秒周期で駆動しながら、毎日20分ずつ3000ppmのエタノールに曝した際の特性を示す。測定に用いたセンサは各2個ずつで、図7〜図9では結果の平均を示す。   FIG. 7 shows a sensor having 120 mg of granular activated carbon and 30 mg of activated carbon-Pt (Pt 5 mass%) driven at a cycle of 30 seconds in which the sensor is left at 100 ° C. for 0.4 seconds, 470 ° C. for 0.1 seconds, and room temperature for 29.5 seconds. The characteristics when exposed to 3000 ppm ethanol for 20 minutes every day are shown. FIG. 8 shows the characteristics when the same sensor as FIG. 7 is exposed to 3000 ppm of ethanol for 20 minutes every day while being driven at a period of 30 seconds of 470 ° C. for 0.1 second and room temperature of 29.5 seconds. Fig. 9 shows the characteristics when a sensor having only 150 mg of activated carbon (without oxidation catalyst) is exposed to 3000 ppm of ethanol for 20 minutes every day while driving at 470 ° C for 0.1 seconds and at room temperature for 2 seconds for 30 seconds. . Two sensors were used for each measurement, and FIGS. 7 to 9 show average results.

図9では、1週間でメタン感度がほぼ失われ、メタン中の抵抗値、水素中の抵抗値、空気中の抵抗値が何れも増加した。なお被毒を受けたセンサは、正常雰囲気中で1ヶ月程度駆動することにより、回復する。図8では最初の3週間は被毒の影響が小さいが、4週間目には大きな影響を受けている。図7では、4週間経過しても被毒の影響を無視できる。エタノールの沸点は100℃弱なので、100℃への加熱によりSnO2膜からのエタノールの蒸発が生じているものと推定できる。また貴金属触媒を担持したSnO2でのエタノールの着火点も100℃弱なので、SnO2中でのエタノールの酸化も寄与していることが考えられる。以上のように、酸化触媒を設けることにより被毒の影響を小さくでき、これに100℃付近への加熱を組み合わせることにより、被毒の影響を無視できるようにできる。   In FIG. 9, methane sensitivity was almost lost in one week, and the resistance value in methane, the resistance value in hydrogen, and the resistance value in air all increased. The poisoned sensor recovers by driving for about a month in a normal atmosphere. In FIG. 8, the influence of poisoning is small in the first three weeks, but it is greatly influenced in the fourth week. In FIG. 7, the influence of poisoning can be ignored even after 4 weeks. Since the boiling point of ethanol is a little less than 100 ° C, it can be estimated that the ethanol is evaporated from the SnO2 film by heating to 100 ° C. Moreover, since the ignition point of ethanol in SnO2 carrying a precious metal catalyst is less than 100 ° C, it is considered that the oxidation of ethanol in SnO2 also contributed. As described above, the influence of poisoning can be reduced by providing an oxidation catalyst, and the influence of poisoning can be ignored by combining this with heating to around 100 ° C.

発明者は低レベルの最適温度を検討し、その結果、80℃と100℃では同性能、60℃と120℃でも同性能で、100℃加熱に比べてセンサの耐被毒性が劣り、200℃でも低レベル加熱を行わない場合に比べ耐被毒性能は向上するが、効果が小さいことが判明した。従って低レベルの加熱温度は80〜100℃が最も好ましく、より広くは70〜110℃、さらに広くは60〜120℃、最も広くは60〜200℃とする。低レベルの1周期当たりの加熱時間は、例えば0.1秒以上で効果があるので0.1〜2秒とし、0.2秒以上で効果が大きくなり、1秒を超えると消費電力への影響が大きいので、好ましくは0.2〜1秒とする。   The inventor examined the optimum temperature at a low level. As a result, the same performance was obtained at 80 ° C and 100 ° C, and the same performance was obtained at 60 ° C and 120 ° C. However, it was found that the anti-poisoning performance is improved compared to the case where low level heating is not performed, but the effect is small. Therefore, the low-level heating temperature is most preferably 80 to 100 ° C, more widely 70 to 110 ° C, more widely 60 to 120 ° C, and most widely 60 to 200 ° C. The heating time per cycle at a low level is, for example, 0.1 to 2 seconds because it is effective at 0.1 seconds or more, and the effect is large at 0.2 seconds or more, and if it exceeds 1 second, the effect on power consumption is large, which is preferable. Is 0.2 to 1 second.

実施例ではエタノールによる被毒を示したが、メタノール、イソプロパノール等の有機溶媒による被毒も酸化触媒により除去でき、さらに低レベルへの加熱を追加することにより、被毒の影響を無視できる程度に小さくできる。またシリコン基板20を、スルーホールを備えたプリント基板あるいは他のシリコン基板等に固定し、スルーホールに酸化触媒を支持させても良い。
In the examples, poisoning with ethanol was shown, but poisoning with organic solvents such as methanol and isopropanol can also be removed with an oxidation catalyst, and by adding heating to a lower level, the influence of poisoning can be ignored. Can be small. Alternatively, the silicon substrate 20 may be fixed to a printed circuit board provided with a through hole or another silicon substrate, and the oxidation catalyst may be supported in the through hole.

2 ガスセンサ
4 センサ本体
6 ヒータ
8 SnO2膜
10 ベース
12 キャップ
13 ピン
14 吸着剤
16 酸化触媒
18 不織布
19 押さえリング
20 シリコン基板
21 空洞
22,23 絶縁膜
24 電極
30 ガス検出装置
31 負荷抵抗
32 電池
34 マイクロコンピュータ
36 ヒータドライブ
38 検出回路
40 スタート回路
2 Gas sensor 4 Sensor body 6 Heater 8 SnO2 film 10 Base 12 Cap 13 Pin 14 Adsorbent 16 Oxidation catalyst 18 Non-woven fabric 19 Holding ring 20 Silicon substrate 21 Cavity 22 and 23 Insulating film 24 Electrode 30 Gas detection device 31 Load resistance 32 Battery 34 Micro Computer 36 Heater drive 38 Detection circuit 40 Start circuit

Claims (2)

シリコン基板表面の絶縁膜に、SnO2膜とSnO2膜に接続されている電極とヒータを備えるガス検知部が設けられ、前記ガス検知部の周囲で前記絶縁膜の底部に空洞が設けられ、前記シリコン基板がハウジングに収容されているガスセンサにおいて、
前記ハウジングに、活性炭でありかつ貴金属を含まない有機溶媒の吸着剤と、貴金属担持の活性炭である有機溶媒の酸化触媒とが、ハウジングの外側から内側へ吸着剤、酸化触媒の順に設けられ、被検出雰囲気を前記吸着剤と前記酸化触媒とを介してガス検知部へ導くようにされていることを特徴とする、ガスセンサ。
An insulating film on the surface of the silicon substrate is provided with a SnO2 film, a gas detection unit including an electrode connected to the SnO2 film and a heater, and a cavity is provided at the bottom of the insulating film around the gas detection unit. In the gas sensor in which the substrate is accommodated in the housing,
An adsorbent of an organic solvent that is activated carbon and does not contain a noble metal and an oxidation catalyst of an organic solvent that is an activated carbon supporting a noble metal are provided in the housing in order of the adsorbent and the oxidation catalyst. A gas sensor characterized in that a detection atmosphere is guided to a gas detection unit via the adsorbent and the oxidation catalyst.
シリコン基板表面の絶縁膜に、SnO2膜とSnO2膜に接続されている電極とヒータを備えるガス検知部が設けられ、前記ガス検知部の周囲で前記絶縁膜の底部に空洞が設けられ、前記シリコン基板がハウジングに収容されているガスセンサと、電源と、ガスセンサの駆動回路とを備えるガス検出装置において、
前記ハウジングに、活性炭でありかつ貴金属を含まない有機溶媒の吸着剤と、貴金属担持の活性炭である有機溶媒の酸化触媒とが、ハウジングの外側から内側へ吸着剤、酸化触媒の順に設けられ、被検出雰囲気を前記吸着剤と前記酸化触媒とを介してガス検知部へ導くようにされ、
前記駆動回路は、前記ヒータへの電力を、有機溶媒をガス検知部から蒸発もしくは酸化するのに適した低レベルと、検出対象ガスの検出に適した高レベルと、0レベルとの間で変化させるように構成されていることを特徴とする、ガス検出装置。
An insulating film on the surface of the silicon substrate is provided with a SnO2 film, a gas detection unit including an electrode connected to the SnO2 film and a heater, and a cavity is provided at the bottom of the insulating film around the gas detection unit. In a gas detection device comprising a gas sensor in which a substrate is housed in a housing, a power source, and a drive circuit for the gas sensor,
An adsorbent of an organic solvent that is activated carbon and does not contain a noble metal and an oxidation catalyst of an organic solvent that is an activated carbon supporting a noble metal are provided in the housing in order of the adsorbent and the oxidation catalyst. The detection atmosphere is guided to the gas detection unit via the adsorbent and the oxidation catalyst,
The drive circuit changes the power to the heater between a low level suitable for evaporating or oxidizing the organic solvent from the gas detection unit, a high level suitable for detection of the detection target gas, and a zero level. It is comprised so that it may cause. The gas detection apparatus characterized by the above-mentioned.
JP2011117796A 2011-05-26 2011-05-26 Gas sensor and gas detector Expired - Fee Related JP5773419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011117796A JP5773419B2 (en) 2011-05-26 2011-05-26 Gas sensor and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011117796A JP5773419B2 (en) 2011-05-26 2011-05-26 Gas sensor and gas detector

Publications (2)

Publication Number Publication Date
JP2012247240A JP2012247240A (en) 2012-12-13
JP5773419B2 true JP5773419B2 (en) 2015-09-02

Family

ID=47467824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011117796A Expired - Fee Related JP5773419B2 (en) 2011-05-26 2011-05-26 Gas sensor and gas detector

Country Status (1)

Country Link
JP (1) JP5773419B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014178198A (en) * 2013-03-14 2014-09-25 Fuji Electric Co Ltd Gas detection device
JP6218270B2 (en) * 2013-05-24 2017-10-25 フィガロ技研株式会社 Gas sensor
JP6274649B2 (en) * 2013-12-27 2018-02-07 フィガロ技研株式会社 Gas detector
JP6327635B2 (en) * 2013-12-27 2018-05-23 フィガロ技研株式会社 MEMS gas sensor
JP6335518B2 (en) * 2014-01-17 2018-05-30 矢崎エナジーシステム株式会社 Gas sensor filter and gas sensor
JP6370576B2 (en) * 2014-03-25 2018-08-08 新コスモス電機株式会社 Gas detector
JP6334221B2 (en) * 2014-03-25 2018-05-30 新コスモス電機株式会社 Gas detector
JP6438685B2 (en) * 2014-06-06 2018-12-19 新コスモス電機株式会社 Gas detector
JP6654406B2 (en) * 2015-11-09 2020-02-26 フィガロ技研株式会社 Gas detection device and gas detection method
JP6772107B2 (en) * 2017-06-09 2020-10-21 新コスモス電機株式会社 Gas sensor
JP6556288B2 (en) * 2018-04-24 2019-08-07 新コスモス電機株式会社 Gas detector
JP2020008340A (en) * 2018-07-04 2020-01-16 富士電機株式会社 Gas sensor
WO2020031723A1 (en) * 2018-08-10 2020-02-13 フィガロ技研株式会社 Gas detector
WO2020189675A1 (en) * 2019-03-19 2020-09-24 フィガロ技研株式会社 Gas sensor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6170448A (en) * 1984-09-13 1986-04-11 Matsushita Electric Works Ltd Gas detecting element
JP3484586B2 (en) * 1995-06-21 2004-01-06 富士電機ホールディングス株式会社 Composite gas sensor
JPH09113475A (en) * 1995-10-20 1997-05-02 Kuraray Chem Corp Sensitivity-drop preventive agent for combustible-gas sensor
JP2001330577A (en) * 2000-03-14 2001-11-30 Osaka Gas Co Ltd Gas detector
KR100562883B1 (en) * 2004-04-19 2006-03-24 한국화학연구원 Low temperature oxidation catalyst for removal of toxic gases and preparation method thereof
JP2006194851A (en) * 2004-12-17 2006-07-27 Figaro Eng Inc Contact combustion type hydrogen sensor
JP5120881B2 (en) * 2007-10-23 2013-01-16 富士電機株式会社 Combustible gas detector
JP5127750B2 (en) * 2009-03-19 2013-01-23 フィガロ技研株式会社 Gas sensor and gas detection method
JP5748211B2 (en) * 2011-05-26 2015-07-15 フィガロ技研株式会社 Gas detection device and gas detection method

Also Published As

Publication number Publication date
JP2012247240A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5773419B2 (en) Gas sensor and gas detector
US9182366B2 (en) Gas detection apparatus and gas detection method
US6550310B1 (en) Catalytic adsorption and oxidation based carbon monoxide sensor and detection method
JP4640960B2 (en) Thin film gas sensor
US9945803B2 (en) Gas detecting device and method thereof
CN114245872B (en) Gas sensor with individual contaminant detection element
JP3128114B2 (en) Nitrogen oxide detector
JP2020024130A (en) Mems semiconductor type gas detection element
JP5143591B2 (en) Gas detection device and gas detection method
JP6233882B2 (en) Gas sensor detection device
JP6218270B2 (en) Gas sensor
JPH08170954A (en) Gas sensor
JP6679859B2 (en) Gas detector
US11971381B2 (en) Gas detection device
JP4970584B2 (en) Thin film gas sensor
JPH1073561A (en) Oxygen concentration measuring apparatus
JP6803019B2 (en) Acetone sensor and acetone detector
JP6873803B2 (en) Gas detector
JP4615788B2 (en) Cleaning method for variable resistance gas sensor
TW202011020A (en) Gas detection device having exceptional humidity resistance and exceptional sensitivity
JP4953253B2 (en) Method for initial stabilization of thin film gas sensor
JP3371358B2 (en) Oxygen / carbon monoxide gas sensor, oxygen / carbon monoxide measuring device and oxygen / carbon monoxide measuring method
JP2009002888A (en) Contact combustion type gas sensor
JPH06148112A (en) Hydrogen gas detecting element
JP5247305B2 (en) Gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150625

R150 Certificate of patent or registration of utility model

Ref document number: 5773419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees