JPH1073561A - Oxygen concentration measuring apparatus - Google Patents

Oxygen concentration measuring apparatus

Info

Publication number
JPH1073561A
JPH1073561A JP8230456A JP23045696A JPH1073561A JP H1073561 A JPH1073561 A JP H1073561A JP 8230456 A JP8230456 A JP 8230456A JP 23045696 A JP23045696 A JP 23045696A JP H1073561 A JPH1073561 A JP H1073561A
Authority
JP
Japan
Prior art keywords
electrode
oxygen concentration
gas
detection element
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8230456A
Other languages
Japanese (ja)
Other versions
JP3669788B2 (en
Inventor
Koji Moriya
浩二 守家
Takahiro Sako
孝弘 佐古
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP23045696A priority Critical patent/JP3669788B2/en
Publication of JPH1073561A publication Critical patent/JPH1073561A/en
Application granted granted Critical
Publication of JP3669788B2 publication Critical patent/JP3669788B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen concentration measuring apparatus which can measure the oxygen concentration accurately even after long term use. SOLUTION: The oxygen concentration measuring apparatus comprises a voltage supply section 20 incorporating a voltage varying mechanism 21 for applying a voltage between the opposite electrodes of a gas detection element 1 having first and second electrodes made of a material for ionizing oxygen arranged on a solid electrolytic substrate and provided with means for regulating the gas contact efficiency of respective electrodes differently and means for heating respective electrodes and the substrate. The oxygen concentration measuring apparatus is constituted such that the oxygen concentration of a gas touching the electrode can be measured based the output current from the gas detection element 1 when a voltage is applied thereto while heating up the gas detection element 1 to a first temperature of 350 deg.C-500 deg.C. A purge mechanism 60 performs electrode recovery processing where the gas detection element 1 is heated up to a second temperature higher than the first temperature and the sulfide gas desorption temperature for the first electrode for a specified time of 5 sec or longer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解質からな
る基材に、貴金属材料からなる第一電極、及び、第二電
極を設けるとともに、前記各電極へのガス接触効率を異
ならせる規制手段を設けてあるガス検知素子を備え、前
記ガス検知素子の両電極間に電圧を印加する電圧供給部
を備え、前記ガス検知素子を加熱する加熱手段を設け
て、前記ガス検知素子を350℃〜500℃の第一温度
に加熱した状態で、そのガス検知素子に電圧を供給した
ときに流れる出力電流に基づいて前記電極に接触したガ
ス中の酸素濃度を測定可能に構成した酸素濃度測定装置
に関する。
BACKGROUND OF THE INVENTION The present invention provides a first electrode and a second electrode made of a noble metal material on a substrate made of a solid electrolyte, and a regulating means for making the gas contact efficiency with each electrode different. A gas supply element for applying a voltage between both electrodes of the gas detection element; and a heating means for heating the gas detection element, wherein the gas detection element is provided at 350 ° C. to 500 ° C. The present invention relates to an oxygen concentration measuring device configured to be capable of measuring the oxygen concentration in a gas contacting an electrode based on an output current flowing when a voltage is supplied to a gas detection element while being heated to a first temperature of ° C.

【0002】[0002]

【従来の技術】前記ガス検知素子を被検知ガス中に配す
ると、前記第一電極で酸素ガスがイオン化されると、前
記固体電解質が、そのイオン化した酸素ガスを第二電極
側に輸送する。また、このとき前記両電極間では、ガス
接触率が異なるために酸素イオンが前記第二電極で電子
を放出し、酸素ガスを再生すると、濃淡電池の作用を奏
するので、電圧を印加した状態で酸素濃度に対応し、所
定の圧力範囲でほぼ一定値を示す出力電流(限界電流)
が得られ、出力電流に基づいて酸素濃度を知ることがで
きるようになるのである。また、このようなガス検知素
子は、低温では先の濃淡電池の作用が得られないこと
と、高温では前記電極が劣化することから、酸素濃度を
正確に検知することができなくなることがあるという観
点から、通常400℃〜550℃の温度範囲で利用され
ており、酸素濃度測定装置としては、前記ガス検知素子
をその所定温度に維持した状態で継続した濃度測定を行
えるように構成したものが知られている。
2. Description of the Related Art When an oxygen gas is ionized at a first electrode when the gas detecting element is arranged in a gas to be detected, the solid electrolyte transports the ionized oxygen gas to a second electrode. Further, at this time, between the two electrodes, since the gas contact ratio is different, oxygen ions emit electrons at the second electrode, and when the oxygen gas is regenerated, the effect of the concentration cell is exhibited. Output current (limit current) that shows an almost constant value in a predetermined pressure range corresponding to the oxygen concentration
Is obtained, and the oxygen concentration can be known based on the output current. Further, such a gas detection element may not be able to accurately detect the oxygen concentration because the function of the above concentration cell cannot be obtained at a low temperature and the electrode deteriorates at a high temperature. From the viewpoint, it is usually used in a temperature range of 400 ° C. to 550 ° C., and as the oxygen concentration measuring device, a device configured to perform a continuous concentration measurement while maintaining the gas detection element at the predetermined temperature is used. Are known.

【0003】[0003]

【発明が解決しようとする課題】ところが、例えば、燃
焼排ガス等に含まれる酸素濃度を測定するような場合
に、前記ガス検知素子が長期使用に伴って次第に劣化
し、出力電流が低下して正確な酸素ガス濃度を知ること
が出来なくなることがあった。
However, for example, when measuring the concentration of oxygen contained in flue gas or the like, the gas detection element gradually deteriorates with long-term use, and the output current decreases to reduce the output current. In some cases, it was impossible to know the oxygen gas concentration.

【0004】従って、本発明の目的は、上記実情に鑑
み、長期使用に際しても、正確な酸素濃度を測定するこ
とのできる酸素濃度測定装置を提供することにある。
Accordingly, it is an object of the present invention to provide an oxygen concentration measuring device capable of accurately measuring the oxygen concentration even during long-term use in view of the above-mentioned circumstances.

【0005】[0005]

【課題を解決するための手段】本発明者らは、先のガス
検知素子の劣化は、燃焼排ガス等に含まれる硫黄酸化物
(SOx)が、前記電極に吸着することに起因するとい
うことを見いだし、このように電極に吸着したSOx
は、前記電極をSOx脱離温度以上の第二温度に、少な
くとも5秒以上の所定時間加熱することによってその電
極から脱離させることができるという新知見を得た。ま
た、先の劣化は前記限界電流の得られる電圧の低電圧側
から高電圧側へと次第に進行し、次第に出力電流値が低
下するという新知見を得ている。本発明は、前記新知見
によるものであって、
Means for Solving the Problems The present inventors have determined that the deterioration of the gas detection element is caused by sulfur oxides (SOx) contained in flue gas and the like adsorbed on the electrodes. SOx adsorbed on the electrode
Has obtained a new finding that the electrode can be desorbed from the electrode by heating the electrode to a second temperature not lower than the SOx desorption temperature for a predetermined time of at least 5 seconds or more. Further, it has been found that the above deterioration gradually progresses from a low voltage side to a high voltage side of the voltage at which the limit current is obtained, and the output current value gradually decreases. The present invention is based on the above new findings,

【0006】〔構成1〕固体電解質からなる基材に、酸
素をイオン化可能な材料からなる第一電極、及び、第二
電極を設けるとともに、前記各電極へのガス接触効率を
異ならせる規制手段を設けてあるガス検知素子を備え、
前記ガス検知素子の両電極間に電圧を印加する電圧供給
部を備え、前記ガス検知素子を加熱する加熱手段を設け
て、前記ガス検知素子を350℃〜500℃の第一温度
に加熱した状態で、そのガス検知素子に電圧を供給した
ときに流れる出力電流に基づいて前記電極に接触したガ
ス中の酸素濃度を測定可能に構成した酸素濃度測定装置
において、前記ガス検知素子を前記第一温度よりも高
く、かつ、前記第一電極に対する硫黄酸化物ガス脱離温
度以上の第二温度に、少なくとも5秒以上の所定時間加
熱する電極劣化回復処理を行うパージ機構を設けてある
ことにあり、前記両電極間への電圧供給開始にともなっ
て、前記パージ機構に、前記電極劣化回復処理を開始さ
せる制御機構を設けてあってもよく、前記パージ機構
に、前記電極劣化回復処理を設定時期ごとに行うタイマ
機構を設けてあってもよく、前記設定時期及び所定時間
を記憶する記憶手段を設け、前記記憶手段に基づいて前
記パージ機構を作動させる制御装置を設けてあってもよ
いその作用効果は以下のとおりである。
[Structure 1] A first electrode and a second electrode made of a material capable of ionizing oxygen are provided on a substrate made of a solid electrolyte, and a restricting means for making gas contact efficiency to each of the electrodes different is provided. With the provided gas detection element,
A state in which a voltage supply unit for applying a voltage between both electrodes of the gas detection element is provided, and heating means for heating the gas detection element is provided, and the gas detection element is heated to a first temperature of 350 ° C to 500 ° C. In an oxygen concentration measurement device configured to be able to measure the oxygen concentration in the gas that has come into contact with the electrode based on an output current flowing when a voltage is supplied to the gas detection element, the gas detection element includes the first temperature. And a purge mechanism for performing an electrode deterioration recovery process of heating for a predetermined time of at least 5 seconds or more to a second temperature equal to or higher than the sulfur oxide gas desorption temperature for the first electrode, The purge mechanism may be provided with a control mechanism for starting the electrode deterioration recovery processing at the start of the voltage supply between the two electrodes, and the purge mechanism may be provided with the electrode deterioration recovery processing. There may be provided a timer mechanism for performing the processing at each set time, a storage means for storing the set time and the predetermined time is provided, and a control device for operating the purge mechanism based on the storage means is provided. The advantageous effects are as follows.

【0007】〔作用効果1〕つまり、ガス検知素子を前
記第一温度よりも高く、かつ、前記第一電極に対する硫
黄酸化物ガス脱離温度以上の第二温度に、少なくとも5
秒以上の所定時間加熱する電極劣化回復処理を行うパー
ジ機構を設けてあるから、前記電極が長期使用に伴って
被検知ガス中に含まれるSOxを吸着したとしても前記
パージ機構によって電極劣化回復処理を行わせるだけ
で、前記電極に吸着したSOxを脱離させ、正確な酸素
濃度を測定するための活性を回復させることができるよ
うになって、長期にわたって正確に酸素濃度を測定しつ
づけることが出来るようになった。また、前記両電極間
への電圧供給開始にともなって、前記パージ機構に、前
記電極劣化回復処理を開始させる制御機構を設けてあれ
ば、少なくとも酸素ガス濃度測定の開始時期には、正確
な酸素濃度の測定が可能になり、例えば燃焼機器の作動
時の異状を的確に検知できるので好ましい。また、前記
パージ機構に、前記電極劣化回復処理を設定時期ごとに
行うタイマ機構を設けてあれば、例えば燃焼機器の長期
使用に伴う燃焼条件の変化等に基づいて電極が劣化した
としても、定期的に前記電極が再活性化されるととも
に、正確な酸素濃度を測定するために、その酸素濃度か
ら前記燃焼機器の燃焼状態を推定して燃焼条件の最適化
を行う等の燃焼制御に役立てることが出来る。尚、上述
の燃焼制御を行うような場合には特に、前記設定時期及
び所定時間を記憶する記憶手段を設け、前記記憶手段に
基づいて前記パージ機構を作動させる制御装置を設けて
おくことにより、自動的にパージ機構を作動させること
が出来、燃焼機器等の長期使用に伴う管理の不徹底など
を招来することなくより安全な利用を確保することがで
きる。
[Effect 1] That is, the temperature of the gas detecting element is raised to a second temperature higher than the first temperature and higher than the sulfur oxide gas desorption temperature with respect to the first electrode by at least 5%.
Since a purge mechanism for performing an electrode deterioration recovery process for heating for a predetermined time of not less than seconds is provided, even if the electrode adsorbs SOx contained in the gas to be detected due to long-term use, the purge mechanism performs the electrode deterioration recovery process. , The SOx adsorbed on the electrode can be desorbed, and the activity for accurately measuring the oxygen concentration can be recovered, so that the oxygen concentration can be accurately measured for a long time. I can do it. In addition, if the purge mechanism is provided with a control mechanism for starting the electrode deterioration recovery process at the start of the voltage supply between the two electrodes, at least the oxygen gas concentration measurement start timing is accurate. It is preferable because the concentration can be measured, and for example, abnormality during operation of the combustion equipment can be accurately detected. In addition, if the purge mechanism is provided with a timer mechanism that performs the electrode deterioration recovery process at each set time, even if the electrode is deteriorated based on, for example, a change in combustion conditions due to long-term use of the combustion equipment, a periodic operation is performed. The electrode is reactivated, and in order to measure an accurate oxygen concentration, the combustion condition of the combustion equipment is estimated from the oxygen concentration to be useful for combustion control such as optimization of combustion conditions. Can be done. In particular, when performing the above-described combustion control, particularly by providing a storage unit that stores the set time and the predetermined time, and by providing a control device that operates the purge mechanism based on the storage unit, The purge mechanism can be automatically operated, and safer use can be ensured without causing inadequate management due to long-term use of the combustion equipment and the like.

【0008】〔構成2〕また、上述の構成に加えて、前
記ガス検知素子が劣化していない状態で、電圧によらず
ほぼ一定の電流(この電流を限界電流と称する)が流れ
る限界電流特性の観測される範囲内で、前記電圧供給部
による供給電圧を低下可能にする電圧可変機構を設け、
前記パージ機構を、前記ガス検知素子に印加する供給電
圧を低下させたときに、流れる電流と、限界電流との差
が所定値以上になったとき前記電極劣化回復処理を行う
ものとしてあってもよい。
[Structure 2] In addition to the above structure, a limit current characteristic in which a substantially constant current (this current is referred to as a limit current) flows regardless of the voltage when the gas detection element is not deteriorated. Within a range where is observed, a voltage variable mechanism that allows the supply voltage by the voltage supply unit to be reduced is provided,
The purge mechanism may perform the electrode deterioration recovery process when a difference between a flowing current and a limit current is equal to or more than a predetermined value when a supply voltage applied to the gas detection element is reduced. Good.

【0009】〔作用効果2〕限界電流特性は、低電圧側
から次第に劣化する(図7参照)ため、通常は酸素濃度
の測定を前記限界電流特性の見られる電圧値の比較的高
電圧側に設定しておき、劣化の影響を最小限に抑えよう
とする。このようにすると、前記電極が劣化しはじめた
場合、酸素濃度を測定する電圧(測定電圧)を供給して
いる状態で電極の劣化に伴う出力電流低下が見られる前
に、前記限界電流特性の見られる電圧内で前記測定電圧
以下の電圧を検知電圧に設定し、その検知電圧において
流れる電流(検知電流)と、限界電流との差から、出力
電流の低下を観測することができることになる。電極の
劣化しはじめる初期においては、前記測定電圧での出力
電流を限界電流と見なすことができるから、前記検知電
流と、前記測定電圧における出力電流との差が大きくな
りはじめると、次第に前記測定電圧における前記出力電
流が前記電極の劣化の影響を受け低下しはじめると予想
できる。そのため、限界電流特性の見られる範囲内での
測定電圧および検知電圧における出力電流の差が所定値
以上になったときに、前記ガス検知素子に前記電極劣化
回復処理を行うと、前記測定電圧における出力低下を効
果的に防止でき、前記ガス検知素子が正確に限界電流を
測定することによって、酸素濃度測定装置が全体として
正確な酸素濃度を測定できる。
[Effect 2] Since the limiting current characteristic gradually deteriorates from the low voltage side (see FIG. 7), the measurement of the oxygen concentration is usually performed at a relatively high voltage side of the voltage value at which the limiting current characteristic is observed. It is set to try to minimize the effects of deterioration. With this configuration, when the electrode starts to deteriorate, before the output current decreases due to the deterioration of the electrode while the voltage for measuring the oxygen concentration (measurement voltage) is being supplied, the limit current characteristic is reduced. A voltage that is equal to or lower than the measured voltage within the voltage that can be seen is set as the detection voltage, and a decrease in the output current can be observed from the difference between the current flowing at the detection voltage (detection current) and the limit current. In the initial stage when the electrodes start to deteriorate, the output current at the measurement voltage can be regarded as the limit current, so that when the difference between the detection current and the output current at the measurement voltage starts to increase, the measurement voltage gradually increases. Can be expected to start to decrease under the influence of the deterioration of the electrode. Therefore, when the difference between the output current at the measurement voltage and the detection voltage within the range in which the limit current characteristic is observed is equal to or greater than a predetermined value, when the electrode deterioration recovery processing is performed on the gas detection element, The output reduction can be effectively prevented, and the gas detection element accurately measures the limiting current, so that the oxygen concentration measuring device can measure the accurate oxygen concentration as a whole.

【0010】〔構成3〕前記ガス検知素子を大気に晒す
大気中酸素検出機構を設け、予め、前記ガス検知素子の
大気中酸素検出に基づく標準出力電流を求めておき、前
記大気中酸素検出機構に基づく前記ガス検知素子の出力
電流を、較正電流として求めるとともに、前記標準出力
電流と前記較正電流との関係から、出力電流を較正する
較正手段を設け、前記パージ機構が、前記出力電流の較
正量が、所定値以上になったときに前記電極劣化回復処
理を行うものであっても良い。
[Structure 3] An atmospheric oxygen detecting mechanism for exposing the gas detecting element to the atmosphere is provided, and a standard output current based on the atmospheric oxygen detection of the gas detecting element is obtained in advance. An output current of the gas detection element based on the calibration current is obtained as a calibration current, and a calibration means for calibrating an output current is provided based on a relationship between the standard output current and the calibration current, and the purge mechanism adjusts the output current. The electrode deterioration recovery processing may be performed when the amount becomes equal to or more than a predetermined value.

【0011】〔作用効果3〕酸素は大気の一成分であ
り、その濃度は、通常21%程度で一定値を保ってい
る。そのため、前記ガス検知素子を用いて大気中の酸素
ガスに対する標準出力電流を求めておき、そのガス検知
素子の使用後に大気中の酸素ガスに対する出力電流(較
正電流)を検知すると、その出力差から、前記ガス検知
素子の劣化度合いを推定することができるとともに、前
記較正手段によって被検知ガスに対する出力電流を前記
較正電流に基づいて較正することができる。このとき、
前記出力差が大きいほど前記較正手段の較正する出力電
流の較正量は大きくなり、前記ガス検知素子の劣化の度
合いも大きいと推定される。そのため、前記出力電流の
較正量が、所定値以上になったときに、前記パージ機構
によって前記電極劣化回復処理を行うと、前記較正電流
は任意の時期に求めることができるので、前記ガス検知
素子の劣化を効率よく回復させることができる。
[Effect 3] Oxygen is a component of the atmosphere, and its concentration is usually kept at a constant value of about 21%. Therefore, the standard output current for the oxygen gas in the atmosphere is obtained using the gas detection element, and when the output current (calibration current) for the oxygen gas in the atmosphere is detected after the use of the gas detection element, the output difference is calculated from the output difference. The degree of deterioration of the gas detection element can be estimated, and the calibration means can calibrate the output current for the gas to be detected based on the calibration current. At this time,
It is estimated that the larger the output difference, the larger the amount of calibration of the output current to be calibrated by the calibration means, and the greater the degree of deterioration of the gas detection element. Therefore, when the electrode deterioration recovery process is performed by the purge mechanism when the calibration amount of the output current is equal to or more than a predetermined value, the calibration current can be obtained at any time, and thus the gas detection element can be obtained. Degradation can be efficiently recovered.

【0012】従って、長期にわたって正確に酸素濃度を
測定し続ける事ができるようになって装置全体として寿
命を長く設定できるとともに、このような装置を燃焼機
器の燃焼制御等に利用するような場合に、信頼性が高
く、的確な利用に役立てることが出来るようになった。
Therefore, the oxygen concentration can be measured accurately over a long period of time, so that the life of the entire apparatus can be set to be long. In the case where such an apparatus is used for combustion control of a combustion apparatus, etc. , High reliability and accurate utilization.

【0013】[0013]

【発明の実施の形態】以下に本発明の実施の形態を図面
に基づいて説明する。図2に示すように、固体電解質か
らなる基材10に、酸素をイオン化可能な材料からなる
第一電極11、及び、第二電極12を設けるとともに、
前記各電極11、12へのガス接触効率を異ならせる規
制手段13を設け、前記各電極11、12および基材1
0を加熱する加熱手段14を設けてあるガス検知素子1
を備え、図1に示すように、前記ガス検知素子1の両電
極11、12間に電圧を印加する電圧可変機構21内蔵
の電圧供給部20を備え、前記ガス検知素子1に電極劣
化回復処理を行うパージ機構を備えて、燃焼制御機構3
1を内蔵してあるガス燃焼機器30からの排ガス路32
に、排ガス及び大気を流通切り替えする流路切替装置3
3からなる大気中酸素検出機構を設けたバイパス路34
を設けて、前記ガス検知素子1を配設して酸素濃度測定
装置を構成してある。また、前記ガス検知素子1への電
圧供給に基づく出力電流を出力する出力装置40を設
け、前記出力装置40からの出力電流Iwを前記標準出
力電流Iw0と前記較正電流Iw1との関係から較正する
較正手段50を設け、前記較正手段によって較正された
出力電流は、酸素濃度を示す燃焼制御情報として前記ガ
ス燃焼機器の燃焼制御機構に入力され、前記ガス燃焼機
器の安定燃焼のために用いられる。
Embodiments of the present invention will be described below with reference to the drawings. As shown in FIG. 2, a first electrode 11 made of a material capable of ionizing oxygen and a second electrode 12 are provided on a base material 10 made of a solid electrolyte.
A regulating means 13 for varying the gas contact efficiency with the electrodes 11 and 12 is provided, and the electrodes 11 and 12 and the base material 1 are provided.
Gas detecting element 1 provided with a heating means 14 for heating 0
As shown in FIG. 1, a voltage supply unit 20 having a built-in voltage variable mechanism 21 for applying a voltage between both electrodes 11 and 12 of the gas detection element 1 is provided. The combustion control mechanism 3
Exhaust gas path 32 from gas-fired equipment 30 incorporating 1
, A flow switching device 3 for switching the flow of exhaust gas and the atmosphere
A bypass 34 provided with an atmospheric oxygen detection mechanism consisting of
Is provided, and the gas detection element 1 is provided to constitute an oxygen concentration measuring device. Further, an output device 40 for outputting an output current based on a voltage supply to the gas detection element 1 is provided, and an output current Iw from the output device 40 is determined based on a relationship between the standard output current Iw 0 and the calibration current Iw 1. Calibration means 50 for calibrating is provided, and the output current calibrated by the calibration means is input to the combustion control mechanism of the gas combustion device as combustion control information indicating the oxygen concentration, and is used for stable combustion of the gas combustion device. Can be

【0014】前記固体電解質は、通常酸化ジルコニウム
に、酸化マグネシウム、酸化カルシウム、酸化イットリ
ウム等を10モル%程度添加して安定化させたものを用
い、前記第一電極および第二電極は、酸素をイオン化可
能な材料のうち、貴金属が好適に用いられ、例えば、白
金、パラジウム、ロジウム等が用いられる。前記規制手
段は、前記基材10の前記第一電極11側を覆うカバー
部材13aを設けるとともに、そのカバー部材13aに
ガス流通孔13bを設けて構成し、前記第一電極11に
対するガス接触率を前記第二電極12に対するガス接触
率よりも低くなるように設定するものであり、このよう
な構成に替えて、多孔質のフィルタを前記第一電極11
を被覆した状態に設けて構成してあってもよい。前記加
熱手段14は、前記ガス検知素子1の近傍に、加熱用コ
イル14aを設け、前記電圧供給部20からの電圧供給
を受け、ジュール熱を発生させられる構成にしてあるも
のであり、前記電圧可変機構21は、前記ガス検知素子
1に供給する電圧を、酸素濃度測定用の測定電圧(V
w)と、電極の劣化を検知するための検知電圧(Vw−
Vd)とに切替え、さらに、電極劣化回復処理を行う際
の前記加熱手段14に対する電圧供給・停止を切替え可
能に構成してある。前記パージ機構60は、前記電極劣
化回復処理を開始させる制御機構61に、スイッチ65
を操作して前記加熱手段14に通電し、前記電極劣化回
復処理を設定時期ごとに行うタイマ機構62と、前記設
定時期及び所定時間を記憶する記憶手段63とを設けて
構成してあり、前記制御機構61は、記憶手段63を基
に、前記電極劣化回復処理を前記設定時期に基づき開
始、前記所定時間に基づき停止させ、通常、前記設定時
期は10分〜60分毎、前記所定時間は5秒以上に設定
してある。
As the solid electrolyte, a solid electrolyte is used which is usually stabilized by adding about 10 mol% of magnesium oxide, calcium oxide, yttrium oxide or the like to zirconium oxide, and the first electrode and the second electrode are made of oxygen. Among the ionizable materials, noble metals are preferably used, and for example, platinum, palladium, rhodium and the like are used. The regulating means is provided with a cover member 13a that covers the first electrode 11 side of the base material 10, and is provided with a gas flow hole 13b in the cover member 13a, so that the gas contact rate with the first electrode 11 is reduced. It is set so as to be lower than the gas contact ratio with respect to the second electrode 12. Instead of such a configuration, a porous filter is used as the first electrode 11.
May be provided in a state of being covered. The heating means 14 is provided with a heating coil 14a in the vicinity of the gas detection element 1 and is configured to receive a voltage supply from the voltage supply unit 20 and generate Joule heat. The variable mechanism 21 converts the voltage supplied to the gas detection element 1 to a measurement voltage (V
w) and a detection voltage (Vw−
Vd), and furthermore, the supply and stop of the voltage to the heating means 14 at the time of performing the electrode deterioration recovery process can be switched. The purge mechanism 60 is provided with a switch 65 to the control mechanism 61 for starting the electrode deterioration recovery processing.
The heater mechanism 14 is operated to energize the heating means 14, and a timer mechanism 62 for performing the electrode deterioration recovery processing at each set time, and a storage means 63 for storing the set time and a predetermined time are provided. The control mechanism 61 starts the electrode deterioration recovery process based on the set time and stops the electrode deterioration recovery process based on the predetermined time based on the storage unit 63. Usually, the set time is every 10 minutes to 60 minutes, and the predetermined time is It is set to 5 seconds or more.

【0015】前記酸素濃度測定装置を用いる場合には、 〈1〉 前記ガス燃焼機器の燃焼開始とともに前記ガス
検知素子を第二温度(前記第一電極を白金で構成した場
合には580℃)に5秒(所定時間)加熱する電極劣化
回復処理を行うとともに、所定時間経過後は、前記ガス
検知素子をの第一温度(400℃)に加熱した状態で
(実際にはガス検知素子に対する通電を2V(=Vw)
程度に制御した状態である。一般に、ガス検知素子の限
界電流を与える電圧は、高電圧側で水蒸気の影響を受
け、測定精度が得られにくくなるが、前記Vwは、この
ガス検知素子としては水蒸気の影響を受けにくい電圧と
いえる。)、そのガス検知素子に排ガスを接触させて酸
素濃度を測定する。酸素濃度の測定を継続中には一定時
間ごとに(設定時期)前記ガス燃焼機器の燃焼開始とと
もに前記ガス検知素子を第二温度(前記第一電極を白金
で構成した場合には580℃)に5秒(所定時間)加熱
する電極劣化回復処理を行うパージ機構を作動させる。 〈2〉 また、前記パージ機構は、前記ガス検知素子に
印加する供給電圧VwをVdだけ低下させたときに、流
れる検知電流Idと、供給電圧Vwで測定されている限
界電流Iwとの差が所定値ΔI以上になったとき前記電
極劣化回復処理を行うように設定してあり、実質的な電
極の劣化度合いに対応したパージも可能になっている。 〈3〉 さらに、高精度のガス濃度が必要になる場合に
は、予め、前記ガス検知素子の大気中酸素検出に基づく
標準出力電流Iw0を求めておき、前記大気中酸素検出
機構に基づく前記ガス検知素子の出力電流を、較正電流
Iw1として求め、その較正電流をもとに、正確な酸素
濃度を求めることができる。つまり、酸素濃度Cは、得
られた限界電流Iwを基に、 Cw=k*Iw (kは定数) で求められるから、電極の劣化していない状態では、標
準出力電流Iw0から得られる定数 k0=C0/Iw0 (C0は大気中酸素濃度) をkとして、Cwを求め、較正電流Iw1を与える条件
下では、較正電流Iw1から得られる定数 k1=C0/Iw1 (C0は大気中酸素濃度) をkとして、Cwを求める較正手段を設けることによっ
て、正確な酸素濃度を得る事ができる ここで、出力電流の較正量(Iw0/Iw1)が大きくな
れば、前記第一電極は劣化しているものといえるから、
前記出力電流の較正量(Iw0/Iw1)が、所定値
(A)以上になったときに前記電極劣化回復処理を行こ
とによって継続的に正確な酸素濃度を求めることができ
るようになる。このようにして得られた酸素濃度は、ガ
ス燃焼機器の燃焼制御情報として前記燃焼制御機構に入
力され、ガス供給量や、空気供給量の調整などの燃焼制
御に利用される。
When the oxygen concentration measuring device is used, <1> the gas detecting element is brought to a second temperature (580 ° C. when the first electrode is made of platinum) at the same time as the start of combustion of the gas combustion device. The electrode deterioration recovery process of heating for 5 seconds (predetermined time) is performed, and after the predetermined time has elapsed, the gas detection element is heated to the first temperature (400 ° C.) (actually, the gas detection element is energized. 2V (= Vw)
It is in the state controlled to the extent. In general, the voltage at which the limiting current of the gas detection element is affected by water vapor on the high voltage side, making it difficult to obtain measurement accuracy, but the Vw is a voltage that is not easily affected by water vapor as the gas detection element. I can say. ), The exhaust gas is brought into contact with the gas detection element, and the oxygen concentration is measured. During the measurement of the oxygen concentration, the gas detection device is brought to a second temperature (580 ° C. when the first electrode is made of platinum) at the same time as the combustion of the gas combustion device is started at regular intervals (set time). A purge mechanism for performing an electrode deterioration recovery process of heating for 5 seconds (predetermined time) is operated. <2> Further, when the supply voltage Vw applied to the gas detection element is reduced by Vd, the purge mechanism determines that the difference between the detection current Id flowing and the limit current Iw measured by the supply voltage Vw is smaller. It is set so that the electrode deterioration recovery processing is performed when the value becomes equal to or more than the predetermined value ΔI, and purging corresponding to a substantial degree of deterioration of the electrode is also possible. <3> Further, when a highly accurate gas concentration is required, a standard output current Iw 0 based on atmospheric oxygen detection of the gas detection element is obtained in advance, and the standard output current Iw 0 based on the atmospheric oxygen detection mechanism is obtained. the output current of the gas sensing element, calculated as a calibration current Iw 1, the calibration current to the original, it is possible to obtain an accurate oxygen concentration. That is, the oxygen concentration C, based on the obtained limiting current Iw, since obtained by Cw = k * Iw (k is a constant), the state in which no deterioration of the electrode, obtained from the standard output current Iw 0 Constant Assuming that k 0 = C 0 / Iw 0 (where C 0 is the oxygen concentration in the atmosphere) is k, Cw is obtained, and under the condition that the calibration current Iw 1 is given, a constant k 1 = C 0 / Iw obtained from the calibration current Iw 1 An accurate oxygen concentration can be obtained by providing a calibration means for obtaining Cw, where 1 (C 0 is the oxygen concentration in the atmosphere) as k. Here, the amount of calibration of the output current (Iw 0 / Iw 1 ) is large. If so, it can be said that the first electrode is deteriorated,
When the calibration amount of the output current (Iw 0 / Iw 1 ) becomes equal to or more than a predetermined value (A), the electrode deterioration recovery process is performed, whereby an accurate oxygen concentration can be continuously obtained. . The oxygen concentration obtained in this manner is input to the combustion control mechanism as combustion control information of the gas combustion equipment, and is used for combustion control such as adjustment of a gas supply amount and an air supply amount.

【0016】[0016]

【実施例】白金電極を400℃に保ち、排ガス中のSO
xを吸着させたのち、その電極を昇温してSOxガスが
脱離する温度を調べたところ、表1及び図8のようにな
った。これにより、580℃、5秒で、吸着したSOx
のうち90%以上が脱離し、有効に電極の劣化回復が行
われていることが分かる。また、他の電極について同様
の試験を行ったところ、パラジウム電極を用いた場合に
は、500℃、ロジウム電極を用いた場合には600℃
でSOxが電極から有効に脱離していることがわかっ
た。本発明では、各電極材料に対応するこれらの温度を
SOxガス脱離温度と称する。上述の〈1〉〈2〉の電
極劣化回復処理を行うパージ機構を備えた酸素濃度測定
装置(本発明)と、上述のいずれのパージ機構も行わな
い酸素濃度測定装置(従来)とで、感度出力の長期安定
性を比較したところ、図9に示すようになった。パージ
機構を備えていない酸素濃度測定装置は、1カ月程度で
ほとんど出力が得られておらず、実用に耐えないのに対
して、パージ機構を備えた酸素濃度測定装置は、1年の
使用に対しても高い出力安定性を示し、長期使用を前提
とした実用に十分耐えることがわかった。
EXAMPLE A platinum electrode was kept at 400 ° C.
After adsorbing x, the temperature of the electrode was raised to examine the temperature at which the SOx gas was desorbed. The results are as shown in Table 1 and FIG. As a result, the adsorbed SOx was formed at 580 ° C. for 5 seconds.
It can be seen that 90% or more of the electrodes are desorbed, and the deterioration of the electrode is effectively recovered. When the same test was performed for the other electrodes, the temperature was 500 ° C. when the palladium electrode was used and 600 ° C. when the rhodium electrode was used.
It was found that SOx was effectively desorbed from the electrode. In the present invention, these temperatures corresponding to the respective electrode materials are referred to as SOx gas desorption temperatures. Sensitivity is obtained between an oxygen concentration measuring apparatus provided with a purge mechanism for performing the above-described <1> and <2> electrode deterioration recovery processes (the present invention) and an oxygen concentration measuring apparatus not using any of the above-mentioned purge mechanisms (conventional). FIG. 9 shows a comparison of the long-term stability of the output. An oxygen concentration measurement device without a purge mechanism has almost no output in about one month, and is not practical. On the other hand, an oxygen concentration measurement device with a purge mechanism can be used for one year. It also showed high output stability and proved to be sufficiently durable for practical use assuming long-term use.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の酸素濃度測定装置の概略図FIG. 1 is a schematic diagram of an oxygen concentration measuring device of the present invention.

【図2】ガス検知素子の要部縦断斜視図FIG. 2 is a longitudinal perspective view of a main part of a gas detection element.

【図3】酸素濃度測定装置の酸素濃度測定状態を示す図FIG. 3 is a diagram showing an oxygen concentration measurement state of the oxygen concentration measurement device.

【図4】実施の形態の〈1〉のパージ機構の作動状態を
示す図
FIG. 4 is a diagram showing an operation state of a purge mechanism of <1> of the embodiment.

【図5】実施の形態の〈2〉のパージ機構の作動状態を
示す図
FIG. 5 is a diagram showing an operation state of a purge mechanism of <2> of the embodiment.

【図6】実施の形態の〈3〉のパージ機構の作動状態を
示す図
FIG. 6 is a diagram showing an operation state of a purge mechanism of <3> of the embodiment.

【図7】通常時の限界電流とガス検知素子が劣化状態の
限界電流を示すグラフ
FIG. 7 is a graph showing a limit current in a normal state and a limit current when the gas detection element is in a deteriorated state.

【図8】白金電極でのSOxガス脱離量の温度依存性を
示すグラフ
FIG. 8 is a graph showing the temperature dependence of the SOx gas desorption amount at a platinum electrode.

【図9】パージ機構の有無による電極の長期安定性を示
すグラフ
FIG. 9 is a graph showing the long-term stability of an electrode with and without a purge mechanism.

【符号の説明】[Explanation of symbols]

1 ガス検知素子 20 電圧供給部 21 電圧可変機構 60 パージ機構 DESCRIPTION OF SYMBOLS 1 Gas detection element 20 Voltage supply part 21 Voltage variable mechanism 60 Purge mechanism

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質からなる基材に、酸素をイオ
ン化可能な材料からなる第一電極、及び、第二電極を設
けるとともに、前記各電極へのガス接触効率を異ならせ
る規制手段を設けてあるガス検知素子を備え、前記ガス
検知素子の両電極間に電圧を印加する電圧供給部を備
え、前記ガス検知素子を加熱する加熱手段を設けて、前
記ガス検知素子を350℃〜500℃の第一温度に加熱
した状態で、そのガス検知素子に電圧を供給したときに
流れる出力電流に基づいて前記電極に接触したガス中の
酸素濃度を測定可能に構成した酸素濃度測定装置であっ
て、 前記ガス検知素子を前記第一温度よりも高く、かつ、前
記第一電極に対する硫黄酸化物ガス脱離温度以上の第二
温度に、少なくとも5秒以上の所定時間加熱する電極劣
化回復処理を行うパージ機構を設けてある酸素濃度測定
装置。
1. A substrate comprising a solid electrolyte, a first electrode comprising a material capable of ionizing oxygen, and a second electrode are provided, and a regulating means for providing different gas contact efficiencies to the respective electrodes is provided. A gas detection element is provided, a voltage supply unit for applying a voltage between both electrodes of the gas detection element is provided, and a heating unit for heating the gas detection element is provided, and the gas detection element is heated to 350 ° C. to 500 ° C. An oxygen concentration measurement device configured to be capable of measuring the oxygen concentration in the gas in contact with the electrode based on an output current flowing when a voltage is supplied to the gas detection element while being heated to the first temperature, An electrode deterioration recovery process of heating the gas detection element to a second temperature higher than the first temperature and equal to or higher than a sulfur oxide gas desorption temperature for the first electrode for a predetermined time of at least 5 seconds is performed. Oxygen concentration measuring device is provided with a purge mechanism.
【請求項2】 前記両電極間への電圧供給開始にともな
って、前記パージ機構に、前記電極劣化回復処理を開始
させる制御機構を設けた請求項1に記載の酸素濃度測定
装置。
2. The oxygen concentration measuring apparatus according to claim 1, wherein a control mechanism for starting the electrode deterioration recovery process is provided in the purge mechanism when the voltage supply between the two electrodes is started.
【請求項3】 前記パージ機構に、前記電極劣化回復処
理を設定時期ごとに行うタイマ機構を設けた請求項1〜
2のいずれか1項に記載の酸素濃度測定装置。
3. A timer mechanism for performing the electrode deterioration recovery process at set times in the purge mechanism.
3. The oxygen concentration measurement device according to any one of 2.
【請求項4】 前記設定時期及び所定時間を記憶する記
憶手段を設け、前記記憶手段に基づいて前記パージ機構
を作動させる制御装置を設けた請求項3に記載の酸素濃
度測定装置。
4. The oxygen concentration measuring apparatus according to claim 3, further comprising storage means for storing the set time and the predetermined time, and a control device for operating the purge mechanism based on the storage means.
【請求項5】 前記ガス検知素子が劣化していない状態
で、電圧によらずほぼ一定の電流(この電流を限界電流
と称する)が流れる限界電流特性の観測される範囲内
で、前記電圧供給部による供給電圧を低下可能にする電
圧可変機構を設け、 前記パージ機構が、前記ガス検知素子に印加する供給電
圧を低下させたときに、流れる電流と、限界電流との差
が所定値以上になったとき前記電極劣化回復処理を行う
ものである請求項1〜4のいずれか1項に記載の酸素濃
度測定装置。
5. The voltage supply is performed within a range where a substantially constant current (this current is referred to as a limit current) flows regardless of a voltage in a state where the gas detection element is not deteriorated. Providing a voltage variable mechanism that allows the supply voltage by the unit to be reduced, when the purge mechanism reduces the supply voltage applied to the gas detection element, the difference between the flowing current and the limit current is equal to or greater than a predetermined value. The oxygen concentration measuring apparatus according to any one of claims 1 to 4, wherein the electrode deterioration recovery processing is performed when the electrode deterioration occurs.
【請求項6】 前記ガス検知素子を大気に晒す大気中酸
素検出機構を設け、 予め、前記ガス検知素子の大気中酸素検出に基づく標準
出力電流を求めておき、前記大気中酸素検出機構に基づ
く前記ガス検知素子の出力電流を、較正電流として求め
るとともに、前記標準出力電流と前記較正電流との関係
から、出力電流を較正する較正手段を設け、 前記パージ機構が、前記出力電流の較正量が、所定値以
上になったときに前記電極劣化回復処理を行うものであ
る請求項1〜5のいずれか1項に記載の酸素濃度測定装
置。
6. An atmospheric oxygen detecting mechanism for exposing the gas detecting element to the atmosphere, wherein a standard output current based on the atmospheric oxygen detection of the gas detecting element is obtained in advance, and based on the atmospheric oxygen detecting mechanism. The output current of the gas detection element is obtained as a calibration current, and a calibration unit for calibrating the output current is provided based on a relationship between the standard output current and the calibration current. The oxygen concentration measuring device according to any one of claims 1 to 5, wherein the electrode deterioration recovery processing is performed when the electrode deterioration recovery value is equal to or more than a predetermined value.
JP23045696A 1996-08-30 1996-08-30 Oxygen concentration measuring device Expired - Fee Related JP3669788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23045696A JP3669788B2 (en) 1996-08-30 1996-08-30 Oxygen concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23045696A JP3669788B2 (en) 1996-08-30 1996-08-30 Oxygen concentration measuring device

Publications (2)

Publication Number Publication Date
JPH1073561A true JPH1073561A (en) 1998-03-17
JP3669788B2 JP3669788B2 (en) 2005-07-13

Family

ID=16908154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23045696A Expired - Fee Related JP3669788B2 (en) 1996-08-30 1996-08-30 Oxygen concentration measuring device

Country Status (1)

Country Link
JP (1) JP3669788B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330583A (en) * 2000-05-19 2001-11-30 Unisia Jecs Corp Heater control device of air-fuel ratio sensor
JP2014081246A (en) * 2012-10-15 2014-05-08 Nippon Soken Inc Control system for internal combustion engine
JP2015017932A (en) * 2013-07-12 2015-01-29 株式会社日本自動車部品総合研究所 Sox concentration detector of internal combustion engine
JP2015040546A (en) * 2013-08-23 2015-03-02 株式会社日本自動車部品総合研究所 Control device of internal combustion engine, and control method of internal combustion engine
JP2015040545A (en) * 2013-08-23 2015-03-02 トヨタ自動車株式会社 Control device and control method for internal combustion engine
CN104919313A (en) * 2013-01-15 2015-09-16 丰田自动车株式会社 Sox concentration detecting device
JP2016109484A (en) * 2014-12-03 2016-06-20 トヨタ自動車株式会社 Gas detection device
CN106030082A (en) * 2014-02-20 2016-10-12 丰田自动车株式会社 Control system and control method for internal combustion engine
US9732659B2 (en) 2013-07-12 2017-08-15 Toyota Jidosha Kabushiki Kaisha SOx concentration detection device of internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001330583A (en) * 2000-05-19 2001-11-30 Unisia Jecs Corp Heater control device of air-fuel ratio sensor
JP2014081246A (en) * 2012-10-15 2014-05-08 Nippon Soken Inc Control system for internal combustion engine
CN104919313A (en) * 2013-01-15 2015-09-16 丰田自动车株式会社 Sox concentration detecting device
US9753005B2 (en) 2013-01-15 2017-09-05 Toyota Jidosha Kabushiki Kaisha SOx concentration detection device
JP2015017932A (en) * 2013-07-12 2015-01-29 株式会社日本自動車部品総合研究所 Sox concentration detector of internal combustion engine
US9732659B2 (en) 2013-07-12 2017-08-15 Toyota Jidosha Kabushiki Kaisha SOx concentration detection device of internal combustion engine
JP2015040546A (en) * 2013-08-23 2015-03-02 株式会社日本自動車部品総合研究所 Control device of internal combustion engine, and control method of internal combustion engine
JP2015040545A (en) * 2013-08-23 2015-03-02 トヨタ自動車株式会社 Control device and control method for internal combustion engine
US9903833B2 (en) 2013-08-23 2018-02-27 Toyota Jidosha Kabushiki Kaisha Control device and control method for internal combustion engine
CN106030082A (en) * 2014-02-20 2016-10-12 丰田自动车株式会社 Control system and control method for internal combustion engine
CN106030082B (en) * 2014-02-20 2019-01-01 丰田自动车株式会社 The control system and control method of internal combustion engine
JP2016109484A (en) * 2014-12-03 2016-06-20 トヨタ自動車株式会社 Gas detection device

Also Published As

Publication number Publication date
JP3669788B2 (en) 2005-07-13

Similar Documents

Publication Publication Date Title
US9182366B2 (en) Gas detection apparatus and gas detection method
JPH1073561A (en) Oxygen concentration measuring apparatus
US10082480B2 (en) Gas concentration detection device
JP6274649B2 (en) Gas detector
JP2010019732A (en) Gas sensor
JP2010256238A (en) Electrode reproduction processing method of oxygen sensor
JP6074163B2 (en) Gas detector
JP5638907B2 (en) Lambda sonde operating method and apparatus
JP4811131B2 (en) Exhaust gas sensor control device
JP4497676B2 (en) Gas detection device and operation method thereof
JP5599688B2 (en) Method for operating lambda sonde and apparatus for carrying out this method
JP4791644B2 (en) Gas detection output correction method and gas detection device
JP2014126444A (en) Semiconductor type gas sensor deterioration determination method and determination device
JP7287776B2 (en) Gas detection method, gas sensor and gas detection device
KR101484113B1 (en) Control device for internal combustion engine
JP6912348B2 (en) Gas detector
JP2021004851A (en) Gas detector
JP4497658B2 (en) Gas detection method and apparatus
JP3489659B2 (en) Solid electrolyte type carbon dioxide gas sensor and its correction method
JP3897459B2 (en) Gas concentration detection method and apparatus
JP2002055071A (en) Method for diagnosing gas-detection performance, and gas-detecting device
JP4222710B2 (en) Gas detection method and apparatus
JP2002022159A (en) Detecting device for carbon monoxide
JPH0783428A (en) Oxygen sensor controller
JPH02310453A (en) Detection of deterioration of catalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees