JP5772944B2 - Gas cable remaining life diagnosis method - Google Patents
Gas cable remaining life diagnosis method Download PDFInfo
- Publication number
- JP5772944B2 JP5772944B2 JP2013270824A JP2013270824A JP5772944B2 JP 5772944 B2 JP5772944 B2 JP 5772944B2 JP 2013270824 A JP2013270824 A JP 2013270824A JP 2013270824 A JP2013270824 A JP 2013270824A JP 5772944 B2 JP5772944 B2 JP 5772944B2
- Authority
- JP
- Japan
- Prior art keywords
- cable
- gas
- oil content
- ionization
- gas cable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing Relating To Insulation (AREA)
Description
本発明は、電力用ガスケーブルの余寿命を推定する方法に関する。 The present invention relates to a method for estimating the remaining life of a power gas cable.
電力ケーブルとして、架橋ポリエチレン絶縁ケーブル(以下CVケーブルと呼ぶ)や絶縁ガスをケーブル内に封入したガスケーブルが地中送電用として実用化されている。CVケーブルは図6(b)に示すように、電気導体1、架橋ポリエチレン絶縁体3、遮蔽層(銅テープ)4と補強・防食層5とから成る構造である。
As power cables, cross-linked polyethylene insulated cables (hereinafter referred to as CV cables) and gas cables in which an insulating gas is enclosed in cables are put into practical use for underground power transmission. As shown in FIG. 6 (b), the CV cable has a structure comprising an
ガスケーブルは、図6(a)に示すように、電気導体1、油浸紙絶縁体2、遮蔽層(銅テープ)4と補強・防食層5で構成されたケーブルが絶縁ガス6を封入した防食鋼管7に覆われた構造である。
As shown in FIG. 6A, the gas cable is composed of an
しかし、このCVケーブルは、水が溜まった管路等の湿潤下で長期間使用すると架橋ポリエチレン絶縁体中の微小な異物や微小空隙等に交流電界が加わることで水トリー(水が充満した樹枝状の亀裂)と呼ばれる絶縁劣化現象が発生することが知られている。この水トリーが発生、成長すると絶縁性能の低下を引き起こし、やがて電気トリーと称される絶縁破壊を生じさせるため、このような水トリー劣化の有無を管路等に敷設された埋設状態で診断する必要がある。 However, when this CV cable is used for a long time under wet conditions such as a pipe line in which water is accumulated, an AC electric field is applied to minute foreign matters or minute voids in the cross-linked polyethylene insulator, thereby causing a water tree (a tree filled with water). It is known that an insulation deterioration phenomenon called a crack) occurs. When this water tree is generated and grows, the insulation performance deteriorates, and eventually dielectric breakdown called an electrical tree is caused. Therefore, the presence or absence of such water tree deterioration is diagnosed in a buried state laid in a pipe or the like. There is a need.
電力ケーブルの余寿命を推定する方法としては、CVケーブルの水トリー長さに着目した技術として特許文献1、特許文献2や特許文献3に開示された技術がある。
As a method for estimating the remaining life of the power cable, there are techniques disclosed in
特許文献1には、課電電圧に対する奇数次高調波成分の変化特性により残存性能を把握する非破壊劣化診断方法が開示されている。
特許文献2には、耐電圧試験より低電圧による劣化信号検出試験を行い、明確な検出信号が確認されたとき寿命を推定する技術が開示されている。
特許文献3には、ケーブルの運転時間と水トリー長の関係から期間内に成長が予想される水トリー長から余寿命を推定する技術が開示されている。 Patent Document 3 discloses a technique for estimating the remaining life from a water tree length that is expected to grow within a period from the relationship between cable operation time and water tree length.
一方、ガスケーブルは、絶縁ガスが封入されているので水トリー劣化は生じにくく、ガスケーブルに関する余寿命診断技術に関連する文献として、特許文献4にはケーブルの誘電正接tanδに着目した技術が開示されている。
On the other hand, since the insulating gas is sealed in the gas cable, the water tree is hardly deteriorated, and as a document related to the remaining life diagnosis technology related to the gas cable,
特許文献1、2、3に記載のケーブル余寿命推定方法は、CVケーブルに特有の劣化現象である水トリー劣化を利用するものであり、電力用ガスケーブルのように油浸紙絶縁体と絶縁ガスを使用した電力ケーブルの余寿命診断に適用することはできない。
The remaining cable life estimation methods described in
また、特許文献4記載の電力ケーブルの誘電正接tanδに着目した余寿命推定方法は、電力用ガスケーブルでも誘電正接の測定は可能であるが、誘電正接とAC残存破壊電圧に関するデータが電力用ガスケーブルではほとんど存在しないため、適用は困難である。
Further, the remaining life estimation method focusing on the dielectric loss tangent tan δ of the power cable described in
従って、電力用ガスケーブルの使用電圧における残存使用年数または正確な破壊電圧値などのケーブル残存性能を測定できる劣化診断方法の確立が待たれる。
そこで、本発明は電力用ガスケーブルに適用可能な余寿命診断技術を提供することを目的とする。
Therefore, it is awaited to establish a deterioration diagnosis method capable of measuring the remaining cable performance such as the remaining service life or the accurate breakdown voltage value at the service voltage of the power gas cable.
Accordingly, an object of the present invention is to provide a remaining life diagnosis technique applicable to a power gas cable.
電力用ガスケーブルは、熱的ストレス(熱膨張や収縮)などの影響で経年劣化し、やがてケーブル絶縁破壊を生じることとなる。そこで、発明者等は、種々の電力用ガスケーブルの破損事故を調査し、電力用ガスケーブルの劣化は以下に示すステップで進行することを知見した。 The gas cable for electric power deteriorates with the influence of thermal stress (thermal expansion and contraction) and eventually causes cable breakdown. Therefore, the inventors investigated various accidents of damage to the power gas cable, and found that the deterioration of the power gas cable proceeds in the following steps.
図5に電力用ガスケーブルが劣化し部分放電が発生した状態の一例を示す。1が電気導体、2が油浸紙絶縁体、5が補強・防食層、6が絶縁ガス、7が防食鋼管であり、油浸紙絶縁体2中に多数の空隙8が発生しており、電気導体1と防食鋼管7が短絡し部分放電が発生した状態を示している。電力用ガスケーブルの劣化ステップは、
(1)熱的ストレス(熱膨張・収縮)および経年劣化等の影響で、油浸紙絶縁体2から油分が抜け出し、空隙8が発生する。抜け出した油分は補強・防食層5の外へ滲み出る。
FIG. 5 shows an example of a state in which the power gas cable has deteriorated and partial discharge has occurred. 1 is an electrical conductor, 2 is an oil-immersed paper insulator, 5 is a reinforcing / corrosion-proof layer, 6 is an insulating gas, 7 is a corrosion-resistant steel pipe, and a large number of
(1) Under the influence of thermal stress (thermal expansion / contraction) and aging deterioration, the oil component escapes from the oil-impregnated
(2)劣化の進行とともに空隙8の数の増加、更に油分の抜け出し量の増大がおこり、空隙部が大きくなる。含油率約50%で、空隙部から部分放電が発生し、空隙内がイオン化する。
(2) As the deterioration progresses, the number of
(3)空隙内のイオン化が進むと、放電量が増加し、ケーブル内絶縁物の劣化が加速し、ケーブル絶縁破壊(地絡・短絡事故)に至る。 (3) When ionization in the air gap proceeds, the amount of discharge increases, the deterioration of the insulation in the cable accelerates, and cable insulation breakdown (ground fault / short-circuit accident) occurs.
(4)また、経年変化やケーブルの劣化によりケーブル内のガス圧力が低下して、特定圧力以下になると、部分放電が発生する。 (4) In addition, partial discharge occurs when the gas pressure in the cable decreases due to aging or cable deterioration and falls below a specific pressure.
上述したケーブル劣化に関する知見に基づき、電力用ガスケーブルの寿命を次のように考えた。 Based on the knowledge about cable deterioration mentioned above, the life of the power gas cable was considered as follows.
(a)電力用ガスケーブルの寿命限界は、ケーブル内でのイオン化開始時(部分放電開始時)と判断した。 (A) The life limit of the power gas cable was determined to be at the start of ionization in the cable (at the start of partial discharge).
(b)イオン化開始電界強度は電力用ガスケーブル内の油浸紙絶縁体2の含油率の低下に伴い低下する(図3)。
なお、含油率 = 絶縁紙内油量/初期絶縁紙内油量 ×100% である。
(B) The ionization start electric field strength decreases as the oil content of the oil-impregnated
Oil content = amount of oil in insulating paper / initial amount of oil in insulating paper x 100%.
(c)通常の使用電圧での一般的な電力用ガスケーブルの絶縁物内電界強度から、イオン化開始限界電界強度(危険領域)は絶縁紙の含油率で50%相当と判断した。 (C) From the electric field strength in the insulator of a general power gas cable at a normal operating voltage, the ionization start limit electric field strength (hazardous region) was determined to be equivalent to 50% in terms of oil content of insulating paper.
(d)また、経年変化によりケーブルに封入された絶縁ガス圧力が低下すると放電開始電圧も低下し(図1、図2)イオン化開始限界電圧に達するとケーブルの寿命となる。 (D) Further, when the pressure of the insulating gas sealed in the cable decreases due to aging, the discharge start voltage also decreases (FIGS. 1 and 2). When the ionization start limit voltage is reached, the life of the cable is reached.
上述した考え方に基づき、本発明はなされたもので、その要旨は以下の通りである。 The present invention has been made based on the above-described concept, and the gist thereof is as follows.
第一の発明は、電力用ガスケーブルにおいて、絶縁ガス圧力と放電開始電圧との関係式(1)を用いて、測定された絶縁ガス圧力から放電開始電圧を算出し、算出された放電開始電圧とガスケーブル使用経過年数とイオン化開始限界電圧とから電力用ガスケーブルの余寿命を推定する方法である。 The first invention calculates the discharge start voltage from the measured insulating gas pressure using the relational expression (1) between the insulating gas pressure and the discharge start voltage in the power gas cable, and calculates the calculated discharge start voltage. This is a method for estimating the remaining life of the power gas cable from the age of use of the gas cable and the ionization start limit voltage.
E=kPn・・・・・・・(1)
E:放電開始電圧、P:絶縁ガス圧力、k、n:定数
E = kP n (1)
E: discharge start voltage, P: insulating gas pressure, k, n: constant
第二の発明は、電力用ガスケーブルにおいて、絶縁紙含油率とイオン化開始電界強度との関係からイオン化限界絶縁紙含油率を算定し、負荷率別の絶縁紙含油率とガスケーブル使用経過年数とイオン化限界絶縁紙含油率とから電力用ガスケーブルの余寿命を推定する方法である。 The second invention is to calculate the ionization limit insulation paper oil content from the relationship between the insulation paper oil content and the ionization start electric field strength in the power gas cable. This is a method of estimating the remaining life of a power gas cable from the oil content of the ionization limit insulating paper.
第三の発明は、電力用ガスケーブルにおいて、第一の発明および第二の発明に記載の方法を用いて、絶縁ガス圧力と絶縁紙含油率との経年変化から電力用ガスケーブルの余寿命を推定する方法である。 According to a third aspect of the present invention, in the electric power gas cable, the remaining life of the electric power gas cable is increased from the secular change in the insulating gas pressure and the oil content of the insulating paper by using the method described in the first and second inventions. This is an estimation method.
本発明により既設ガスケーブルを破壊することなくケーブルの余寿命を診断することができ、ケーブル劣化に起因した事故を未然に防ぐことができるとともに、計画的なケーブル更新を精度よく行うことができる。 According to the present invention, the remaining life of the cable can be diagnosed without destroying the existing gas cable, accidents resulting from cable deterioration can be prevented in advance, and planned cable renewal can be performed with high accuracy.
図に基づいて、本発明を説明する。 The present invention will be described with reference to the drawings.
ガスケーブルに封入された絶縁ガス(窒素ガス)の定格ガス圧力Pからそのガス圧力を低下させて部分放電が発生するガス圧力と放電開始電圧(イオン化開始限界電圧)の関係を求め、ある特定のガスケーブルについてデータを採取しそれをプロットしたものが図1である。 The relationship between the gas pressure at which partial discharge occurs by reducing the gas pressure from the rated gas pressure P of the insulating gas (nitrogen gas) sealed in the gas cable and the discharge start voltage (ionization start limit voltage) FIG. 1 shows a plot of data collected for a gas cable.
ガス圧力と放電開始電圧との間には E=kPn の関係が成立する。この関係から定格ガス圧力での放電開始電圧が推定できる。 A relationship of E = kP n is established between the gas pressure and the discharge start voltage. From this relationship, the discharge start voltage at the rated gas pressure can be estimated.
定期的に(例えば毎年)この放電開始電圧を採取していくと図2に示すように、ガスケーブル使用経過年数と放電開始電圧の関係が採取され、イオン化開始限界電圧との交点が当該ガスケーブルの寿命となる。 When this discharge start voltage is sampled periodically (for example, every year), as shown in FIG. 2, the relationship between the age of use of the gas cable and the discharge start voltage is sampled, and the intersection with the ionization start limit voltage is the gas cable. It becomes the life of.
実際に使用されていたガスケーブルを試験して、図3に示すように、イオン化開始電界強度と絶縁紙含油率の関係を示す近似式を得ることができる。この近似式から、通常使用電圧から定まるイオン化開始電界強度に達するイオン化限界絶縁紙含油率を推定する。 By testing the gas cable actually used, as shown in FIG. 3, an approximate expression showing the relationship between the ionization start electric field strength and the insulating paper oil content can be obtained. From this approximate expression, the oil content of the ionization limit insulating paper reaching the ionization start electric field strength determined from the normal use voltage is estimated.
そして、実際に使用されたケーブルを負荷率ごとに分類して絶縁紙含油率を調査し、図4に示すように絶縁紙含油率とケーブル使用経過年数の関係を示す近似式を作成することにより、図3により求めたイオン化限界絶縁紙含油率に達するまでの年数を推定することができる。 Then, the cables actually used are classified according to the load factor, and the oil content of the insulating paper is investigated. As shown in FIG. 4, by creating an approximate expression showing the relationship between the oil content of the insulating paper and the age of cable use. The number of years until the oil content of the ionization limit insulating paper obtained from FIG. 3 is reached can be estimated.
1 電気導体
2 絶縁体(油浸紙)
3 絶縁体(架橋ポリエチレン)
4 遮蔽層(銅テープ)
5 補強・防食層
6 絶縁ガス
7 防食鋼管
8 空隙
1
3 Insulator (crosslinked polyethylene)
4 Shielding layer (copper tape)
5 Reinforcement /
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013270824A JP5772944B2 (en) | 2013-12-27 | 2013-12-27 | Gas cable remaining life diagnosis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013270824A JP5772944B2 (en) | 2013-12-27 | 2013-12-27 | Gas cable remaining life diagnosis method |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009252983A Division JP5482112B2 (en) | 2009-11-04 | 2009-11-04 | Gas cable remaining life diagnosis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014062921A JP2014062921A (en) | 2014-04-10 |
JP5772944B2 true JP5772944B2 (en) | 2015-09-02 |
Family
ID=50618255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013270824A Expired - Fee Related JP5772944B2 (en) | 2013-12-27 | 2013-12-27 | Gas cable remaining life diagnosis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5772944B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112595946A (en) * | 2021-03-02 | 2021-04-02 | 奥顿电气集团有限公司 | Insulating paperboard electrical strength experiment electrode |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110598245B (en) * | 2019-07-26 | 2021-06-22 | 福州大学 | Oil paper insulation equivalent circuit parameter identification method based on improved Prony algorithm |
CN113759099B (en) * | 2021-09-07 | 2023-07-21 | 重庆科技学院 | Quantitative evaluation method for oil-gas filling capacity of source-storage side-connected oil-gas reservoir |
-
2013
- 2013-12-27 JP JP2013270824A patent/JP5772944B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112595946A (en) * | 2021-03-02 | 2021-04-02 | 奥顿电气集团有限公司 | Insulating paperboard electrical strength experiment electrode |
CN112595946B (en) * | 2021-03-02 | 2021-05-07 | 奥顿电气集团有限公司 | Insulating paperboard electrical strength experiment electrode |
Also Published As
Publication number | Publication date |
---|---|
JP2014062921A (en) | 2014-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101330091B1 (en) | Method of life-decision for high-voltage cables in operation | |
Lai et al. | Investigation of tail pipe breakdown incident for 110 kV cable termination and proposal of fault prevention | |
JP5772944B2 (en) | Gas cable remaining life diagnosis method | |
Siirto et al. | Improving reliability by focusing on the quality and condition of medium-voltage cables and cable accessories | |
Shaalan et al. | Analysis of a practical study for under-ground cable faults causes | |
Su | Failure analysis of three 230kV XLPE cables | |
WO2006073016A1 (en) | Superconductive cable withstand voltage test method | |
JP5482112B2 (en) | Gas cable remaining life diagnosis method | |
Zhang et al. | A case study of rupture in 110ákV overhead conductor repaired by full-tension splice | |
JP6164022B2 (en) | Interlayer insulation diagnosis method for winding equipment | |
Shirasaka et al. | Cross-sectional comparison of insulation degradation mechanisms and lifetime evaluation of power transmission equipment | |
JP5093774B2 (en) | Method for estimating tan δ distribution of OF cable line and method for estimating dielectric heating characteristics | |
JP4683371B2 (en) | Withstand voltage test method for superconducting cable | |
Gu et al. | Development and qualification of the extruded cable system for Xiamen±320 kV VSC-HVDC project | |
JP5309706B2 (en) | Diagnostic method of power cable at the time of power cable repair | |
Rowland et al. | Fault development in wet, low voltage, oil-impregnated paper insulated cables | |
Matsuya et al. | Degradation mechanism of SCOF cable due to cable core movement | |
Florkowski et al. | Effects of mechanical transversal bending of power cable on partial discharges and dielectric-loss evolution | |
Densley | Review of international standards and practices for medium voltage power cable diagnostics | |
Huang et al. | Fault Analysis and Corrosion at the Lead Seal of High-Voltage Cable Joint | |
Jariyanurat et al. | Effect of Sheath Current on the Lead Sheath of 115kV XLPE Underground Cable | |
Ahmed et al. | Can the operating conditions of the cable system effect the data of the field PD testing? | |
Clifton et al. | Influence of Electrical Contact Resistance within Cable Joint Operation in Australian Wind Farms | |
JP4681391B2 (en) | Degradation diagnosis method for low-voltage cables | |
Hvidsten et al. | HV cable design applicable for direct electrical heating of very long flowlines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140716 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141112 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150602 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5772944 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |