JP5772818B2 - 半導体発光素子 - Google Patents

半導体発光素子 Download PDF

Info

Publication number
JP5772818B2
JP5772818B2 JP2012508243A JP2012508243A JP5772818B2 JP 5772818 B2 JP5772818 B2 JP 5772818B2 JP 2012508243 A JP2012508243 A JP 2012508243A JP 2012508243 A JP2012508243 A JP 2012508243A JP 5772818 B2 JP5772818 B2 JP 5772818B2
Authority
JP
Japan
Prior art keywords
layer
electrode
semiconductor
metal layer
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012508243A
Other languages
English (en)
Other versions
JPWO2011122433A1 (ja
Inventor
田中 秀俊
秀俊 田中
光正 武田
光正 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2012508243A priority Critical patent/JP5772818B2/ja
Publication of JPWO2011122433A1 publication Critical patent/JPWO2011122433A1/ja
Application granted granted Critical
Publication of JP5772818B2 publication Critical patent/JP5772818B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

本発明は、半導体発光素子に関し、特に、電流の流れを制御可能な絶縁層を有する半導体発光素子に関する。
半導体発光素子は、発光ダイオード(LED)やレーザダイオード(LD)として、一般照明や信号機、大型ディスプレイ等の各種光源に幅広く利用されており、高い発光効率を有することが要求されている。このため、従来から半導体発光素子内部における電流の流れを制御可能な絶縁層を設け、半導体層に効果的に電流を注入させることにより、発光効率を向上させる技術が知られている。
例えば、このような半導体発光素子として、第1導電型半導体層及び第2導電型半導体層を有する半導体積層部と、第1導電型半導体層に接続される第1導電側電極と、第2導電型半導体層に接続される第2導電側電極とを備えており、さらに第2導電側電極に隣接して、絶縁層が第2導電型半導体層に設けられている。そして、この半導体発光素子は、導電性基板が金属層を介して第2導電側電極や絶縁層に貼り合せられて構成されている(特許文献1参照)。
特開2009−231356号公報
しかしながら、導電性基板を貼り合わせたり、半導体発光素子を実装したりする際には必ず加熱処理が施される。このため、SiO等からなる絶縁層は、熱膨張に起因して密着力の比較的弱い半導体層との界面から剥離することがある。
そこで、本発明はかかる事情に鑑みてなされたものであり、半導体発光素子内部における電流の流れを絶縁層で制御可能としたまま、絶縁層と半導体層との密着性を向上させた半導体発光素子を提供することを目的とする。
本発明によれば、前記課題は次の手段により解決される。
本発明に係る半導体発光素子は、半導体層と、前記半導体層を挟んで設けられる第1電極および第2電極と、前記第2電極と同一面側で、前記第2電極の周囲を囲むように前記第1電極と対向して前記半導体層に設けられる絶縁層と、前記第2電極および前記絶縁層を覆う第1金属層と、を備え、前記半導体層と前記絶縁層との間に、前記第2電極の膜厚よりも薄い膜厚を有する第2金属層が設けられている。
このように、前記半導体層と前記絶縁層との間に、前記第2電極の膜厚より薄い膜厚を有する第2金属層を設けることにより、電流の流れを制御して半導体層に効果的に電流を注入させる絶縁層の機能を損なうことなく、絶縁層と半導体層との密着性を向上させることができる。
さらに、前記第2金属層の膜厚は5.0nm以下とするのが好ましい。これにより、効率良く電流の流れを絶縁層で制御することができると共に、第2金属層に光が吸収されることによって光出力が低下するのを抑制することができる。
また、前記第2金属層は島状であっても良く、さらに効率良く電流の流れを絶縁層で制御することができると共に、半導体層からの光を拡散反射させて光取り出し効率を向上さ
せることができる。
本発明に係る半導体発光素子によれば、半導体発光素子内部における電流の流れを絶縁層で制御可能としたまま、絶縁層と半導体層との密着性を向上させた半導体発光素子を提供することができる。
第一の実施形態に係る半導体発光素子を模式的に示す平面図である。 第一の実施形態に係る半導体発光素子を模式的に示す図1のA−A’線における断面図である。 (a)は、第一の実施形態に係る半導体発光素子における電流の流れを模式的に示す断面図である。(b)は、第一の実施形態に対して、電流の流れを比較するための半導体発光素子を模式的に示す断面図である。 第二の実施形態に係る半導体発光素子を模式的に示す断面図である。 実施例1に係る半導体発光素子を模式的に示す断面図である。 (a)〜(f)は、第一の実施形態に係る半導体発光素子の製造方法を模式的に示す断面図である。 (a)〜(d)は、第一の実施形態に係る半導体発光素子の製造方法を模式的に示す断面図である。 実施例1〜3および比較例1における絶縁層と半導体層との剥離強度を示すグラフである。 実施例1〜3および比較例1におけるPo(光出力)とVf(順電圧)を示すグラフである。 実施例2および実施例4におけるPo(光出力)比を示すグラフである。
以下、本発明に係る半導体発光素子の実施形態について詳細に説明する。ただし、特許請求の範囲に示される部材を、実施形態の部材に特定するものでは決してない。実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。また、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。
<第一の実施の形態>
図1は、第一の実施形態に係る半導体発光素子を模式的に示す平面図である。図2は、第一の実施形態に係る半導体発光素子を模式的に示す図1のA−A’線における断面図である。図3aは、第一の実施形態に係る半導体発光素子における電流の流れを模式的に示す断面図である。図3bは、第一の実施形態に対して、電流の流れを比較するための半導体発光素子を模式的に示す断面図である。
第一の実施形態に係る半導体発光素子は、半導体層10と、半導体層10を挟んで設けられる第1電極20および第2電極30と、第2電極30と同一面側で隣接し、かつ第1電極20と対向して半導体層10に設けられる絶縁層42と、第2電極30および絶縁層42を覆う第1金属層50と、を少なくとも備えている。そして、絶縁層42は、半導体層10と接する面に、第2電極30の膜厚よりも薄い膜厚を有する第2金属層60が設けられている。
より具体的には、本実施形態における半導体層10は、半導体発光素子の光取り出し面側(上面側)から光反射面側(下面側)に向かって順に、第1導電型半導体層2、発光層4、第2導電型半導体層5を備えている。第1導電型半導体層2は、光取り出し面側(発光層に接する面と反対側)の面に、第1電極20が接続されており、さらに第1電極20の少なくとも一部が露出されるように保護層40が設けられている。また、第2導電型半導体層5は、光反射面側(発光層に接する面と反対側)の面に、第2電極30が接続されており、その第2電極30の周囲を囲むように離間して絶縁層42が設けられている。第1電極と、第2電極とは、半導体層を間に挟むように配置され、かつ半導体層を平面視した際に第1電極と第2電極とが相互に重なり合わないように配置されている。すなわち、半導体層を挟んで第1電極と対向する領域に第2電極の一部または全体が配置されないように配置されている。このようにすることで、第1電極20の直下への電流の注入を抑制して、主として保護層40の直下に電流を集中させることができ、第1電極20に吸収される光を減らすことができる。本実施形態における保護層40と絶縁層42とは、同一部材からなり、半導体層10の側面で界面無く連続して設けられている。絶縁層42は、半導体層10を挟んで第1電極20と対向するように配置されており、半導体層10と接する面(第2導電型半導体層5の下面)に、半導体層10との密着力が絶縁層42よりも高い第2金属層60が設けられている。第2金属層60の膜厚は、第2電極30の膜厚よりも薄く、好ましくは100nm以下であり、より好ましくは0.5nm以上5nm以下である。このように第2金属層60の膜厚を薄くすることにより、第2金属層60の横方向の抵抗を大きくすることができ、第2電極における横方向の電流拡散を抑えることができる。特に、5nm以下とすることにより、効率良く電流を絶縁層で制御することができると共に、第2金属層60に半導体層10からの光が吸収されて光出力が低下するのを抑制することができる。また、第2電極30および絶縁層42の下面には、第1金属層50が覆うように設けられ、第2電極30と電気的に接続されている。さらに第1金属層50は、絶縁層42及び第2金属層60と、第2電極30との離間した部分を埋めるように設けられている。また、第1金属層50の下面には、導電性基板70およびメタライズ層80が順に設けられている。
以上の構成を有する第一の実施形態に係る半導体発光素子は、絶縁層42が第2金属層60を介して半導体層10に設けられているため、第2金属層60と半導体層10との間の密着性が高いことにより、絶縁層42と半導体層10との密着性を向上させることができる。
さらに、本実施形態に係る第2金属層60は、第2電極30の膜厚よりも薄い膜厚を有することによって、第2電極30よりもシート抵抗を高くすることができる。このため、図3bに示すように、多くの電流が第2金属層60に流れ込むことによって、第2金属層60と第1電極20との間で電流集中が発生するのでは無く、図3aに示すように、第2金属層60に流れ込む電流が軽減され、半導体層に効果的に電流を注入させることができる。さらにこれにより、第1電極20の直下で発光が集中してしまうのが防止され、第1電極20に吸収される光を減らすことができるため、半導体発光素子から外部に効率良く光を取り出すことができる。
したがって、第一の実施形態に係る半導体発光素子は、半導体発光素子内部における電流の流れを絶縁層42で十分に制御可能としたまま、絶縁層42と半導体層10との密着性を向上させることができる。
<第二の実施の形態>
図4は、第二の実施形態に係る半導体発光素子を模式的に示す断面図である。
第二の実施形態に係る半導体発光素子は、第2金属層の形状以外は、第一の実施形態と実質的に同じ構造を有している。なお、同じ構造については、説明を省略する部分もある。
本実施形態に係る半導体発光素子は、半導体層10と、第1電極20と、第2電極30と、保護層40と、絶縁層42と、第1金属層50と、第2金属層60と、導電性基板70と、メタライズ層80とを少なくとも備える。
半導体層10の上面には、第1電極20が接続されており、さらに第1電極20の一部が露出するように保護層40が設けられている。半導体層10の第1電極20が設けられた面と反対側の面(下面)には、第2電極30が接続されており、第2電極30に隣接して絶縁層42が設けられている。この絶縁層42は、半導体層10を挟んで第1電極20と対向するように配置されている。保護層40と絶縁層42とは、同一部材からなり、半導体層10の側面で連続している。また、絶縁層42と半導体層10との間には、半導体層10との密着力が絶縁層42よりも高い第2金属層60が設けられており、絶縁層42と半導体層10とを接続している。第2金属層60は、絶縁層42での電流制御が損なわれないように、隣接する第2電極30の膜厚よりも薄い膜厚を有している。特に本実施形態における第2金属層60は、島状に設けられており、離間した各第2金属層の間を埋めるように絶縁層42が配置されている。つまり、半導体層10の下面は、第2金属層60と絶縁層42の両方が接した状態になっている。また、第2電極30は、その側面及び下面に第1金属層50が接続されている。この第1金属層50は、絶縁層42の下面まで覆うように延在している。そして第1金属層50の下面には、導電性基板70およびメタライズ層80が順に設けられている。
以上の構成を有する第二の実施形態に係る半導体発光素子は、第一の実施形態に係る半導体発光素子と同様に、絶縁層42により制御された電流の流れを維持したまま、絶縁層42と半導体層10との密着性を向上させることができる。つまり、本実施形態に係る半導体発光素子では、島状に設けられた第2金属層60の間に、絶縁層42が配置されているため、第2金属層60に流れ込む電流を軽減することができる。このため、第2金属層60と第1電極20との間で電流集中が発生するのをより抑制することができる。
さらに、本実施形態に係る半導体発光素子では、第2金属層60が島状に設けられていることによって、半導体層10からの光が第2金属層60で拡散反射されるため、半導体発光素子からの光を効率良く外部に取り出すことができる。
以下、本発明に係る実施形態の各構成について詳述する。
(半導体層)
半導体層は、第1導電型半導体層と、発光層と、第2導電型半導体層とから少なくとも構成され、例えばInAlGa1−X−YN(0≦X、0≦Y、X+Y≦1)等の窒化ガリウム系の半導体材料が好適に用いられる。
第1導電型半導体層および第2導電型半導体層は、例えばGaN、AlN、InN等の半導体材料からなる層にドーパントをドープして、n型またはp型の半導体層として形成される。n型ドーパントとしては、Si、Ge、Sn、S、O、Ti、Zr等のIV族、若しくはVI族元素が挙げられ、p型ドーパントとしては、Be、Zn、Mn、Cr、Mg、Ca等が挙げられる。
また、発光層は、第1導電型半導体層と、第2導電型半導体層とから注入される正孔および電子の再結合に生成するエネルギーを光として放出する層である。このような発光層としては、ノンドープ、n型不純物ドープ、p型不純物ドープのいずれを用いても良い。
(第1電極および第2電極)
第1電極および第2電極は、半導体層に接して設けられ、半導体層に電流を供給するための部材である。
第1電極と、第2電極とは、半導体層を間に挟むように配置され、かつ半導体層を平面視した際に第1電極と第2電極とが相互に重なり合わないように配置されている。つまり、半導体層を平面視した際に、第1電極と第2電極とが交互に配置されている。これにより、第1電極と第2電極との間を流れる電流が、半導体層内部を最短で流れてしまうのを抑制し、過度な電流集中によって半導体発光素子が破壊するのを防止することができる。さらに、第2電極の面積は、第1電極の面積よりも大きくなるように設けられているのが好ましい。これにより、電流注入領域の面積を大きくすることができるため、発光効率を向上させることができる。また、半導体発光素子の駆動によって発生する熱も、効率良く放熱することができる。特に放熱性については、半導体発光素子を実装する側に、第2電極が配置されている場合に有効である。
このような第1電極としては、Ag、Pt、Au、Ni、Ti、Cr、W、Rh、Ru、Hf等の金属材料を用いることができ、これらの金属材料を複数用いて積層しても良い。例えば、第1導電型半導体層側から順に、Ti/Pt/Au、又は、Ti/Rh/W/Au、Cr/Pt/Ru/Au等のように設けることができるが、これに限定されない。
また、第2電極としては、Ag、Al、Pt、Au、Ni、Ti、Rh等で形成され、特にAg、Al、Rh等の光を反射する金属材料で構成することが、光取り出し効率の向上に有効である。第2電極は、第2導電型半導体層側から順に、Ag/Ti/Pt、又は、Al/Ti/Pt、Ag/Ni/Ti/Pt等のように複数の金属材料を積層して設けることもできる。このとき、第2導電型半導体層側に最も近い層としてAg層を設けることで、発光層からの光を効率良く反射することができるため好ましい。
(保護層)
保護層は、半導体層の表面を被覆することによって、外部環境から主に半導体層を保護するためのものである。
具体的に保護層は、第1電極の一部、つまり電流を供給するワイヤ等の導電性部材が接続される領域を除いて形成される。保護層は、透光性の絶縁膜であるSi、Ti、Ta等の酸化物からなり、蒸着法、スパッタ法等の公知の方法によって成膜することができる。なお、保護層の膜厚は、特に限定されるものではないが、100〜1000nmとすることが好ましい。
(絶縁層)
絶縁層は、半導体層に流れ込む電流の流れを制御し、半導体層内部を電流が最短で流れてしまうのを防止するための部材である。
絶縁層は、半導体層を間に挟んで第1電極と対向するように配置されており、さらに同一面側で隣接する第2電極の周囲を囲むように離間して配置されている。この第2電極と絶縁層との間(離間領域)には、後述する第1金属層を形成する金属材料または合金材料が充填されているが、これに限定されない。つまり、離間領域に空隙ができるように、第金属層が第2電極と絶縁層の下面側を覆うように設けられても良い。これにより、絶縁層の熱膨張に起因した応力が生じたとしても、空隙でその応力を緩和することができるため、半導体層と絶縁層との密着性が低下するのを抑制することができる。さらに、第2電極と絶縁層との間隔は、広くしすぎると光の取り出し効率が悪くなるため、10μm以下程度離間されるのが好ましい。
このような絶縁層としては、SiO、SiN、Al、ZnO、ZrO、Nb、TiO等の絶縁性材料を用いることができ、特にTiOは発光層からの光を効率良く反射することができるため好ましい。さらに、絶縁層は、誘電体多層膜のように絶縁性材料を複数積層し、半導体層からの光を反射できるように各層の膜厚を設定しても良い。
本実施形態における保護層と絶縁層とは、同一部材からなり、半導体層の側面で界面無く連続して設けられているが、これに限らず別の部材で構成することもできる。
(第1金属層)
第1金属層は、第2電極および絶縁層と、後述する導電性基板と、を接合する(貼り合わせる)ための部材である。
第1金属層は、第2電極および絶縁層を覆うように連続して設けられている。特に、第2電極が複数に分離されている場合は、各第2電極を第1金属層によって電気的に接続することができる。
このような第1金属層としては、第2電極との密着性の他、第2電極と半導体層(特に第2導電型半導体層)との間のオーミック特性や第2電極の抵抗への影響を考慮することが好ましい。つまり、第1金属層の材料によっては、第2電極に拡散するなどして、オーミック特性の悪化や抵抗の増加を招くことがある。このため、第1金属層は、融点の高いRu、Rh、Os、Ir、Pt、W、Mo等を含むのが好ましい。特に、これらよりも融点の低いTi、Au、Sn、Pd等を第1金属層中に含む場合は、このような材料よりも第2電極側にRu、Rh、Os、Ir、Pt、W、Mo等を配置するのが好ましい。これにより、導電性基板等の接合時や素子駆動時などの高温条件下においても、第1金属層に含まれる金属材料が第2電極に拡散するのを抑えることができる。
また、第1金属層と絶縁層との間には第3金属層を設けることもできる。このような第3金属層としては、絶縁層の材料を考慮して選択するのが好ましい。例えば、絶縁層がSiO、SiN、Nbであれば、絶縁層と接する側にTiやNiを含む層とすると、密着性が高く、剥がれ難いものとすることができる。具体的には、絶縁層側から順に、Ti/Pt、又は、Ti/Rh、Ti/Ir、Ni/Pt、Ni/Rh、Ni/Ir等のように合計膜厚数十〜数百nm程度で設けることができる。また、第3金属層は、絶縁層と共通する元素を含むこともでき、例えば絶縁層が酸化ニオブの場合にはNb、酸化タンタルの場合にはTaを含むのが好ましい。さらに、第3金属層は、第1金属層との密着性も考慮して選択することが好ましい。
(第2金属層)
第2金属層は、絶縁層により制御された電流の流れを維持したまま、絶縁層と半導体層との密着性を向上させるための部材である。
第2金属層は、絶縁層と半導体層とを接続するように設けられており、隣接する第2電極の膜厚よりも薄い膜厚を有している。特に、第2金属層の膜厚は、第2電極が複数の金属材料を積層して設けられている場合には、第2電極において最も半導体層側に近い層の膜厚よりも薄いのが好ましい。これにより、第2金属層に流れ込む電流をさらに軽減することができる。
また、絶縁層として半導体層に最も近い層にTiO等の反射率の高い絶縁性材料が設けられる場合、第2金属層は透光性を有するのが好ましく、具体的には1.5nm以下とするのが好ましく、より好ましくは0.5nm以下である。これにより、第2金属層を透過した光が絶縁層で反射されるため、半導体発光素子として光取り出し効率を向上させることができる。
このような第2金属層としては、半導体層との密着性と絶縁層との密着性の両方に優れた材料が好ましく、例えばTi、Ni、Cr、Ta、Nb、Al等の金属材料が挙げられる。さらに、第2金属層として、半導体層に対してショットキー接触である金属材料、例えばRu、Rh、Pt、Coを用いても良い。これにより、第2金属層の膜厚に影響されることなく、第2金属層に流れ込む電流を軽減することができるが、さらに電流の流れ込みを軽減するために、上述したような第2金属層と第2電極との膜厚の関係を組み合わせても良い。
(導電性基板)
導電性基板は、例えばシリコン(Si)で構成される。また、Siのほか、Ge、SiC、GaN、GaAs、GaP、InP、ZnSe、ZnS、ZnO等の半導体材料や、Ag、Cu、Au、Pt、W、Mo、Cr、Ni等の金属材料を用いることができる。また、導電性基板における半導体層側の面には、第1金属層との密着性を高めるために、Ti、Pt、Au等からなる接合層を設けることもできる。さらに導電性基板における半導体層とは反対側の面(半導体発光素子の実装面)にも同様に、Ti、Pt、Au等からなるメタライズ層が設けられており、半導体発光素子を実装する際の密着性を高めることができる。
(半導体発光素子の製造方法)
本実施形態に係る半導体発光素子の製造方法を、図および図に示す工程を順に追って説明する。なお、図および図は、第一の実施形態に係る半導体発光素子の製造方法を模式的に示す断面図である。
まず、図に示すように、本実施形態における半導体発光素子では、サファイア等からなる成長用基板100の上に、第1導電型半導体層、発光層、第2導電型半導体層の順に成膜して半導体層10を形成する。
次に、第2導電型半導体層の上表面に、レジストを用いて第2電極30の配置に対応したフォトマスクを形成し、スパッタリング等によって、電極材料、例えば、AgやPt等を含む電極材料を積層することによって第2電極30を形成する。その後、さらに第2電極30の上にレジストを用いてフォトマスクを形成し、スパッタリング等によって、Ti等の金属材料を積層し、続けてSiO等の絶縁性材料を積層した後、レジストを除去する。これによって、第2電極30と、第2電極30から離間して第2金属層60および絶縁層42が積層された構造を形成できる。また、第2導電型半導体層の表面全体にSiO等の絶縁性材料を積層した後、その絶縁性材料の膜上に、絶縁層42の配置に対応したフォトマスクを形成し、第2電極30の配置に対応する部位をウェットエッチングして、エッチング部位にスパッタリング等によって電極材料を積層して第2電極30を形成する方法によっても行うこともできる。
次に、絶縁層42と第2電極30の上部に、PtやAu、Sn等を含む第1金属層50を形成することによって、絶縁層42と第2電極30との離間領域にも第1金属層50が充填される。
一方、Si等の導電性基板70を用意し、導電性基板70の上表面にはPtやAu、Ti等を含む接合層72を形成する。
次に、第1金属層50と接合層72とを貼り合わせ、150℃〜350℃程度で加熱して接合する。これにより、第1金属層50の一部と接合層72の一部が共晶を形成し、半導体層10と導電性基板70とが接着される。
次に、図に示すように、成長用基板100の側からレーザ照射もしくは研磨等を行って、成長用基板100を除去した後、露出した半導体層10(第1導電型半導体層)を化学研磨(CMP)する。さらに、研磨面において、半導体層10を挟んで絶縁層42と対向し、かつ第2電極30と重なり合わない部位に、第1電極20が形成されるようにマスクを形成する。そして、スパッタリング等によって、電極材料を積層して、半導体層10の上に第1電極20を形成する。ここでマスクを設けた部分、つまり第1電極20が形成されていない領域をRIE(反応性イオンエッチング)により穿孔して半導体層10を露出させる。さらに、露出された半導体層10に保護層40を形成して、本実施形態における半導体発光素子を得ることができる。
半導体発光素子(実施例1〜4、比較例1)を作製し、絶縁層と半導体層との密着性、および、初期特性について評価する。なお、本発明は、これらの実施例に限定されるものではない。
<実施例1>
実施例1として、図5に示すように、第一の実施形態に係る半導体発光素子を以下の仕様で作製する。
実施例1に係る半導体発光素子は、半導体層10と、第1電極(n電極)20と、第2電極(p電極)30と、保護層40と、絶縁層42と、第1金属層50と、第2金属層60と、第3金属層62と、導電性基板70と、接合層72と、メタライズ層80と、を少なくとも備える。
より具体的には、半導体層10として窒化ガリウム系半導体、第1電極20としてTi(15nm)/Pt(200nm)/Au(1000nm)、第2電極30としてAg(100nm)/Ni(100nm)/Ti(100nm)/Pt(100nm)、保護層40としてSiO(400nm)、絶縁層42としてSiO(300nm)、第1金属層50としてPt(300nm)/Au(300nm)/AuSn(2000nm)、第2金属層60としてTi(0.5nm)、第3金属層62としてTi(50nm)/Pt(50nm)、接合層72としてAu(500nm)/Pt(300nm)/TiSi(5nm)、導電性基板70としてSi基板、メタライズ層80としてPt(250nm)/Au(500nm)が用いられる。
本実施例の半導体発光素子は、半導体層を平面視した際に、第1電極20と第2電極30とが重なり合わないように半導体層10を挟んで設けられる。第1電極20を有する側の半導体層表面(上面)には、保護層40が設けられる。保護層40は、ワイヤ等の導電性部材との接続を可能とするために、第1電極20の一部が露出されるように配置される。また、第2電極30を有する側の半導体層表面(下面)には、第2電極30の近傍で離間して第2金属層60が設けられる。さらに第2金属層60は、半導体層10を挟んで第1電極20と対向するように配置される。このとき、第2金属層60の膜厚は、第2電極30の膜厚よりも薄くなるように設けられている。特に本実施例においては、第2金属層60は、第2電極30を構成する1層目(最も半導体層に近い層)のAg層よりも薄い膜厚を有するため、第2金属層60に流れ込む電流をより軽減することができる。第2金属層60の下面には、絶縁層42が積層されており、絶縁層42と保護層40とが半導体層10の側面で連続している。絶縁層42の下面には、第1金属層50との密着性および絶縁層42との密着性の両方に優れる第3金属層62が積層される。第1金属層50は、第3金属層62の下面と接すると共に、第2電極30の周囲(側面および下面)を覆うように接する。第1金属層50には接合層72を介して導電性基板70が接合されており、さらに導電性基板70の下面にはメタライズ層80が設けられる。
以上のように、実施例1に係る半導体発光素子は、第一の実施形態とほぼ同様の効果を有することができる。
<実施例2〜4>
実施例2〜4の半導体発光素子は、それぞれ第2金属層の膜厚を、1.5nm、5nm、100nmとする以外は実施例1と同様にして作製する。
<比較例1>
比較例1の半導体発光素子は、絶縁層と半導体層との間に第2金属層を設けない以外は、実施例1と同様にして作製する。
以上、作製した半導体発光素子について評価する。なお、図8は、実施例1〜3および比較例1における絶縁層と半導体層との剥離強度を示すグラフである。図9は、実施例1〜3および比較例1におけるPo(光出力)とVf(順電圧)を示すグラフである。図10は、実施例2および実施例4におけるPo(光出力)比を示すグラフである。
(絶縁層と半導体層との密着性の評価)
実施例1〜3および比較例1において、mELT(modified Edge Liftoff Test、改良エッジ・リフトオフ・テスト)法を用いることによって、絶縁層と半導体層との剥離強度を測定した。mELT法とは、測定試料にエポキシ樹脂を塗布してベーキングし、試料を10mm角に割断した後に液体窒素で冷却し、膜が剥がれた温度から密着力を測定する方法である。即ち、剥離温度Tにおけるエポキシ樹脂の残留応力σ
、およびエポキシ樹脂の膜厚hに基づいて次式から剥離強度Kapp[MPa・m1/2]を計算する。
app=σ・(h/2)1/2
サファイア上にGaNを成長させたサンプルに、上記実施例1と同様の方法で、第2金属としてTi層、絶縁層としてSiO層300nm、第3金属層としてTi層50nmおよびPt層50nmを形成した。第2金属層としてのTi層の膜厚を、比較例1および実施例1〜3における第2金属層の厚さに対応して0nm、0.5nm、1.5nm、5nmとし、各々を比較例1および実施例1〜3の試料とした。このように作製した各試料の剥離強度Kappを測定した。結果を図8に示す。Tiを形成しなかった比較例1の試料(Ti膜厚:0Å)の剥離強度が約0.12[MPa・m1/2]であったのに対し、0.5〜5nmの膜厚でTiを形成した実施例1〜3の試料は剥離強度Kappが約0.32〜0.42[MPa・m1/2]以上であり、剥離強度が約3倍に向上していた。以上の結果より、絶縁層と半導体層との密着性は、第2金属層を有することによって向上することが分かった。
(初期特性の評価)
次に、実施例1〜3および比較例1の初期特性を評価するために、Po(光出力)およびVf(順電圧)を測定した。なお、この測定に用いた電流値は4Aである。
図9に示すように、実施例1〜3および比較例1のいずれにおいても、PoやVfの値に殆ど差が見られなかった。つまり、実施例1〜3では、絶縁層により制御された電流の流れが第2金属層に阻害されておらず、比較例1と同様に十分に行なわれていることが分かる。さらに、実施例1〜3では、第2金属層の膜厚を5nm以下と比較的薄くしているため、第2金属層を構成する金属材料に、半導体層からの光が吸収されるのを軽減していることも分かる。
次に、第2金属層の膜厚の依存性を評価するために、さらに実施例4のPoを測定して、実施例2と比較する。なお測定結果は、比較し易いように比較例1におけるPoを1として比で示す。
図10に示すように、実施例4は、実施例2に比べてPoの低下が見られる。しかしながら、その差は0.05以下と比較的小さいため、絶縁層により制御された電流の流れが変化したものでは無く、第2金属層の膜厚増加に伴って半導体層からの光が吸収される量が増加したものと推測される。このため、第2金属層の膜厚は、絶縁層で電流が制御可能な100nmよりも薄い方が好ましく、より好ましくは光吸収の少ない5nm以下であることが確認できた。
本発明の半導体発光素子は、一般照明の他に、カーナビのバックライトや、自動車のヘッドライト、信号機、大型ディスプレイ等の各種光源に利用することができる。
2 第1導電型半導体層
4 発光層
第2導電型半導体層
10 半導体層
20 第1電極
30 第2電極
40 保護層
42 絶縁層
50 第1金属層
60 第2金属層
62 第3金属層
70 導電性基板
72 接合層
80 メタライズ層

Claims (3)

  1. 半導体層と、
    前記半導体層を挟んで設けられ、かつ平面視で重なり合わないように配置される第1電極および第2電極と、
    前記第2電極と同一面側で、前記第2電極の周囲を囲むように前記第1電極と対向して前記半導体層に設けられる絶縁層と、
    前記第2電極および前記絶縁層を覆う第1金属層と、を備え、
    前記半導体層と前記絶縁層との間に、前記第2電極の膜厚よりも薄い膜厚を有する第2金属層が設けられており、
    前記第2金属層は、Ru、Rh、Pt又はCoであることを特徴とする半導体発光素子。
  2. 前記第2金属層の膜厚は、5nm以下であることを特徴とする請求項1に記載の半導体発光素子。
  3. 前記第2金属層は、島状であることを特徴とする請求項1又は2に記載の半導体発光素子。
JP2012508243A 2010-03-31 2011-03-24 半導体発光素子 Active JP5772818B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012508243A JP5772818B2 (ja) 2010-03-31 2011-03-24 半導体発光素子

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010079951 2010-03-31
JP2010079951 2010-03-31
JP2010217050 2010-09-28
JP2010217050 2010-09-28
JP2012508243A JP5772818B2 (ja) 2010-03-31 2011-03-24 半導体発光素子
PCT/JP2011/057147 WO2011122433A1 (ja) 2010-03-31 2011-03-24 半導体発光素子

Publications (2)

Publication Number Publication Date
JPWO2011122433A1 JPWO2011122433A1 (ja) 2013-07-08
JP5772818B2 true JP5772818B2 (ja) 2015-09-02

Family

ID=44712142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012508243A Active JP5772818B2 (ja) 2010-03-31 2011-03-24 半導体発光素子

Country Status (5)

Country Link
US (1) US9761760B2 (ja)
EP (1) EP2555259B1 (ja)
JP (1) JP5772818B2 (ja)
TW (1) TWI431815B (ja)
WO (1) WO2011122433A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886130B1 (ko) * 2011-12-06 2018-09-06 엘지이노텍 주식회사 발광소자, 발광소자 패키지 및 라이트 유닛
EP3072166B1 (en) * 2013-11-19 2021-03-24 Lumileds LLC A solid state light emitting device and its method of manufacturing
CN107256871B (zh) * 2017-06-27 2019-09-27 上海天马微电子有限公司 微发光二极管显示面板和显示装置
CN111525009B (zh) * 2020-04-27 2022-02-22 开发晶照明(厦门)有限公司 半导体发光器件
CN114171646B (zh) * 2020-09-11 2023-05-26 成都辰显光电有限公司 微发光二极管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198087A (ja) * 1988-02-02 1989-08-09 Mitsubishi Electric Corp 半導体装置
JP2002335053A (ja) * 2001-03-06 2002-11-22 Sony Corp 半導体レーザの製造方法、半導体レーザ、半導体装置の製造方法および半導体装置
JP2008147556A (ja) * 2006-12-13 2008-06-26 Nichia Chem Ind Ltd 半導体レーザ装置及びその製造方法
JP2009231356A (ja) * 2008-03-19 2009-10-08 Nichia Corp 半導体発光素子およびその製造方法
JP2010062300A (ja) * 2008-09-03 2010-03-18 Rohm Co Ltd 窒化物半導体素子およびその製造方法
JP2011066096A (ja) * 2009-09-16 2011-03-31 Sanyo Electric Co Ltd 半導体レーザ素子およびその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3698229B2 (ja) 1997-10-24 2005-09-21 ソニー株式会社 半導体素子および半導体発光素子
CN100595937C (zh) * 2002-08-01 2010-03-24 日亚化学工业株式会社 半导体发光元件及发光装置
US7622743B2 (en) * 2003-11-04 2009-11-24 Panasonic Corporation Semiconductor light emitting device, lighting module, lighting apparatus, and manufacturing method of semiconductor light emitting device
US8144743B2 (en) 2008-03-05 2012-03-27 Rohm Co., Ltd. Nitride based semiconductor device and fabrication method for the same
CN101271917B (zh) 2008-05-09 2011-05-25 晶能光电(江西)有限公司 半导体发光器件的抗静电结构及其制造方法
JP4997304B2 (ja) * 2010-03-11 2012-08-08 株式会社東芝 半導体発光素子及びその製造方法
KR101028277B1 (ko) * 2010-05-25 2011-04-11 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법, 발광 소자 패키지 및 라이트 유닛

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01198087A (ja) * 1988-02-02 1989-08-09 Mitsubishi Electric Corp 半導体装置
JP2002335053A (ja) * 2001-03-06 2002-11-22 Sony Corp 半導体レーザの製造方法、半導体レーザ、半導体装置の製造方法および半導体装置
JP2008147556A (ja) * 2006-12-13 2008-06-26 Nichia Chem Ind Ltd 半導体レーザ装置及びその製造方法
JP2009231356A (ja) * 2008-03-19 2009-10-08 Nichia Corp 半導体発光素子およびその製造方法
JP2010062300A (ja) * 2008-09-03 2010-03-18 Rohm Co Ltd 窒化物半導体素子およびその製造方法
JP2011066096A (ja) * 2009-09-16 2011-03-31 Sanyo Electric Co Ltd 半導体レーザ素子およびその製造方法

Also Published As

Publication number Publication date
TWI431815B (zh) 2014-03-21
EP2555259B1 (en) 2018-10-03
US20130015470A1 (en) 2013-01-17
US9761760B2 (en) 2017-09-12
TW201145590A (en) 2011-12-16
EP2555259A4 (en) 2015-04-08
WO2011122433A1 (ja) 2011-10-06
EP2555259A1 (en) 2013-02-06
JPWO2011122433A1 (ja) 2013-07-08

Similar Documents

Publication Publication Date Title
JP4946195B2 (ja) 半導体発光素子及びその製造方法
KR101627010B1 (ko) 반도체 발광소자
KR102276207B1 (ko) 반도체 발광 소자 및 반도체 발광 장치
KR101537192B1 (ko) 반도체 발광 소자
TWI527268B (zh) 半導體元件及其製造方法
JP4929924B2 (ja) 半導体発光素子、その製造方法、及び複合半導体装置
US8878214B2 (en) Semiconductor light emitting device
JP4597796B2 (ja) 窒化物系化合物半導体発光素子およびその製造方法
JP2013008817A (ja) 半導体発光素子及びその製造方法
JP5772818B2 (ja) 半導体発光素子
US20130164866A1 (en) Semiconductor light emitting element and method for manufacturing same
JP2014022530A (ja) 半導体発光素子及びその製造方法
JP6149878B2 (ja) 発光素子
JP2014116439A (ja) 半導体発光素子
JP5729328B2 (ja) Iii族窒化物半導体発光素子およびその製造方法
TW201637241A (zh) 半導體發光元件、發光裝置及半導體發光元件之製造方法
JP6136717B2 (ja) 発光素子、発光装置及び発光素子の製造方法
US9608167B2 (en) Light emitting device
WO2005027232A1 (ja) GaN系発光ダイオード
US9093356B2 (en) Semiconductor light emitting element
KR101318492B1 (ko) 발광 다이오드 및 발광 다이오드 램프
JP2004235509A (ja) 発光素子及び発光素子の製造方法
JP5644711B2 (ja) 発光チップの製造方法、発光チップ、接合体
US8803179B2 (en) Semiconductor light emitting device
JP5334642B2 (ja) 発光装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5772818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250