JP5771910B2 - Imaging optical device having antireflection structure and imaging optical system having antireflection structure - Google Patents

Imaging optical device having antireflection structure and imaging optical system having antireflection structure Download PDF

Info

Publication number
JP5771910B2
JP5771910B2 JP2010147850A JP2010147850A JP5771910B2 JP 5771910 B2 JP5771910 B2 JP 5771910B2 JP 2010147850 A JP2010147850 A JP 2010147850A JP 2010147850 A JP2010147850 A JP 2010147850A JP 5771910 B2 JP5771910 B2 JP 5771910B2
Authority
JP
Japan
Prior art keywords
imaging optical
imaging
optical system
incident
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010147850A
Other languages
Japanese (ja)
Other versions
JP2011028256A (en
Inventor
浩司 加藤
浩司 加藤
祥平 松岡
祥平 松岡
小織 雅和
雅和 小織
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2010147850A priority Critical patent/JP5771910B2/en
Publication of JP2011028256A publication Critical patent/JP2011028256A/en
Application granted granted Critical
Publication of JP5771910B2 publication Critical patent/JP5771910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、反射防止構造を備えた撮像光学装置および撮像光学系に関し、特に、ゴーストの発生を抑制可能な撮像光学装置および撮像光学系に関する。   The present invention relates to an image pickup optical apparatus and an image pickup optical system having an antireflection structure, and more particularly to an image pickup optical apparatus and an image pickup optical system capable of suppressing the occurrence of ghosts.

撮像光学系に入射した光の一部がレンズ面間で一回ないし複数回反射した後に撮像素子に入射することにより、画像にゴーストと呼ばれるノイズが生じることがある。このゴーストの発生を防止するために、撮像光学系のレンズ表面に真空蒸着等によってある種の薄膜を設け、あるいはレンズ表面に微細な凹凸を設けるといった、いわゆる反射防止構造を設けることにより、ゴーストの原因となる反射を抑制することが知られている(特許文献1〜3)。   When a part of the light incident on the imaging optical system is reflected once or a plurality of times between the lens surfaces and then enters the imaging device, noise called ghost may occur in the image. In order to prevent the occurrence of this ghost, by providing a so-called antireflection structure such as providing a certain thin film on the lens surface of the imaging optical system by vacuum deposition or the like, or providing a minute unevenness on the lens surface, It is known to suppress causal reflection (Patent Documents 1 to 3).

特開2000−275402号公報JP 2000-275402 A 特開2006−215542号公報JP 2006-215542 A 特開2008−233585号公報JP 2008-233585 A

上述のようにレンズの面間反射により生じる一般的なゴーストは、上述の反射防止構造により効果的に抑制され得る。また、一般的なゴーストは単体の円状または多角形状の形態であり、ノイズではありながらも、映像表現の一部としてむしろ積極的に用いられることもある。しかしながら、撮像素子を有するデジタル光学機器においては、撮像素子表面ないし内部にて反射された光が撮像光学系に再入射し、撮像光学系内のレンズ等によってさらに反射されて撮像素子に再入射した際に、特異なゴーストが出現する。すなわち、CCD等の固体撮像素子を有するデジタル光学機器においては、撮像素子内部に光電変換素子が周期的に分割配置(2次元配列)されており、光電変換素子表面に入射した光に対して反射型回折格子に似た作用をする。そのため、反射光は周期的に明暗が繰り返される強度分布を有し、その反射光が再度撮像素子に入射することで、光点が一定間隔に整列した水玉模様(ドットパターン)状のゴーストが発生する。   As described above, a general ghost caused by reflection between the surfaces of the lens can be effectively suppressed by the above-described antireflection structure. In addition, a general ghost is a single circular or polygonal form, and although it is noise, it may be used more actively as a part of video expression. However, in a digital optical apparatus having an image pickup device, the light reflected from the surface or inside of the image pickup device re-enters the image pickup optical system, is further reflected by a lens in the image pickup optical system, and re-enters the image pickup device. A unique ghost appears. That is, in a digital optical apparatus having a solid-state image sensor such as a CCD, photoelectric conversion elements are periodically divided (two-dimensionally arranged) inside the image sensor, and reflected with respect to light incident on the surface of the photoelectric conversion element. Acts like a diffraction grating. Therefore, the reflected light has an intensity distribution that periodically repeats light and dark, and when the reflected light is incident on the image sensor again, a ghost with a polka dot pattern (dot pattern) in which the light spots are aligned at regular intervals is generated. To do.

この水玉模様のゴーストは、特異な形態をしているため、同等の強度においては、一般のゴーストに比べて、視認されやすく、画像を大きく劣化させる原因となる。そのため、単に一般的なレンズ面間反射によるゴーストを防止する為に設計された反射防止構造を闇雲にレンズ面に設けることによって、水玉模様のゴーストを確実に防止することは困難である。すなわち、特許文献1〜3に示したような従来の反射防止法では不十分であり、水玉模様のゴーストに特化した抑制方法を採る必要がある。   This polka dot ghost has a peculiar form, and therefore, with the same strength, it is more visible than a general ghost, and causes a significant deterioration of the image. For this reason, it is difficult to reliably prevent a ghost with a polka dot pattern by providing an anti-reflection structure on the lens surface in the dark cloud simply to prevent a ghost caused by general reflection between lens surfaces. That is, the conventional antireflection methods as shown in Patent Documents 1 to 3 are insufficient, and it is necessary to adopt a suppression method specialized for polka dot ghosts.

本発明は、反射回折光により生じたゴーストが画像を劣化させることを効果的に抑制する撮像光学系および撮像光学装置の実現を目的とする。   An object of the present invention is to realize an imaging optical system and an imaging optical apparatus that effectively suppress a ghost generated by reflected diffracted light from deteriorating an image.

本発明の撮像光学装置は、開口絞りを有する撮像光学系と、撮像光学系を透過した被写体からの入射光が入射する撮像素子とを備えており、撮像素子は、複数の光電変換素子を有し、通常2次元配列されている。撮像光学装置においては、入射光の光電変換素子表面における反射によって生じる反射回折光が、撮像光学系内で反射して再び撮像素子に入射することを抑制する構成として、撮像光学系の中で少なくとも開口絞りと撮像素子との間に配置されている撮影レンズの1面に、複数の層を積層させた反射防止膜を有する反射防止構造が形成されている。例えば反射防止構造は、撮影像素子を向くレンズ表面、すなわち開口絞りとは反対側のレンズ面に形成すればよい。   The imaging optical device of the present invention includes an imaging optical system having an aperture stop, and an imaging element on which incident light from a subject that has passed through the imaging optical system is incident. The imaging element has a plurality of photoelectric conversion elements. Usually, it is arranged in two dimensions. In the imaging optical device, at least in the imaging optical system, the reflected diffracted light generated by reflection of incident light on the surface of the photoelectric conversion element is reflected in the imaging optical system and is again incident on the imaging element. An antireflection structure having an antireflection film in which a plurality of layers are laminated is formed on one surface of a photographic lens disposed between the aperture stop and the image sensor. For example, the antireflection structure may be formed on the lens surface facing the photographic image element, that is, on the lens surface opposite to the aperture stop.

撮像素子の受光面において、R,G,Bなどに応じた波長域の光を分光、すなわち選択的に所定の波長域の光を透過する複数の波長選択素子(色要素)を2次元配列させたカラーフィルタ(フィルタアレイ)が撮像素子の受光面面上に配設されている場合、撮影条件によっては、R,G,Bの水玉模様(ドットパターン)状のゴースが撮影画像に発生する。本発明の反射防止構造は、このようなデジタルカメラ等の撮像装置において特有なゴースト発生を防ぐ反射防止膜の積層構造によって、低波長〜長波長においてゴースト発生に起因する所定の波長域の光に対し、撮像素子側へ再反射しないようにすることが可能となる。   On the light receiving surface of the image sensor, a plurality of wavelength selection elements (color elements) that split light in a wavelength region corresponding to R, G, B, etc., that is, selectively transmit light in a predetermined wavelength region, are two-dimensionally arranged. When the color filter (filter array) is disposed on the light receiving surface of the image sensor, R, G, and B polka dot (dot pattern) ghosts are generated in the captured image depending on the imaging conditions. The anti-reflection structure of the present invention can reduce light in a predetermined wavelength range resulting from ghost generation in a low wavelength to a long wavelength by a laminated structure of an anti-reflection film that prevents ghost generation peculiar to such an imaging apparatus such as a digital camera. On the other hand, it is possible not to re-reflect to the image sensor side.

反射防止構造の反射率は、撮像素子側から反射防止構造の形成されたレンズ面に入射してくる反射回折光の波長帯域を考慮しながら定められる。例えば、それぞれ入射光を所定の透過波長域に分光する複数の波長選択素子を配列させたカラーフィルタを設けた場合、反射防止膜が形成される撮影レンズ表面において、各波長選択素子の透過波長域の代表波長に対する反射率の平均値が、撮影光学系の各レンズ面における平均値を平均化した値よりも小さくなるように、反射率を定めるのがよい。代表波長としては、例えば最も透過スペクトルの大きい波長に定める。または、各波長選択素子の透過波長域の代表波長に対する反射率の平均値が、反射防止膜が形成されていない他のレンズ面におけるいずれの平均値よりも小さくなるように、反射率を定めてもよい。例えば、R,G,Bのカラーフィルタを配設した撮像素子の場合、波長630nmに対する反射率と波長530nmに対する反射率と波長420nmに対する反射率の平均値が、撮影光学系の各レンズ面におけるR,G,Bの反射率の平均値をレンズ全体で平均化した値よりも小さくなるように定めるのがよい。あるいは、長630nmに対する反射率と波長530nmに対する反射率と波長420nmに対する反射率の平均値が、反射防止膜が形成されていない他のレンズ面におけるいずれの平均値よりも小さいように定めるのがよい。   The reflectance of the antireflection structure is determined in consideration of the wavelength band of the reflected diffracted light that enters the lens surface on which the antireflection structure is formed from the imaging element side. For example, when a color filter in which a plurality of wavelength selection elements that divide incident light into a predetermined transmission wavelength range is provided, the transmission wavelength range of each wavelength selection element is formed on the surface of the photographing lens on which the antireflection film is formed. It is preferable that the reflectance is determined so that the average value of the reflectance with respect to the representative wavelength becomes smaller than the average value of the average values of the lens surfaces of the photographing optical system. As the representative wavelength, for example, the wavelength having the largest transmission spectrum is determined. Alternatively, the reflectance is determined so that the average value of the reflectance with respect to the representative wavelength in the transmission wavelength range of each wavelength selection element is smaller than any average value on the other lens surfaces on which the antireflection film is not formed. Also good. For example, in the case of an image sensor provided with R, G, B color filters, the average value of the reflectance for a wavelength of 630 nm, the reflectance for a wavelength of 530 nm, and the reflectance for a wavelength of 420 nm is R on each lens surface of the photographing optical system. , G, and B are preferably set so that the average reflectance is smaller than the average value of the entire lens. Alternatively, it is preferable that the average value of the reflectance for the long 630 nm, the reflectance for the wavelength 530 nm, and the reflectance for the wavelength 420 nm is smaller than any of the average values of other lens surfaces on which no antireflection film is formed. .

撮像素子は、入射光を所定の透過波長域に分光する波長選択素子を画素ごとに有し、所定の波長選択素子の分光透過波長域における代表波長と、該所定の波長選択素子に対応する画素同士の画素ピッチとに応じて、反射率が調整されていることが好ましい。例えば、反射防止構造は、波長選択素子の分光透過波長域において、最短透過波長と最長透過波長との間の中央波長よりも長波長側における反射率が最も低くなるように調整されていることがより好ましい。また、代表波長を画素ピッチで除した算出値である回折角が最も大きくなる代表波長の近傍において、反射率が最も低くなるように調整されていることがより好ましい。   The imaging element has a wavelength selection element that separates incident light into a predetermined transmission wavelength range for each pixel, a representative wavelength in the spectral transmission wavelength range of the predetermined wavelength selection element, and a pixel corresponding to the predetermined wavelength selection element The reflectance is preferably adjusted according to the pixel pitch between the two. For example, the antireflection structure may be adjusted so that the reflectance on the long wavelength side is the lowest in the spectral transmission wavelength region of the wavelength selection element, compared to the central wavelength between the shortest transmission wavelength and the longest transmission wavelength. More preferred. More preferably, the reflectance is adjusted to be the lowest in the vicinity of the representative wavelength at which the diffraction angle, which is a calculated value obtained by dividing the representative wavelength by the pixel pitch, is the largest.

反射防止構造においては、400nm以上700nm以下の波長域の光束を、該反射防止構造を設けた面に対して10°以下の入射角で入射させたときの反射率が0.3%以下であることが好ましい。反射防止構造においては、600nm以上700nm以下の波長域の光束を、該反射防止構造を設けた面に対して0°の入射角で入射させたときの反射率が0.2%以下であることが好ましい。また、反射防止構造においては、500nm以上600nm以下の波長域の光束を、該反射防止構造を設けた面に対して0°の入射角で入射させたときの反射率が0.1%以下であることが好ましい。   In the antireflection structure, the reflectance is 0.3% or less when a light beam having a wavelength range of 400 nm or more and 700 nm or less is incident on the surface provided with the antireflection structure at an incident angle of 10 ° or less. It is preferable. In the antireflection structure, the reflectance is 0.2% or less when a light beam in a wavelength region of 600 nm or more and 700 nm or less is incident on the surface provided with the antireflection structure at an incident angle of 0 °. Is preferred. Further, in the antireflection structure, the reflectivity when a light beam having a wavelength range of 500 nm to 600 nm is incident on the surface provided with the antireflection structure at an incident angle of 0 ° is 0.1% or less. Preferably there is.

撮像素子は、入射光を複数種類の透過波長域に分光する波長選択素子を画素ごとに有し、所定の波長選択素子の分光透過波長域における代表波長と、撮像素子における所定の波長選択素子に対応する画素の単位面積あたりの数との乗算値に応じて、反射率が調整されていることが好ましい。   The imaging element has a wavelength selection element that separates incident light into a plurality of types of transmission wavelength ranges for each pixel, and includes a representative wavelength in a spectral transmission wavelength range of a predetermined wavelength selection element and a predetermined wavelength selection element in the imaging element. It is preferable that the reflectance is adjusted according to a multiplication value of the number of corresponding pixels per unit area.

前記反射回折光の光路において、前記光電変換素子の反射点と光学的に共役な位置と、前記光電変換素子との距離である共役距離CJが、以下の範囲内にあるときに、前記レンズ表面に前記反射防止構造が設けられていることが好ましい。

−20mm<CJ<−10mm または 15mm<CJ<30mm
In the optical path of the reflected diffracted light, when the conjugate optical distance CJ, which is a distance optically conjugate with the reflection point of the photoelectric conversion element, and the photoelectric conversion element is within the following range, the lens surface It is preferable that the antireflection structure is provided on the surface.

-20mm <CJ <-10mm or 15mm <CJ <30mm

本発明の撮像光学系は、複数の撮影レンズから成り、被写体からの入射光を、複数の光電変換素子を有する撮像素子に結像させる撮像光学系であって、開口絞りを有し、撮像光学系の中で少なくとも開口絞りと撮像素子との間に配置されている撮影レンズの1面に、反射防止構造が形成されており、反射防止構造が、複数の層を積層させた反射防止膜を有し、入射光の光電変換素子表面における反射回折光が撮影光学系内での反射によって再び撮像素子に入射するのを抑制することを特徴とする。   An imaging optical system according to the present invention is an imaging optical system that includes a plurality of photographing lenses and forms an image of incident light from a subject on an imaging element having a plurality of photoelectric conversion elements. In the system, an antireflection structure is formed on at least one surface of a photographing lens arranged between the aperture stop and the image sensor, and the antireflection structure is formed of an antireflection film in which a plurality of layers are laminated. And the reflected diffracted light of the incident light on the surface of the photoelectric conversion element is prevented from entering the image pickup element again by reflection in the photographing optical system.

本発明によれば、反射回折光により生じたゴーストが画像を劣化させることを効果的に抑制する撮像光学系および撮像光学装置を実現できる。   ADVANTAGE OF THE INVENTION According to this invention, the imaging optical system and imaging optical apparatus which suppress effectively that the ghost produced by reflected diffracted light degrades an image are realizable.

一般的なゴーストの原因となる入射光の反射を示す図である。It is a figure which shows reflection of the incident light which causes a general ghost. 反射回折光によるゴーストの原因となる入射光の反射を示す図である。It is a figure which shows reflection of the incident light which causes the ghost by reflected diffracted light. 撮像光学装置における撮像素子の一部を示す断面図である。It is sectional drawing which shows a part of imaging device in an imaging optical apparatus. 撮像素子の一部を概略的に示す平面図である。It is a top view which shows a part of imaging device roughly. 撮像素子により生じる回折光を概略的に示す平面図である。It is a top view which shows roughly the diffracted light which arises with an image pick-up element. 本実施形態の撮像光学装置を概略的に示す図である。1 is a diagram schematically illustrating an imaging optical device according to an embodiment. 反射防止膜の断面図である。It is sectional drawing of an antireflection film. 反射防止膜の分光反射特性を示す図である。It is a figure which shows the spectral reflection characteristic of an antireflection film. 第1変形例の撮像光学装置において、回折光が撮像素子に再入射する状態を示す図である。In the imaging optical device of the 1st modification, it is a figure showing the state where diffracted light re-enters an image sensor. 撮像素子に再入射した回折光の受光面における入射領域の大きさを例示する図である。It is a figure which illustrates the magnitude | size of the incident area in the light-receiving surface of the diffracted light which reentered the image pick-up element. 第2変形例の撮像光学装置において、回折光が撮像素子に再入射する状態を示す図である。In the imaging optical device of the 2nd modification, it is a figure showing the state where diffracted light re-enters an image sensor. 回折光の共役位置を示す図である。It is a figure which shows the conjugate position of diffracted light. 特殊な画素配列におけるR、G、Bの各画素を概略的に示す図である。It is a figure which shows roughly each pixel of R, G, B in a special pixel arrangement | sequence.

以下、本発明の実施形態を、図面を参照して説明する。図1は、一般的なゴーストの原因となる入射光の反射を示す図である。図2は、反射回折光によるゴーストの原因となる入射光の反射を示す図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating the reflection of incident light that causes a general ghost. FIG. 2 is a diagram illustrating reflection of incident light that causes a ghost due to reflected diffracted light.

太陽Sから撮影装置(図示せず)の光学系に入射する入射光Lにより、被写体像にゴーストが生じることが知られている。例えば、図1に示されるように、撮像光学系30の内部で反射された入射光Lが撮像素子40に入射することにより、ゴーストが生じ得る。このゴーストは、主に単体の円状または絞り羽根の開口形による多角形状である。   It is known that a ghost is generated in a subject image by incident light L incident on an optical system of a photographing apparatus (not shown) from the sun S. For example, as shown in FIG. 1, a ghost may occur when incident light L reflected inside the imaging optical system 30 enters the imaging element 40. This ghost is mainly a single circular shape or a polygonal shape due to the aperture shape of the aperture blade.

これに対し、入射光Lが撮像素子40によって反射される場合、図2に示されるように異なる角度に向かって進む複数の回折光DLが生じる。この回折光DLが、さらに撮像光学系32によって反射されて再度、撮像素子40に入射すると、発生するゴースト(以下、反射回折ゴーストという)は複数の点が整列したような水玉模様となる。   On the other hand, when the incident light L is reflected by the image sensor 40, a plurality of diffracted lights DL traveling toward different angles are generated as shown in FIG. When the diffracted light DL is further reflected by the imaging optical system 32 and is incident again on the imaging device 40, the generated ghost (hereinafter referred to as reflection diffraction ghost) has a polka dot pattern in which a plurality of points are aligned.

このような水玉模様の反射回折ゴーストは非常に不自然な形態であるため、観察者に視認されやすく、被写体像の評価を大きく低下させる傾向にある。そこで本実施形態では、以下のように、反射回折ゴーストを抑制するための反射防止構造を撮像光学装置に設け、画質に影響を及ぼすことを防止している。   Such a reflection / diffraction ghost with a polka dot pattern is a very unnatural form, so that it is easily visible to an observer and tends to greatly reduce the evaluation of the subject image. Therefore, in the present embodiment, as described below, an antireflection structure for suppressing the reflection diffraction ghost is provided in the imaging optical device to prevent the image quality from being affected.

図3は、本実施形態の撮像光学装置における撮像素子の一部を示す断面図である。図4は、本実施形態の撮像素子の一部を概略的に示す平面図である。図5は、撮像素子により生じる回折光DLを概略的に示す平面図である。   FIG. 3 is a cross-sectional view showing a part of the image sensor in the imaging optical apparatus of the present embodiment. FIG. 4 is a plan view schematically showing a part of the image sensor of the present embodiment. FIG. 5 is a plan view schematically showing the diffracted light DL generated by the image sensor.

本実施形態の撮像素子10は、フォトダイオード12(光電変換素子)、カラーフィルタ14(波長選択素子)、およびアレイレンズ16を含む。撮像素子10は、複数の画素、例えば第1画素101と第2画素102を含む。被写体からの入射光Lは、撮像光学系(図示せず)を透過し、撮像素子10の表面を覆うアレイレンズ16に入射する。そして入射光Lは、カラーフィルタ14を通過してフォトダイオード12の受光面12Sに到達する。   The image sensor 10 of the present embodiment includes a photodiode 12 (photoelectric conversion element), a color filter 14 (wavelength selection element), and an array lens 16. The image sensor 10 includes a plurality of pixels, for example, a first pixel 101 and a second pixel 102. Incident light L from the subject passes through an imaging optical system (not shown) and enters an array lens 16 that covers the surface of the imaging element 10. The incident light L passes through the color filter 14 and reaches the light receiving surface 12S of the photodiode 12.

この入射光Lの一部が受光面12Sで反射し、反射光RLが生じる場合がある。このような入射光Lの反射により、第1および第2画素101、102の画素間で回折光DLが生じる。本実施形態では、後述するように、回折光DLが撮像光学系(図示せず)の表面で反射することを防止し、回折光DLによる画質の低下を防止する。   A part of the incident light L may be reflected by the light receiving surface 12S to generate reflected light RL. Due to such reflection of the incident light L, diffracted light DL is generated between the pixels of the first and second pixels 101 and 102. In the present embodiment, as will be described later, the diffracted light DL is prevented from being reflected by the surface of the imaging optical system (not shown), and the deterioration of the image quality due to the diffracted light DL is prevented.

本実施形態の撮像素子10における画素の配置パターンは、図4に示されるようにベイヤー配列である。すなわち、多数の画素が二次元配列されており、カラーフィルタ14(図3参照)の緑フィルタの分光透過特性によって緑色波長域が受光面に分光透過される画素(以下、G画素という)が縦方向、および横方向のいずれについても1画素おきに配置されている。そして2つのG画素間で、カラーフィルタ14の赤フィルタの分光透過特性によって赤色波長域が受光面に分光透過される画素(以下、R画素という)と、カラーフィルタ14の青フィルタの分光透過特性によって青色波長域が受光面に分光透過される画素(以下、B画素という)とのいずれかが、同数ずつ均等に配置されている。   The arrangement pattern of the pixels in the image sensor 10 of the present embodiment is a Bayer array as shown in FIG. That is, a large number of pixels are two-dimensionally arranged, and pixels (hereinafter referred to as G pixels) in which the green wavelength range is spectrally transmitted to the light receiving surface due to the spectral transmission characteristics of the green filter of the color filter 14 (see FIG. 3) are vertical. It is arranged every other pixel in both the direction and the horizontal direction. Then, between the two G pixels, a spectral transmission characteristic of a pixel (hereinafter referred to as an R pixel) in which a red wavelength region is spectrally transmitted to the light receiving surface by a spectral transmission characteristic of the red filter of the color filter 14 and a blue filter of the color filter 14. Thus, any one of the pixels (hereinafter referred to as B pixels) in which the blue wavelength region is spectrally transmitted to the light receiving surface is equally arranged by the same number.

最も近くに配置されたR画素同士、あるいはB画素同士の中心点間の距離RD、BD、すなわち画素間距離(画素ピッチ)は、例えば約10μmである。この場合、G画素同士の距離GDは約7μmである。そして距離RD、BD、GDによって示される画素ピッチは、R、G、B画素のそれぞれで一定である。回折光DL(図3参照)の回折角は、回折角=各カラーフィルタの分光透過波長域内の代表波長/画素ピッチの関係式(1)でおおよそ算出される。なお、本明細書では、0次回折光と1次回折光の方向差、1次回折光と2次回折光の方向差、のように隣の次数の回折光との方向差、1次回折光と2次回折光の進行角度差、のように隣の次数の回折光との進行角度差を「回折角」と呼ぶ。   The distances RD, BD between the R pixels arranged closest to each other or the center points of the B pixels, that is, the inter-pixel distance (pixel pitch) is, for example, about 10 μm. In this case, the distance GD between the G pixels is about 7 μm. The pixel pitch indicated by the distances RD, BD, and GD is constant for each of the R, G, and B pixels. The diffraction angle of the diffracted light DL (see FIG. 3) is approximately calculated by the relational expression (1) of diffraction angle = representative wavelength / pixel pitch in the spectral transmission wavelength region of each color filter. In this specification, the direction difference between the diffracted lights of the next order such as the direction difference between the 0th order diffracted light and the 1st order diffracted light, the direction difference between the 1st order diffracted light and the 2nd order diffracted light, and the 1st order diffracted light and the 2nd order diffracted light. The difference in the traveling angle with the diffracted light of the next order, such as the difference in traveling angle, is called “diffraction angle”.

ここで、例えば、カラーフィルタ14の赤フィルタを通過する波長域の代表波長は630nmであり、緑フィルタを通過する波長域の代表波長は530nm、青フィルタを通過する波長域の代表波長は420nmである。従って、R画素により生じる回折光DLの回折角は、630nm/10μm=63radであり(図5(A)参照)、G画素により生じる回折光DLの回折角が、530nm/7μm=76radで最も大きく(図5(B)参照)、B画素により生じる回折光DLの回折角が、420nm/10μm=42radで最も小さい(図5(C)参照)。このように、R、G、Bの画素ごとに生じる回折光DLの回折角が異なる。   Here, for example, the representative wavelength of the wavelength band that passes through the red filter of the color filter 14 is 630 nm, the representative wavelength of the wavelength band that passes through the green filter is 530 nm, and the representative wavelength of the wavelength band that passes through the blue filter is 420 nm. is there. Therefore, the diffraction angle of the diffracted light DL generated by the R pixel is 630 nm / 10 μm = 63 rad (see FIG. 5A), and the diffraction angle of the diffracted light DL generated by the G pixel is the largest at 530 nm / 7 μm = 76 rad. (See FIG. 5B), the diffraction angle of the diffracted light DL generated by the B pixel is the smallest at 420 nm / 10 μm = 42 rad (see FIG. 5C). As described above, the diffraction angles of the diffracted light DL generated for the R, G, and B pixels are different.

そして一般に、回折角が大きい回折光DLにより生じる反射回折ゴーストほど、画質に悪影響を及ぼし易い。複数の水玉同士の距離が離れ、画像において水玉模様が目立ってしまうためである。そこで本実施形態では、そこで本実施形態では、カラーフィルタ14の各分光透過波長特性の種類ごとの画素ピッチRD、BD、GDの各値に応じて、後述する反射防止構造を有する面の反射率が調整されている。   In general, the reflection diffraction ghost generated by the diffracted light DL having a large diffraction angle is liable to adversely affect the image quality. This is because a plurality of polka dots are separated from each other, and a polka dot pattern is conspicuous in an image. Therefore, in the present embodiment, in this embodiment, the reflectance of the surface having the antireflection structure described later according to each value of the pixel pitches RD, BD, and GD for each type of spectral transmission wavelength characteristic of the color filter 14. Has been adjusted.

なお、カラーフィルタ14の種類ごとの代表波長としては、カラーフィルタ14の各分光透過特性による透過率のピークに対応する波長や、カラーフィルタ14の各色領域を透過する波長域の中心値などが採用され得るものの、これらは概ね上述の値である。また、本明細書中における画素とは、図3における第1、第2画素101、102に例示されているように、フォトダイオード12のみならず、アレイレンズ16と、両部材間のカラーフィルタ14の一部、また必要であれば撮像素子10を覆うカバーガラスをそれぞれ含む概念で用いられている。   In addition, as the representative wavelength for each type of the color filter 14, a wavelength corresponding to a transmittance peak due to each spectral transmission characteristic of the color filter 14, a center value of a wavelength range that transmits each color region of the color filter 14, or the like is adopted. Although these can be done, these are generally the values described above. In addition, the pixel in this specification refers not only to the photodiode 12 but also to the array lens 16 and the color filter 14 between both members, as illustrated in the first and second pixels 101 and 102 in FIG. And a cover glass that covers the image sensor 10 if necessary.

次に、本実施形態の撮像光学装置について説明する。図6は、本実施形態の撮像光学装置を概略的に示す図である。   Next, the imaging optical device of this embodiment will be described. FIG. 6 is a diagram schematically showing the imaging optical device of the present embodiment.

撮像光学装置20は、撮像光学系36と開口絞り42を含む。撮像光学系36には、被写体Obからの入射光Lが透過する複数の撮影レンズが配置されている。開口絞り42により、撮像素子10に入射する入射光Lの光量が調整される。なお、撮像素子10は、内部に光電変換素子を有している。   The imaging optical device 20 includes an imaging optical system 36 and an aperture stop 42. In the imaging optical system 36, a plurality of photographing lenses through which incident light L from the subject Ob is transmitted are arranged. The amount of incident light L incident on the image sensor 10 is adjusted by the aperture stop 42. The image sensor 10 has a photoelectric conversion element inside.

撮像光学装置20においては、上述の回折光DLが撮像光学系36中の撮影レンズの表面で反射することを抑制、防止するための反射防止構造として、反射防止膜50が設けられている。撮影レンズの表面で再反射した回折光DLが再び撮像素子10に入射すると、反射回折ゴーストが生じ得るためである。この反射防止膜50は、撮像光学系36に含まれるいずれかの撮影レンズの少なくとも1つの表面に形成されている。   In the imaging optical device 20, an antireflection film 50 is provided as an antireflection structure for suppressing and preventing the above-described diffracted light DL from being reflected from the surface of the photographing lens in the imaging optical system 36. This is because when the diffracted light DL re-reflected on the surface of the photographing lens is incident on the image pickup device 10 again, a reflection diffraction ghost can be generated. The antireflection film 50 is formed on at least one surface of one of the photographing lenses included in the imaging optical system 36.

ここでは、反射防止膜50は、開口絞り42よりも撮像素子10側、すなわち開口絞り42と撮像素子10との間に設けられている。より具体的には、撮像光学系36に含まれる撮影レンズ361の撮像素子10側の表面に反射防止膜50が形成されている。   Here, the antireflection film 50 is provided on the image sensor 10 side of the aperture stop 42, that is, between the aperture stop 42 and the image sensor 10. More specifically, the antireflection film 50 is formed on the surface of the imaging lens 361 included in the imaging optical system 36 on the imaging element 10 side.

このように、反射防止膜50を開口絞り42と撮像素子10との間に配置することにより、回折光DLの撮影レンズ表面における反射を効果的に抑制、防止できる。これは、開口絞り42よりも撮像素子10側の撮影レンズ361には、回折光DLのほぼ全てが入射するのに対して、開口絞り42より被写体側のレンズ面については、開口絞り42を小径に絞ることによって回折光DLが絞り羽根により遮蔽される(強いゴースト光が発生するのは被写体側が明るい場合が一般的であり、絞りは小径化されている可能性が高い)上に、仮に被写体側のレンズ面にまで入射して再度撮像素子方向に反射したとしても、再び絞り羽根に遮蔽されることが期待できるためである。したがって、反射防止膜50を開口絞り42と撮像素子10との間に優先的に配置して反射率を低減させることにより、効率良く不快なゴーストの影響を低減できる。   Thus, by disposing the antireflection film 50 between the aperture stop 42 and the image sensor 10, reflection of the diffracted light DL on the surface of the photographing lens can be effectively suppressed and prevented. This is because almost all of the diffracted light DL is incident on the photographing lens 361 closer to the image sensor 10 than the aperture stop 42, while the lens surface closer to the subject than the aperture stop 42 has a smaller diameter. The diffracted light DL is shielded by the diaphragm blades when the aperture is narrowed down (the strong ghost light is generally generated when the subject side is bright, and the aperture is likely to be reduced in diameter). This is because even if the light enters the lens surface on the side and is reflected again in the direction of the image sensor, it can be expected to be shielded by the diaphragm blades again. Therefore, by disposing the antireflection film 50 preferentially between the aperture stop 42 and the image sensor 10 to reduce the reflectance, the influence of an unpleasant ghost can be reduced efficiently.

次に、反射防止膜50の構造と特性について説明する。図7は、反射防止膜50の断面図であり、図8は、反射防止膜50の分光反射特性を示す図である。   Next, the structure and characteristics of the antireflection film 50 will be described. FIG. 7 is a cross-sectional view of the antireflection film 50, and FIG. 8 is a diagram showing the spectral reflection characteristics of the antireflection film 50.

反射防止膜50は、複数の層が積層された多層構造を有する。すなわち、反射防止膜50においては、撮影レンズ361側の第1層51から表面側の第7層57までが積層されている。第1層はアルミナAlで形成されており、第2層52、第4層54、および第6層56は、五酸化タンタルTa、酸化イットリウムY、酸化プラセオジムPr11などにより形成されている。また、第3層53および第5層55はフッ化マグネシウムMgFにより形成されており、第7層57は、シリカエアロゲル多孔質層である。また、第1〜第7層51〜57の厚さは、いずれも数十nm程度に調整されている。 The antireflection film 50 has a multilayer structure in which a plurality of layers are stacked. That is, in the antireflection film 50, the first layer 51 on the photographing lens 361 side to the seventh layer 57 on the surface side are laminated. The first layer is made of alumina Al 2 O 3 , and the second layer 52, the fourth layer 54, and the sixth layer 56 are made of tantalum pentoxide Ta 2 O 5 , yttrium oxide Y 2 O 3 , praseodymium oxide Pr. 6 O 11 or the like. The third layer 53 and the fifth layer 55 are made of magnesium fluoride MgF 2 , and the seventh layer 57 is a silica airgel porous layer. The thicknesses of the first to seventh layers 51 to 57 are all adjusted to about several tens of nm.

第1〜第7層51〜57の材質、厚さ、構造をこのように調整することにより、反射防止膜50に対して0°の入射角で入射した光(図6等参照)の分光反射率は、図8に示された通りとなる。すなわち、波長域が600nm以上700nm以下の赤色の回折光DLに対する反射率は0.2%以下、例えば0.19%である。また、波長域が500nm以上600nm以下の緑色の光に対する反射率は0.1%以下、例えば0.06%である。そして、波長域が400nm以上500nm以下の青色光に対する反射率の最大値(波長が400nmのとき)は約0.29%であって、赤色、緑色光の反射率よりも高い。反射防止膜50の反射率は、R,G,Bに応じた波長帯域の光が撮像素子側へ再反射するのを防ぐように定められている。具体的には、撮影光学系の平均的なR,G,Bに応じた波長域の光に対する反射率よりも低い反射率となるように定められている。例えば、撮影光学系36のレンズ面が第1〜第n面によって構成される場合、R,G,Bの代表波長630、530、420nmそれぞれに対する反射率を平均した各面の値A1〜ANを求め、さらにそれらを平均化した値VA(=(ΣA1+A2+・・・+AN)/N)を最終的な平均値とし、それよりも低い反射率となるように定められている。あるいは、反射防止膜50の反射率を、反射防止膜50の形成されていない他のすべてのレンズ面における反射率よりも小さな値に設定することも可能である。例えば、m番(1<m<n)のレンズ面に反射防止膜50が形成されている場合、そのレンズ面におけるR,G,Bの平均反射率AMは、他のレンズ面の平均反射率A1、A2、・・・、AM−1、AM+1、・・・ANのいずれの値よりも小さく定められる。   By adjusting the material, thickness, and structure of the first to seventh layers 51 to 57 in this way, spectral reflection of light (see FIG. 6 and the like) incident on the antireflection film 50 at an incident angle of 0 °. The rate is as shown in FIG. That is, the reflectance with respect to the red diffracted light DL having a wavelength range of 600 nm to 700 nm is 0.2% or less, for example, 0.19%. Moreover, the reflectance with respect to the green light whose wavelength range is 500 nm or more and 600 nm or less is 0.1% or less, for example, 0.06%. The maximum reflectance (when the wavelength is 400 nm) of blue light having a wavelength range of 400 nm to 500 nm is about 0.29%, which is higher than the reflectance of red and green light. The reflectance of the antireflection film 50 is determined so as to prevent light in a wavelength band corresponding to R, G, and B from being re-reflected toward the image sensor. Specifically, the reflectance is set to be lower than the reflectance with respect to light in the wavelength region corresponding to the average R, G, and B of the photographing optical system. For example, when the lens surface of the photographic optical system 36 is constituted by the first to nth surfaces, the values A1 to AN of the surfaces obtained by averaging the reflectances for the R, G, and B representative wavelengths 630, 530, and 420 nm, respectively. Further, a value VA (= (ΣA1 + A2 +... + AN) / N) obtained by averaging them is used as a final average value, and the reflectance is set to be lower than that. Alternatively, the reflectance of the antireflection film 50 can be set to a value smaller than the reflectance of all other lens surfaces where the antireflection film 50 is not formed. For example, when the antireflection film 50 is formed on the lens surface of No. m (1 <m <n), the average reflectance AM of R, G, B on the lens surface is the average reflectance of other lens surfaces. .., AM-1, AM + 1,... AN is set smaller than any of the values.

ここで上述のように、G画素で生じた回折光DLの回折角が最も大きく、次いでR画素で生じた回折光DLの回折角が大きく、B画素で生じた回折光DLの回折角は、最も小さい(段落[0026]、図5参照)。以上のことから明らかであるように、本実施形態では、反射防止膜50の反射率が最も低くなる波長は、回折角の最も大きい波長の近傍となるように調整されている。   Here, as described above, the diffraction angle of the diffracted light DL generated in the G pixel is the largest, then the diffraction angle of the diffracted light DL generated in the R pixel is large, and the diffraction angle of the diffracted light DL generated in the B pixel is Smallest (see paragraph [0026], FIG. 5). As is clear from the above, in this embodiment, the wavelength at which the reflectance of the antireflection film 50 is lowest is adjusted to be in the vicinity of the wavelength having the largest diffraction angle.

これは、回折角が大きい回折光DLにより生じる反射回折ゴーストほど優先的に抑制、防止すべきだからである(段落[0027]参照)。そしてこのことは、本実施形態の反射防止膜50を設けて回折角の大きい回折光DLほど確実に撮影素子10への再入射を防ぐことにより、実現される。なお、上述の関係式(1)で示されるように、回折光DLの回折角=各カラーフィルタの分光透過波長域内の代表波長/画素ピッチである(段落[0025]参照)ことから、反射防止膜50の反射率は、カラーフィルタが透過させる各波長域に応じた反射光の波長を画素ピッチで除した値が大きい回折光DLほど低くなるように調整されているともいえる。   This is because the reflection diffraction ghost generated by the diffracted light DL having a large diffraction angle should be preferentially suppressed and prevented (see paragraph [0027]). This can be realized by providing the antireflection film 50 of the present embodiment and reliably preventing the diffracted light DL having a larger diffraction angle from re-entering the imaging element 10. Since the diffraction angle of the diffracted light DL = representative wavelength / pixel pitch in the spectral transmission wavelength region of each color filter (see paragraph [0025]) as shown in the relational expression (1) above, antireflection It can be said that the reflectance of the film 50 is adjusted so that the diffracted light DL having a larger value obtained by dividing the wavelength of the reflected light according to each wavelength region transmitted by the color filter by the pixel pitch is lower.

なお図8においては、反射防止膜50に対する入射角が0°の場合の反射率が示されているが、回折光DLの反射防止膜50に対する入射角が10°以下であり、かつ波長域が400nm以上700nm以下であるとき、反射防止膜50の反射率は、常に0.3%以下になるように調整されている。このため、回折角の大きい緑色の光の反射を特に優先的に防止しつつ、他の色の回折光DLの反射も確実に防止できる。なおここでの入射角は巨視的な入射角であって、微細な段差等を考慮した入射角とは異なる。   In FIG. 8, the reflectivity when the incident angle with respect to the antireflection film 50 is 0 ° is shown. However, the incident angle of the diffracted light DL with respect to the antireflection film 50 is 10 ° or less, and the wavelength region is When the thickness is 400 nm or more and 700 nm or less, the reflectance of the antireflection film 50 is adjusted to be always 0.3% or less. For this reason, reflection of green light having a large diffraction angle is particularly preferentially prevented, and reflection of diffracted light DL of other colors can also be reliably prevented. Note that the incident angle here is a macroscopic incident angle and is different from an incident angle in consideration of a fine step or the like.

次に、反射防止膜50を設ける位置と、反射回折ゴーストの大きさとの関係について説明する。図9は、第1変形例の撮像光学装置において、回折光DLが撮像素子10に再入射する状態を示す図である。図10は、撮像素子10に再入射した回折光DLの撮像素子表面における入射領域の大きさを例示する図である。図11は、第2変形例の撮像光学装置において、回折光DLが撮像素子10に再入射する状態を示す図である。   Next, the relationship between the position where the antireflection film 50 is provided and the size of the reflection diffraction ghost will be described. FIG. 9 is a diagram illustrating a state in which the diffracted light DL is incident on the image sensor 10 again in the imaging optical device according to the first modification. FIG. 10 is a diagram illustrating the size of the incident area on the surface of the image sensor of the diffracted light DL that is incident on the image sensor 10 again. FIG. 11 is a diagram illustrating a state in which the diffracted light DL re-enters the imaging element 10 in the imaging optical device according to the second modification.

第1変形例の撮像光学装置201に入射した入射光Lは、撮像光学系36を透過し、撮像素子10の表面(厳密にはフォトダイオード12の受光面12S)において集光される。集光された入射光Lの一部が受光面12Sにおいて反射され、回折光DLが生じる。第1変形例の撮像光学装置201では、反射防止膜50が設けられておらず、回折光DLは、例えば図示された撮影レンズ362の表面362Sで反射され、撮像素子10に再入射する。   Incident light L incident on the imaging optical apparatus 201 of the first modification is transmitted through the imaging optical system 36 and is collected on the surface of the imaging element 10 (strictly, the light receiving surface 12S of the photodiode 12). A part of the collected incident light L is reflected on the light receiving surface 12S, and diffracted light DL is generated. In the imaging optical device 201 of the first modified example, the antireflection film 50 is not provided, and the diffracted light DL is reflected by, for example, the surface 362S of the photographing lens 362 shown in the figure and reenters the imaging element 10.

撮像素子10に再入射した回折光DLは、図示されたように、撮像素子10上で集光されている。このため、再入射した回折光DLの撮像素子10における入射領域は、図10(A)に例示されたように、スポット状であり小さい。このように入射領域が小さい場合(撮像素子10に再結像している場合)、画像上に生じる反射回折ゴーストの水玉模様の出現範囲が狭く、また、水玉の点一つ一つの大きさも小さくなり、比較的目立ち難い。   The diffracted light DL incident on the image sensor 10 is condensed on the image sensor 10 as illustrated. For this reason, the incident region of the re-incident diffracted light DL in the image sensor 10 is spot-like and small as illustrated in FIG. Thus, when the incident area is small (when the image is re-imaged on the imaging device 10), the appearance range of the reflection diffraction ghost polka dots generated on the image is narrow, and the size of each dot of the polka dots is small. It is relatively inconspicuous.

これに対し、図11に示される第2変形例の撮像光学装置202においては、回折光DLが撮影レンズ363の表面363Sで反射されて受光面12Sに再入射すると、撮像素子10の表面上の入射領域は、図10(B)に例示されるようにより大きくなる。この場合、画像上に生じる反射回折ゴーストの水玉模様は、図10(A)の場合よりも各粒が大きくなり、さらに全体の範囲が広がるので、目立ち易い可能性がある。   On the other hand, in the imaging optical device 202 of the second modified example shown in FIG. 11, when the diffracted light DL is reflected by the surface 363S of the photographing lens 363 and re-enters the light receiving surface 12S, it is on the surface of the imaging device 10. The incident area becomes larger as illustrated in FIG. In this case, the polka dot pattern of the reflection diffraction ghost generated on the image is larger than that in the case of FIG. 10A, and further, the entire range is widened.

一方、撮像素子10に再入射した回折光DLの入射領域が、図10(C)に例示されたようにさらに大きく広がる場合、反射回折ゴーストによる画像への悪影響は却って抑制され得る。水玉の一つ一つが大きくなることで強度が低下して目立たなくなるためであり、また、水玉の多くが撮像素子の有効領域から外れたり、通常のゴーストのように全体として単円ないし多角形状になるためである。   On the other hand, when the incident region of the diffracted light DL that has re-entered the imaging device 10 further expands as illustrated in FIG. 10C, adverse effects on the image due to the reflected diffraction ghost can be suppressed. This is because the strength of each polka dot decreases, making it less noticeable, and many of the polka dots fall out of the effective area of the image sensor or become a single circle or polygon as a whole like a normal ghost. It is to become.

以上のことから明らかであるように、撮影レンズ上のある表面で再反射され、撮像素子10に再入射した回折光DLにより形成される撮像素子10上の入射領域の大きさ(像の寸法)、例えば直径が、所定の下限値と上限値との間にある場合、その表面に反射防止膜50を設けることが特に望ましいといえる。特に抑制すべき反射回折ゴーストを効果的に防止するためであり、入射領域が下限値よりも小さい場合(図10(A)参照)、あるいは上限値よりも大きい場合(図10(C)参照)、画像に与える悪影響がさほど大きくはないためである。上述の第1変形例(図9参照)においては、表面362Sにはさほど優先的に反射防止膜50を設ける必要はないのに対し、第2変形例(図11参照)においては、表面363Sに反射防止膜50を設けることが重要となり得る。なお上述の下限値と上限値の例としては、例えば15.8mm×23.7mmの撮像素子10において、下限値は2.5mm、上限値は21mmである。   As is clear from the above, the size (image size) of the incident region on the image sensor 10 formed by the diffracted light DL re-reflected on a certain surface on the imaging lens and re-entered on the image sensor 10. For example, when the diameter is between a predetermined lower limit value and an upper limit value, it can be said that it is particularly desirable to provide the antireflection film 50 on the surface thereof. This is in order to effectively prevent the reflection diffraction ghost that should be suppressed, particularly when the incident region is smaller than the lower limit (see FIG. 10A) or larger than the upper limit (see FIG. 10C). This is because the adverse effect on the image is not so great. In the first modified example (see FIG. 9), it is not necessary to preferentially provide the antireflection film 50 on the surface 362S, whereas in the second modified example (see FIG. 11), the surface 363S is not provided. Providing the antireflection film 50 can be important. In addition, as an example of the above-mentioned lower limit value and upper limit value, for example, in the image sensor 10 of 15.8 mm × 23.7 mm, the lower limit value is 2.5 mm and the upper limit value is 21 mm.

次に、反射防止膜50を設ける位置と、回折光DLの共役位置との関係について説明する。図12は、回折光DLの共役位置を示す図である。   Next, the relationship between the position where the antireflection film 50 is provided and the conjugate position of the diffracted light DL will be described. FIG. 12 is a diagram illustrating a conjugate position of the diffracted light DL.

反射防止膜50を設ける位置は、以下のように、回折光DLの共役位置から撮像素子10までの距離に基づいて定めることもできる。この場合、上述の入射領域の大きさに基づいて定める場合に比べ、より正確な演算が可能である。ここでは、図示されたように、入射光Lの撮像素子10における入射位置Aで生じた回折光DLが、撮影レンズ364の表面364Sで反射した場合を例に説明する。   The position where the antireflection film 50 is provided can also be determined based on the distance from the conjugate position of the diffracted light DL to the image sensor 10 as follows. In this case, more accurate calculation is possible compared with the case where it determines based on the magnitude | size of the above-mentioned incident area. Here, as shown in the figure, a case where the diffracted light DL generated at the incident position A of the incident light L in the image sensor 10 is reflected by the surface 364S of the photographing lens 364 will be described as an example.

撮影レンズ364に入射した回折光DLは、例えば、表面364S上の点Cにおいて反射される。このように、撮影レンズ364の屈折率n等で定められる所定の反射角で反射された回折光DLは、再び撮像素子10上の入射位置Aの近傍に向かって進む。この回折光DLが集光する位置であって、入射位置Aを通り撮像素子10に垂直な光軸Xと回折光DLとが交差する位置を共役位置Bとする。   The diffracted light DL incident on the photographing lens 364 is reflected, for example, at a point C on the surface 364S. Thus, the diffracted light DL reflected at a predetermined reflection angle determined by the refractive index n of the photographing lens 364 travels again toward the vicinity of the incident position A on the image sensor 10. A position where the diffracted light DL is condensed and a position where the diffracted light DL intersects the optical axis X passing through the incident position A and perpendicular to the imaging element 10 is defined as a conjugate position B.

そして入射位置Aと共役位置Bとの距離、すなわち、撮像素子10から共役位置Bまでの距離を共役距離CJとする。ここで説明の便宜上、共役位置Bが撮像素子10よりも撮影レンズ364側にあるときに、実線で示される共役距離CJは負の値をとり、共役位置B’がその反対側にあるとき、破線で示される共役距離CJは正の値をとるものとする。   A distance between the incident position A and the conjugate position B, that is, a distance from the image sensor 10 to the conjugate position B is defined as a conjugate distance CJ. Here, for convenience of explanation, when the conjugate position B is closer to the photographing lens 364 than the image sensor 10, the conjugate distance CJ indicated by the solid line takes a negative value, and when the conjugate position B ′ is on the opposite side, Assume that the conjugate distance CJ indicated by the broken line takes a positive value.

図示されたように、共役距離CJが比較的大きい負の値である場合、表面364Sに反射防止膜(ここでは図示せず)を設けることはさほど重要ではない。受光面12Sに再入射した回折光DLの入射領域が、例えば図10(C)に示されたように十分に大きくなるためである。また、共役位置Bが入射位置Aに近くて共役距離CJの値が0に近い場合も同様に、表面364Sに反射防止膜を優先的に設けることは不要である。上述の入射領域が、図10(A)に例示されたように十分に小さくなるためである。   As shown in the figure, when the conjugate distance CJ is a relatively large negative value, it is not so important to provide an antireflection film (not shown here) on the surface 364S. This is because the incident area of the diffracted light DL re-entered on the light receiving surface 12S becomes sufficiently large as shown in FIG. 10C, for example. Similarly, when the conjugate position B is close to the incident position A and the conjugate distance CJ is close to 0, it is not necessary to preferentially provide the antireflection film on the surface 364S. This is because the above-described incident region is sufficiently small as illustrated in FIG.

これに対し、共役距離CJ(mm)がRで示される範囲内、例えば−20mm<CJ<−10mmの範囲内にある場合、反射防止膜を表面364S上に優先的に設けられるべきである。回折光DLの入射領域が図10(B)に例示された大きさになり、画質に大きな影響を与える反射回折ゴーストが生じ得るからである。 In contrast, within the conjugate distance CJ (mm) is represented by R 1, for example -20 mm <when within range of CJ <-10 mm, should be provided preferentially an anti-reflection film on the surface 364S . This is because the incident area of the diffracted light DL has the size illustrated in FIG. 10B, and a reflection diffraction ghost that greatly affects image quality can occur.

共役距離CJの値が正である場合も同様であり、共役距離CJの値が、例えば15mm<CJ<30mmといったRの範囲内にある場合、他のレンズ表面よりも優先的に、表面364S上に反射防止膜を設けるべきである。以上のことから、反射防止膜が設けられていない状態で、共役距離CJが所定の下限値と上限値との間にあるとき、その撮影レンズ表面には反射防止膜が設けられる。 The same applies to the case where the value of the conjugate distance CJ is positive. When the value of the conjugate distance CJ is within the range of R 2 such as 15 mm <CJ <30 mm, the surface 364S is preferentially given over other lens surfaces. An anti-reflective coating should be provided on top. As described above, when the conjugate distance CJ is between the predetermined lower limit value and the upper limit value in the state where the antireflection film is not provided, the antireflection film is provided on the surface of the photographing lens.

以上のように本実施形態によれば、回折角の大きい回折光DLほど、撮影レンズの表面における反射を優先的に抑制、防止する反射防止膜50を設けることにより、反射回折ゴーストによる画像の劣化を効果的に抑制することができる。特に、限られた数の反射防止膜50、例えば撮影レンズ上のわずか一表面に反射防止膜50を設ける場合においても、効率的な配置によって大きな効果が得られる。   As described above, according to this embodiment, the diffracted light DL having a larger diffraction angle provides the antireflection film 50 that preferentially suppresses and prevents reflection on the surface of the photographing lens, thereby degrading the image due to the reflection diffraction ghost. Can be effectively suppressed. In particular, even when the antireflection film 50 is provided on a limited number of antireflection films 50, for example, only one surface on the photographing lens, a large effect can be obtained by the efficient arrangement.

撮像光学装置20に含まれる各部材の構造等は、いずれの実施形態にも限定されない。例えば、モノクロ撮像素子に上述の実施形態を適用しても良い。この場合、RGBの全画素が同じ位置に配置されており、画素ピッチは各色の画素で共通であるとみなすことができる。従って、回折光DLの回折角は波長にほぼ比例することから、波長の長い光ほど回折角が大きくなる。このため、カラーフィルタ14の受光波長域の長波長側、例えば、全ての色フィルタにおける分光透過波長域の最短透過波長と最長透過波長との間の中央波長よりも長波長側に、反射率が最低となる波長を設定し、このような波長特性に対応させた反射防止膜50を用いることが好ましい。   The structure of each member included in the imaging optical device 20 is not limited to any embodiment. For example, the above-described embodiment may be applied to a monochrome image sensor. In this case, all the RGB pixels are arranged at the same position, and the pixel pitch can be regarded as common to the pixels of each color. Therefore, since the diffraction angle of the diffracted light DL is substantially proportional to the wavelength, the longer the wavelength, the larger the diffraction angle. For this reason, the reflectance is on the long wavelength side of the light receiving wavelength region of the color filter 14, for example, on the long wavelength side of the center wavelength between the shortest transmission wavelength and the longest transmission wavelength in the spectral transmission wavelength region in all color filters. It is preferable to set the minimum wavelength and use the antireflection film 50 corresponding to such wavelength characteristics.

また、ベイヤー配列以外の配列の撮像素子を含む撮像光学装置において、反射防止膜50を設けても良い。この場合、例えば図13に示された特殊な配列では、R画素、B画素の扱いが問題となり得る。R画素同士、およびB画素同士の画素ピッチが一定でないからである。   Further, an antireflection film 50 may be provided in an imaging optical device including an imaging device having an array other than the Bayer array. In this case, for example, in the special arrangement shown in FIG. 13, handling of R pixels and B pixels may be a problem. This is because the pixel pitch between the R pixels and the B pixels is not constant.

このような場合には、撮像素子における単位面積あたりのR画素、B画素、およびG画素のそれぞれの個数である画素密度(あるいは全画素に含まれる各色の画素数の割合)の平方根を算出し、この値と、各色フィルタの代表波長とに基づいて、反射防止膜50の反射率が調整される。画素密度の平方根は、各色の画素同士の距離の平均値、すなわち画素ピッチの平均値に比例するからである。この場合、上述の関係式(1)、すなわち回折角=各カラーフィルタの分光透過波長域内の代表波長/画素ピッチの関係式の代わりに、回折角∝各カラーフィルタの分光透過波長域内の代表波長/(画素密度)1/2の関係式(2)に基づいて、回折角の大きい回折光DLほど優先的に低下させるように反射率が調整される。 In such a case, the square root of the pixel density (or the ratio of the number of pixels of each color included in all pixels), which is the number of R pixels, B pixels, and G pixels per unit area in the image sensor, is calculated. Based on this value and the representative wavelength of each color filter, the reflectance of the antireflection film 50 is adjusted. This is because the square root of the pixel density is proportional to the average value of the distance between the pixels of each color, that is, the average value of the pixel pitch. In this case, instead of the relational expression (1) described above, that is, the diffraction angle = representative wavelength / pixel pitch relational expression within the spectral transmission wavelength range of each color filter, the diffraction wavelength is the representative wavelength within the spectral transmission wavelength range of each color filter. Based on the relational expression (2) of / (pixel density) 1/2 , the reflectance is adjusted so that the diffracted light DL having a larger diffraction angle is preferentially lowered.

また、上述の手法によって、撮像光学系36中の撮影レンズ表面のうちいずれか1つ、あるいは少数に反射防止膜50を効率的に設けることが好ましいものの、全ての撮影レンズ表面に設けても良い。また、撮像光学系36に含まれるレンズ表面間で、上述の共役距離CJの値に大きな差がない場合、撮像素子10側のレンズのうち、最も開口絞り42に近いレンズ表面に反射防止膜50を設けることが好ましい。例えば太陽のようにゴーストの原因となり得る光源に対して、画像の中心を挟んで常に対称な位置にゴーストがでると、構図的に目立つ可能性が高いからである。   In addition, although it is preferable to efficiently provide the antireflection film 50 on any one or a small number of photographing lens surfaces in the imaging optical system 36 by the above-described method, it may be provided on all photographing lens surfaces. . Further, when there is no significant difference in the value of the conjugate distance CJ between the lens surfaces included in the imaging optical system 36, the antireflection film 50 is formed on the lens surface closest to the aperture stop 42 among the lenses on the imaging element 10 side. Is preferably provided. For example, if a ghost always appears symmetrically with respect to a light source that can cause a ghost, such as the sun, it is likely to stand out compositionally.

10 撮像素子
12 フォトダイオード(光電変換素子)
12S 受光面
14 カラーフィルタ(波長選択素子)
20 撮像光学装置
36 撮像光学系
361 撮影レンズ
42 開口絞り
50 反射防止膜
101、102 画素
L 入射光
DL 回折光
10 Image sensor 12 Photodiode (photoelectric conversion element)
12S light receiving surface 14 color filter (wavelength selection element)
DESCRIPTION OF SYMBOLS 20 Imaging optical apparatus 36 Imaging optical system 361 Shooting lens 42 Aperture stop 50 Antireflection film 101, 102 Pixel L Incident light DL Diffracted light

Claims (2)

開口絞りを有する撮像光学系と、複数の光電変換素子を有し、前記撮像光学系を透過した被写体からの入射光が入射する撮像素子とを備えた撮像光学装置において、
前記撮像光学系の中で少なくとも前記開口絞りと前記撮像素子との間に配置されている撮影レンズの1面に、反射防止構造が形成されており、
前記反射防止構造が、複数の層を積層させた反射防止膜を有し、前記入射光の光電変換素子表面における反射回折光が前記撮光学系内での反射によって再び前記撮像素子に入射するのを抑制し、
前記撮像素子は前記入射光を複数種類の透過波長域に分光する波長選択素子を画素ごとに有し、
所定の波長選択素子の分光透過波長域における代表波長と、前記撮像素子における前記所定の波長選択素子に対応する画素の単位面積あたりの数との乗算値に応じて、前記反射防止膜が形成される撮影レンズ表面における反射率が調整されていることを特徴とする撮像光学装置。
In an imaging optical apparatus comprising: an imaging optical system having an aperture stop; and an imaging element that has a plurality of photoelectric conversion elements and that receives incident light from a subject that has passed through the imaging optical system.
An antireflection structure is formed on at least one surface of the photographing lens disposed between the aperture stop and the imaging element in the imaging optical system,
The anti-reflective structure has a reflection preventing film formed by laminating a plurality of layers, the reflected diffracted light in the photoelectric conversion element surface of the incident light is incident on the imaging device again by reflections within the IMAGING optical system Suppresses the
The imaging element has a wavelength selection element for each pixel to split the incident light into a plurality of types of transmission wavelength ranges,
The antireflection film is formed according to a multiplication value of a representative wavelength in a spectral transmission wavelength region of the predetermined wavelength selection element and a number per unit area of pixels corresponding to the predetermined wavelength selection element in the imaging element. An imaging optical device characterized in that the reflectance on the surface of the taking lens is adjusted.
複数の撮影レンズから成り、被写体からの入射光を、複数の光電変換素子を有する撮像素子に結像させる撮像光学系であって、
開口絞りを有し、
前記撮像光学系の中で少なくとも前記開口絞りと前記撮像素子との間に配置されている撮影レンズの1面に、反射防止構造が形成されており、
前記反射防止構造が、複数の層を積層させた反射防止膜を有し、前記入射光の光電変換素子表面における反射回折光が前記撮光学系内での反射によって再び前記撮像素子に入射するのを抑制し、
前記撮像素子は前記入射光を複数種類の透過波長域に分光する波長選択素子を画素ごとに有し、
所定の波長選択素子の分光透過波長域における代表波長と、前記撮像素子における前記所定の波長選択素子に対応する画素の単位面積あたりの数との乗算値に応じて、前記反射防止膜が形成される撮影レンズ表面における反射率が調整されていることを特とする撮光学系。
An imaging optical system that includes a plurality of photographing lenses and forms an image of incident light from a subject on an imaging element having a plurality of photoelectric conversion elements,
Having an aperture stop,
An antireflection structure is formed on at least one surface of the photographing lens disposed between the aperture stop and the imaging element in the imaging optical system,
The anti-reflective structure has a reflection preventing film formed by laminating a plurality of layers, the reflected diffracted light in the photoelectric conversion element surface of the incident light is incident on the imaging device again by reflections within the IMAGING optical system Suppresses the
The imaging element has a wavelength selection element for each pixel to split the incident light into a plurality of types of transmission wavelength ranges,
The antireflection film is formed according to a multiplication value of a representative wavelength in a spectral transmission wavelength region of the predetermined wavelength selection element and a number per unit area of pixels corresponding to the predetermined wavelength selection element in the imaging element. iMAGING optical system to feature that reflectance is adjusted in the photographic lens surface that.
JP2010147850A 2009-07-01 2010-06-29 Imaging optical device having antireflection structure and imaging optical system having antireflection structure Active JP5771910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010147850A JP5771910B2 (en) 2009-07-01 2010-06-29 Imaging optical device having antireflection structure and imaging optical system having antireflection structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009157007 2009-07-01
JP2009157007 2009-07-01
JP2010147850A JP5771910B2 (en) 2009-07-01 2010-06-29 Imaging optical device having antireflection structure and imaging optical system having antireflection structure

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2015045174A Division JP6011662B2 (en) 2009-07-01 2015-03-06 Imaging optical device having antireflection structure and imaging optical system having antireflection structure

Publications (2)

Publication Number Publication Date
JP2011028256A JP2011028256A (en) 2011-02-10
JP5771910B2 true JP5771910B2 (en) 2015-09-02

Family

ID=43636996

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010147850A Active JP5771910B2 (en) 2009-07-01 2010-06-29 Imaging optical device having antireflection structure and imaging optical system having antireflection structure
JP2015045174A Active JP6011662B2 (en) 2009-07-01 2015-03-06 Imaging optical device having antireflection structure and imaging optical system having antireflection structure
JP2016186123A Pending JP2017040933A (en) 2009-07-01 2016-09-23 Imaging optical device including antireflection structure and imaging optical system including antireflection structure

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2015045174A Active JP6011662B2 (en) 2009-07-01 2015-03-06 Imaging optical device having antireflection structure and imaging optical system having antireflection structure
JP2016186123A Pending JP2017040933A (en) 2009-07-01 2016-09-23 Imaging optical device including antireflection structure and imaging optical system including antireflection structure

Country Status (1)

Country Link
JP (3) JP5771910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014157168A (en) * 2011-06-10 2014-08-28 Panasonic Corp Lens system and camera

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3923543B2 (en) * 1994-05-17 2007-06-06 オリンパス株式会社 Imaging optical system and imaging apparatus
JP4079551B2 (en) * 1999-07-08 2008-04-23 オリンパス株式会社 Imaging apparatus and imaging optical system
JP5157401B2 (en) * 2007-12-03 2013-03-06 株式会社ニコン Imaging lens, imaging apparatus and focusing method therefor

Also Published As

Publication number Publication date
JP2015165661A (en) 2015-09-17
JP2017040933A (en) 2017-02-23
JP2011028256A (en) 2011-02-10
JP6011662B2 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP6448842B2 (en) Solid-state imaging device and imaging apparatus
JP5617063B1 (en) Near-infrared cut filter
US9726797B2 (en) Near-infrared cut filter
CN103718070B (en) Optics
TWI460520B (en) Solid-state imaging device and camera module
JP4652634B2 (en) Imaging device
US10073202B2 (en) Near-infrared cut filter
US20150346403A1 (en) Ir cut filter and image capturing device including same
US8310765B2 (en) Color separating optical system
JP4801442B2 (en) ND filter for diaphragm
JP2007206172A (en) Imaging system optical element
JP2006147991A (en) Solid state image sensor, and optical appliance having the same
JP2010032867A (en) Infrared ray cutoff filter
JP4164355B2 (en) Light amount adjusting device and optical apparatus using the same
JP6011662B2 (en) Imaging optical device having antireflection structure and imaging optical system having antireflection structure
JP6136661B2 (en) Near-infrared cut filter
JP2010175941A (en) Optical filter and method of manufacturing the same, and image capturing apparatus having the same
JP4848876B2 (en) Solid-state imaging device cover and solid-state imaging device
KR20130047634A (en) Antireflective film and optical element
JP2004258494A (en) Nd filter
JP2006195373A (en) Visibility correcting near infrared cut filter, and optical low pass filter and visibility correcting element using the same
JP4853157B2 (en) Antireflection film, optical element, imaging device, and camera
JP5013788B2 (en) Imaging apparatus and manufacturing method thereof
JP2012156194A (en) Solid state imaging device and imaging apparatus
JP2004253892A (en) Light quantity adjuster

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150313

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20150327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5771910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250