JP5769003B2 - Magnesium alloy material - Google Patents

Magnesium alloy material Download PDF

Info

Publication number
JP5769003B2
JP5769003B2 JP2011061129A JP2011061129A JP5769003B2 JP 5769003 B2 JP5769003 B2 JP 5769003B2 JP 2011061129 A JP2011061129 A JP 2011061129A JP 2011061129 A JP2011061129 A JP 2011061129A JP 5769003 B2 JP5769003 B2 JP 5769003B2
Authority
JP
Japan
Prior art keywords
alloy
magnesium alloy
joining
piece
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011061129A
Other languages
Japanese (ja)
Other versions
JP2012143811A (en
Inventor
宏治 森
宏治 森
鉄也 桑原
鉄也 桑原
正禎 沼野
正禎 沼野
西川 太一郎
太一郎 西川
大石 幸広
幸広 大石
中井 由弘
由弘 中井
泰輔 坪田
泰輔 坪田
河部 望
望 河部
水野 修
修 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011061129A priority Critical patent/JP5769003B2/en
Publication of JP2012143811A publication Critical patent/JP2012143811A/en
Application granted granted Critical
Publication of JP5769003B2 publication Critical patent/JP5769003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、自動車や航空機などの輸送機器のボディーやその他の部材、電気・電子機器類の筐体などといった各種の部材やその素材に好適なマグネシウム合金材に関するものである。特に、塑性加工材の素材に適した広幅材や長尺材であって、生産性に優れるマグネシウム合金材に関するものである。   The present invention relates to a magnesium alloy material suitable for various members such as bodies and other members of transportation equipment such as automobiles and airplanes, casings of electrical / electronic devices, and the like. In particular, the present invention relates to a magnesium alloy material that is a wide material or a long material suitable for a material of a plastic work material and has excellent productivity.

マグネシウムに種々の添加元素を含有したマグネシウム合金が、携帯電話やノート型パーソナルコンピュータといった携帯用電気・電子機器類の筐体、ホイールカバーやパドルシフトといった自動車部品などの各種の部材の構成材料に利用されてきている。   Magnesium alloys containing various additive elements in magnesium are used as constituent materials for various components such as casings for portable electrical and electronic devices such as mobile phones and notebook personal computers, and automobile parts such as wheel covers and paddle shifters. Has been.

マグネシウム合金材は、ダイカスト法やチクソモールド法による鋳造材(ASTM規格のAZ91合金)が主流である。近年、ASTM規格のAZ31合金に代表される展伸用マグネシウム合金からなる板にプレス加工を施した部材が使用されつつある。特許文献1は、ASTM規格におけるAZ91合金相当の合金からなり、双ロール連続鋳造により作製した鋳造材に特定の圧延加工を施すことで、プレス加工性に優れるマグネシウム合金板を提案している。   Magnesium alloy materials are mainly cast materials (ASTM standard AZ91 alloy) produced by die casting or thixomolding. In recent years, a member obtained by pressing a plate made of a magnesium alloy for extension represented by ASTM standard AZ31 alloy is being used. Patent Document 1 proposes a magnesium alloy plate that is made of an alloy equivalent to the AZ91 alloy in the ASTM standard and is excellent in press workability by subjecting a cast material produced by twin roll continuous casting to a specific rolling process.

特開2007-098470号公報JP 2007-098470 A

マグネシウム合金板に関し、より幅が広い広幅材や、より長さが長い長尺材が望まれている。   Regarding the magnesium alloy plate, a wider material having a wider width and a longer material having a longer length are desired.

広幅材や長尺材をプレス加工や鍛造加工、曲げ加工、深絞り加工などの種々の塑性加工の素材に利用すると、一度に大型な成形体を形成したり、素材の連続供給が可能であったりするため、種々の大きさの成形体を量産でき、成形体の工業生産性の向上に寄与することができる。また、自動車などの車両や航空機などの飛行機、電車などの輸送機器に代表される比較的大型な機器類の部材(特に、ボディーなど)を製造する場合、広幅材や長尺材を利用することが望まれる。   When wide and long materials are used as materials for various plastic processing such as pressing, forging, bending, deep drawing, etc., it is possible to form a large molded body at once and to supply the material continuously. Therefore, molded articles of various sizes can be mass-produced, which can contribute to the improvement of industrial productivity of the molded articles. In addition, when manufacturing relatively large equipment members (particularly bodies) represented by transportation equipment such as vehicles such as automobiles, airplanes such as airplanes, and trains, wide materials and long materials should be used. Is desired.

しかし、広幅材や長尺材の全幅、全長に亘って均質な組成や組織を有するものを製造することは難しく、従来、好ましい製造方法が知られていない。   However, it is difficult to produce a material having a uniform composition or structure over the entire width and length of a wide or long material, and a preferred production method has not been known.

特に、ダイカスト法やチクソモールド法では、製造可能な寸法に限界が有り、300mm以上、更に500mm以上といった広幅材や、0.5m以上、更に1m以上といった長尺材の製造が難しい。また、ダイカスト法やチクソモールド法による鋳造材は、厚さ2mm以下といった薄板であっても、結晶組織が比較的粗大で十分な強度を有しておらず、強度などの機械的特性の更なる向上が望まれる。   In particular, in the die casting method and the thixo mold method, there are limits to the dimensions that can be manufactured, and it is difficult to manufacture wide materials such as 300 mm or more, further 500 mm or more, or long materials such as 0.5 m or more, or 1 m or more. In addition, the cast material produced by the die casting method or thixo mold method is a thin plate with a thickness of 2 mm or less, the crystal structure is relatively coarse and does not have sufficient strength, and mechanical properties such as strength are further improved. Improvement is desired.

一方、特許文献1に記載されるように、双ロール連続鋳造法といった連続鋳造法を利用すると、長尺な薄板を作製でき、急冷凝固が可能であるため、上記ダイカスト材などよりも微細な結晶組織を有すものにすることができる。従って、この連続鋳造材は、上記ダイカスト材よりも機械的特性に優れる。しかし、広幅材を製造しようとすると、巨大な設備が必要である上に、幅方向の品質制御が困難になる。長尺材を製造しようとすると、鋳造開始時から鋳造終了時までの時間が長くなることから、長時間に亘る溶湯の温度管理などが可能な設備が必要である。即ち、新たな設備の開発が必要である。   On the other hand, as described in Patent Document 1, when a continuous casting method such as a twin-roll continuous casting method is used, a long thin plate can be produced and rapidly solidified, so that a finer crystal than the above-mentioned die cast material or the like. You can have an organization. Therefore, this continuous cast material is superior in mechanical properties to the die cast material. However, if a wide material is to be manufactured, a huge facility is required and quality control in the width direction becomes difficult. If a long material is to be manufactured, the time from the start of casting to the end of casting becomes long, and thus equipment capable of controlling the temperature of the molten metal for a long time is required. In other words, new equipment needs to be developed.

他方、特許文献1に記載されるように、上記双ロール連続鋳造法による鋳造材に圧延を施すことで、組織の微細化などにより強度の向上などを図ることができる。しかし、上述のように素材となる鋳造材の大きさに限界があり、設備の変更などを伴うことなく、更なる広幅化や長尺化が難しい。   On the other hand, as described in Patent Document 1, by rolling the cast material by the twin roll continuous casting method, the strength can be improved by refining the structure. However, as described above, there is a limit to the size of the cast material that is the material, and it is difficult to further increase the width and length without changing facilities.

そこで、本発明の目的の一つは、広幅材や長尺材であり、生産性に優れるマグネシウム合金材を提供することにある。本発明の他の目的は、接合領域を有しながら、塑性加工が施されたマグネシウム合金材を提供することにある。   Accordingly, one of the objects of the present invention is to provide a magnesium alloy material that is a wide material or a long material and is excellent in productivity. Another object of the present invention is to provide a magnesium alloy material that has been subjected to plastic working while having a joint region.

本発明者らは、広幅材や長尺材を一度に作製するのではなく、複数の素材を用意し、これらの素材を接合することにより、広幅材や長尺材を作製することを検討した。一般に、接合材は、素材同士を接合する接合領域やこの近傍が素材自体よりも強度や硬度が低くなる傾向にあり、接合領域やその近傍が破断や破壊の起点、即ち、機械的弱点になる。従って、接合材は、塑性加工が難しいとされる。これに対し、素材を特定の機械的特性を有するものとし、これらの素材を摩擦撹拌接合により接合することで、接合領域やその近傍が素材自体の機械的特性と同等以上の特性を有する、という驚くべき知見を得た。本発明は、上記知見に基づくものである。   The present inventors considered preparing wide materials and long materials by preparing a plurality of materials and joining these materials instead of producing wide materials and long materials at once. . In general, the bonding material tends to have lower strength and hardness in the bonding region where the materials are bonded together and in the vicinity thereof, and the bonding region and its vicinity become the starting point of breakage or fracture, that is, the mechanical weak point. . Therefore, it is considered that the joining material is difficult to be plastically processed. On the other hand, the materials shall have specific mechanical characteristics, and by joining these materials by friction stir welding, the bonding area and its vicinity have characteristics equal to or better than the mechanical characteristics of the materials themselves. A surprising finding was obtained. The present invention is based on the above findings.

本発明マグネシウム合金材は、マグネシウム合金からなる複数の合金片と上記合金片間に形成される接合領域とを具える接合材である。上記接合領域は、上記マグネシウム合金から構成される。上記各合金片の室温での引張強さが165MPa以上、上記各合金片の室温でのビッカース硬度Hvが55以上である。そして、上記接合領域のビッカース硬度Hvが上記合金片のビッカース硬度Hvと同等以上である。   The magnesium alloy material of the present invention is a bonding material including a plurality of alloy pieces made of a magnesium alloy and a bonding region formed between the alloy pieces. The joining region is made of the magnesium alloy. Each alloy piece has a tensile strength at room temperature of 165 MPa or more, and each alloy piece has a Vickers hardness Hv at room temperature of 55 or more. The Vickers hardness Hv of the joining region is equal to or greater than the Vickers hardness Hv of the alloy piece.

従来の一般的な金属片同士の接合材、代表的には、溶接材では、接合領域に形成される溶接こぶが機械的弱点になる。例えば、マグネシウム合金の薄板材を突合せ溶接した溶接板に絞り加工を施した場合、接合領域に亀裂が生じて絞り加工品が成形できない。これに対して、上記本発明マグネシウム合金材は、複数の合金片が接合された接合材でありながら、接合領域の機械的特性が、接合された合金片自体の機械的特性と遜色が無く、当該接合領域が機械的弱点となり難い。即ち、上記本発明マグネシウム合金材は、接合領域を有していながらも、機械的特性上は、接合領域を有しておらず一様な組成で構成される合金材と同様のものとして取り扱える。従って、本発明マグネシウム合金材は、所望の広幅材や長尺材、或いはこれら広幅材や長尺材を成形した成形体とすることができる。   In a conventional general joining material between metal pieces, typically a welding material, a welding hump formed in a joining region becomes a mechanical weak point. For example, when a drawing process is performed on a welded plate obtained by butt welding a thin plate material of a magnesium alloy, a crack is generated in the joining region and a drawn product cannot be formed. On the other hand, the magnesium alloy material of the present invention is a bonding material in which a plurality of alloy pieces are bonded, but the mechanical characteristics of the bonding region are comparable to the mechanical characteristics of the bonded alloy pieces themselves, The joining region is unlikely to become a mechanical weak point. That is, the magnesium alloy material of the present invention can be handled as the same alloy material having a uniform composition but not having a joining region in terms of mechanical properties, although having a joining region. Therefore, the magnesium alloy material of the present invention can be formed into a desired wide material or long material, or a molded body obtained by molding these wide material or long material.

かつ、上記特定の機械的特性を有する合金片を複数用意し、これら合金片を接合することで本発明マグネシウム合金材(代表的な形態では接合板)を容易に製造可能である上に、各合金片は広幅材や長尺材である必要が無く、それぞれを容易に製造可能である。即ち、本発明マグネシウム合金材の製造にあたり、一様な組成からなる広幅材や長尺材を製造するための設備が不要であり、本発明マグネシウム合金材は、生産性にも非常に優れる。   In addition, by preparing a plurality of alloy pieces having the above-mentioned specific mechanical properties, and joining these alloy pieces, the magnesium alloy material of the present invention (joint plate in a typical form) can be easily manufactured, The alloy pieces do not need to be wide materials or long materials, and each can be easily manufactured. That is, in the production of the magnesium alloy material of the present invention, there is no need for equipment for producing a wide material or a long material having a uniform composition, and the magnesium alloy material of the present invention is very excellent in productivity.

また、上記本発明マグネシウム合金材(代表的な形態では接合板)は、機械的特性に優れることで、高強度、高硬度や軽量などが求められる種々の分野の部材の素材に好適に利用できる。また、当該素材により成形された成形体(本発明の一形態)も機械的特性に優れる上に、軽量である。その他、上記成形体は、大型物や長尺体とすることができる。   Further, the magnesium alloy material of the present invention (joint plate in a typical form) can be suitably used as a material for members in various fields where high strength, high hardness, light weight, etc. are required due to excellent mechanical properties. . In addition, a molded body (an embodiment of the present invention) molded from the material is excellent in mechanical characteristics and lightweight. In addition, the said molded object can be made into a large sized object and a elongate body.

本発明の一形態として、上記マグネシウム合金材の室温での引張強さが280MPa以上である形態が挙げられる。   As one form of this invention, the form whose tensile strength at room temperature of the said magnesium alloy material is 280 MPa or more is mentioned.

上記形態は、接合部を含めたマグネシウム合金材全体が高強度であり、上述の成形体の素材に好適に利用することができる。また、得られた成形体も高強度である。   The said form has the high intensity | strength of the whole magnesium alloy material including a junction part, and can be utilized suitably for the raw material of the above-mentioned molded object. Moreover, the obtained molded object is also high intensity | strength.

本発明の一形態として、上記各合金片が板材であり、その厚さが3mm以下である形態、或いはその厚さが1.5mm以下である形態が挙げられる。   As one form of the present invention, there is a form in which each of the alloy pieces is a plate and the thickness is 3 mm or less, or the thickness is 1.5 mm or less.

上記形態は、厚さ3mm以下といった比較的薄い広幅板や長尺板とすることができる。このような薄い広幅板や長尺板は、プレス加工などの塑性加工が施されてなる塑性加工材の素材に好適に利用できる上に、当該塑性加工材の製造にあたり、一度に大量に、或いは連続的に素材の供給が可能であるため、当該塑性加工材の生産性の向上に寄与することができる。特に、厚さ1.5mm以下といった薄板を利用することで、素材の軽量化を図ることができる上に、上記塑性加工材の軽量化や薄型に寄与することができる。即ち、得られた塑性加工材も厚さが3mm以下、更に1.5mm以下と薄肉材である。   The said form can be used as a comparatively thin wide board and elongate board of thickness 3mm or less. Such a thin wide plate or a long plate can be suitably used as a material of a plastic work material subjected to plastic working such as press work, and in addition, in production of the plastic work material, a large amount at a time, or Since the raw material can be supplied continuously, it can contribute to the improvement of the productivity of the plastic working material. In particular, by using a thin plate having a thickness of 1.5 mm or less, the weight of the material can be reduced, and the plastic working material can be reduced in weight and thickness. That is, the obtained plastic working material is also a thin material having a thickness of 3 mm or less, and further 1.5 mm or less.

本発明の一形態として、上記接合領域が摩擦撹拌接合により形成された形態が挙げられる。   As one form of this invention, the form in which the said joining area | region was formed by friction stir welding is mentioned.

上記形態は、接合領域が固相結合により形成されることで、溶接などの積極的な加熱を伴って形成された場合と比較して、接合領域に熱変質相の形成が少なく、或いは実質的に無い。そのため、接合領域は、各合金片を構成するマグネシウム合金と実質的に同質のマグネシウム合金から構成され、上述のように各合金片と遜色ない機械的特性を有する。なお、接合領域において、接合時に接合用プローブが接触した側は、溶接こぶのような凸部がないものの、撹拌されて荒れた表面状態になっており、上記プローブが接触していない側は、合金片の継ぎ目が存在するだけの滑らかな表面状態(合金片自体の表面状態が維持された状態)になっている。   In the above embodiment, the bonding region is formed by solid-phase bonding, and compared with the case where the bonding region is formed with aggressive heating such as welding, the formation of a thermally altered phase is less or substantially less in the bonding region. There is not. Therefore, the joining region is composed of a magnesium alloy that is substantially the same quality as the magnesium alloy that constitutes each alloy piece, and has mechanical characteristics comparable to each alloy piece as described above. In the joining region, the side on which the joining probe contacts at the time of joining does not have a convex part such as a welding hump, but the surface is agitated and rough, and the side on which the probe is not in contact is A smooth surface state in which there is a seam of the alloy piece (a state in which the surface state of the alloy piece itself is maintained) is obtained.

本発明の一形態として、上記接合領域と上記合金片とが滑らかな表面で構成された形態が挙げられる。   As one form of this invention, the form by which the said joining area | region and the said alloy piece were comprised by the smooth surface is mentioned.

上述のように摩擦撹拌接合を行った場合、接合領域において接合用プローブが接触していない側は、合金片自体の表面状態が維持されることで、特別な処理を施すことなく、接合領域と合金片とが滑らかな表面で構成される。一方、接合用プローブが接触した側であっても、研磨などの表面処理を施して表面粗さを小さくする(例えば、表面粗さRaで0.5μm以下とする)ことで、合金片の表面粗さと同程度に滑らかにすることができ、接合領域と合金片とが滑らかな表面で構成される。上記形態は、このような滑らかな表面(好ましくは、表面粗さRaで0.5μm以下)を有しており、この滑らかな面を外面とした場合、一様な外観を有することから、美観に優れる。なお、接合領域において接合用プローブが接触していない側にも上記研磨などを施しても勿論よい。   When the friction stir welding is performed as described above, the side where the bonding probe is not in contact in the bonding region is maintained with the surface state of the alloy piece itself, and without any special treatment, The alloy piece is composed of a smooth surface. On the other hand, even on the side where the bonding probe is in contact, surface treatment such as polishing is performed to reduce the surface roughness (for example, the surface roughness Ra is 0.5 μm or less). And the joining region and the alloy piece are formed of a smooth surface. The above-mentioned form has such a smooth surface (preferably with a surface roughness Ra of 0.5 μm or less), and when this smooth surface is the outer surface, it has a uniform appearance, so it is aesthetically pleasing. Excellent. Needless to say, the above polishing or the like may be applied to the side of the bonding region where the bonding probe is not in contact.

本発明の一形態として、複数のマグネシウム合金板材が少なくとも一つの接合領域により接合された接合板に塑性加工が施されてなる塑性加工材である形態が挙げられる。特に、上記接合領域の少なくとも一部に塑性加工が施された形態が挙げられる。   As one form of this invention, the form which is a plastic working material formed by performing plastic working on the joining board in which the several magnesium alloy board | plate material was joined by the at least 1 joining area | region is mentioned. In particular, a form in which plastic working is performed on at least a part of the joining region may be mentioned.

上記接合板に具える接合領域は、上述のように十分な機械的特性を有するため、板材部分だけでなく、接合領域自体にもプレス加工などの種々の塑性加工を施すことが可能であり、上記接合板を利用して上記塑性加工材の形態とすることができる。上記形態は、塑性加工が施されていることで、塑性硬化により強度に更に優れる。   Since the joining region provided in the joining plate has sufficient mechanical properties as described above, it is possible to perform various plastic processing such as press work not only on the plate material part but also on the joining region itself, The joining plate can be used to form the plastic working material. The said form is further excellent in intensity | strength by plastic hardening because plastic processing is given.

本発明マグネシウム合金材を構成するマグネシウム合金は、種々の元素を添加元素とするもの(残部Mg及び不純物)が挙げられる。特に、本発明の一形態として、上記マグネシウム合金が、Al,Zn,Mn,Y,Zr,Cu,Ag,Be,Sn,Li及びSiから選択される少なくとも1種の元素(以下、第一元素と呼ぶ)を1元素あたり0.01質量%以上20質量%以下含有し、残部がMg及び不純物からなる形態が挙げられる。   Examples of the magnesium alloy constituting the magnesium alloy material of the present invention include those containing various elements as additive elements (remainder Mg and impurities). In particular, according to one aspect of the present invention, the magnesium alloy includes at least one element selected from Al, Zn, Mn, Y, Zr, Cu, Ag, Be, Sn, Li and Si (hereinafter referred to as a first element). In an amount of 0.01 mass% to 20 mass% per element, with the balance being Mg and impurities.

また、本発明の一形態として、上記マグネシウム合金が、上記第一元素と共に、Caを0.001質量%以上16質量%以下含有する形態が挙げられる。   Moreover, as one form of this invention, the said magnesium alloy contains 0.001 to 16 mass% of Ca with the said 1st element is mentioned.

或いは、本発明の一形態として、上記マグネシウム合金が、上記列挙した第一元素と共に、Ca,Au,Pt,Sr,Ti,B,Bi,Ge,In,Te,Nd,Nb,La及び希土類元素から選択される少なくとも1種の元素(以下、第二元素と呼ぶ)を1元素あたり0.001質量%以上5質量%未満含有する形態が挙げられる。但し、上記希土類元素は、上記列挙する元素(第一元素:Y,第二元素:Nd,La)と重複する元素を除く。   Alternatively, as one embodiment of the present invention, the magnesium alloy may contain Ca, Au, Pt, Sr, Ti, B, Bi, Ge, In, Te, Nd, Nb, La, and rare earth elements together with the first element listed above. And at least one element selected from the group consisting of 0.001% by mass to less than 5% by mass per element. However, the rare earth element excludes elements overlapping with the elements listed above (first element: Y, second element: Nd, La).

上記各形態によれば、添加元素の種類にもよるが、強度や硬度、耐衝撃性といった機械的特性、耐食性、難燃性、耐熱性、制振性といった種々の特性に優れる。合金片において製造工程により区別した場合の形態(鋳造材、圧延材など)に応じて、引張強さ:165MPa以上、ビッカース硬度Hv:55以上を満たすように、上記元素の種類、含有量を選択することができる。特に、添加元素の濃度が高い合金、具体的には合計含有量が7.3質量%以上であるマグネシウム合金は、上記各種の特性に更に優れる。   According to each of the above embodiments, although it depends on the kind of additive element, it is excellent in various properties such as mechanical properties such as strength, hardness, and impact resistance, corrosion resistance, flame retardancy, heat resistance, and vibration damping properties. Depending on the form (cast material, rolled material, etc.) when alloy pieces are distinguished by the manufacturing process, the type and content of the above elements are selected so as to satisfy tensile strength: 165 MPa or more and Vickers hardness Hv: 55 or more. can do. In particular, an alloy having a high concentration of additive elements, specifically, a magnesium alloy having a total content of 7.3% by mass or more is further excellent in the above-described various characteristics.

第一元素の1元素あたりの含有量は、1質量%以上12質量%以下がより好ましく、第一元素の合計含有量は、3質量%以上15質量%以下が好ましい。第二元素の1元素あたりの含有量は、1質量%以上3質量%以下がより好ましく、第二元素の合計含有量は、2質量%以上5質量%以下が好ましい。   The content of the first element per element is more preferably 1% by mass to 12% by mass, and the total content of the first element is preferably 3% by mass to 15% by mass. The content of the second element per element is more preferably 1% by mass or more and 3% by mass or less, and the total content of the second element is preferably 2% by mass or more and 5% by mass or less.

上記第一元素のうち、Alを含有するMg-Al系合金は、耐食性に優れる上に、強度、耐塑性変形性といった機械的特性にも優れる。Alの含有量が多いほど上記効果が高い傾向にあり、4.5質量%以上、更に7質量%、特に、7.3質量%以上が好ましい。但し、Alの含有量が12質量%を超えると塑性加工性の低下を招くことから、塑性加工性を考慮すると、上限は12質量%、更に11質量%が好ましい。   Among the first elements, Mg-Al alloys containing Al are excellent in corrosion resistance and mechanical properties such as strength and plastic deformation resistance. The above effect tends to be higher as the Al content is higher, and it is preferably 4.5% by mass or more, more preferably 7% by mass, and particularly preferably 7.3% by mass or more. However, if the Al content exceeds 12% by mass, the plastic workability is lowered. Therefore, considering the plastic workability, the upper limit is preferably 12% by mass, and more preferably 11% by mass.

Mg-Al系合金のより具体的な組成は、例えば、ASTM規格におけるAZ系合金(Mg-Al-Zn系合金、Zn:0.2質量%〜1.5質量%)、AM系合金(Mg-Al-Mn系合金、Mn:0.15質量%〜0.5質量%)、Mg-Al-RE(希土類元素)系合金、AX系合金(Mg-Al-Ca系合金、Ca:0.2質量%〜6.0質量%)、AJ系合金(Mg-Al-Sr系合金、Sr:0.2質量%〜7.0質量%)などが挙げられる。Alを7.3質量%以上12質量%以下含有する形態、特にAlを8.3質量%〜9.5質量%含有する形態は、強度に優れる上に耐食性にも優れる。Alを8.3質量%〜9.5質量%含有する合金として、更にZnを0.5質量%〜1.5質量%含有するMg-Al-Zn系合金、代表的にはAZ91合金が挙げられる。   More specific compositions of Mg-Al alloys include, for example, AZ alloys (Mg-Al-Zn alloys, Zn: 0.2% to 1.5% by mass), AM alloys (Mg-Al-Mn) according to ASTM standards. Alloy, Mn: 0.15 mass% to 0.5 mass%), Mg-Al-RE (rare earth element) alloy, AX alloy (Mg-Al-Ca alloy, Ca: 0.2 mass% to 6.0 mass%), AJ Alloy (Mg—Al—Sr alloy, Sr: 0.2 mass% to 7.0 mass%) and the like. The form containing Al in the range of 7.3% by mass to 12% by mass, particularly the form containing Al in the range of 8.3% by mass to 9.5% by mass is excellent in strength and corrosion resistance. Examples of the alloy containing 8.3 mass% to 9.5 mass% of Al further include an Mg—Al—Zn alloy containing 0.5 mass% to 1.5 mass% of Zn, typically AZ91 alloy.

CaやY、希土類元素(Yを除く)を含有するマグネシウム合金は、耐熱性、難燃性に優れる。特に、Caは微量でも上記効果が得られる。Caのより好ましい含有量は、0.1質量%以上3質量%以下である。   Magnesium alloys containing Ca, Y, and rare earth elements (excluding Y) are excellent in heat resistance and flame retardancy. In particular, the above effect can be obtained even with a small amount of Ca. A more preferable content of Ca is not less than 0.1% by mass and not more than 3% by mass.

本発明マグネシウム合金材は、高強度、高硬度であり、広幅材や長尺材とする場合にも生産性に優れる。   The magnesium alloy material of the present invention has high strength and high hardness, and is excellent in productivity even when a wide or long material is used.

以下、本発明の実施の形態を説明する。
[マグネシウム合金材]
本発明マグネシウム合金材は、複数の合金片と、これらを接合する接合領域とを具える。
Embodiments of the present invention will be described below.
[Magnesium alloy material]
The magnesium alloy material of the present invention includes a plurality of alloy pieces and a joining region for joining them.

(全体の形態)
本発明マグネシウム合金材の代表的な形態は、矩形状の板材から構成される合金片同士が接合領域により接合された矩形状の板材(接合板)が挙げられる。この場合、広幅な板材や長尺な板材として好適に利用できる。接合領域は、一箇所だけでなく、複数箇所具える形態とすることができる。例えば、上記矩形状の板材の二辺の周縁や四辺の周縁に接合領域を具える形態とすることができる。
(Overall form)
A typical form of the magnesium alloy material of the present invention is a rectangular plate material (joined plate) in which alloy pieces made of rectangular plate materials are joined together by a joining region. In this case, it can be suitably used as a wide plate or a long plate. A joining area | region can be set as the form which provides not only one place but multiple places. For example, it can be set as the form which provides a joining area | region in the periphery of two sides or the periphery of four sides of the said rectangular-shaped board | plate material.

その他、合金片が適宜な形状、例えば、半円状や多角形状などの少なくとも接合可能な周縁を有する形状であり、これらの周縁を接合した接合領域を有する異形状の板材(例えば、一対の半円状材を接合してなる円形状板材、一対の三角形状材を接合してなる矩形状板材、一対の多角形状材を接合してなる多角形状板材など)が挙げられる。後述するように本発明マグネシウム合金材に具える接合領域は、優れた機械的特性を有することから、上述した矩形状の板材の他、上記接合領域を有する異形状の板材であっても、圧延やプレス加工、曲げなどの塑性加工を施す素材に利用できる。即ち、所望の塑性加工材の形状に応じて、所望の形状の合金片が接合領域により接合された本発明マグネシウム合金材(接合板)を利用できる。   In addition, the alloy piece has an appropriate shape, for example, a shape having at least a joinable periphery such as a semicircular shape or a polygonal shape, and an irregularly shaped plate material (for example, a pair of semi-finished materials having a joining region obtained by joining these periphery portions). A circular plate material formed by bonding circular materials, a rectangular plate material formed by bonding a pair of triangular materials, a polygonal plate material formed by bonding a pair of polygonal materials, and the like. As will be described later, since the bonding region provided in the magnesium alloy material of the present invention has excellent mechanical properties, in addition to the above-described rectangular plate material, even a deformed plate material having the bonding region is rolled. It can be used for materials subjected to plastic working such as press working and bending. That is, the magnesium alloy material of the present invention (joint plate) in which an alloy piece having a desired shape is joined by the joining region can be used according to the shape of the desired plastic working material.

本発明マグネシウム合金材を素材として塑性加工が施された塑性加工材も接合領域を有することから、本発明の一形態として、接合領域を含む少なくとも一部に塑性加工が施された塑性加工材が挙げられる。本発明マグネシウム合金材として、その全体に塑性加工が施された形態として、圧延材やプレス加工などによる成形体、ロールフォーミングによるパイプ材などが挙げられる。パイプ材は、少なくとも板材の両縁の合わせ目に接合領域を具える形態が挙げられる。上記塑性加工材は、合金片のみに塑性加工が施された形態や合金片及び接合領域の一部のみに塑性加工が施された形態でもよい。   Since the plastic working material subjected to plastic working using the magnesium alloy material of the present invention also has a joining region, as one aspect of the present invention, a plastic working material subjected to plastic working at least in part including the joining region is provided. Can be mentioned. Examples of the magnesium alloy material of the present invention include a rolled material, a formed body by press working, a pipe material by roll forming, etc. The pipe material includes a form having a joining region at least at the joint of both edges of the plate material. The plastic working material may have a form in which plastic working is performed only on the alloy piece or a form in which plastic working is performed only on a part of the alloy piece and the joining region.

その他、少なくとも一部に、ボスなどが接合されていたり、表裏に貫通する孔などを有する形態が挙げられる。   In addition, the form which has the hole etc. which the boss | hub etc. are joined to at least one part, or penetrates the front and back is mentioned.

上述のように本発明マグネシウム合金材を広幅材や長尺材として、圧延やプレス加工などの塑性加工の素材に利用する場合、そのままでも利用することができるが、合金片及び接合領域の表面の少なくとも一部に研磨(特にベルトやブラシなどを利用した機械的研磨。湿式研磨が好ましい。)、化成処理や陽極酸化処理といった防食処理、各種の塗装が施された形態とすることができる。塑性加工前に研磨や防食処理などを施すと、処理対象が平坦な形状であるため、処理が行い易い。本発明マグネシウム合金材を上記塑性加工材とする場合もそのまま利用してもよいし、上述のように合金片及び接合領域の表面の少なくとも一部に上記研磨、防食処理、各種の塗装が施された形態としてもよい。後者の形態は、外観、耐食性、商品価値などの向上を図ることができる。特に、接合領域が摩擦撹拌接合により形成されている場合、上述のようにプローブの接触側は、その周囲よりも若干凹んだ荒れた状態であるため、研磨や塗装などを行うことで、合金片の領域と接合領域とを均一的な厚さにしたり、溶接こぶのような段差がなく、合金片と接合領域とが滑らかで平坦な表面で構成された形態とすることができる。即ち、本発明マグネシウム合金材の少なくとも一面全体が滑らかな表面を有する形態とすることができる。特に、塗装することで接合領域を分かり難くすることができ、一様な外観を有する塑性加工材とすることができる。   As described above, when the magnesium alloy material of the present invention is used as a material for plastic working such as rolling or pressing as a wide or long material, it can be used as it is, but the surface of the alloy piece and the surface of the joining region can be used. At least a part of the surface may be polished (in particular, mechanical polishing using a belt or brush, wet polishing is preferable), anticorrosion treatment such as chemical conversion treatment or anodizing treatment, and various types of coating. If polishing or anticorrosion treatment is performed before plastic working, the treatment object is flat and easy to perform. When the magnesium alloy material of the present invention is used as the plastic working material, it may be used as it is, or as described above, at least a part of the surface of the alloy piece and the joining region is subjected to the polishing, anticorrosion treatment, and various coatings. It is good also as a form. The latter form can improve the appearance, corrosion resistance, commercial value, and the like. In particular, when the joining region is formed by friction stir welding, the contact side of the probe is in a rough state slightly dented from its surroundings as described above. The region and the joining region can be made to have a uniform thickness, or there can be no step like a welding hump, and the alloy piece and the joining region can be formed of a smooth and flat surface. That is, at least one whole surface of the magnesium alloy material of the present invention can have a smooth surface. In particular, it is possible to make the joint region difficult to understand by painting, and a plastic working material having a uniform appearance can be obtained.

(組成)
上記合金片を構成するマグネシウム合金は、上述のように種々の添加元素を含む形態が挙げられる。不純物は、例えば、FeやNiなどが挙げられる。各合金片の組成は、同一であることが好ましい。組成が異なると、機械的特性に差が生じて、接合された合金片のうち、特性に劣るものが機械的弱点となるからである。但し、機械的特性の差が小さい場合(引張強さの差が8MPa以内、ビッカース硬度のHv差が2以内)、異なる組成からなる合金片を含む形態を許容する。例えば、各合金片を構成するマグネシウム合金中のAlの含有量が8.3質量%〜9.5質量%の範囲で異なる形態などが挙げられる。各合金片の引張強さ及びビッカース硬度が異なる場合、接合領域のビッカース硬度は、合金片のビッカース硬度の最大値以上とする。
(composition)
As for the magnesium alloy which comprises the said alloy piece, the form containing various additive elements as mentioned above is mentioned. Examples of the impurities include Fe and Ni. The composition of each alloy piece is preferably the same. This is because if the composition is different, a difference occurs in mechanical characteristics, and the bonded alloy pieces having inferior characteristics become mechanical weak points. However, when the difference in mechanical properties is small (difference in tensile strength is within 8 MPa, difference in Hv of Vickers hardness is within 2), a form including alloy pieces having different compositions is allowed. For example, the form etc. from which content of Al in the magnesium alloy which comprises each alloy piece differs in the range of 8.3 mass%-9.5 mass% are mentioned. When the tensile strength and Vickers hardness of each alloy piece are different, the Vickers hardness of the joining region is set to be equal to or greater than the maximum value of the Vickers hardness of the alloy piece.

接合領域は、上記合金片を構成するマグネシウム合金から構成される。即ち、接合領域の構成成分と合金片の構成成分とは実質的に同一である。上述のように組成が異なる合金片同士が接合されている場合、接合領域は、接合されている合金片同士が混合された組成により構成される。   A joining area | region is comprised from the magnesium alloy which comprises the said alloy piece. That is, the constituent component of the joining region and the constituent component of the alloy piece are substantially the same. When alloy pieces having different compositions are joined as described above, the joining region is configured by a composition in which the joined alloy pieces are mixed.

(合金片の形態)
本発明者らが調べたところ、特定の製造条件で作製した素材、具体的には双ロール連続鋳造法といった連続鋳造法により製造した連続鋳造材や、この連続鋳造材に更に複数パスの圧延を施した圧延材は、高強度・高硬度である上に、摩擦撹拌接合により接合した場合、接合領域の機械的特性が接合された合金片と同等以上である、との知見を得た。従って、本発明マグネシウム合金材を構成する合金片の形態は、製造工程により区別した場合、連続鋳造法により製造された連続鋳造材、上記連続鋳造材に圧延を施した圧延材、上記連続鋳造材や圧延材に熱処理、矯正加工、研磨の少なくとも一つを施した加工・処理材、上記圧延材や加工・処理材の少なくとも一部にプレス加工、深絞り加工、鍛造、曲げ加工などの塑性加工が施された塑性加工材などが挙げられる。つまり、接合前の合金片として、塑性加工が施されたもの、或いは一部に塑性加工部を具えるものを利用することができる。
(Alloy piece form)
When the present inventors investigated, the raw material produced by specific manufacturing conditions, specifically, the continuous cast material manufactured by continuous casting methods, such as a twin roll continuous casting method, and rolling of a plurality of passes further to this continuous cast material. The obtained rolled material has high strength and high hardness, and when it is joined by friction stir welding, it has been found that the mechanical properties of the joining region are equal to or higher than the joined alloy pieces. Therefore, when the form of the alloy piece constituting the magnesium alloy material of the present invention is distinguished by the manufacturing process, the continuous cast material manufactured by the continuous casting method, the rolled material obtained by rolling the continuous cast material, the continuous cast material Processing materials that have been subjected to at least one of heat treatment, straightening, and polishing on rolled materials, and plastic processing such as pressing, deep drawing, forging, bending, etc. on at least a portion of the rolled materials and processing / processing materials. Examples of the plastic work material to which is given. That is, as an alloy piece before joining, an alloy piece that has been subjected to plastic working or a part that has a plastic working portion can be used.

上記合金片の形態は、形状により区別した場合、代表的には、矩形状の板材、特に厚さが3mm以下であるものが挙げられる。上述のように連続鋳造材やこの連続鋳造材に圧延を施した場合、3mm以下といった比較的薄い板材を容易に製造できる。特に、圧延材は、厚さが2mm以下、更に1.5mm以下、とりわけ1mm以下といった更に薄板とすることができ、薄型、軽量の部材(代表的には筐体やボディー、カバンなど)の素材に好適に利用できる。また、接合前の合金片が板材であると摩擦撹拌接合が行い易く、マグネシウム合金材の生産性に優れる。なお、摩擦撹拌接合による接合領域の厚さは、研磨などを行わない場合、上述のように合金片の厚さと同等以下となる傾向にある。   When the form of the alloy piece is distinguished by shape, a typical example is a rectangular plate, particularly one having a thickness of 3 mm or less. As described above, when the continuous cast material or the continuous cast material is rolled, a relatively thin plate material of 3 mm or less can be easily manufactured. In particular, the rolled material can be made into a thin plate having a thickness of 2 mm or less, more preferably 1.5 mm or less, especially 1 mm or less, and it can be used as a material for thin and lightweight members (typically housings, bodies, bags, etc.). It can be suitably used. Further, when the alloy piece before joining is a plate material, friction stir welding is easy to perform, and the productivity of the magnesium alloy material is excellent. In addition, the thickness of the joining region by friction stir welding tends to be equal to or less than the thickness of the alloy piece as described above when polishing or the like is not performed.

(機械的特性)
上記合金片は、引張強さ:165MPa以上、ビッカース硬度Hv:55以上とする(いずれも室温)。引張強さ及びビッカース硬度が高いほど、高強度なマグネシウム合金材とすることができる。引張強さは、280MPa以上、更に300MPa以上が好ましく、ビッカース硬度Hvは、57以上、更に60以上が好ましい。引張強さや硬度が上記範囲を満たすように、上述のように添加元素の種類や添加量、製造条件(連続鋳造条件、圧延条件など)などを調整して、合金片を製造するとよい。
(Mechanical properties)
The alloy pieces have a tensile strength of 165 MPa or more and a Vickers hardness Hv of 55 or more (all at room temperature). The higher the tensile strength and Vickers hardness, the higher the strength of the magnesium alloy material. The tensile strength is preferably 280 MPa or more, more preferably 300 MPa or more, and the Vickers hardness Hv is preferably 57 or more, more preferably 60 or more. The alloy piece may be manufactured by adjusting the type and amount of additive elements, manufacturing conditions (continuous casting conditions, rolling conditions, etc.), etc., as described above, so that the tensile strength and hardness satisfy the above ranges.

そして、上記接合領域のビッカース硬度は合金片と同等以上とする。接合領域のビッカース硬度が上記範囲を満たすように、上記特定の機械的特性を満たす合金片を用いる。また、接合方法には、摩擦撹拌接合が好適に利用できる。接合領域は、塑性加工などを行う際に機械的弱点にならなければよく、接合領域のビッカース硬度と合金片のビッカース硬度との差は5以内でも十分であると考えられる。   And the Vickers hardness of the said joining area | region shall be equal to or more than an alloy piece. An alloy piece that satisfies the specific mechanical properties is used so that the Vickers hardness of the joining region satisfies the above range. As a joining method, friction stir welding can be suitably used. The joining region only needs to be a mechanical weak point when plastic working or the like is performed, and it is considered that a difference between the Vickers hardness of the joining region and the Vickers hardness of the alloy piece is 5 or less.

[製造方法]
本発明マグネシウム合金材は、代表的には、以下の準備工程、及び接合工程を具える製造方法により製造することができる。
準備工程:マグネシウム合金からなる複数の合金片を準備する工程。
接合工程:上記合金片を摩擦撹拌接合により接合する工程。
特に準備工程で用意する合金片は、双ロール連続鋳造法により製造された連続鋳造材、或いは、上記連続鋳造材に複数パスの温間圧延を施した圧延材であることが好ましい。
[Production method]
The magnesium alloy material of the present invention can be typically manufactured by a manufacturing method including the following preparation process and bonding process.
Preparation step: a step of preparing a plurality of alloy pieces made of a magnesium alloy.
Joining step: A step of joining the alloy pieces by friction stir welding.
In particular, the alloy piece prepared in the preparation step is preferably a continuous cast material produced by a twin roll continuous casting method or a rolled material obtained by subjecting the continuous cast material to a plurality of passes of warm rolling.

以下、製造方法をより詳細に説明する。
(鋳造)
双ロール連続鋳造法は、特に、WO/2006/003899に記載の方法を利用することが好ましい。連続鋳造法は、急冷凝固が可能であるため、結晶粒の微細化、酸化物や偏析などの欠陥の抑制、割れの起点になり得る10μm超といった粗大な晶析出物の生成の抑制、などを図ることができる。従って、連続鋳造材は、従来のダイカスト材やチクソモールド材と比較して高強度・高硬度である。また、この連続鋳造材は、上述のように微細で欠陥が少ない組織であることで圧延性にも優れる上に、得られた圧延材も機械的特性に優れる。この連続鋳造材を合金片とする場合、厚さを5mm以下、更に3mm以下とすると、偏析が生じ難く、上記機械的特性に優れる。この連続鋳造材に圧延を施す場合、厚さは10mm以下、更に5mm以下が利用し易い。鋳造材の幅は、適宜選択することができる。本発明では、接合することで広幅が可能であることから、鋳造板の幅は細くてもよい。
Hereinafter, the production method will be described in more detail.
(casting)
As the twin roll continuous casting method, it is particularly preferable to use the method described in WO / 2006/003899. Since the continuous casting method can be rapidly solidified, the refinement of crystal grains, the suppression of defects such as oxides and segregation, the suppression of the formation of coarse crystal precipitates exceeding 10 μm that can be the starting point of cracking, etc. Can be planned. Therefore, the continuous casting material has higher strength and higher hardness than conventional die casting materials and thixo mold materials. In addition, since the continuous cast material has a fine structure with few defects as described above, it has excellent rolling properties and the obtained rolled material also has excellent mechanical properties. When this continuous cast material is an alloy piece, when the thickness is 5 mm or less, and further 3 mm or less, segregation hardly occurs and the mechanical characteristics are excellent. When rolling this continuous cast material, it is easy to use a thickness of 10 mm or less, and further 5 mm or less. The width of the cast material can be appropriately selected. In the present invention, the width of the cast plate may be narrow because it can be widened by joining.

(溶体化)
上記連続鋳造材に溶体化処理を施すと、組成を均質化したり、Alといった元素を固溶させることができて好ましい。溶体化処理は、添加元素の種類や含有量にもよるが、保持温度:350℃以上、特に、保持温度:380℃〜420℃、保持時間:60分〜2400分(1時間〜40時間)とすることが好ましい。保持時間は、Alといった添加元素の含有量が多いほど長くすることが好ましい。上記保持時間からの冷却工程において、水冷や衝風といった強制冷却などを利用して、冷却速度を速めると(好ましくは1℃/min以上、より好ましくは50℃/min以上)、粗大な析出物の析出を抑制することができて好ましい。
(Solution)
It is preferable to apply a solution treatment to the continuous cast material because the composition can be homogenized or an element such as Al can be dissolved. Solution treatment depends on the type and content of the additive element, but holding temperature: 350 ° C or higher, especially holding temperature: 380 ° C to 420 ° C, holding time: 60 minutes to 2400 minutes (1 hour to 40 hours) It is preferable that The holding time is preferably increased as the content of additive elements such as Al increases. In the cooling process from the above holding time, if the cooling rate is increased by using forced cooling such as water cooling or blast (preferably 1 ° C / min or more, more preferably 50 ° C / min or more), coarse precipitates This is preferable because it can suppress precipitation.

(圧延工程)
上記連続鋳造材や溶体化処理材に圧延を施すにあたり、素材(圧延途中のものを含む)を加熱することで塑性加工性を高められるため、少なくとも1パスは温間圧延とする。但し、素材の加熱温度が高過ぎると、析出物の過度な成長や過度の析出を招いたり、素材の焼き付きが発生したり、素材の結晶粒が粗大化して得られた圧延材の機械的特性が低下したりする。そのため、温間圧延における素材の加熱温度は、300℃以下、特に150℃以上280℃以下が好ましい。複数回(多パス)の圧延を施すことで、所望の板厚にできると共に、素材の平均結晶粒径を小さくしたり(例えば、30μm以下、更に20μm以下、特に10μm以下、好ましくは5μm以下)、圧延やプレス加工といった塑性加工性を高められる。圧延は、公知の条件、例えば、素材だけでなく圧延ロールも加熱したり、特許文献1に開示される制御圧延などを組み合わせて利用してもよい。仕上げ圧延などで圧下率が小さい圧延では、冷間で圧延を施してもよい。圧延のパス数、1パスあたりの加工度、総加工度、後述する圧延途中や圧延後の熱処理などの条件は、所望の引張強さや硬度を有する圧延材が得られるように、適宜選択することができる。圧延材の幅は、適宜選択することができる。本発明では、接合することで広幅が可能であることから、圧延板の幅は細くてもよい。
(Rolling process)
When rolling the above continuous cast material or solution treated material, plastic workability can be improved by heating the raw materials (including those in the middle of rolling), so at least one pass is warm rolling. However, if the heating temperature of the material is too high, the mechanical properties of the rolled material obtained by excessive growth and precipitation of precipitates, seizure of the material, or coarsening of the crystal grains of the material. Or drop. Therefore, the heating temperature of the raw material in the warm rolling is preferably 300 ° C. or lower, particularly 150 ° C. or higher and 280 ° C. or lower. By rolling a plurality of times (multi-pass), the desired plate thickness can be achieved, and the average crystal grain size of the material can be reduced (for example, 30 μm or less, further 20 μm or less, especially 10 μm or less, preferably 5 μm or less) , Plastic workability such as rolling and pressing can be improved. The rolling may be performed by combining known conditions, for example, heating not only the raw material but also the rolling roll, or the controlled rolling disclosed in Patent Document 1. In rolling with a small rolling reduction such as finish rolling, the rolling may be performed cold. Conditions such as the number of rolling passes, degree of processing per pass, total degree of processing, heat treatment after rolling or after rolling, which will be described later, should be appropriately selected so that a rolled material having a desired tensile strength and hardness can be obtained. Can do. The width of the rolled material can be selected as appropriate. In the present invention, the width of the rolled plate may be small because it can be widened by bonding.

多パスの圧延を行う場合、パス間に中間熱処理を行ってもよい。中間熱処理を行うことで、当該熱処理までの塑性加工(主として圧延)により加工対象である素材に導入された歪みや残留応力、集合組織などを除去、軽減できる。その結果、当該熱処理後の圧延で不用意な割れや歪み、変形を防止でき、より円滑に圧延を行える。中間熱処理の保持温度も300℃以下、特に250℃以上280℃以下とすると、上記析出物の成長や結晶粒の粗大化などを防止できて好ましい。   When performing multi-pass rolling, intermediate heat treatment may be performed between passes. By performing the intermediate heat treatment, it is possible to remove or reduce strain, residual stress, texture, and the like introduced into the material to be processed by plastic working (mainly rolling) up to the heat treatment. As a result, inadvertent cracking, distortion, and deformation can be prevented by rolling after the heat treatment, and rolling can be performed more smoothly. It is preferable that the holding temperature of the intermediate heat treatment is 300 ° C. or lower, particularly 250 ° C. or higher and 280 ° C. or lower because growth of the precipitates and coarsening of crystal grains can be prevented.

(圧延後の加工・処理)
上記圧延材に、特許文献1に記載されるように最終熱処理(最終焼鈍)を施してもよい。或いは、最終熱処理を施さず、矯正加工を施してもよい。矯正加工は、圧延板を100℃〜300℃、好ましくは150℃以上280℃以下に加熱して行う温間矯正が挙げられる。矯正加工には、例えば、温間矯正を行う場合、圧延材を加熱可能な加熱炉と、加熱された圧延材に連続的に曲げ(歪)を付与するために複数のロールが上下に対向して千鳥状に配置されたロール部とを具えるロールレベラ装置を好適に利用できる。上記矯正加工が施された矯正材では、プレス加工といった塑性加工を施す場合、塑性加工時に動的再結晶化が生じることで塑性加工性に優れる。
(Processing and processing after rolling)
The rolling material may be subjected to final heat treatment (final annealing) as described in Patent Document 1. Alternatively, straightening may be performed without performing the final heat treatment. The straightening process includes warm straightening performed by heating the rolled plate to 100 ° C to 300 ° C, preferably 150 ° C to 280 ° C. In the straightening process, for example, when performing warm correction, a heating furnace capable of heating the rolled material, and a plurality of rolls face each other in order to continuously bend (strain) the heated rolled material. Thus, a roll leveler device including roll portions arranged in a staggered manner can be suitably used. In the straightening material subjected to the straightening process, when plastic working such as press working is performed, dynamic recrystallization occurs at the time of plastic working, and thus the plastic workability is excellent.

その他、上記圧延材や熱処理材、矯正材に研磨を施してもよい。研磨は、研磨粉の飛散防止のため、湿式研磨が好ましい。特に、ベルト研磨は、板材に対して連続的に研磨を施すことができ、作業性に優れる。   In addition, the rolled material, the heat treatment material, and the straightening material may be polished. The polishing is preferably wet polishing in order to prevent scattering of the polishing powder. In particular, the belt polishing can continuously polish the plate material and is excellent in workability.

(塑性加工)
接合前の合金片を、上記圧延材や熱処理材、矯正材、研磨材の一部(接合に利用される周縁部を除く領域)にプレス加工といった塑性加工を施した塑性加工部を具える形態とする場合、200℃〜300℃の温度域で塑性加工を行うと、素材の塑性加工性を高められる。上記塑性加工後に更に熱処理を施して、塑性加工により導入された歪みや残留応力の除去、機械的特性の向上を図ることができる。この熱処理条件は、加熱温度:100℃〜300℃、加熱時間:5分〜60分程度が挙げられる。
(Plastic processing)
A form in which a pre-joined alloy piece is provided with a plastic working part in which a part of the rolled material, heat treatment material, straightening material, and abrasive material (a region excluding the peripheral part used for joining) is subjected to plastic working such as press working. When plastic working is performed in a temperature range of 200 ° C. to 300 ° C., the plastic workability of the material can be improved. Further heat treatment can be performed after the plastic working to remove strain and residual stress introduced by the plastic working and improve the mechanical characteristics. Examples of the heat treatment conditions include a heating temperature: 100 ° C. to 300 ° C. and a heating time: about 5 minutes to 60 minutes.

(素材を特定の温度域に保持する総合計時間)
上述のように鋳造材に溶体化処理を施す場合、この溶体化工程以降、接合に供する合金片を得るまでの工程において、素材を150℃以上300℃以下の温度域に保持する総合計時間が12時間以内となるように素材の温度を制御すると共に、素材を300℃超に加熱しないことが好ましい。上記温度域は、析出物が生成、成長し易い領域である。従って、上記温度域の保持時間を特定の範囲に制御することで、特定量の微細な析出物が分散して存在する組織からなる合金片が得られる。そして、この分散組織により、強度や硬度、耐衝撃性といった機械的特性に優れる上に、耐食性にも優れる合金片が得られる。
(Total time to keep the material in a specific temperature range)
When solution treatment is performed on the cast material as described above, the total time for maintaining the material in the temperature range of 150 ° C. or more and 300 ° C. or less in the process from the solution treatment step until obtaining the alloy piece to be joined is obtained. It is preferable to control the temperature of the material so that it is within 12 hours and not to heat the material above 300 ° C. The temperature range is a region where precipitates are easily generated and grown. Therefore, by controlling the holding time in the temperature range to a specific range, an alloy piece having a structure in which a specific amount of fine precipitates are dispersed is obtained. The dispersed structure provides an alloy piece that is excellent in mechanical properties such as strength, hardness, and impact resistance, and also excellent in corrosion resistance.

上記150℃〜300℃の温度域に保持する総合計時間が12時間を超えたり、素材を300℃超に加熱して圧延などすると、粒径が1μm以上の粗大な析出物が存在した組織や析出物が過剰に存在した組織が得られる。圧延などの塑性加工に十分な加熱時間を確保するには、上記150℃〜300℃の温度域に保持する総合計時間は0.01時間以上、更に0.5時間以上、特に1時間以上が好ましい。より好ましくは、温度域:150℃以上280℃以下、総合計時間:8時間以下、特に6時間以下となるように、圧延工程における各パスの加工度や総加工度、予備加熱時間、中間熱処理などの種々の熱処理・矯正・塑性加工などの各工程における加熱条件などを制御する。特に、Alといった添加元素が多いほど、析出物が析出し易いため、上記総合計時間は、添加元素の含有量に応じても調整することが好ましい。   When the total time of maintaining the temperature range of 150 ° C. to 300 ° C. exceeds 12 hours or when the material is heated to more than 300 ° C. and rolled, the structure in which coarse precipitates having a particle size of 1 μm or more existed. A structure having an excessive amount of precipitates is obtained. In order to ensure a sufficient heating time for plastic working such as rolling, the total time for maintaining in the temperature range of 150 ° C. to 300 ° C. is preferably 0.01 hours or more, more preferably 0.5 hours or more, and particularly preferably 1 hour or more. More preferably, the temperature range: 150 ° C. or more and 280 ° C. or less, the total time: 8 hours or less, particularly 6 hours or less, the degree of processing and total degree of processing of each pass in the rolling process, preheating time, intermediate heat treatment Control the heating conditions in each process such as various heat treatment, straightening and plastic working. In particular, the more the additive element such as Al is, the more easily the precipitate is precipitated. Therefore, the total time is preferably adjusted depending on the content of the additive element.

(前処理:エッジの形成)
上記種々の工程を経て得られた素材(鋳造材、溶体化材、圧延材、熱処理材、矯正材、研磨材、塑性加工部を有するものなど)が合金片となり、当該合金片の周縁部のうち、接合に利用される個所(以下、接合縁と呼ぶ)同士を接触させ、この接触箇所を接合することで、接合領域を形成できる。上記素材における接合縁の端面は、上記種々の工程を経たままであると、当該素材の表面と当該端面とがなす角が直角となっておらず、接合し合う素材の端面同士を精度良く接触できない場合がある。そこで、上記素材の接合縁を切断して、当該素材の表面と当該切断面とが直交するように、新たな接合縁を形成する。即ち、当該素材の表面と端面とが直交し(エッジが立った状態とし)、当該素材の端面(切断面)が平面からなるものとすると、当該端面(切断面)同士を精度よく接触できる。従って、このようなエッジを形成した素材を合金片とすることが好ましい。上記エッジの形成には、適宜なカッタを利用してもよいし、研磨により行ってもよい。
(Pretreatment: Edge formation)
The material obtained through the above various steps (casting material, solution heat treatment material, rolling material, heat treatment material, straightening material, abrasive, etc. having a plastic working part) becomes an alloy piece, and the peripheral part of the alloy piece Among them, a portion used for bonding (hereinafter referred to as a bonding edge) is brought into contact with each other, and a bonding region can be formed by bonding the contact portions. If the end surfaces of the joining edges of the materials are still subjected to the above-described various steps, the angle formed between the surface of the materials and the end surfaces is not a right angle, and the end surfaces of the materials to be joined are in good contact with each other. There are cases where it is not possible. Therefore, the joining edge of the material is cut to form a new joining edge so that the surface of the material and the cut surface are orthogonal to each other. That is, if the surface and the end surface of the material are orthogonal to each other (with an edge standing) and the end surface (cut surface) of the material is a flat surface, the end surfaces (cut surfaces) can be contacted with high accuracy. Therefore, it is preferable that the material on which such an edge is formed is an alloy piece. An appropriate cutter may be used for forming the edge, or may be performed by polishing.

(接合)
摩擦撹拌接合には、工具鋼や超硬合金といった硬質材から構成され、撹拌に利用される小径部と装置本体に取り付けられる大径部とを具える接合用プローブを利用する。特に、厚さ3mm以下といった薄い板状の合金片同士を接合する場合、上記プローブの小径部の先端径:3mm〜6mm、小径部の高さ:接合する合金片の厚さの60%〜100%、大径部における小径部側の径:8mm〜15mm、小径部及び大径部において先端面と側面とがなす角:90°〜150°といったプローブが好適に利用できる。接合条件は、プローブの回転数:500r.p.m〜5000r.p.m、送り速度:0.1m/min〜1.0m/min、押込量:接合する合金片の厚さの60%〜100%、プローブの角度:プローブ送り方向とプローブ中心軸とのなす角が90°〜96°、隣り合う一対の合金片の並列方向(代表的には、合金片同士を接触することで形成される境界線に対して直交方向。合金片が矩形状板材である場合、幅方向)とプローブの中心軸とがなす角が90°が挙げられる。
(Joining)
The friction stir welding uses a joining probe that is made of a hard material such as tool steel or cemented carbide and has a small-diameter portion used for stirring and a large-diameter portion attached to the apparatus main body. In particular, when joining thin plate-shaped alloy pieces having a thickness of 3 mm or less, the tip diameter of the small diameter portion of the probe is 3 mm to 6 mm, and the height of the small diameter portion is 60% to 100% of the thickness of the alloy piece to be joined. %, The diameter on the small diameter side in the large diameter part: 8 mm to 15 mm, and the angle formed by the tip surface and the side surface in the small diameter part and the large diameter part: 90 ° to 150 ° can be suitably used. Joining conditions are: probe rotation speed: 500 rpm to 5000 rpm, feed rate: 0.1 m / min to 1.0 m / min, pushing amount: 60% to 100% of the thickness of the alloy piece to be joined, probe angle : The angle between the probe feed direction and the probe center axis is 90 ° to 96 °, the parallel direction of a pair of adjacent alloy pieces (typically, the boundary line formed by contacting the alloy pieces together) In the orthogonal direction, when the alloy piece is a rectangular plate, the angle formed by the width direction) and the central axis of the probe is 90 °.

複数の合金片を接合する場合、上記接合用プローブを複数用意して、同時に複数箇所の接合を行うと、接合時間が短く、接合作業性に優れ、一つの接合用プローブで行う場合、設備を簡素化できる。   When joining a plurality of alloy pieces, if a plurality of the above-mentioned joining probes are prepared and joining at a plurality of locations at the same time, the joining time is short and the joining workability is excellent. It can be simplified.

(後処理)
上記接合後に、上述した研磨や圧延、塗装を施すことで、合金片の厚さと接合領域の厚さとのばらつきを低減したり、外観や機械的特性の向上を図ることができる。この接合後の研磨や圧延には、上述した圧延材や研磨材からなる合金片を製造する場合の条件と同様の圧延条件や熱処理条件、研磨条件を利用することができる。総圧下率は10%〜20%が好ましい。その他、上記接合後に、熱処理を施したり、熱処理後に例えば、上記条件により圧延を施したりすることで、合金片の特性と接合領域の特性とのばらつきを是正できる。この熱処理条件は、加熱温度:100℃〜300℃、加熱時間:5分〜60分程度が挙げられる。
(Post-processing)
By applying the above-described polishing, rolling and coating after the joining, it is possible to reduce the variation in the thickness of the alloy piece and the thickness of the joining region, and to improve the appearance and mechanical characteristics. For the polishing and rolling after the joining, the same rolling conditions, heat treatment conditions, and polishing conditions as those in the case of producing the above-described rolled material or an alloy piece made of the abrasive can be used. The total rolling reduction is preferably 10% to 20%. In addition, by performing heat treatment after the joining, or by performing rolling under the above conditions after the heat treatment, for example, variations in the characteristics of the alloy pieces and the characteristics of the joining region can be corrected. Examples of the heat treatment conditions include a heating temperature: 100 ° C. to 300 ° C. and a heating time: about 5 minutes to 60 minutes.

上記接合後に上述のようにプレス加工や曲げなどの塑性加工、この塑性加工に加えて熱処理を施してもよい。塑性加工条件は、上述した合金片に塑性加工部を形成する場合と同様の条件、熱処理条件は、上述した、接合後に圧延を行って更に熱処理する場合の熱処理条件と同様の条件とすることができる。   After the joining, as described above, plastic working such as press working or bending, and heat treatment may be performed in addition to this plastic working. The plastic working conditions are the same as the case where the plastic working portion is formed on the above-described alloy piece, and the heat treatment conditions are the same as the above-described heat treatment conditions when further performing heat treatment by rolling after joining. it can.

[試験例1]
以下の条件でマグネシウム合金板(合金片)を複数作製して、摩擦撹拌接合により接合してマグネシウム合金材(接合板)を作製し、機械的特性を調べた。
[Test Example 1]
A plurality of magnesium alloy plates (alloy pieces) were produced under the following conditions and joined by friction stir welding to produce a magnesium alloy material (joint plate), and the mechanical characteristics were examined.

(試料No.1)
AZ91合金相当の組成(Mg-9.0%Al-1.0%Zn-0.15%〜0.5%Mn(全て質量%))を有するマグネシウム合金からなり、双ロール連続鋳造法により得られた連続鋳造材(厚さ4mmの板材)を複数用意した。得られた各連続鋳造材に、400℃×24時間の溶体化処理を施した。溶体化処理を施した各溶体化材に以下の圧延条件で複数パスの圧延を施し、板幅:250mm、厚さ0.85mmの圧延材を作製した。特に、圧延工程の各パスにおいて、圧延対象となる素材の加熱時間及び圧延速度(ロール周速)を調整することで、素材が150℃〜300℃の温度域に保持される総合計時間が12時間以内となるようにした。かつ、溶体化以降、300℃超の加熱を行っていない。
(圧延条件)
加工度(圧下率):5%/パス〜40%/パス
板の加熱温度:250℃〜280℃
圧延ロール温度:100℃〜250℃
(Sample No.1)
Continuous casting material (thickness) made of a magnesium alloy with a composition equivalent to AZ91 alloy (Mg-9.0% Al-1.0% Zn-0.15% -0.5% Mn (all mass%)) and obtained by twin-roll continuous casting method Multiple 4mm plates) were prepared. Each obtained continuous cast material was subjected to a solution treatment at 400 ° C. for 24 hours. Each solution-treated material subjected to the solution treatment was rolled in a plurality of passes under the following rolling conditions to produce a rolled material having a plate width of 250 mm and a thickness of 0.85 mm. In particular, in each pass of the rolling process, by adjusting the heating time of the material to be rolled and the rolling speed (roll peripheral speed), the total time that the material is held in the temperature range of 150 ° C. to 300 ° C. is 12 It was within time. Moreover, no heating above 300 ° C. has been performed since the solution treatment.
(Rolling conditions)
Degree of processing (rolling rate): 5% / pass to 40% / pass Heating temperature of plate: 250 ℃ to 280 ℃
Rolling roll temperature: 100 ℃ ~ 250 ℃

得られた各圧延材に、ロールレベラ装置を用いて、温間矯正を行った(圧延材の加熱温度:220℃)。得られた矯正材の長手方向(幅方向に直交する方向)の周縁部をカッタにより切断して、エッジを形成した。切断は、切断面の精度が中心線平均粗さRaの標準数列(JIS B 0601(2001年)):6.3μm以下(三角表示による仕上げ記号:▽2つ以上)となるように行った。エッジを形成した矯正材の表面に湿式ベルト式研磨を施し、表面を平滑にした研磨材を得た。この研磨材(板幅:210mm、厚さ:0.8mm)を合金片とする。   Each obtained rolled material was warm-corrected using a roll leveler apparatus (heating temperature of the rolled material: 220 ° C.). Edges were formed by cutting the peripheral edge of the obtained straightening material in the longitudinal direction (direction perpendicular to the width direction) with a cutter. Cutting was performed so that the accuracy of the cut surface was a standard number sequence of the center line average roughness Ra (JIS B 0601 (2001)): 6.3 μm or less (finished symbol by triangle display: ▽ two or more). The surface of the orthodontic material on which the edge was formed was subjected to wet belt type polishing to obtain an abrasive with a smooth surface. This abrasive (plate width: 210 mm, thickness: 0.8 mm) is used as an alloy piece.

作製した合金片において形成したエッジの周縁部同士を接触させ、この状態で摩擦撹拌接合により接合した。以下に使用したプローブ、及び接合条件を示す。なお、プローブの先端径を小さくすると、接合領域が小さく、外観に優れた接合材が得られる。   The peripheral portions of the edges formed in the produced alloy pieces were brought into contact with each other and joined in this state by friction stir welding. The probe used and the joining conditions are shown below. Note that when the tip diameter of the probe is reduced, a bonding material having a small bonding area and an excellent appearance can be obtained.

(プローブの仕様)
材質:工具鋼
小径部の先端径:3mm 高さ:0.72mm(合金片の厚さ:0.8mmの90%)
小径部の先端面と側面とがなす角:120°
大径部の先端径(小径部側):10mm
大径部の先端面と側面とがなす角:120°
(Probe specifications)
Material: Tool steel Smaller diameter tip diameter: 3mm Height: 0.72mm (Alloy piece thickness: 90% of 0.8mm)
Angle between tip and side of small diameter part: 120 °
Tip diameter of large diameter part (small diameter part side): 10mm
Angle between tip and side of large diameter part: 120 °

(接合条件)
回転数:5000r.p.m. 送り速度:0.5m/min
押込量:0.72mm(合金片の厚さ:0.8mmの90%)
傾斜角度(プローブ送り方向とプローブ中心軸とのなす角):92°
(Joining conditions)
Rotation speed: 5000r.pm Feed rate: 0.5m / min
Pushing amount: 0.72mm (thickness of alloy piece: 90% of 0.8mm)
Tilt angle (angle between probe feed direction and probe center axis): 92 °

上記工程により、合金片と、摩擦撹拌接合による接合領域とを有し、幅420mmのマグネシウム合金材が得られる。このマグネシウム合金材を試料No.1とする。   By the above process, a magnesium alloy material having an alloy piece and a joining region by friction stir welding and having a width of 420 mm is obtained. This magnesium alloy material is designated as sample No. 1.

(試料No.100)
比較として市販の鋳造材(AZ91合金、厚さ1.0mmの板)を複数用意した。この鋳造材に、試料No.1と同様の条件でエッジの形成、湿式研磨を施した後、得られた素材に試料No.1と同様の条件で摩擦撹拌接合を行い、接合領域を有するマグネシウム合金材を作製した。この鋳造材を用いたマグネシウム合金材を試料No.100とする。
(Sample No. 100)
For comparison, a plurality of commercially available cast materials (AZ91 alloy, 1.0 mm thick plate) were prepared. This cast material was subjected to edge formation and wet polishing under the same conditions as in Sample No. 1, and then the resulting material was subjected to friction stir welding under the same conditions as in Sample No. 1 to provide magnesium having a bonding region. An alloy material was produced. The magnesium alloy material using this cast material is designated as sample No. 100.

得られた試料No.1,100について、室温(20℃〜25℃程度)における引張強さ、室温(20℃〜25℃程度)におけるビッカース硬度Hvを測定した。その結果を表1に示す。ここでは、各試料No.1,100において接合領域を含む領域、接合領域を含まず合金片のみの領域のそれぞれから試験片を適宜採取して、上記引張強さ及びビッカース硬度の測定に利用した。引張強さは、市販の試験機を用いてJIS Z 2241(1998)に基づいて行った。ビッカース硬度は、市販の試験機を用い、圧子をそれぞれの領域に押し当てて測定した。   With respect to the obtained sample No. 1,100, the tensile strength at room temperature (about 20 ° C. to 25 ° C.) and the Vickers hardness Hv at room temperature (about 20 ° C. to 25 ° C.) were measured. The results are shown in Table 1. Here, in each sample No. 1,100, test pieces were appropriately collected from the region including the bonding region and the region including only the alloy piece without including the bonding region, and used for the measurement of the tensile strength and Vickers hardness. The tensile strength was measured based on JIS Z 2241 (1998) using a commercially available testing machine. The Vickers hardness was measured using a commercially available testing machine and pressing an indenter against each region.

Figure 0005769003
Figure 0005769003

引張試験の結果、試料No.1において接合領域を含む試験片では、合金片部分で破断した。そのため、試料No.1では、接合領域の引張強さが合金片の引張強さ:298MPa以上であることが分かる。これに対し、試料No.100では、接合領域で破断した。このことから、特定の機械的特性を有する合金片を摩擦撹拌接合といった接合法により接合することで、接合領域は、上記合金片と同等以上の機械的特性を有することが分かる。また、この接合領域は、合金片と同様の組成により構成されている。つまり、特定の機械的特性を有する合金片が当該合金片を構成するマグネシウム合金と同様の組成からなる接合領域により接合された試料No.1のマグネシウム合金材は、接合領域を有しておらず、かつ一様な組成からなる広幅材や長尺材と同様の材料と見なすことができる。従って、このマグネシウム合金材は、広幅材や長尺材が望まれる種々の分野の部材の素材に好適に利用できると期待される。なお、この試験例では、幅が大きくなるように接合しているが、長さが長くなるように接合することも勿論可能である。   As a result of the tensile test, the test piece including the joining region in Sample No. 1 was broken at the alloy piece portion. Therefore, it can be seen that in sample No. 1, the tensile strength of the bonded region is equal to or higher than the tensile strength of the alloy piece: 298 MPa. On the other hand, sample No. 100 was fractured at the joining region. From this, it can be seen that by joining alloy pieces having specific mechanical properties by a joining method such as friction stir welding, the joining region has mechanical properties equal to or higher than those of the alloy pieces. Moreover, this joining area | region is comprised by the composition similar to an alloy piece. In other words, sample No. 1 magnesium alloy material in which an alloy piece having specific mechanical properties is joined by a joining region having the same composition as the magnesium alloy constituting the alloy piece does not have a joining region. In addition, it can be regarded as a material similar to a wide material or a long material having a uniform composition. Therefore, it is expected that this magnesium alloy material can be suitably used as a material for members in various fields where wide or long materials are desired. In this test example, the bonding is performed so as to increase the width, but it is of course possible to perform the bonding so as to increase the length.

これに対し、ダイカスト材といった連続鋳造法以外の鋳造法による鋳造材を接合用素材とすると、当該素材自体が機械的特性に劣る上に、上記試料No.1のマグネシウム合金材を製造するときの接合条件と同じ条件で接合を行っても、接合領域の機械的特性が素材自体よりも低いことが分かる。即ち、試料No.100のマグネシウム合金材は、接合領域が機械的弱点になると言える。   On the other hand, when a casting material other than the continuous casting method such as a die casting material is used as a joining material, the material itself is inferior in mechanical properties, and when the magnesium alloy material of the sample No. 1 is manufactured. It can be seen that even if the joining is performed under the same conditions as the joining conditions, the mechanical properties of the joining region are lower than the material itself. That is, in the magnesium alloy material of sample No. 100, it can be said that the joining region becomes a mechanical weak point.

その他、試料No.1の各合金片の厚さ方向の断面を走査電子顕微鏡:SEMで観察したところ、微細な金属間化合物(ここではAl12Mg17)の粒子が均一的に分散した組織を有しており、この粒子は、丸みを帯びたものであった。これらの粒子の平均粒径(視野中の各粒子の円相当径を視野内の粒子の数で除した値)は、0.5μm以下であり(0.1μm〜0.3μm程度)、粗大で異形の金属間化合物が存在した試料No.100と比較して、微細であった。また、上記粒子の面積割合(視野中の粒子の合計面積を視野の面積で除した値)は、11%以下であった(3%〜11%程度)。更に、試料No.1は、上記厚さ方向の断面において巣といった欠陥が実質的に見られなかったのに対し、試料No.100は、最大径が20μmを超えるような粗大な巣が見られた。加えて、上記厚さ方向の断面において、結晶粒の平均粒径(視野内の各結晶粒の円相当径を視野内の粒子の数で除した値)は、30μm以下であった。その他、塩水を用いた腐食試験を行ったところ、試料No.1は、試料No.100よりも腐食減量やMgの溶出量が非常に少なく、耐食性に優れることも確認できた。 In addition, when a cross section in the thickness direction of each alloy piece of sample No. 1 was observed with a scanning electron microscope (SEM), a structure in which particles of fine intermetallic compounds (here Al 12 Mg 17 ) were uniformly dispersed was obtained. The particles were rounded. The average particle size of these particles (the value obtained by dividing the equivalent circle diameter of each particle in the field of view by the number of particles in the field of view) is 0.5 μm or less (about 0.1 μm to 0.3 μm), and is a coarse and irregular metal Compared with sample No. 100 in which intermetallic compounds existed, it was fine. Further, the area ratio of the particles (a value obtained by dividing the total area of the particles in the visual field by the area of the visual field) was 11% or less (about 3% to 11%). Furthermore, sample No. 1 showed virtually no defects such as nests in the cross section in the thickness direction, whereas sample No. 100 had coarse nests with a maximum diameter exceeding 20 μm. It was. In addition, in the cross section in the thickness direction, the average grain size (the value obtained by dividing the equivalent circle diameter of each crystal grain in the field of view by the number of grains in the field of view) was 30 μm or less. In addition, when a corrosion test using salt water was conducted, it was confirmed that Sample No. 1 had much less corrosion weight loss and Mg elution than Sample No. 100, and was excellent in corrosion resistance.

[試験例2]
試験例1と同様に複数のマグネシウム合金板(合金片)を作製して、摩擦撹拌接合により接合した接合板を用意し、接合板にプレス加工を施した。
[Test Example 2]
A plurality of magnesium alloy plates (alloy pieces) were prepared in the same manner as in Test Example 1, and a joined plate joined by friction stir welding was prepared, and the joined plate was pressed.

この試験では、合金片として、板幅:250mm、長さ:650mm、厚さ0.8mmのマグネシウム合金板を用意した。この合金片は、試験例1と同様の組成(Mg-9.0%Al-1.0%Zn-0.15%〜0.5%Mn(全て質量%))の圧延材を試験例1と同様の条件(連続鋳造⇒溶体化⇒圧延)で作製し、この圧延材に試験例1と同様の条件で温間矯正を施した後、エッジを形成した研磨材である。この合金片を3枚用意し、これらを板幅方向に摩擦撹拌接合により接合し、板幅:750mm、長さ:650mm、厚さ0.8mmのマグネシウム合金材(接合板)を作製した。接合条件は、試験例1と同様にした。この接合板から試験例1と同様に試験片を採取して、試験例1と同様に室温での引張強さ及びビッカース硬度を測定したところ、試験例1の試料No.1と同様の結果が得られた。   In this test, a magnesium alloy plate having a plate width of 250 mm, a length of 650 mm, and a thickness of 0.8 mm was prepared as an alloy piece. For this alloy piece, a rolled material having the same composition as in Test Example 1 (Mg-9.0% Al-1.0% Zn-0.15% to 0.5% Mn (all mass%)) was used under the same conditions as in Test Example 1 (continuous casting⇒ This is a polishing material in which an edge is formed after warm correction is performed on the rolled material under the same conditions as in Test Example 1. Three pieces of this alloy piece were prepared and joined in the plate width direction by friction stir welding to produce a magnesium alloy material (joint plate) having a plate width of 750 mm, a length of 650 mm, and a thickness of 0.8 mm. The joining conditions were the same as in Test Example 1. A test piece was collected from this bonded plate in the same manner as in Test Example 1, and when the tensile strength and Vickers hardness at room temperature were measured in the same manner as in Test Example 1, the results were the same as those of Sample No. 1 in Test Example 1. Obtained.

上記作製した接合板に温間プレス加工(素材の加熱温度:250℃)を施し、底面と、底面に立設する側壁とを具える断面]状の筐体(底面:320mm×440mm、深さ:50mm)を作製した。その結果、接合領域の一部にも曲げを加えたが、割れなどが生じることなく、また、接合領域で破断することなく、プレス加工を施すことができた。即ち、接合領域も、合金片部分と同様に曲げ(塑性加工)が加えられていた。また、得られた筐体の接合領域において、接合用プローブが接触していない側は、用意した合金片(研磨材)同士の境界が確認できるものの、当該合金片の表面状態が実質的に維持されており、滑らかな表面を有していた。   The above bonded plate is warm-pressed (heating temperature of the material: 250 ° C), and a cross-section with a bottom surface and side walls standing on the bottom surface (bottom surface: 320mm x 440mm, depth : 50 mm). As a result, although a part of the joining region was also bent, it was possible to perform press working without causing cracks and fractures in the joining region. That is, the joining region was also bent (plastic working) in the same manner as the alloy piece portion. Moreover, in the bonding region of the obtained casing, the side where the bonding probe is not in contact can confirm the boundary between the prepared alloy pieces (abrasives), but the surface state of the alloy pieces is substantially maintained. And had a smooth surface.

上記試験結果から、特定の機械的特性を有するマグネシウム合金からなる合金片を摩擦撹拌接合などの接合方法により接合することで、接合領域を有していても、プレス加工などの塑性加工の素材に好適に利用できることが確認された。   From the above test results, by joining an alloy piece made of a magnesium alloy having specific mechanical properties by a joining method such as friction stir welding, even if it has a joining region, it can be used as a material for plastic working such as press working. It was confirmed that it can be suitably used.

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、マグネシウム合金の組成、合金片の厚さ、合金片の形態・形状、製造条件などを適宜変更することができる。例えば、接合前の合金片として、連続鋳造材や熱処理材、矩形以外の多角形状などの板材などを利用できる。また、各合金片が特定の機械的特性を満たす範囲で各合金片の組成が異なる形態とすることができる。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention. For example, the composition of the magnesium alloy, the thickness of the alloy piece, the form / shape of the alloy piece, the production conditions, and the like can be changed as appropriate. For example, a continuous cast material, a heat treatment material, or a plate material such as a polygonal shape other than a rectangle can be used as the alloy piece before joining. Moreover, it can be set as the form from which a composition of each alloy piece differs in the range with which each alloy piece satisfy | fills a specific mechanical characteristic.

本発明マグネシウム合金材は、高強度・高硬度、軽量、耐衝撃性などの特性が望まれる種々の分野の部材、例えば、自動車などの車両、電車、航空機などの飛行機といった輸送機器の構成部材(特に、ボディーなどの大型な部材)、その他、各種の電気・電子機器類の構成部材(筐体など)、カバンや収納ケースなどの各種の収納部材、及びこれら部材の素材に好適に利用できる。   The magnesium alloy material of the present invention is a component in various fields where characteristics such as high strength and high hardness, light weight, and impact resistance are desired, for example, a component member of a transportation device such as a vehicle such as a car, a train, and an airplane such as an aircraft ( In particular, it can be suitably used for large members such as bodies), other constituent members (casing etc.) of various electric / electronic devices, various storage members such as bags and storage cases, and materials for these members.

Claims (9)

マグネシウム合金からなる複数の合金片と、
前記合金片間に形成され、前記マグネシウム合金から構成される接合領域とを具え、
前記各合金片は、圧延が施された板材であり、その厚さが3mm以下であり、
前記各合金片の室温での引張強さが165MPa以上であり、
前記各合金片の室温でのビッカース硬度Hvが55以上であり、
前記接合領域が摩擦撹拌接合により形成されており、
前記接合領域のビッカース硬度Hvが、前記合金片のビッカース硬度Hvと同等以上であり、
前記合金片と前記接合領域とを含めた室温での引張強さが280MPa以上であるマグネシウム合金材。
A plurality of alloy pieces made of magnesium alloy;
Formed between the alloy pieces, comprising a joining region composed of the magnesium alloy,
Each of the alloy pieces is a plate that has been rolled, and its thickness is 3 mm or less,
The tensile strength at room temperature of each alloy piece is 165 MPa or more,
Vickers hardness Hv at room temperature of each alloy piece is 55 or more,
The joining region is formed by friction stir welding;
Vickers hardness Hv of the joining region is equal to or greater than the Vickers hardness Hv of the alloy piece,
A magnesium alloy material having a tensile strength at room temperature including the alloy piece and the joining region of 280 MPa or more.
前記各合金片の厚さが1.5mm以下である請求項1に記載のマグネシウム合金材。 2. The magnesium alloy material according to claim 1 , wherein the thickness of each alloy piece is 1.5 mm or less. 前記接合領域と前記合金片とが滑らかな表面で構成されている請求項1又は請求項2に記載のマグネシウム合金材。 3. The magnesium alloy material according to claim 1, wherein the joining region and the alloy piece are configured with a smooth surface. 前記マグネシウム合金材は、前記複数の合金片が少なくとも一つの接合領域により接合された接合板に、プレス加工、鍛造加工、曲げ加工、及び深絞り加工から選択される1種の塑性加工が施されてなる塑性加工材であり、前記接合領域の少なくとも一部に塑性加工が施されている請求項1〜請求項3のいずれか1項に記載のマグネシウム合金材。 The magnesium alloy material is subjected to one type of plastic processing selected from pressing, forging, bending, and deep drawing on a joining plate in which the plurality of alloy pieces are joined by at least one joining region. comprising Te a plastic working material, the magnesium alloy material according to any one of claims 1 to 3 in which plastic working is applied to at least a portion of the junction region. 前記マグネシウム合金は、Al,Zn,Mn,Y,Zr,Cu,Ag,Be,Sn,Li及びSiから選択される少なくとも1種の元素を1元素あたり0.01質量%以上20質量%以下含有し、残部がMg及び不純物からなる請求項1〜請求項4のいずれか1項に記載のマグネシウム合金材。 The magnesium alloy contains at least one element selected from Al, Zn, Mn, Y, Zr, Cu, Ag, Be, Sn, Li and Si, from 0.01 mass% to 20 mass% per element, the magnesium alloy material according to any one of claims 1 to 4, the balance being Mg and impurities. 前記マグネシウム合金は、Caを0.001質量%以上16質量%以下含有する請求項5に記載のマグネシウム合金材。 6. The magnesium alloy material according to claim 5 , wherein the magnesium alloy contains 0.001% by mass to 16% by mass of Ca. 前記マグネシウム合金は、Ca,Au,Pt,Sr,Ti,B,Bi,Ge,In,Te,Nd,Nb,La及び希土類元素(前記列挙する元素と重複する元素を除く)から選択される少なくとも1種の元素を1元素あたり0.001質量%以上5質量%未満含有する請求項5又は請求項6に記載のマグネシウム合金材。 The magnesium alloy is at least selected from Ca, Au, Pt, Sr, Ti, B, Bi, Ge, In, Te, Nd, Nb, La and rare earth elements (excluding elements overlapping with the elements listed above). one element of which contains less than 5 wt% 0.001 wt% per element according to claim 5 or a magnesium alloy material according to claim 6. 前記マグネシウム合金は、AZ系合金である請求項1〜請求項7のいずれか1項に記載のマグネシウム合金材。 The magnesium alloy is a magnesium alloy material according to any one of claims 1 to 7 is AZ-based alloy. 前記各合金片は、金属間化合物が分散した組織を有し、
前記金属間化合物の平均粒径が0.5μm以下であり、
前記金属間化合物の面積割合が11%以下である請求項1〜請求項8のいずれか1項に記載のマグネシウム合金材。
Each alloy piece has a structure in which an intermetallic compound is dispersed,
The average particle size of the intermetallic compound is 0.5 μm or less,
The magnesium alloy material according to any one of claims 1 to 8 the area ratio of the intermetallic compound is less than 11%.
JP2011061129A 2010-12-24 2011-03-18 Magnesium alloy material Expired - Fee Related JP5769003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011061129A JP5769003B2 (en) 2010-12-24 2011-03-18 Magnesium alloy material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010288585 2010-12-24
JP2010288585 2010-12-24
JP2011061129A JP5769003B2 (en) 2010-12-24 2011-03-18 Magnesium alloy material

Publications (2)

Publication Number Publication Date
JP2012143811A JP2012143811A (en) 2012-08-02
JP5769003B2 true JP5769003B2 (en) 2015-08-26

Family

ID=46787922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061129A Expired - Fee Related JP5769003B2 (en) 2010-12-24 2011-03-18 Magnesium alloy material

Country Status (1)

Country Link
JP (1) JP5769003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022977A (en) * 2018-10-20 2018-12-18 广州宇智科技有限公司 A kind of the casting magnesium alloy and processing technology fire-retardant using liquid metal

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568513B1 (en) 2013-12-24 2015-11-11 주식회사 포스코 High strength magnesium-lithum alloy
CN103695747B (en) * 2014-01-16 2015-11-04 陆明军 A kind of high-strength heat-resistant magnesium alloy and preparation method thereof
KR101633916B1 (en) * 2014-11-06 2016-06-28 재단법인 포항산업과학연구원 Magnesium alloy
CN104789849A (en) * 2015-03-23 2015-07-22 苏州市神龙门窗有限公司 Material for magnesium alloy doors and windows and production method of material
CN105624500A (en) * 2016-01-13 2016-06-01 济南大学 Te-enhanced Mg-Al-Zn magnesium alloy
KR101858856B1 (en) * 2016-12-21 2018-05-17 주식회사 포스코 High strength magnesium alloy having excellent fire-retardant, and method for manufacturing the same
WO2018117762A1 (en) * 2016-12-22 2018-06-28 주식회사 포스코 Magnesium alloy plate material with excellent corrosion resistance, and method for producing same
WO2019031145A1 (en) * 2017-08-08 2019-02-14 国立大学法人大阪大学 Magnesium-lithium alloy joining method and joined body
DE112018005870T5 (en) * 2017-11-17 2020-08-06 National University Corporation University Of Toyama Magnesium alloy and magnesium alloy part
KR102044983B1 (en) * 2017-12-26 2019-11-14 주식회사 포스코 High corrosion resistant magnesium alloy and method for manufacturing the same
KR101988794B1 (en) * 2018-06-14 2019-06-12 주식회사 포스코 Magnesium alloy sheet having excellent corrosion resistance, and method for manufacturing the same
CN108441731B (en) * 2018-07-07 2020-01-17 中南大学 Coarse-grain magnesium alloy plate with superplasticity and preparation method thereof
CN109182861A (en) * 2018-11-08 2019-01-11 中信戴卡股份有限公司 A kind of plastic deformation magnesium alloy and preparation method thereof
CN109371302B (en) * 2018-12-06 2021-02-12 贵州航天风华精密设备有限公司 Corrosion-resistant high-performance magnesium alloy and preparation process thereof
CN109402540A (en) * 2018-12-11 2019-03-01 江苏科技大学 A method of eliminating particle enhances AZ91D magnesium-based composite material dislocation
CN111020253B (en) * 2019-11-14 2021-11-16 李健 Biomedical magnesium alloy processing method
CN113430438A (en) * 2021-06-22 2021-09-24 广东省科学院健康医学研究所 Antibacterial and tumor proliferation inhibiting magnesium alloy bone splint and preparation method thereof
CN113444943A (en) * 2021-06-22 2021-09-28 西安理工大学 Magnesium alloy with antibacterial and bone cell proliferation functions and preparation method thereof
CN114029603A (en) * 2021-08-13 2022-02-11 榆林学院 Magnesium alloy sheet high-speed friction stir welding clamping device and welding method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277036A1 (en) * 2007-05-11 2008-11-13 Luxfer Group Limited Method for manufacturing tanks
BRPI0813877A2 (en) * 2007-06-28 2019-02-26 Sumitomo Electric Industries magnesium alloy plate
JP2009242943A (en) * 2008-03-11 2009-10-22 Topy Ind Ltd Magnesium-based composite material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109022977A (en) * 2018-10-20 2018-12-18 广州宇智科技有限公司 A kind of the casting magnesium alloy and processing technology fire-retardant using liquid metal

Also Published As

Publication number Publication date
JP2012143811A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
JP5769003B2 (en) Magnesium alloy material
JP5880811B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
KR101412245B1 (en) Magnesium alloy member and method of manufacturing the same
KR102224687B1 (en) Rolling and preparation method of magnesium alloy sheet
CN101925682B (en) Magnesium alloy plate
JP5757105B2 (en) Magnesium alloy material and manufacturing method thereof
KR101463319B1 (en) Magnesium alloy material
JP4189687B2 (en) Magnesium alloy material
JP6465338B2 (en) Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy
JP2017160542A (en) Magnesium alloy casting material, magnesium alloy cast coil material, wrought magnesium alloy material, magnesium alloy member, magnesium alloy joint material, and method for producing magnesium alloy casting material
WO2012169305A1 (en) Titanium alloy member and production method therefor
EP2407566A1 (en) Magnesium alloy member
WO2022137334A1 (en) Titanium alloy member and method of producing titanium alloy member
KR101885397B1 (en) Magnesium alloy material and method for producing the same
KR20150125729A (en) Magnesium alloy material
CN108884520A (en) Disk aluminium alloy green body and disk aluminium alloy substrate
JP2004107743A (en) Magnesium alloy sheet and its manufacturing method
TWI588293B (en) Hot stamp molded article
JP6830319B2 (en) Strip-like materials made of copper-zinc alloys, copper-zinc alloys, methods for manufacturing semi-finished products made of copper-zinc alloys, and sliding elements made of copper-zinc alloys.
JP5315043B2 (en) Magnesium alloy clad material and manufacturing method thereof
JP6136037B2 (en) Magnesium alloy cast material, magnesium alloy cast coil material, magnesium alloy wrought material, magnesium alloy joint material, method for producing magnesium alloy cast material, method for producing magnesium alloy wrought material, and method for producing magnesium alloy member
JP5606709B2 (en) Magnesium alloy rolled material and method for producing the same
EP2559780A1 (en) Impact-resistant member
TWI732435B (en) Manufacturing method of processed titanium material
JP6422304B2 (en) Manufacturing method of magnesium alloy products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5769003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees