JP5767477B2 - How to observe rubber materials - Google Patents

How to observe rubber materials Download PDF

Info

Publication number
JP5767477B2
JP5767477B2 JP2011006433A JP2011006433A JP5767477B2 JP 5767477 B2 JP5767477 B2 JP 5767477B2 JP 2011006433 A JP2011006433 A JP 2011006433A JP 2011006433 A JP2011006433 A JP 2011006433A JP 5767477 B2 JP5767477 B2 JP 5767477B2
Authority
JP
Japan
Prior art keywords
sample
rubber material
electron beam
filler
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011006433A
Other languages
Japanese (ja)
Other versions
JP2012149890A (en
Inventor
浩司 陣内
浩司 陣内
和加奈 三好
和加奈 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2011006433A priority Critical patent/JP5767477B2/en
Publication of JP2012149890A publication Critical patent/JP2012149890A/en
Application granted granted Critical
Publication of JP5767477B2 publication Critical patent/JP5767477B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、ゴム材料の観察方法に関し、詳しくはゴム材料中の充填剤の分散状態を観察する観察方法に関する。 The present invention relates to an observation method for a rubber material, and more particularly to an observation method for observing a dispersion state of a filler in a rubber material.

従来から、カーボンブラックやシリカなどの充填剤を配合したゴム材料が補強性などの点からタイヤなどに使用されている。ゴム材料中の充填剤の分散性はゴム強度などに大きく影響するため、充填剤の分散状態を正確に観察できる方法の確立が望まれている。 Conventionally, rubber materials containing fillers such as carbon black and silica have been used for tires and the like in terms of reinforcement. Since the dispersibility of the filler in the rubber material greatly affects the rubber strength and the like, establishment of a method capable of accurately observing the dispersion state of the filler is desired.

ゴム材料中の充填剤を観察する方法として、3次元透過型電子顕微鏡(3D−TEM)を用いた方法が一般的に知られている。これは、観察するサンプルに対して電子線を照射し、透過した電子を結像して観察する顕微鏡(TEM)とCT法を組み合わせた方法である。しかしながら、3D−TEMでは、サンプルの厚さが200nm以上であると、電子線が透過せず鮮明な像が得られないため、充填剤の分散性を観察する方法として満足できるものではない。 As a method for observing a filler in a rubber material, a method using a three-dimensional transmission electron microscope (3D-TEM) is generally known. This is a method in which a CT (TEM) is combined with a microscope (TEM) that irradiates a sample to be observed with an electron beam, forms an image of the transmitted electrons, and observes them. However, in 3D-TEM, if the thickness of the sample is 200 nm or more, an electron beam does not pass through and a clear image cannot be obtained.

また、特許文献1には、透過型電子顕微鏡を用いてゴム材料中のカーボンブラックの分散状態を観察することが記載されているが、未だ満足できる方法ではなく、3次元構造中での分散状態を観察することについても検討されていない。 Further, Patent Document 1 describes observing the dispersion state of carbon black in a rubber material using a transmission electron microscope, but this is not a satisfactory method, and the dispersion state in a three-dimensional structure is not yet satisfactory. It has not been studied to observe.

特開2007−131774号公報JP 2007-131774 A 特開2008−66057号公報JP 2008-66057 A 特開2010−108633号公報JP 2010-108633 A

本発明は、前記課題を解決し、厚さ200nm以上のゴム材料でも充填剤の分散状態を詳細に観察できるゴム材料の観察方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a method for observing a rubber material that enables detailed observation of a dispersion state of a filler even with a rubber material having a thickness of 200 nm or more.

本発明は、充填剤を含有するゴム材料の観察方法であって、走査透過電子顕微鏡を用いて取得した該ゴム材料の各回転角度における画像からトモグラフィー法により3次元構造を再構築し、ゴム材料中の充填剤の分散状態を観察することを特徴とするゴム材料の観察方法に関する。 The present invention relates to a method for observing a rubber material containing a filler, wherein a three-dimensional structure is reconstructed by a tomography method from images at each rotation angle of the rubber material obtained using a scanning transmission electron microscope, and the rubber material The present invention relates to a method for observing a rubber material, which is characterized by observing the dispersion state of the filler therein.

上記観察方法において、上記ゴム材料の厚さは200〜1500nmであることが好ましい。また、上記ゴム材料と検出器との距離は5〜200cmであることが好ましい。 In the observation method, the rubber material preferably has a thickness of 200 to 1500 nm. The distance between the rubber material and the detector is preferably 5 to 200 cm.

本発明によれば、充填剤を含有するゴム材料の観察方法であって、走査透過電子顕微鏡を用いて取得した該ゴム材料の各回転角度における画像からトモグラフィー法により3次元構造を再構築し、ゴム材料中の充填剤の分散状態を観察することを特徴とするゴム材料の観察方法であるので、厚さ200nm以上のゴム材料でもサンプル内の充填剤の分散状態を正確に観察できる。 According to the present invention, a rubber material observation method containing a filler, reconstructing a three-dimensional structure by a tomography method from an image at each rotation angle of the rubber material obtained using a scanning transmission electron microscope, Since the rubber material observation method is characterized by observing the dispersion state of the filler in the rubber material, the dispersion state of the filler in the sample can be accurately observed even with a rubber material having a thickness of 200 nm or more.

走査透過電子顕微鏡装置の一例を示した概略図である。It is the schematic which showed an example of the scanning transmission electron microscope apparatus. 暗視野制限用の散乱角制限絞りの一例を示した概略図である。It is the schematic which showed an example of the scattering angle restriction | limiting stop for dark field restriction | limiting. 試料傾斜部の説明図である。It is explanatory drawing of a sample inclination part. 3D−STEMを用いてサンプル(1)を観察した3次元像である。It is the three-dimensional image which observed the sample (1) using 3D-STEM. 3D−TEMを用いてサンプル(2)を観察した3次元像である。It is the three-dimensional image which observed the sample (2) using 3D-TEM.

本発明の充填剤を含有するゴム材料の観察方法は、走査透過電子顕微鏡(STEM)を用いて取得した該ゴム材料の各回転角度における画像からトモグラフィー法により3次元構造を再構築し、ゴム材料中の充填剤の分散状態を観察する方法である。STEMを用いてTEMよりも電子線を集束することにより、電子線が照射された箇所の焦点を合わせることが可能な距離をサンプルの厚さ方向に深くできる。そのため、厚み200nm以上のゴム材料であっても電子線を走査し、サンプルの種々の測定角度において、それぞれ鮮明な電子線透過像を得ることができる。従って、得られた各電子線透過像をトモグラフィー法により再構築して3次元構造を示す立体画像を取得でき、ゴム材料中の充填剤の分散状態を正確に観察できる。 The method for observing a rubber material containing the filler according to the present invention comprises reconstructing a three-dimensional structure by a tomography method from images at each rotation angle of the rubber material obtained using a scanning transmission electron microscope (STEM). This is a method of observing the dispersion state of the filler inside. By focusing the electron beam using the STEM rather than the TEM, the distance at which the electron beam is irradiated can be made deeper in the thickness direction of the sample. Therefore, even a rubber material having a thickness of 200 nm or more can scan an electron beam and obtain clear electron beam transmission images at various measurement angles of the sample. Therefore, each obtained electron beam transmission image can be reconstructed by the tomography method to obtain a three-dimensional image showing a three-dimensional structure, and the dispersion state of the filler in the rubber material can be accurately observed.

本発明では、公知の特開2008−66057号公報に記載の走査透過電子顕微鏡を使用でき、例えば、図1で示した走査透過電子顕微鏡装置100を使用できる。 In the present invention, a scanning transmission electron microscope described in JP-A-2008-66057 can be used, and for example, the scanning transmission electron microscope apparatus 100 shown in FIG. 1 can be used.

図1では、電子銃1、該電子銃1から放出された一次電子線2、該一次電子線2を試料5上に集束させるための集束レンズ3、試料5上をX方向、Y方向に走査するためのX方向走査コイル4X、Y方向走査コイル4Yを示している。試料5を固定する試料ホルダー6は、中央部に電子線光軸Oに沿って、試料5を透過した電子(透過電子7)が通過する孔(電子線通過孔8)が設けられている。 In FIG. 1, an electron gun 1, a primary electron beam 2 emitted from the electron gun 1, a focusing lens 3 for focusing the primary electron beam 2 on a sample 5, and scanning on the sample 5 in the X and Y directions. The X direction scanning coil 4X and the Y direction scanning coil 4Y are shown. The sample holder 6 for fixing the sample 5 is provided with a hole (electron beam passage hole 8) through which electrons (transmission electrons 7) transmitted through the sample 5 pass along the electron beam optical axis O in the center.

試料ステージ9には、試料ホルダー6が装着され、中央部に電子線光軸Oに沿って、電子線通過孔8に連続する電子線通過孔10が設けられている。また、透過電子7の通過を制限する散乱角制限絞り11が設けられ、該散乱角制限絞り11を通過した透過電子12が示されている。更に、透過電子12を光に変換するシンチレーター13及び該変換された光を電子信号に変換する光電子増倍管14が設けられ、透過電子検出手段を構成する。なお、試料ステージ9、散乱角制限絞り11、シンチレーター13、光電子増倍管14は走査透過電子顕微鏡装置本体の試料室(図示せず)内に配置され、試料ホルダー6は試料ステージ9に対し着脱可能である。 A sample holder 6 is mounted on the sample stage 9, and an electron beam passage hole 10 that is continuous with the electron beam passage hole 8 is provided along the electron beam optical axis O at the center. Further, a scattering angle limiting stop 11 that restricts the passage of the transmitted electrons 7 is provided, and the transmitted electrons 12 that have passed through the scattering angle limiting stop 11 are shown. Further, a scintillator 13 that converts the transmitted electrons 12 into light and a photomultiplier tube 14 that converts the converted light into an electronic signal are provided, and constitutes a transmitted electron detection means. The sample stage 9, the scattering angle limiting aperture 11, the scintillator 13, and the photomultiplier tube 14 are arranged in a sample chamber (not shown) of the scanning transmission electron microscope apparatus body, and the sample holder 6 is attached to and detached from the sample stage 9. Is possible.

上記構成の走査透過電子顕微鏡装置は以下のように動作する。
先ず、オペレーターは、試料5が固定されている試料ホルダー6を試料ステージ9上に装着する。電子銃1から放出された一次電子線2は、加速手段(図示せず)で加速され、集束レンズ3によって集束され、X方向、Y方向走査コイル4X、4Yによって試料5上を走査する。このような電子線2による試料5上の走査により、試料5中で散乱し、又は散乱することなく試料5を透過した電子7が試料5の下面から出射する。
The scanning transmission electron microscope apparatus having the above configuration operates as follows.
First, the operator mounts the sample holder 6 on which the sample 5 is fixed on the sample stage 9. The primary electron beam 2 emitted from the electron gun 1 is accelerated by acceleration means (not shown), focused by the focusing lens 3, and scanned on the sample 5 by the X-direction and Y-direction scanning coils 4X and 4Y. By such scanning on the sample 5 by the electron beam 2, the electrons 7 scattered in the sample 5 or transmitted through the sample 5 without scattering are emitted from the lower surface of the sample 5.

透過電子7は、試料5の内部状態、厚さ、原子種によって、強度、散乱角度が異なる。また、透過電子7の散乱角度は、電子線2の加速電圧でも変化し、例えば、加速電圧が低くなると試料5で散乱される割合が多くなり、試料5の下面から出射する透過電子の電子線光軸Oからの出射角度(散乱角度)が大きくなる。 The transmitted electrons 7 differ in intensity and scattering angle depending on the internal state, thickness, and atomic species of the sample 5. The scattering angle of the transmitted electrons 7 also changes with the acceleration voltage of the electron beam 2. For example, when the acceleration voltage decreases, the ratio of scattering by the sample 5 increases, and the electron beam of transmitted electrons emitted from the lower surface of the sample 5. The emission angle (scattering angle) from the optical axis O increases.

試料5の下面から出射した透過電子7は、試料ホルダー6と試料ステージ9の孔8、10を通過した後、散乱角制限絞り11に達する。該絞り11は、特定の散乱角を有する透過電子のみが通過できるように中心部に開けられた孔の口径が制限されている。このような透過電子の通過を制限させる散乱角制限絞りとしては、上記に示した構造のように中央部に孔を有し、該孔の口径で透過電子の通過を制限するものの外に、図2に示すように、中心部に遮蔽板17を配置して透過電子7の通過を制限するもの(散乱角制限絞り16)も挙げられる。一般的に、散乱角制限絞り11を使用すると電子線透過像は明視野像を形成し、散乱角制限絞り16を使用すると暗視野像を形成する。 The transmitted electrons 7 emitted from the lower surface of the sample 5 pass through the holes 8 and 10 of the sample holder 6 and the sample stage 9 and then reach the scattering angle limiting stop 11. The aperture 11 has a limited aperture diameter in the center so that only transmitted electrons having a specific scattering angle can pass therethrough. As a scattering angle limiting diaphragm for restricting the passage of transmitted electrons, a hole is provided at the center as in the structure shown above, and in addition to the structure that restricts the passage of transmitted electrons by the diameter of the hole, As shown in FIG. 2, there may be mentioned one in which a shielding plate 17 is arranged at the center to restrict the passage of transmitted electrons 7 (scattering angle limiting stop 16). In general, when the scattering angle limiting stop 11 is used, the electron beam transmission image forms a bright field image, and when the scattering angle limiting stop 16 is used, a dark field image is formed.

散乱角制限絞り11を通過した透過電子12は、シンチレーター13に衝突して光に変換され、更に光電子増倍管14によって電気信号に変換される。増幅手段(図示せず)で増幅され、A/D変換器(図示せず)を介して表示手段(図示せず)に送られる。表示手段は、送られてきた信号を輝度変調し、試料5の内部構造を反映した電子線透過像を表示し、走査位置に応じた複数の像を取得できる。 The transmitted electrons 12 that have passed through the scattering angle limiting aperture 11 collide with the scintillator 13 and are converted into light, and further converted into an electric signal by the photomultiplier tube 14. Amplified by an amplifying means (not shown) and sent to a display means (not shown) via an A / D converter (not shown). The display means modulates the luminance of the transmitted signal, displays an electron beam transmission image reflecting the internal structure of the sample 5, and can acquire a plurality of images corresponding to the scanning position.

本発明は、上記構成を持つSTEMなどにより取得した画像をトモグラフィー法で3次元構造を再構築する方法であり、通常、走査透過電子顕微鏡装置には試料5を回転させる試料傾斜部が設けられている。 The present invention is a method for reconstructing a three-dimensional structure by a tomography method using an image acquired by a STEM or the like having the above-described configuration. Usually, a scanning transmission electron microscope apparatus is provided with a sample inclined portion for rotating a sample 5. Yes.

図3は試料傾斜部の説明図であり、試料5は水平線Hに対してθだけ傾斜している。傾斜した試料5に電子線eが照射され、試料5を透過した電子線は透過電子線e′となる。パソコンなどから試料傾斜部に制御信号が出力され、試料を所定角度に傾斜できる。 FIG. 3 is an explanatory diagram of the sample inclined portion, and the sample 5 is inclined by θ with respect to the horizontal line H. FIG. The inclined sample 5 is irradiated with the electron beam e, and the electron beam transmitted through the sample 5 becomes a transmitted electron beam e ′. A control signal is output from the personal computer or the like to the sample tilting section, and the sample can be tilted at a predetermined angle.

例えば、オペレーターが測定開始角度まで試料を傾斜させ、STEM像を取得する。ここで、最初の回転角度θはオペレーターが適宜設定でき、例えば+70度に設定される。STEM像の取得後、オペレーターが設定した測定終了角度まで、試料の傾斜及び画像の取得のステップを繰り返し、回転シリーズ像(複数の画像)が得られる。なお、オペレーターは設定により、試料を任意の角度の単位で傾斜させることができる。得られた複数の画像をトモグラフィー法で3次元構造を再構築し、ゴム材料中の充填剤の分散状態を観察できる立体画像を取得できる。 For example, the operator tilts the sample to the measurement start angle and acquires a STEM image. Here, the first rotation angle θ can be appropriately set by the operator, and is set to +70 degrees, for example. After acquiring the STEM image, the sample tilt and image acquisition steps are repeated until the measurement end angle set by the operator, and a rotation series image (a plurality of images) is obtained. Note that the operator can tilt the sample by an arbitrary angle unit by setting. A three-dimensional structure can be obtained by reconstructing a three-dimensional structure of the obtained images by a tomography method and observing the dispersion state of the filler in the rubber material.

以上のとおり、充填剤を含有するゴム材料のサンプルについて、例えば、走査透過電子顕微鏡を用いて集束された電子線をサンプルに走査して複数の電子線透過像を取得する工程1と、該サンプルを所定角度単位で回転し、各角度ごとに同様の方法で複数の電子線透過像を取得するステップを繰り返す工程2と、トモグラフィー法を用いて、該工程1及び2で取得した電子線透過像を再構築する工程3とを含む方法により、サンプル中の充填剤の分散状態を観察できる。 As described above, for a sample of a rubber material containing a filler, for example, Step 1 of obtaining a plurality of electron beam transmission images by scanning the sample with a focused electron beam using a scanning transmission electron microscope, and the sample Step 2 of repeating a step of acquiring a plurality of electron beam transmission images by the same method for each angle, and the electron beam transmission images acquired in Steps 1 and 2 using the tomography method By the method including the step 3 of reconstructing, the dispersion state of the filler in the sample can be observed.

走査透過電子顕微鏡装置100では、電子線2の加速電圧は、好ましくは100〜3000kVである。該加速電圧が下限未満であると電子線がサンプルを透過しないため、観察できないおそれがある。上限を超えると、厚みが厚いサンプルでも電子線が透過するが、ダメージが大きく観察できないおそれがある。 In the scanning transmission electron microscope apparatus 100, the acceleration voltage of the electron beam 2 is preferably 100 to 3000 kV. If the acceleration voltage is less than the lower limit, the electron beam does not pass through the sample, and thus there is a possibility that it cannot be observed. If the upper limit is exceeded, even if the sample is thick, the electron beam is transmitted, but the damage is so large that it may not be observed.

試料5(ゴム材料)の傾斜角度単位(試料傾斜部の傾斜ステップ毎に傾ける角度)は、好ましくは0.5〜4度、より好ましくは1〜2度である。0.5度未満であると、撮影時間が長くなりサンプルがダメージを受け、鮮明な像を取得できないおそれがあり、4度を超えると、再構成後のスライス像が不鮮明になるおそれがある。 The tilt angle unit of the sample 5 (rubber material) (the tilt angle for each tilt step of the sample tilt portion) is preferably 0.5 to 4 degrees, more preferably 1 to 2 degrees. If the angle is less than 0.5 degrees, the photographing time becomes long and the sample may be damaged, and a clear image may not be obtained. If the angle exceeds 4 degrees, the slice image after reconstruction may become unclear.

また、試料5の回転角度θは特に限定されず、サンプルをロッドの形状に加工し理論上の理想としては−180度〜+180度の全範囲で測定することが好ましいが、装置上の制限より好ましくは−90度〜+90度、より好ましくは−70度〜+70度の範囲で測定する。 Further, the rotation angle θ of the sample 5 is not particularly limited, and it is preferable that the sample is processed into a rod shape and measured as a theoretical ideal in the entire range of −180 degrees to +180 degrees. The measurement is preferably performed in the range of −90 degrees to +90 degrees, more preferably −70 degrees to +70 degrees.

走査透過電子顕微鏡装置100において、試料5とシンチレーター13との距離L1(カメラ長)は、好ましくは5〜200cmである。5cm未満であると、像が不鮮明になるおそれがある。200cmを超えると、像が不鮮明になるおそれがある。 In the scanning transmission electron microscope apparatus 100, the distance L1 (camera length) between the sample 5 and the scintillator 13 is preferably 5 to 200 cm. If it is less than 5 cm, the image may be unclear. If it exceeds 200 cm, the image may become unclear.

試料5の厚さL2は特に限定されず、200nm未満、200nm以上のいずれのサンプルでも充填剤の分散状態を良好に観察できる。厚さL2は、好ましくは200〜1500nm、より好ましくは500〜1000nmである。1500nmまで観察可能になることで、200nm以上のサンプルの充填剤の凝集構造の観察精度が高まり、充填剤の正確な分散状態を解析できる。 The thickness L2 of the sample 5 is not particularly limited, and the dispersion state of the filler can be satisfactorily observed in any sample of less than 200 nm and 200 nm or more. The thickness L2 is preferably 200 to 1500 nm, more preferably 500 to 1000 nm. By being able to observe up to 1500 nm, the observation accuracy of the aggregated structure of the filler of the sample of 200 nm or more is increased, and the accurate dispersion state of the filler can be analyzed.

本発明におけるゴム材料に含まれるゴム成分としては、天然ゴム(NR)、イソプレンゴム(IR)、ブチルゴム(IIR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、エチレンプロピレンジエンゴム(EPDM)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)などが挙げられる。充填剤としては特に限定されず、例えば、カーボンブラック、シリカ、クレー、タルク、炭酸マグネシウム、水酸化マグネシウム等が挙げられる。また、上記ゴム材料には、硫黄、加硫促進剤などゴム工業において一般的に用いられている各種材料が適宜配合されてもよい。 The rubber component contained in the rubber material in the present invention includes natural rubber (NR), isoprene rubber (IR), butyl rubber (IIR), butadiene rubber (BR), styrene butadiene rubber (SBR), and styrene isoprene butadiene rubber (SIBR). Ethylene propylene diene rubber (EPDM), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR), and the like. The filler is not particularly limited, and examples thereof include carbon black, silica, clay, talc, magnesium carbonate, magnesium hydroxide and the like. Moreover, various materials generally used in the rubber industry such as sulfur and a vulcanization accelerator may be appropriately blended with the rubber material.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited to these examples.

<実施例及び比較例>
以下、実施例及び比較例で使用した各種薬品、装置について、まとめて説明する。
(薬品)
SBR:住友化学(株)製のSBR1502
シリカ:ローディアジャパン(株)製の115Gr
シランカップリング剤:デグッサ社製のSi69
硫黄:鶴見化学(株)製の粉末硫黄
加硫促進剤A:大内新興化学工業(株)製のノクセラーNS
加硫促進剤B:大内新興化学工業(株)製のノクセラーD
(装置)
ミクロトーム:LEICA社製のウルトラミクロトームEM VC6
電子顕微鏡:日本電子(株)製の透過型電子顕微鏡JEM2100F
<Examples and Comparative Examples>
Hereinafter, various chemicals and devices used in Examples and Comparative Examples will be described together.
(Medicine)
SBR: SBR1502 manufactured by Sumitomo Chemical Co., Ltd.
Silica: 115Gr made by Rhodia Japan
Silane coupling agent: Si69 manufactured by Degussa
Sulfur: Powder sulfur vulcanization accelerator made by Tsurumi Chemical Co., Ltd. A: Noxeller NS made by Ouchi Shinsei Chemical Co., Ltd.
Vulcanization accelerator B: Noxeller D manufactured by Ouchi Shinsei Chemical Co., Ltd.
(apparatus)
Microtome: Ultramicrotome EM VC6 manufactured by LEICA
Electron microscope: Transmission electron microscope JEM2100F manufactured by JEOL Ltd.

表1に示す配合処方にしたがい、バンバリーミキサーを用いて、硫黄及び加硫促進剤以外の材料を排出温度160℃の条件下で4分間混練りし、混練り物を得た。次に、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、100℃の条件下で2分間練り込み、未加硫ゴム組成物を得た。更に、得られた未加硫ゴム組成物を175℃で30分間加硫することにより、加硫ゴム組成物を得た。 In accordance with the formulation shown in Table 1, using a Banbury mixer, materials other than sulfur and the vulcanization accelerator were kneaded for 4 minutes at a discharge temperature of 160 ° C. to obtain a kneaded product. Next, sulfur and a vulcanization accelerator were added to the obtained kneaded product, and kneaded for 2 minutes at 100 ° C. using an open roll to obtain an unvulcanized rubber composition. Furthermore, the obtained unvulcanized rubber composition was vulcanized at 175 ° C. for 30 minutes to obtain a vulcanized rubber composition.

得られた加硫ゴム組成物をミクロトームを用いてサンプル(切片)を作製した。サンプルの厚さは以下の通りであった。
サンプル(1):500nm
サンプル(2):189nm
A sample (section) of the obtained vulcanized rubber composition was prepared using a microtome. The sample thickness was as follows.
Sample (1): 500 nm
Sample (2): 189 nm

(実施例)
得られたサンプル(1)をメッシュに載せ、電子顕微鏡のサンプル室内にセットし、カメラ長150cm、電子線照射の加速電圧を200kVに設定した。STEMモードにて、様々な回転角度(−60度〜+60度)で電子線を走査し、各STEM像を取得した。なお、サンプルを1度ずつ回転させて所定の回転角度に調整して、各回転角度におけるSTEM像を取得した。得られたすべてのSTEM像をコンピュータトモグラフィー法により再構成することで、各断面スライス像を取得し、ゴム成分を黒色、フィラーを白色として各画像を得た。各画像を再構築し、サンプルの3次元像を取得した(図4)。
(Example)
The obtained sample (1) was placed on a mesh, set in a sample chamber of an electron microscope, a camera length of 150 cm, and an acceleration voltage of electron beam irradiation were set to 200 kV. In the STEM mode, the electron beam was scanned at various rotation angles (−60 degrees to +60 degrees), and each STEM image was acquired. The sample was rotated by 1 degree and adjusted to a predetermined rotation angle, and STEM images at each rotation angle were obtained. All the obtained STEM images were reconstructed by a computer tomography method to obtain each slice image, and each image was obtained with the rubber component black and the filler white. Each image was reconstructed to obtain a three-dimensional image of the sample (FIG. 4).

(比較例)
試料としてサンプル(2)を使用した点、モードを3D−TEMとした点以外は、実施例と同様の条件で3次元像を取得した(図5)。
(Comparative example)
A three-dimensional image was obtained under the same conditions as in the example except that the sample (2) was used as a sample and the mode was 3D-TEM (FIG. 5).

3D−TEMによる観察は厚さ200nm以下のサンプルに限られたが、走査透過電子顕微鏡を用いたトモグラフィー(3D−STEM)により、厚さ500nmのサンプルでもフィラーの分散状態を観察できることが明らかとなった。 Observation by 3D-TEM was limited to samples with a thickness of 200 nm or less, but it became clear by the tomography using a scanning transmission electron microscope (3D-STEM) that the filler dispersion state can be observed even with a sample with a thickness of 500 nm. It was.

1 電子銃
2 一次電子線
3 集束レンズ
4X X方向走査コイル
4Y Y方向走査コイル
5 試料
6 試料ホルダー
7、12、15 透過電子
8、10 電子線通過孔
9 試料ステージ
11、16 散乱角制限絞り
13 シンチレーター
14 光電子増倍管
17 遮蔽板
100 走査透過電子顕微鏡装置
DESCRIPTION OF SYMBOLS 1 Electron gun 2 Primary electron beam 3 Focusing lens 4X X direction scanning coil 4Y Y direction scanning coil 5 Sample 6 Sample holder 7, 12, 15 Transmission electron 8, 10 Electron beam passage hole 9 Sample stage 11, 16 Scattering angle restriction | limiting aperture 13 Scintillator 14 photomultiplier tube 17 shielding plate 100 scanning transmission electron microscope apparatus

Claims (2)

充填剤を含有するゴム材料の観察方法であって、
走査透過電子顕微鏡を用いて加速電圧100〜3000kVで電子線を集束し、電子線が照射された箇所の焦点を合わせることが可能な距離をサンプルの厚さ方向に深くすることにより取得した、厚さが500〜1000nmであるゴム材料の各回転角度における画像からトモグラフィー法により3次元構造を再構築し、ゴム材料中の充填剤の分散状態を観察する
ことを特徴とするゴム材料の観察方法。
A method for observing a rubber material containing a filler,
Thickness obtained by converging an electron beam at an acceleration voltage of 100 to 3000 kV using a scanning transmission electron microscope and increasing the distance at which the electron beam can be focused in the thickness direction of the sample. A method for observing a rubber material, characterized in that a three-dimensional structure is reconstructed by a tomography method from images at each rotation angle of the rubber material having a thickness of 500 to 1000 nm, and the dispersion state of the filler in the rubber material is observed.
前記ゴム材料と検出器との距離が5〜200cmである請求項1記載のゴム材料の観察方法。 The rubber material observation method according to claim 1, wherein a distance between the rubber material and the detector is 5 to 200 cm.
JP2011006433A 2011-01-14 2011-01-14 How to observe rubber materials Active JP5767477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011006433A JP5767477B2 (en) 2011-01-14 2011-01-14 How to observe rubber materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011006433A JP5767477B2 (en) 2011-01-14 2011-01-14 How to observe rubber materials

Publications (2)

Publication Number Publication Date
JP2012149890A JP2012149890A (en) 2012-08-09
JP5767477B2 true JP5767477B2 (en) 2015-08-19

Family

ID=46792289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011006433A Active JP5767477B2 (en) 2011-01-14 2011-01-14 How to observe rubber materials

Country Status (1)

Country Link
JP (1) JP5767477B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130051656A1 (en) * 2011-08-23 2013-02-28 Wakana Ito Method for analyzing rubber compound with filler particles
JP2013044607A (en) * 2011-08-23 2013-03-04 Sumitomo Rubber Ind Ltd Method of observing rubber material
JP2013057638A (en) * 2011-09-09 2013-03-28 Sumitomo Rubber Ind Ltd Simulation method for rubber materials

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4694847B2 (en) * 2005-01-18 2011-06-08 株式会社ブリヂストン Rubber material form display method
JP5135941B2 (en) * 2007-08-07 2013-02-06 富士通株式会社 Elemental analysis apparatus and method
EP2063450A1 (en) * 2007-11-21 2009-05-27 FEI Company Method for obtaining a scanning transmission image of a sample in a particle-optical apparatus
JP2010091330A (en) * 2008-10-06 2010-04-22 Sumitomo Chemical Co Ltd Method and system for analyzing orientation function

Also Published As

Publication number Publication date
JP2012149890A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
US9395314B2 (en) Method of evaluating neutron scattering length density
JP5767477B2 (en) How to observe rubber materials
US10132761B2 (en) Method of constructing 3D image, image processor, and electron microscope
EP2105943A3 (en) Environmental cell for a particle-optical apparatus
JP6743477B2 (en) Vulcanized material analysis method
JP6294673B2 (en) Polymer material analysis method
US20130051656A1 (en) Method for analyzing rubber compound with filler particles
JP2013057638A (en) Simulation method for rubber materials
JP6613637B2 (en) Method for evaluating response characteristics of internal structure of polymer materials
JP5767541B2 (en) Rubber material simulation method
JP5993218B2 (en) How to observe rubber materials
JP2013044607A (en) Method of observing rubber material
US10794893B2 (en) Method for estimating abrasion resistance and fracture resistance
JP2018096905A (en) Abrasion proof performance prediction method
JP6935681B2 (en) How to evaluate the dispersion of silica aggregates
JP6859602B2 (en) Evaluation method of scattering intensity
JP2013061290A (en) Simulation method of rubber material
JP5490333B1 (en) Charged particle beam apparatus, charged particle beam apparatus sample observation method, and charged particle beam apparatus display control program
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP6460730B2 (en) Vulcanized rubber composition for tire and pneumatic tire
Urushihara et al. In situ observation of filler displacement during tensile deformation of nanosilica-filled natural rubber using field-emission scanning electron microscope
JP2018194469A (en) Method for observing sample
JP6159273B2 (en) Charged particle beam apparatus, charged particle beam apparatus sample observation method, and charged particle beam apparatus display control program
JP2021081335A (en) Analytical method of rubber composition
JP2017053760A (en) Chemical dispersion evaluation method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20121003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121003

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150619

R150 Certificate of patent or registration of utility model

Ref document number: 5767477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250