JP6935681B2 - How to evaluate the dispersion of silica aggregates - Google Patents

How to evaluate the dispersion of silica aggregates Download PDF

Info

Publication number
JP6935681B2
JP6935681B2 JP2017076769A JP2017076769A JP6935681B2 JP 6935681 B2 JP6935681 B2 JP 6935681B2 JP 2017076769 A JP2017076769 A JP 2017076769A JP 2017076769 A JP2017076769 A JP 2017076769A JP 6935681 B2 JP6935681 B2 JP 6935681B2
Authority
JP
Japan
Prior art keywords
silica
rubber
swell
blended rubber
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017076769A
Other languages
Japanese (ja)
Other versions
JP2018179643A (en
Inventor
友美 増井
友美 増井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017076769A priority Critical patent/JP6935681B2/en
Publication of JP2018179643A publication Critical patent/JP2018179643A/en
Application granted granted Critical
Publication of JP6935681B2 publication Critical patent/JP6935681B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、シリカ配合ゴム中のシリカアグリゲートの分散を評価する方法に関する。 The present invention relates to a method for evaluating the dispersion of silica aggregates in a silica-blended rubber.

空気入りタイヤ等に用いられるゴム組成物には、各種性能(低燃費性能、耐摩耗性能、ウェットグリップ性能等)の改善が求められており、そのための方法として、フィラー分散の向上等が検討されている。 Rubber compositions used for pneumatic tires and the like are required to improve various performances (fuel efficiency performance, wear resistance performance, wet grip performance, etc.), and as a method for that purpose, improvement of filler dispersion, etc. is being studied. ing.

フィラー分散の評価には、動的粘弾性測定における貯蔵弾性率G′の歪依存性を取ることによる「ペイン効果」を調べる方法がよく用いられている。「ペイン効果」は測定範囲におけるG′の最大値と最小値の差であるΔG′(=G′(最大値)−G′(最小値))を評価しており、ΔG′が小さいほど、大きなフィラー凝集体の割合が少なく、分散状態が良好であるといえる。
また、TEMによる画像解析により分散を定量する方法も用いられている。
For the evaluation of filler dispersion, a method of examining the "Pain effect" by taking the strain dependence of the storage elastic modulus G'in the dynamic viscoelasticity measurement is often used. The "pain effect" evaluates ΔG'(= G'(maximum value) -G'(minimum value)), which is the difference between the maximum value and the minimum value of G'in the measurement range. It can be said that the proportion of large filler aggregates is small and the dispersed state is good.
In addition, a method of quantifying the variance by image analysis by TEM is also used.

しかし、「ペイン効果」では、フィラーの一次粒子径であるナノメートルスケールから、ゴムのサイズであるセンチメートルスケールに至るフィラー分散が影響し、ゴム全体におけるフィラー凝集体の分散を定量的に評価できるものの、空間スケールとして数十ナノメートルスケールのシリカアグリゲートの分散のみを定量的に評価できないという問題がある。
また、TEMによる評価は、測定視野が狭いために統計精度に課題がある。
However, in the "Pain effect", the dispersion of the filler from the nanometer scale, which is the primary particle size of the filler, to the centimeter scale, which is the size of the rubber, has an effect, and the dispersion of the filler aggregates in the entire rubber can be quantitatively evaluated. However, there is a problem that it is not possible to quantitatively evaluate only the dispersion of silica aggregates on the scale of several tens of nanometers as a spatial scale.
Further, the evaluation by TEM has a problem in statistical accuracy because the measurement field of view is narrow.

本発明は、前記課題を解決し、シリカ配合ゴム中のシリカアグリゲートの分散のみを精度良く定量的に評価できる方法を提供することを目的とする。 An object of the present invention is to solve the above problems and to provide a method capable of accurately and quantitatively evaluating only the dispersion of silica aggregates in a silica-blended rubber.

本発明は、下記(式1)で表わされるqの領域において、シリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Idry(q)と、溶媒で膨潤させたシリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Iswell(q)を下記式のように膨潤度Sで補正して得られたIcorr swell(q)との比Idry(q)/Icorr swell(q)から、シリカ配合ゴム中のシリカアグリゲートの分散を評価する方法に関する。
corr swell(q)=Iswell(q)×膨潤度S/100
膨潤度S=((シリカ配合ゴムの体積+溶媒の体積)/シリカ配合ゴムの体積)×100

Figure 0006935681
In the present invention, in the region of q represented by the following (Equation 1), the scattering intensity curve I dry (q) obtained by irradiating the silica-blended rubber with X-rays or neutron rays and the silica-blended rubber swollen with a solvent are blended. The ratio I dry (q) of the scattering intensity curve I swell (q) obtained by irradiating the rubber with X-rays or neutrons to the I corr swell (q) obtained by correcting the scattering intensity S with the swelling degree S as shown in the following equation. q) / I corr swell (q) relates to a method for evaluating the dispersion of silica aggregates in a silica-blended rubber.
I corr swell (q) = I swell (q) × swelling degree S / 100
Swelling degree S = ((volume of silica-blended rubber + volume of solvent) / volume of silica-blended rubber) × 100
Figure 0006935681

前記qの領域が0.001<q<0.05Å−1を含むことが好ましい。 The region of q preferably contains 0.001 <q <0.05 Å -1.

本発明によれば、シリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Idry(q)と、溶媒で膨潤させたシリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Iswell(q)を膨潤度で補正して得られたIcorr swell(q)との比Idry(q)/Icorr swell(q)から、シリカ配合ゴム中のシリカアグリゲートの分散を評価する方法であるので、シリカ配合ゴム中のシリカアグリゲートの分散のみを精度良く定量的に評価できる。 According to the present invention, the scattering intensity curve I dry (q) obtained by irradiating the silica-blended rubber with X-rays or neutrons and the silica-blended rubber swollen with a solvent are irradiated with X-rays or neutrons. From the ratio I dry (q) / I corr swell (q) with the I corr swell (q) obtained by correcting the obtained scattering intensity curve I swell (q) with the degree of swelling, silica in the silica-blended rubber Since this is a method for evaluating the dispersion of aggregates, only the dispersion of silica aggregates in the silica-blended rubber can be evaluated accurately and quantitatively.

X線散乱測定により得られた加硫ゴム組成物1、2のIdry(q)/Icorr swell(q)である。Is an X-ray scattering of the vulcanized rubber composition 1 obtained by measuring I dry (q) / I corr swell (q).

本発明の方法は、下記(式1)で表わされるqの領域において、シリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Idry(q)と、溶媒で膨潤させたシリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Iswell(q)を下記式のように膨潤度Sで補正して得られたIcorr swell(q)との比Idry(q)/Icorr swell(q)から、シリカ配合ゴム中のシリカアグリゲートの分散を評価する。
corr swell(q)=Iswell(q)×膨潤度S/100
膨潤度S=((シリカ配合ゴムの体積+溶媒の体積)/シリカ配合ゴムの体積)×100

Figure 0006935681
In the method of the present invention, the scattering intensity curve I dry (q) obtained by irradiating the silica-blended rubber with X-rays or neutrons in the region of q represented by the following (formula 1) and swelling with a solvent. The ratio I of the scattering intensity curve I swell (q) obtained by irradiating the silica-blended rubber with X-rays or neutrons to the I corr swell (q) obtained by correcting the swelling degree S as shown in the following equation. The dispersion of silica aggregates in the silica-blended rubber is evaluated from dry (q) / I color swell (q).
I corr swell (q) = I swell (q) × swelling degree S / 100
Swelling degree S = ((volume of silica-blended rubber + volume of solvent) / volume of silica-blended rubber) × 100
Figure 0006935681

散乱強度曲線I(q)は、フィラー凝集の情報P(q)とフィラー凝集の分散の情報S(q)との積になっている。シリカ配合ゴムを膨潤させると、フィラー凝集の分散の情報S(q)≒1となり、Icorr swell(q)はフィラー凝集の情報P(q)と近似することができる(Icorr swell(q)≒P(q))。したがって、Idry(q)/Icorr swell(q)から、フィラー凝集の分散の情報S(q)、すなわちシリカ配合ゴムにおいてはシリカアグリゲートの分散の情報を得ることができ、シリカ配合ゴム中のシリカアグリゲートの分散のみを定量的に評価できる。 The scattering intensity curve I (q) is the product of the filler aggregation information P (q) and the filler aggregation dispersion information S (q). When swell silica compounded rubber, dispersed information S (q) ≒ 1 next to the filler agglomeration, I corr swell (q) can be approximated with filler aggregation information P (q) (I corr swell (q) ≈ P (q)). Therefore, from I dry (q) / I corr swell (q), information on the dispersion of filler aggregation S (q), that is, information on the dispersion of silica aggregates in the silica-blended rubber can be obtained, and in the silica-blended rubber. Only the dispersion of silica aggregates in the above can be quantitatively evaluated.

本発明において、シリカアグリゲートとは、数十nm〜数μmのシリカ一次凝集体を意味する。 In the present invention, the silica aggregate means a silica primary aggregate having a size of several tens of nm to several μm.

まず、本発明では、シリカ配合ゴムにX線又は中性子線を照射して散乱強度曲線Idry(q)を得る。 First, in the present invention, the silica-blended rubber is irradiated with X-rays or neutrons to obtain a scattering intensity curve I dry (q).

シリカ配合ゴムとしては、シリカを配合し、硫黄、加硫促進剤等の一般的にゴム工業分野で用いられる加硫剤により天然ゴム、スチレンブタジエンゴム等のゴム成分を架橋した架橋ゴムであれば、特に限定されず、ゴム工業分野で汎用されている他の配合剤(シリカ以外のカーボンブラックなどの補強剤、シランカップリング剤、酸化亜鉛、ステアリン酸、各種老化防止剤、オイル、ワックス、架橋剤など)を含むものでもよい。このようなシリカ配合ゴムは、公知の混練方法などを用いて製造できる。 The silica-blended rubber is a crosslinked rubber in which silica is blended and rubber components such as natural rubber and styrene butadiene rubber are crosslinked with a vulcanizing agent generally used in the rubber industry such as sulfur and a vulcanization accelerator. , Not particularly limited, other compounding agents widely used in the rubber industry (reinforcing agents such as carbon black other than silica, silane coupling agents, zinc oxide, stearic acid, various antioxidants, oils, waxes, crosslinks. Agents, etc.) may be included. Such a silica-blended rubber can be produced by using a known kneading method or the like.

シリカ配合ゴムにX線を照射して散乱強度曲線Idry(q)を得る方法としては、小角X線散乱法(散乱角:通常10度以下)(以下、SAXS(Small−Angle X−ray Scattering)測定ともいう)を好適に採用できる。なお、小角X線散乱法では、X線を物質に照射して散乱するX線のうち、散乱角が小さいものを測定することで物質の構造情報が得られ、架橋ゴムのミクロ相分離構造など、数ナノメートルレベルでの不均一構造を分析できる。 As a method of irradiating a silica-blended rubber with X-rays to obtain a scattering intensity curve I dry (q), a small-angle X-ray scattering method (scattering angle: usually 10 degrees or less) (hereinafter, SAXS (Small-Angle X-ray Scattering)) ) Measurement) can be preferably adopted. In the small-angle X-ray scattering method, structural information of a substance can be obtained by measuring the X-rays scattered by irradiating the substance with X-rays and having a small scattering angle, such as a microphase-separated structure of a crosslinked rubber. , Non-uniform structure at the level of several nanometers can be analyzed.

また、シリカ配合ゴムに中性子線を照射して散乱強度曲線Idry(q)を得る方法としては、小角中性子散乱法(散乱角:通常10度以下)(以下、SANS(Small−Angle Neutron Scattering)測定ともいう)を好適に採用できる。なお、小角中性子散乱では、中性子線を物質に照射して散乱する中性子線のうち散乱角が小さいものを測定して物質の構造情報が得られ、架橋ゴムのミクロ相分離構造など、数ナノメートルレベルでの不均一構造を分析できる。 Further, as a method of irradiating the silica-blended rubber with neutron rays to obtain a scattering intensity curve I dry (q), a small-angle neutron scattering method (scattering angle: usually 10 degrees or less) (hereinafter, SANS (Small-Angle Neutron Scattering)). (Also referred to as measurement) can be preferably adopted. In small-angle neutron scattering, the structure information of a substance can be obtained by measuring the neutron rays scattered by irradiating the substance with a small scattering angle, and several nanometers such as the microphase-separated structure of crosslinked rubber. Non-uniform structure at the level can be analyzed.

SAXS測定におけるX線の輝度や光子数、SANS測定における中性子線の中性子束強度、測定方法、測定機器等は、特開2014−102210号公報等に記載されているものを好適に採用できる。コントラストの点でSANS測定の方が優れているが、汎用性があり、本発明の効果が良好に得られるという点で、SAXS測定を用いることが好ましい。 As the X-ray brightness and the number of photons in the SAXS measurement, the neutron flux intensity of the neutron beam in the SANS measurement, the measuring method, the measuring device and the like, those described in JP-A-2014-102210 can be preferably adopted. Although the SANS measurement is superior in terms of contrast, it is preferable to use the SAXS measurement in that it is versatile and the effects of the present invention can be obtained satisfactorily.

SAXS、SANS測定は、下記(式1)で表されるqの領域で実施される。

Figure 0006935681
The SAXS and SANS measurements are carried out in the region of q represented by the following (Equation 1).
Figure 0006935681

前記qの領域は0.001<q<0.05Å−1を含むことが好ましい。これにより、シリカアグリゲートの分散を評価することができる。 The region of q preferably contains 0.001 <q <0.05 Å -1. This makes it possible to evaluate the dispersion of silica aggregates.

SAXS測定において散乱するX線は、X線検出装置によって検出され、該X線検出装置からのX線検出データを用いて画像処理装置などによって画像が生成される。 The X-rays scattered in the SAXS measurement are detected by the X-ray detection device, and an image is generated by an image processing device or the like using the X-ray detection data from the X-ray detection device.

X線検出装置としては、例えば、2次元検出器(X線フィルム、原子核乾板、X線撮像管、X線蛍光増倍管、X線イメージインテンシファイア、X線用イメージングプレート、X線用CCD、X線用非晶質体など)、ラインセンサー1次元検出器を使用できる。分析対象となる高分子材料の種類や状態などにより、適宜X線検出装置を選択すればよい。 Examples of the X-ray detector include a two-dimensional detector (X-ray film, nuclear dry plate, X-ray imaging tube, X-ray fluorescence enhancer tube, X-ray image intensifier, X-ray imaging plate, X-ray CCD. , X-ray amorphous body, etc.), line sensor one-dimensional detector can be used. The X-ray detector may be appropriately selected depending on the type and state of the polymer material to be analyzed.

画像処理装置としては、X線検出装置によるX線検出データに基づき、通常のX線散乱画像を生成できるものを適宜使用できる。 As the image processing device, a device capable of generating a normal X-ray scattered image based on the X-ray detection data by the X-ray detection device can be appropriately used.

SANS測定でもSAXS測定と同様の原理により測定可能であり、散乱する中性子線を中性子線検出装置により検出し、該中性子線検出装置からの中性子線検出データを用いて画像処理装置などによって画像が生成される。ここで、前記と同様、中性子線検出装置としては、公知の2次元検出器や1次元検出器、画像処理装置としては、公知の中性子線散乱画像を生成できるものを使用でき、適宜選択すればよい。 SANS measurement can be performed by the same principle as SAXS measurement. Scattered neutron rays are detected by a neutron beam detection device, and an image is generated by an image processing device or the like using the neutron beam detection data from the neutron beam detection device. Will be done. Here, as described above, as the neutron beam detection device, a known two-dimensional detector or one-dimensional detector can be used, and as the image processing device, a known neutron beam scattering image can be generated, and if appropriately selected. good.

次に、本発明では、溶媒で膨潤させたシリカ配合ゴム(散乱強度曲線Idry(q)を得たシリカ配合ゴムと同一のシリカ配合ゴムを溶媒で膨潤させたシリカ配合ゴム)にX線又は中性子線を照射して得られた散乱強度曲線Iswell(q)を下記式のように膨潤度Sで補正してIcorr swell(q)を得る。なお、本発明では、Icorr swell(q)を得た後に、Idry(q)を得てもよい。
corr swell(q)=Iswell(q)×膨潤度S/100
膨潤度S=((シリカ配合ゴムの体積+溶媒の体積)/シリカ配合ゴムの体積)×100
Then, according to the invention, X-ray or solvent silica compounded rubber swollen with the (scattering intensity curve I dry (q) silica compounded rubber same silica compounded rubber and obtained silica compounded rubber swollen with solvent) The scattering intensity curve I swell (q) obtained by irradiating with neutron rays is corrected by the swelling degree S as shown in the following equation to obtain I corr swell (q). In the present invention , I dry (q) may be obtained after obtaining I corr swell (q).
I corr swell (q) = I swell (q) × swelling degree S / 100
Swelling degree S = ((volume of silica-blended rubber + volume of solvent) / volume of silica-blended rubber) × 100

シリカ配合ゴムを溶媒で膨潤させる方法としては、シリカ配合ゴムを膨潤できる方法であれば、特に限定されず、公知の方法を用いることができ、トルエン等の溶媒を用いる方法が好適に使用できる。膨潤させる条件としては、シリカ配合ゴムが均一に膨潤できる条件であれば特に限定されないが、密閉容器内にシリカ配合ゴムと任意量の溶媒を共存させ、シリカ配合ゴム全体を均一に膨潤させることが好ましい。シリカ配合ゴムを均一に膨潤させるとは、膨潤に用いる溶媒等がシリカ配合ゴム中に万遍なく行き渡っており、偏って溶媒がシリカ配合ゴム中に存在し、反った状態のシリカ配合ゴム等にならない状態のことをいう。 The method for swelling the silica-blended rubber with a solvent is not particularly limited as long as it can swell the silica-blended rubber, and a known method can be used, and a method using a solvent such as toluene can be preferably used. The conditions for swelling are not particularly limited as long as the silica-blended rubber can be swelled uniformly, but the silica-blended rubber and an arbitrary amount of solvent can coexist in the closed container to uniformly swell the entire silica-blended rubber. preferable. To uniformly swell the silica-blended rubber means that the solvent used for swelling is evenly distributed in the silica-blended rubber, and the solvent is unevenly present in the silica-blended rubber, so that the silica-blended rubber is in a warped state. It refers to the state in which it does not become.

一般的に、溶媒等を用いてシリカ配合ゴムを膨潤させる際、シリカ配合ゴムに反りが生じる。このような反りが生じている状態では、シリカ配合ゴム中に溶媒等が万遍なく行き渡っておらず、シリカ配合ゴムと溶媒を好ましくは6時間以上、より好ましくは12時間以上共存させることにより、シリカ配合ゴム中に溶媒等が万遍なく行き渡り、上記反りも解消し、シリカ配合ゴム全体を均一に膨潤させたシリカ配合ゴムが調製できる。 Generally, when the silica-blended rubber is swollen with a solvent or the like, the silica-blended rubber is warped. In the state where such warpage occurs, the solvent and the like are not evenly distributed in the silica-blended rubber, and the silica-blended rubber and the solvent are allowed to coexist for preferably 6 hours or more, more preferably 12 hours or more. A silica-blended rubber can be prepared in which the solvent and the like are evenly distributed in the silica-blended rubber, the warp is eliminated, and the entire silica-blended rubber is uniformly swollen.

膨潤させたシリカ配合ゴムにおける膨潤度Sは、((シリカ配合ゴムの体積)+(膨潤に使用した化合物の体積))/(シリカ配合ゴムの体積)×100(%)で定義され、膨潤に使用した化合物(溶媒)の体積とは、シリカ配合ゴムがゴム中に蓄えた化合物(溶媒)の体積のことをいう。 The degree of swelling S in the swollen silica-blended rubber is defined as ((volume of silica-blended rubber) + (volume of compound used for swelling)) / (volume of silica-blended rubber) × 100 (%). The volume of the compound (solvent) used means the volume of the compound (solvent) stored in the rubber by the silica-blended rubber.

膨潤させたシリカ配合ゴムとしては、例えば、体積が100mmのシリカ配合ゴムを用いる場合、100mmのトルエンを添加した膨潤度が200%のものを用いたり、200mmのトルエンを添加した膨潤度が300%のものを用いたりすることができる。 As the swelled silica-blended rubber, for example, when a silica-blended rubber having a volume of 100 mm 3 is used, a rubber having a swelling degree of 200% to which 100 mm 3 of toluene is added or a swelling degree to which 200 mm 3 of toluene is added is used. 300% of the rubber can be used.

膨潤度Sは、本発明の効果が得られるようにシリカ配合ゴムの配合等に応じて適宜設定すれば良いが、例えば、200%以上が好ましく、300%以上がより好ましい。 The swelling degree S may be appropriately set according to the blending of the silica-blended rubber and the like so as to obtain the effect of the present invention. For example, 200% or more is preferable, and 300% or more is more preferable.

膨潤させたシリカ配合ゴムにX線又は中性子線を照射して散乱強度曲線Iswell(q)を得る方法としては、上述の散乱強度曲線Idry(q)を得る方法と同様の方法を適用できる。 As a method for obtaining the scattering intensity curve I swell (q) by irradiating the swollen silica-blended rubber with X-rays or neutrons, the same method as the above-mentioned method for obtaining the scattering intensity curve I dry (q) can be applied. ..

得られたIswell(q)を、下記式のように膨潤度Sで補正して、Icorr swell(q)を得る。これにより、試料間の膨潤度の違いを補正することができる。
corr swell(q)=Iswell(q)×膨潤度S/100
The obtained I swell (q) is corrected by the swelling degree S as shown in the following formula to obtain I corr swell (q). Thereby, the difference in the degree of swelling between the samples can be corrected.
I corr swell (q) = I swell (q) × swelling degree S / 100

最後に、本発明では、得られたIdry(q)とIcorr swell(q)との比Idry(q)/Icorr swell(q)から、好ましくは該比の波数ベクトルq依存性から、シリカ配合ゴム中のシリカアグリゲートの分散を評価する。 Finally, in the present invention, from the ratio I drive (q) / I color silica (q) of the obtained I drive (q) and I color silica (q), preferably from the wave vector q dependence of the ratio. , Evaluate the dispersion of silica aggregates in silica-blended rubber.

上述の通り、上記比Idry(q)/Icorr swell(q)は、フィラー凝集の分散の情報のみを含んでいるため、シリカ配合ゴム中のシリカアグリゲートのみの分散を定量的に評価できる。これにより、例えば、「ペイン効果」によるゴム全体におけるフィラー凝集体の分散を更に詳細に調べることができ、シリカアグリゲートに着目したシリカ分散の制御に用いることができる。 As described above, since the ratio I dry (q) / I corr swell (q) contains only the information on the dispersion of the filler aggregation, the dispersion of only the silica aggregate in the silica-blended rubber can be quantitatively evaluated. .. Thereby, for example, the dispersion of the filler aggregate in the entire rubber due to the "pain effect" can be investigated in more detail, and it can be used for controlling the silica dispersion focusing on the silica aggregate.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 The present invention will be specifically described based on examples, but the present invention is not limited thereto.

以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
(使用試薬)
トルエン:関東化学(株)製
BR:宇部興産(株)製のBR150B
シリカ:東ソー・シリカ(株)製のニプシルVN3
ステアリン酸:日油(株)製
シランカップリング剤1:General Electric Silicones社製の3−オクタノイルチオプロピルトリエトキシシラン
シランカップリング剤2:Momentive社製のNXT−Z45
硫黄:鶴見化学工業(株)製の粉末硫黄
加硫促進剤1:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアジルスルフェンアミド)
加硫促進剤2:大内新興化学工業(株)製のノクセラーD(N,N’−ジフェニルグアニジン)
Hereinafter, various chemicals used in Examples and Comparative Examples will be collectively described.
(Reagent used)
Toluene: BR 150B manufactured by Kanto Chemical Co., Ltd .: BR 150B manufactured by Ube Industries, Ltd.
Silica: Nipsil VN3 manufactured by Tosoh Silica Co., Ltd.
Stearic acid: silane coupling agent manufactured by NOF Corporation 1: 3-octanoylthiopropyltriethoxysilanesilane coupling agent manufactured by General Electric Silicones 2: NXT-Z45 manufactured by Momentive.
Sulfur: Powdered sulfur vulcanization accelerator manufactured by Tsurumi Chemical Industry Co., Ltd. 1: Noxeller NS (N-tert-butyl-2-benzothiazyl sulfenamide) manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
Vulcanization accelerator 2: Noxeller D (N, N'-diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.

Figure 0006935681
Figure 0006935681

(加硫ゴム組成物1、2の製造)
表1記載の配合内容にしたがって、硫黄および加硫促進剤を除く配合成分を、1.7リットルの密閉型バンバリーミキサーで3分間以上混練りし、140℃に達したら配合ゴムを排出し、ベース練りゴムとした。該ベース練りゴムと硫黄および加硫促進剤をオープンロールで混練りし、得られた混練り物を加硫して、加硫ゴム組成物1および2を得た。
(Production of Vulcanized Rubber Compositions 1 and 2)
According to the compounding contents shown in Table 1, the compounding ingredients excluding sulfur and the vulcanization accelerator are kneaded with a 1.7 liter sealed vanbury mixer for 3 minutes or more, and when the temperature reaches 140 ° C., the compounded rubber is discharged and the base is used. It was made of kneaded rubber. The base kneaded rubber, sulfur and a vulcanization accelerator were kneaded with an open roll, and the obtained kneaded product was vulcanized to obtain vulcanized rubber compositions 1 and 2.

<比較例:ペイン効果>
得られた加硫ゴム組成物について、アルファテクノロジーズ社製のRPA2000型試験機を用いて100℃、1Hzの条件下にて、歪0.5、5%のG′を測定し、以下の式でΔG′を求めた。
ΔG′=G′(0.5%歪)−G′(5%歪)
<Comparative example: Pain effect>
With respect to the obtained vulcanized rubber composition, G'with a strain of 0.5 and 5% was measured under the conditions of 100 ° C. and 1 Hz using an RPA2000 type testing machine manufactured by Alpha Technologies, and the following formula was used. ΔG'was calculated.
ΔG'= G'(0.5% strain) -G'(5% strain)

<実施例>
(サンプルの調製)
得られた加硫ゴム組成物を0.5mm厚にスライスし、非膨潤のゴム試料とした。
また、0.5mm厚の非膨潤のゴム試料に、下記式で定義する膨潤度Sが300%となるようにトルエンを添加し、密閉容器で12時間以上静置して膨潤させ、膨潤させたゴム試料とした。
膨潤度S(%)=((加硫ゴム組成物の体積+トルエンの体積)/加硫ゴム組成物の体積)×100
<Example>
(Sample preparation)
The obtained vulcanized rubber composition was sliced to a thickness of 0.5 mm to prepare a non-swelling rubber sample.
Toluene was added to a 0.5 mm thick non-swelling rubber sample so that the swelling degree S defined by the following formula was 300%, and the sample was allowed to stand in a closed container for 12 hours or more to swell and swell. It was used as a rubber sample.
Swelling degree S (%) = ((volume of vulcanized rubber composition + volume of toluene) / volume of vulcanized rubber composition) × 100

(測定)
非膨潤のゴム試料に関してはそのままの状態で、膨潤させたゴム試料に関しては密閉セルに入れた状態で、SAXS実験を実施した。なお、SAXSで使用した機器及び測定条件は以下に示す。
(measurement)
The SAXS experiment was carried out with the non-swelling rubber sample as it was and with the swollen rubber sample placed in a closed cell. The equipment and measurement conditions used in SAXS are shown below.

[SAXS装置]
財団法人高輝度光科学研究センター所有の大型放射光施設SPring−8のビームラインBL08B2付属のSAXS測定装置
[測定条件]
X線の輝度(8keV):9.5×1015photons/s/mrad/mm/0.1%bw
X線の光子数:10〜1010photons/s
試料から検出器までの距離:2.58m
[検出器]
高速2次元X線検出器 PILATUS 100K(Dectris社製)
[SAXS device]
SAXS measuring device attached to beamline BL08B2 of SPring-8, a large-scale radiation facility owned by the High Brightness Photon Science Research Center [Measurement conditions]
X-ray brightness (8 keV): 9.5 x 10 15 photos / s / mrad 2 / mm 2 / 0.1% bw
Number of X-ray photons: 10 9 to 10 photos / s
Distance from sample to detector: 2.58m
[Detector]
High-speed two-dimensional X-ray detector PILATUS 100K (manufactured by Vectors)

非膨潤のゴム試料から得られた散乱強度曲線Idry(q)と、膨潤させたゴム試料から得られた散乱強度曲線Iswell(q)を下記式のように膨潤度Sで補正したIcorr swell(q)とから、Idry(q)/Icorr swell(q)を求めた。
corr swell(q)=Iswell(q)×膨潤度S/100
A non-scattering intensity curve obtained from the rubber specimen swelling I dry (q), I corr corrected scattering intensity curve I swell obtained from rubber samples swell the (q) in degree of swelling S as shown in Equation since the swell (q), was determined I dry (q) / I corr swell (q).
I corr swell (q) = I swell (q) × swelling degree S / 100

実施例及び比較例の結果を表2及び図1に示す。 The results of Examples and Comparative Examples are shown in Table 2 and FIG.

Figure 0006935681
Figure 0006935681

表2及び図1から、異なるシランカップリング剤を用いているためシリカアグリゲートの分散が異なる加硫ゴム組成物1、2において、比較例のペイン効果では差が認められなかったが、実施例の本願方法であると、その差を検出できることがわかった。したがって、本願方法により、シリカ配合ゴム中のシリカアグリゲート分散のみを精度良く定量的に評価できることがわかった。 From Table 2 and FIG. 1, in the vulcanized rubber compositions 1 and 2 in which the dispersion of silica aggregates was different because different silane coupling agents were used, no difference was observed in the pain effect of the comparative example, but in Examples. It was found that the difference can be detected by the method of the present application. Therefore, it was found that only the silica aggregate dispersion in the silica-blended rubber can be evaluated accurately and quantitatively by the method of the present application.

Claims (2)

下記(式1)で表わされるqの領域において、シリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Idry(q)と、溶媒で膨潤させたシリカ配合ゴムにX線又は中性子線を照射して得られた散乱強度曲線Iswell(q)を下記式のように膨潤度Sで補正して得られたIcorr swell(q)との比Idry(q)/Icorr swell(q)から、シリカ配合ゴム中のシリカアグリゲートの分散を評価する方法。
corr swell(q)=Iswell(q)×膨潤度S/100
膨潤度S=((シリカ配合ゴムの体積+溶媒の体積)/シリカ配合ゴムの体積)×100
Figure 0006935681
In the region of q represented by the following (Equation 1), the scattering intensity curve I dry (q) obtained by irradiating the silica-blended rubber with X-rays or neutrons, and the X-rays on the silica-blended rubber swollen with a solvent. Alternatively, the scattering intensity curve I swell (q) obtained by irradiating a neutron beam is corrected by the swelling degree S as shown in the following equation, and the ratio to the I corr swell (q) obtained is I dry (q) / I. A method for evaluating the dispersion of silica aggregates in a silica-blended rubber from corr swell (q).
I corr swell (q) = I swell (q) × swelling degree S / 100
Swelling degree S = ((volume of silica-blended rubber + volume of solvent) / volume of silica-blended rubber) × 100
Figure 0006935681
前記qの領域が0.001<q<0.05Å−1を含む請求項1記載のシリカアグリゲートの分散を評価する方法。 The method for evaluating the dispersion of a silica aggregate according to claim 1 , wherein the region of q contains 0.001 <q <0.05 Å -1.
JP2017076769A 2017-04-07 2017-04-07 How to evaluate the dispersion of silica aggregates Active JP6935681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017076769A JP6935681B2 (en) 2017-04-07 2017-04-07 How to evaluate the dispersion of silica aggregates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017076769A JP6935681B2 (en) 2017-04-07 2017-04-07 How to evaluate the dispersion of silica aggregates

Publications (2)

Publication Number Publication Date
JP2018179643A JP2018179643A (en) 2018-11-15
JP6935681B2 true JP6935681B2 (en) 2021-09-15

Family

ID=64274977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017076769A Active JP6935681B2 (en) 2017-04-07 2017-04-07 How to evaluate the dispersion of silica aggregates

Country Status (1)

Country Link
JP (1) JP6935681B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470222B (en) * 2019-08-30 2021-08-24 佛山市顺德区美的饮水机制造有限公司 Device for measuring physical dimensions of an object and water drinking apparatus
CN111307844B (en) * 2020-04-03 2022-09-23 中国工程物理研究院核物理与化学研究所 Rubber structure determination method based on small-angle neutron scattering

Also Published As

Publication number Publication date
JP2018179643A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
KR102244343B1 (en) Method of evaluating neutron scattering length density
JP5969494B2 (en) Method for evaluating rebound resilience, hardness and energy loss of polymer materials
JP6367758B2 (en) Method for evaluating cross-link density of cross-linked rubber
JP2014102210A (en) Method of evaluating energy loss, chipping resistance, and abrasion resistance of polymeric material
JP6348295B2 (en) How to determine the chemical state of sulfur
JP6935681B2 (en) How to evaluate the dispersion of silica aggregates
JP6294673B2 (en) Polymer material analysis method
Nuñez-Briones et al. Preparation of PVC/Bi2O3 composites and their evaluation as low energy X-Ray radiation shielding
JP6613637B2 (en) Method for evaluating response characteristics of internal structure of polymer materials
JP2018096905A (en) Abrasion proof performance prediction method
JP7037935B2 (en) Reinforcing agent for polymer materials Hierarchical structure evaluation method
Penumadu et al. Sulfur dispersion quantitative analysis in elastomeric tire formulations by using high resolution X-Ray computed tomography
US10794893B2 (en) Method for estimating abrasion resistance and fracture resistance
JP6859602B2 (en) Evaluation method of scattering intensity
JP6769123B2 (en) Method for measuring crosslink density
JP7338104B2 (en) Method for evaluating the amount of bound rubber in vulcanized rubber
JP2015132518A (en) Method for investigating chemical state of sulfur
JP2020027084A (en) Crosslinked structure visualization method
JP6822160B2 (en) Evaluation method for sheet scraping of polymer composite materials
JP2022082292A (en) Method for analyzing polymer material
JP7275461B2 (en) Method for obtaining X-ray absorption spectrum and method for creating calibration curve
JP7024181B2 (en) Scattering intensity evaluation method
JP2023128031A (en) Evaluation method
JP7069874B2 (en) How to predict changes in wear resistance and fracture resistance
JP2024056359A (en) Method and system for evaluating crosslinked state of crosslinked material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210727

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210809

R150 Certificate of patent or registration of utility model

Ref document number: 6935681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150