JP5766061B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP5766061B2
JP5766061B2 JP2011170746A JP2011170746A JP5766061B2 JP 5766061 B2 JP5766061 B2 JP 5766061B2 JP 2011170746 A JP2011170746 A JP 2011170746A JP 2011170746 A JP2011170746 A JP 2011170746A JP 5766061 B2 JP5766061 B2 JP 5766061B2
Authority
JP
Japan
Prior art keywords
compressor
efficiency
compressors
air conditioning
conditioning load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011170746A
Other languages
Japanese (ja)
Other versions
JP2013036631A (en
Inventor
健史 森山
健史 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011170746A priority Critical patent/JP5766061B2/en
Publication of JP2013036631A publication Critical patent/JP2013036631A/en
Application granted granted Critical
Publication of JP5766061B2 publication Critical patent/JP5766061B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、複数の圧縮機を備えた空気調和機、特に複数の圧縮機を空調負荷に応じて制御する空気調和機に関するものである。   The present invention relates to an air conditioner including a plurality of compressors, and more particularly to an air conditioner that controls a plurality of compressors according to an air conditioning load.

従来の空気調和機として、例えばインバータ回路によって駆動される2台の圧縮機を備え、回路構成の簡易化および形状の小型化を図ったものがある(例えば、特許文献1参照)。   As a conventional air conditioner, for example, there is one that includes two compressors driven by an inverter circuit to simplify the circuit configuration and reduce the shape (for example, refer to Patent Document 1).

WO2005/124988号公報(第5頁、図3)WO2005 / 124988 (5th page, FIG. 3)

しかしながら、前述した従来の空気調和機では、冷媒回路上に2台の圧縮機を備えているものの、空調負荷に対し圧縮機の同一仕事量あたりの消費電力量、圧縮機効率の最適化を行うものではなかった。   However, although the above-described conventional air conditioner has two compressors on the refrigerant circuit, the power consumption per compressor same work and the compressor efficiency are optimized for the air conditioning load. It was not a thing.

本発明は、前記のような課題を解決するためになされたもので、空調負荷に対し圧縮機効率の最適化を図ることができる空気調和機を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain an air conditioner capable of optimizing the compressor efficiency with respect to the air conditioning load.

本発明に係る空気調和機は、複数台の圧縮機を有する室外機と、室内の温度を検出する室温センサーを有し、室外機とで冷媒回路を構成する室内機とを備えた空気調和機において、空調の運転開始の際、複数台の圧縮機のうち予め設定された1台の圧縮機の運転を開始し、室温センサーの検出温度と設定温度の温度差に基づく空調負荷が先に運転した圧縮機の効率よりも当該圧縮機を含む全圧縮機の効率の方が高くなる空調負荷以上となったときに、残りの圧縮機の運転を開始して、先に運転した圧縮機を含む全圧縮機における空調負荷に対する吐出冷媒流量に基づいて各圧縮機の平均効率を算出し、かつ、その平均効率を得たときの各圧縮機の効率にそれぞれ対応する回転数を算出し、各圧縮機をそれぞれの回転数で運転する制御回路を備えたものである。 An air conditioner according to the present invention includes an outdoor unit having a plurality of compressors, and an indoor unit that includes a room temperature sensor that detects a room temperature and forms a refrigerant circuit with the outdoor unit. in the time of operation start of the air conditioning, and starts the operation of the preset one compressor of the plurality of compressors, the operating air-conditioning load based on the temperature difference between the set temperature and the detected temperature of room temperature sensor previously When the efficiency of all compressors including the compressor becomes higher than the efficiency of the compressor, the remaining compressor starts operating when the air conditioning load becomes higher, including the compressor that has been operated first Calculate the average efficiency of each compressor based on the discharge refrigerant flow rate for the air conditioning load in all compressors, and calculate the number of rotations corresponding to the efficiency of each compressor when the average efficiency is obtained. A control circuit that operates the machine at each speed Those were.

本発明によれば、予め設定された圧縮機の運転により、室温センサーの検出温度と設定温度の温度差に基づく空調負荷が一定以上となったときに、残りの圧縮機の運転を開始して、先に運転した圧縮機を含む全圧縮機の運転による空調負荷に対し平均効率を算出し、かつ、その平均効率を得たときの各圧縮機の効率と対応する回転数をそれぞれ算出し、各圧縮機をそれぞれの回転数で運転する。これにより、空調負荷に対し各圧縮機の効率の最適化を図ることができ、そのため、全圧縮機の運転時の合計電流値を抑えることができ、空気調和機の消費電力量の低減を図ることができる。   According to the present invention, when the air conditioning load based on the temperature difference between the detected temperature of the room temperature sensor and the set temperature becomes a certain level or more due to the preset compressor operation, the remaining compressors are started to operate. , Calculate the average efficiency for the air conditioning load due to the operation of all the compressors including the compressor that was operated earlier, and calculate the rotation speed corresponding to the efficiency of each compressor when the average efficiency was obtained, Each compressor is operated at each speed. As a result, the efficiency of each compressor can be optimized with respect to the air conditioning load. Therefore, the total current value during operation of all the compressors can be suppressed, and the power consumption of the air conditioner can be reduced. be able to.

実施の形態に係る空気調和機を示す冷房運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of air_conditionaing | cooling operation which shows the air conditioner which concerns on embodiment. 図1に示す空気調和機の暖房運転時の冷媒回路図である。It is a refrigerant circuit figure at the time of the heating operation of the air conditioner shown in FIG. 実施の形態の空気調和機における空調負荷と圧縮機効率の相関を示す曲線図である。It is a curve figure which shows the correlation of the air-conditioning load and compressor efficiency in the air conditioner of embodiment. 実施の形態に係る空気調和機の圧縮機の制御を示すフローチャートである。It is a flowchart which shows control of the compressor of the air conditioner which concerns on embodiment.

図1は本発明の実施の形態に係る空気調和機を示す冷房運転時の冷媒回路図、図2は図1に示す空気調和機の暖房運転時の冷媒回路図である。
本実施の形態の空気調和機は、室外機100と、その室外機100に冷媒配管を介して接続された室内機110とで構成されている。室外機100は、例えば2台の圧縮機101、102、四方弁103、室外熱交換器104、膨張弁105、ストップバルブ106、107、回路基板108、室外用送風ファン、回路基板108等により構成されている。室内機110は、室内熱交換器111、室温センサーである例えば室温サーミスタ112、室内用送風ファン(図示せず)等により構成されている。
FIG. 1 is a refrigerant circuit diagram during cooling operation showing the air conditioner according to the embodiment of the present invention, and FIG. 2 is a refrigerant circuit diagram during heating operation of the air conditioner shown in FIG.
The air conditioner of the present embodiment includes an outdoor unit 100 and an indoor unit 110 connected to the outdoor unit 100 via a refrigerant pipe. The outdoor unit 100 includes, for example, two compressors 101 and 102, a four-way valve 103, an outdoor heat exchanger 104, an expansion valve 105, stop valves 106 and 107, a circuit board 108, an outdoor fan, and a circuit board 108. Has been. The indoor unit 110 includes an indoor heat exchanger 111, a room temperature sensor such as a room temperature thermistor 112, an indoor fan (not shown), and the like.

2台の圧縮機101、102は、吐出側が1本の冷媒配管を介して四方弁103の入口と接続され、吸込側が1本の冷媒配管を介して四方弁103の出口と接続されている。四方弁103の一方の入出口と他方の入出口との間には、室外熱交換器104、膨張弁105、ストップバルブ106、室内熱交換器111、ストップバルブ107が順次に冷媒配管により接続されている。   The two compressors 101 and 102 have a discharge side connected to the inlet of the four-way valve 103 via one refrigerant pipe, and a suction side connected to the outlet of the four-way valve 103 via one refrigerant pipe. An outdoor heat exchanger 104, an expansion valve 105, a stop valve 106, an indoor heat exchanger 111, and a stop valve 107 are sequentially connected by refrigerant piping between one inlet / outlet of the four-way valve 103 and the other inlet / outlet. ing.

四方弁103は、冷房と暖房のサイクルを切り替えるための弁である。四方弁103により冷房運転に切り替えられたときには、室外熱交換器104が凝縮器として、室内熱交換器111が蒸発器として動作する。また、暖房運転に切り替えられたときには、室外熱交換器104が蒸発器として、室内熱交換器111が凝縮器として動作する。膨張弁105は、流入する液冷媒を絞り量の調節に応じて膨張させ、冷媒の圧力・温度を下げる。ストップバルブ106には液状態の冷媒が流れ、ストップバルブ107にはガス状態の冷媒が流れる。これらストップバルブ106、107は、本製品の出荷時や移設時に弁が閉じられ、室内機110との接続後に弁が開放される。   The four-way valve 103 is a valve for switching between a cooling cycle and a heating cycle. When the cooling operation is switched by the four-way valve 103, the outdoor heat exchanger 104 operates as a condenser and the indoor heat exchanger 111 operates as an evaporator. Further, when switched to the heating operation, the outdoor heat exchanger 104 operates as an evaporator and the indoor heat exchanger 111 operates as a condenser. The expansion valve 105 expands the flowing liquid refrigerant according to the adjustment of the throttle amount, and lowers the pressure and temperature of the refrigerant. The liquid refrigerant flows through the stop valve 106, and the gas refrigerant flows through the stop valve 107. These stop valves 106 and 107 are closed when the product is shipped or moved, and the valves are opened after connection with the indoor unit 110.

室温サーミスタ112は、室内機110が設置された室内の温度を検出し、検出温度に応じた信号を回路基板108に出力する。回路基板108は、交流電圧を直流に変換するコンバータ回路、各圧縮機101、102を駆動する2つのインバータ回路、室温サーミスタ112からの信号をデジタルに変換するA/D変換器、2つのインバータ回路や膨張弁105、室外用送風ファン等を駆動・制御する制御回路108a、メモリ108b等が基板に実装されて構成されている。   The room temperature thermistor 112 detects the temperature of the room in which the indoor unit 110 is installed, and outputs a signal corresponding to the detected temperature to the circuit board 108. The circuit board 108 includes a converter circuit that converts AC voltage into DC, two inverter circuits that drive the compressors 101 and 102, an A / D converter that converts a signal from the room temperature thermistor 112 into digital, and two inverter circuits The control circuit 108a for driving and controlling the expansion valve 105, the outdoor blower fan, and the like, the memory 108b, and the like are mounted on the substrate.

前記のように構成された空気調和機において、冷房運転時の冷媒の流れは図1に示す矢印のように流れる。冷媒は、2台の圧縮機101、102により圧縮されて高温高圧のガス冷媒となり、四方弁103を介して室外熱交換器104へと流れ込む。そして、そのガス冷媒は、室外熱交換器104で室外用送風ファンにて送り込まれる室外空気と熱交換(放熱)され高圧の液冷媒となる。その後、その液冷媒は、膨張弁105により所定の圧力まで膨張されて低圧の気液二相の冷媒となり、ストップバルブ106を介して室内熱交換器111に流入する。室内熱交換器111に流入した気液二相の冷媒は、室内用送風ファンにより送り込まれる室内空気と熱交換(吸熱)され低温低圧のガス冷媒となり、ストップバルブ107、四方弁103を介して圧縮機101、102へと戻る。   In the air conditioner configured as described above, the flow of the refrigerant during the cooling operation flows as indicated by the arrows shown in FIG. The refrigerant is compressed by the two compressors 101 and 102 to become a high-temperature and high-pressure gas refrigerant, and flows into the outdoor heat exchanger 104 through the four-way valve 103. Then, the gas refrigerant exchanges heat (radiates heat) with the outdoor air sent by the outdoor fan in the outdoor heat exchanger 104 to become a high-pressure liquid refrigerant. Thereafter, the liquid refrigerant is expanded to a predetermined pressure by the expansion valve 105 to become a low-pressure gas-liquid two-phase refrigerant, and flows into the indoor heat exchanger 111 through the stop valve 106. The gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 111 exchanges heat (absorbs heat) with the indoor air sent by the indoor fan and becomes a low-temperature and low-pressure gas refrigerant, and is compressed through the stop valve 107 and the four-way valve 103. Return to the machines 101 and 102.

また、暖房運転時の冷媒の流れは図2に示す矢印のように流れる。冷媒は、前記と同様に2台の圧縮機101、102により圧縮されて高温高圧のガス冷媒となり、四方弁103、ストップバルブ107を介して室内熱交換器111へと流れ込む。そのガス冷媒は、室内熱交換器111で室内用送風ファンにて送り込まれる室内空気と熱交換(放熱)され高圧の液冷媒となる。その後、その液冷媒は、ストップバルブ106を通過し膨張弁105により所定の圧力まで膨張されて低圧の気液二相の冷媒となり、室外熱交換器104に流入する。室外熱交換器104に流入した気液二相の冷媒は、室外用送風ファンにより送り込まれる室外空気と熱交換(吸熱)され低温低圧のガス冷媒となり、四方弁103を介して圧縮機101、102へと戻る。   Further, the flow of the refrigerant during the heating operation flows as shown by the arrows in FIG. As described above, the refrigerant is compressed by the two compressors 101 and 102 to become a high-temperature and high-pressure gas refrigerant, and flows into the indoor heat exchanger 111 through the four-way valve 103 and the stop valve 107. The gas refrigerant exchanges heat (radiates heat) with indoor air sent by the indoor fan in the indoor heat exchanger 111 to become a high-pressure liquid refrigerant. Thereafter, the liquid refrigerant passes through the stop valve 106, is expanded to a predetermined pressure by the expansion valve 105, becomes a low-pressure gas-liquid two-phase refrigerant, and flows into the outdoor heat exchanger 104. The gas-liquid two-phase refrigerant that has flowed into the outdoor heat exchanger 104 exchanges heat (absorbs heat) with the outdoor air sent by the outdoor blower fan to become a low-temperature and low-pressure gas refrigerant, and the compressors 101 and 102 via the four-way valve 103. Return to.

図3は実施の形態の空気調和機における空調負荷と圧縮機効率の相関を示す曲線図である。その曲線図は、圧縮機の性能データを示し、例えば、室外機100に2台の小容量圧縮機が搭載された場合における1台運転時の空調負荷と圧縮機効率の相関を示すと共に、2台運転時の空調負荷と圧縮機効率の相関を示しており、また、2台の大容量圧縮機が搭載された場合における1台運転時の空調負荷と圧縮機効率の相関を示すと共に、2台運転時の空調負荷と圧縮機効率の相関を示している。なお、小容量圧縮機とは、ストロークボリューム(圧縮機が1回の回転で冷媒回路に送り込める冷媒量)が小さい圧縮機のことであり、大容量圧縮機とは、ストロークボリュームが大きい圧縮機のことである。   FIG. 3 is a curve diagram showing the correlation between the air conditioning load and the compressor efficiency in the air conditioner of the embodiment. The curve diagram shows the performance data of the compressor. For example, when two small-capacity compressors are mounted on the outdoor unit 100, the correlation between the air conditioning load and the compressor efficiency at the time of operation of one unit is shown. It shows the correlation between air conditioning load and compressor efficiency during stand-alone operation, and shows the correlation between air-conditioning load and compressor efficiency during single-unit operation when two large-capacity compressors are installed. The correlation between air conditioning load and compressor efficiency during stand operation is shown. The small capacity compressor is a compressor having a small stroke volume (the amount of refrigerant sent to the refrigerant circuit by one rotation of the compressor), and the large capacity compressor is a compressor having a large stroke volume. That is.

一般に、小容量圧縮機は、図3に示すように、空調できる負荷の限界が大容量圧縮機より低いが、空調できる負荷の範囲では大容量圧縮機よりも効率が高い。これは、圧縮機の加工ばらつきや機械損失にどうしても差異が出るためである。圧縮機は、ある回転数をピークに上に凸となる効率特性をもつため、その回転数を超えると効率が下がる一方である。しかし、圧縮機を2台運転した場合は、ある回転数から1台運転したときより効率が高くなる。1台あたりの回転数が下がる分、より高回転数に元々もっているピークが移動するためである。   In general, as shown in FIG. 3, the small capacity compressor has a lower limit of the load that can be air conditioned than the large capacity compressor, but is more efficient than the large capacity compressor in the range of the load that can be air conditioned. This is because there are inevitably differences in processing variations and mechanical loss of the compressor. Since the compressor has an efficiency characteristic that is convex upward at a certain rotation speed, the efficiency is decreasing when the rotation speed is exceeded. However, when two compressors are operated, the efficiency is higher than when one compressor is operated from a certain rotational speed. This is because the peak inherent to a higher rotational speed moves as the rotational speed per vehicle decreases.

図3より以下に示す2点が判る。
(1)空気調和機として対応させたい空調負荷の領域(主にその上限)が決まれば、それに応じた圧縮機を決定できるが、その際に、より小さい圧縮機を複数台で構成することにより、対応させたい空調負荷の領域における圧縮機効率の全体的な引き上げが可能である。
(2)圧縮機を複数台で構成した上で、例えば、空調負荷が小さい領域においては圧縮機は1台で運転し、空調負荷が一定以上となったときに圧縮機の運転台数を増やし、1台あたりの回転数を下げることで平均効率が上がるため、圧縮機効率の効果的な引き上げが可能である。
The following two points can be seen from FIG.
(1) Once the air conditioning load area (mainly the upper limit) to be supported as an air conditioner is determined, the compressor can be determined accordingly, but at that time, by configuring multiple smaller compressors It is possible to raise the overall efficiency of the compressor in the area of the air conditioning load to be handled.
(2) After configuring the compressor with a plurality of units, for example, in a region where the air conditioning load is small, the compressor is operated with one unit, and when the air conditioning load exceeds a certain level, the number of operating compressors is increased. Since the average efficiency increases by lowering the number of revolutions per unit, the compressor efficiency can be effectively increased.

本実施の形態においては、空気調和機の運転を開始する際、2台の圧縮機101、102のうち予め設定された例えば圧縮機101を運転し、空調負荷が一定以上となったとき、即ち1台目の圧縮機101の効率が低下したときに2台目の圧縮機102も駆動して、2台の圧縮機101、102の運転による空調負荷に対し最高となる平均効率を算出し、かつ、その平均効率を得たときの各圧縮機101、102の効率と対応する回転数でそれぞれ制御する。   In the present embodiment, when the operation of the air conditioner is started, when, for example, the preset compressor 101 of the two compressors 101 and 102 is operated and the air conditioning load becomes a certain level or more, that is, When the efficiency of the first compressor 101 decreases, the second compressor 102 is also driven to calculate the average efficiency that is highest for the air conditioning load due to the operation of the two compressors 101 and 102, And it controls by the rotation speed corresponding to the efficiency of each compressor 101,102 when the average efficiency is obtained, respectively.

前述の制御を実現するために、以下に示す制御パラメータを用い、制御パラメータから得られるデータが予めメモリ108bに格納されている。なお、本実施の形態における室外機100に搭載されている圧縮機101、102は、一例としてストロークボリュームが小さい小容量圧縮機が使用されているものとして説明する。
R1 圧縮機101の回転数
R2 圧縮機102の回転数
S1 圧縮機101のストロークボリューム
S2 圧縮機102のストロークボリューム
V1 圧縮機101の吐出冷媒流量
V2 圧縮機102の吐出冷媒流量
C1 圧縮機101の回転数R1に対応する効率
C2 圧縮機102の回転数R2に対応する効率
N 圧縮機の運転台数
Q 空調負荷
T1 リモコンの設定による室内の設定室温
T2 室温サーミスタ112により検出される室温
T3 空調能力が空調負荷に対して不足であることを示す温度閾値
T4 空調能力が空調負荷に対して過剰であることを示す温度閾値
ΔT T1とT2の温度差
In order to implement the above-described control, the following control parameters are used, and data obtained from the control parameters is stored in the memory 108b in advance. Note that the compressors 101 and 102 mounted on the outdoor unit 100 in the present embodiment will be described assuming that a small-capacity compressor having a small stroke volume is used as an example.
R1 Rotation speed of compressor 101 R2 Rotation speed of compressor 102 S1 Stroke volume of compressor 101 S2 Stroke volume of compressor 102 V1 Discharge refrigerant flow rate of compressor 101 V2 Discharge refrigerant flow rate of compressor 102 C1 Rotation of compressor 101 Efficiency corresponding to number R1 C2 Efficiency corresponding to rotation speed R2 of compressor 102 N Number of operating compressors Q Air conditioning load T1 Room setting room temperature by remote control setting T2 Room temperature detected by room temperature thermistor 112 T3 Air conditioning capacity is air conditioning Temperature threshold T4 indicating that the air conditioning capacity is excessive with respect to the air conditioning load ΔT T1 and T2 temperature difference

そして、前述の各パラメータは、下記のような関係になっている。
(1)Q∝(V1+V2) 空調負荷Qは、圧縮機101、102の吐出冷媒流量V1+V2と比例関係にあり、また、圧縮機101のみの吐出冷媒流量V1と比例関係にある。
(2)V1=S1×R1 圧縮機101の吐出冷媒流量V1は、ストロークボリュームS1と回転数R1の積である。
(3)V2=S2×R2 圧縮機102の吐出冷媒流量V2は、ストロークボリュームS2と回転数R2の積である。
(4)C1=F(R1) 圧縮機101の効率C1は、回転数R1の関数である。
(5)C2=F(R2) 圧縮機102の効率C2は、回転数R2の関数である。
(6)((C1+C2)/N)=F(V1+V2) Nは圧縮機の台数、C1、C2は式(4)、(5)より算出される。
The parameters described above have the following relationship.
(1) Q∝ (V1 + V2) The air conditioning load Q is proportional to the discharge refrigerant flow rate V1 + V2 of the compressors 101 and 102, and is proportional to the discharge refrigerant flow rate V1 of the compressor 101 only.
(2) V1 = S1 × R1 The discharge refrigerant flow rate V1 of the compressor 101 is the product of the stroke volume S1 and the rotational speed R1.
(3) V2 = S2 × R2 The refrigerant flow rate V2 discharged from the compressor 102 is the product of the stroke volume S2 and the rotational speed R2.
(4) C1 = F (R1) The efficiency C1 of the compressor 101 is a function of the rotational speed R1.
(5) C2 = F (R2) The efficiency C2 of the compressor 102 is a function of the rotational speed R2.
(6) ((C1 + C2) / N) = F (V1 + V2) N is the number of compressors, and C1 and C2 are calculated from equations (4) and (5).

前述したメモリ108bには、運転開始の際に最初に運転する圧縮機101の情報がデータとして格納され、圧縮機101、102のストロークボリュームS1、S2、前記(4)、(5)に基づいて作成された圧縮機101、102毎の回転数R1、R2と効率C1、C2の相関データが格納されている。また、メモリ108bには、小容量圧縮機の1台運転時の空調負荷・圧縮機効率の相関曲線、及び小容量圧縮機の2台運転時の空調負荷・圧縮機効率の相関曲線が性能データとして格納されている。また、メモリ108bには、前記の式(1)〜(5)及び式(6)が格納されている。   In the memory 108b described above, information on the compressor 101 that operates first at the start of operation is stored as data. Based on the stroke volumes S1 and S2 of the compressors 101 and 102 and the above (4) and (5). Stored is the correlation data of the rotation speeds R1 and R2 and the efficiency C1 and C2 for each of the created compressors 101 and 102. In addition, the memory 108b has performance data including a correlation curve of air conditioning load / compressor efficiency when operating one small capacity compressor and a correlation curve of air conditioning load / compressor efficiency when operating two small capacity compressors. Is stored as The memory 108b stores the equations (1) to (5) and the equation (6).

次に、図4に示すフローチャートに基づいて動作を説明する。
回路基板108上の制御回路108aは、リモコンの操作による運転開始の指令が室内機110を介して入力されると(S1)、最初に起動する圧縮機101の情報をメモリ108bから読み込む(S2)。次いで、制御回路108aは、メモリ108bから小容量圧縮機の1台運転時の空調負荷・圧縮機効率の相関曲線、及び小容量圧縮機の2台運転時の空調負荷・圧縮機効率の相関曲線を性能データとして読み込む(S3)。
Next, the operation will be described based on the flowchart shown in FIG.
The control circuit 108a on the circuit board 108 reads the information of the compressor 101 to be activated first from the memory 108b (S2) when the operation start command by the operation of the remote controller is input via the indoor unit 110 (S1). . Next, the control circuit 108a reads from the memory 108b a correlation curve of the air conditioning load / compressor efficiency when one small capacity compressor is operating, and a correlation curve of the air conditioning load / compressor efficiency when the two small capacity compressors are operating. Is read as performance data (S3).

その後、制御回路108aは、先に読み込んだ情報に基づいて圧縮機101を起動する(S4)。これ以降は、前述の性能データに基づいて、空調負荷が一定に達していないときに圧縮機101を運転し、空調負荷が一定以上となったときに2台の圧縮機101、102で運転する。   Thereafter, the control circuit 108a activates the compressor 101 based on the previously read information (S4). Thereafter, based on the performance data described above, the compressor 101 is operated when the air conditioning load has not reached a certain level, and is operated by the two compressors 101 and 102 when the air conditioning load has exceeded a certain level. .

制御回路108aは、S3において読み込んだ性能データから現在の空調負荷Qに対し最適な圧縮機101の効率を認識し、かつ、その効率と対応する回転数R1を、メモリ108bに格納された圧縮機101の回転数R1と効率の相関データから検索する。そして、制御回路108aは、その回転数R1で圧縮機101が運転するように制御し、吐出冷媒流量V1を増加させる。   The control circuit 108a recognizes the optimum efficiency of the compressor 101 with respect to the current air conditioning load Q from the performance data read in S3, and the compressor whose rotational speed R1 corresponding to the efficiency is stored in the memory 108b. A search is performed from the correlation data between the rotation speed R1 of 101 and the efficiency. Then, the control circuit 108a controls the compressor 101 to operate at the rotation speed R1, and increases the discharge refrigerant flow rate V1.

この時、制御回路108aは、圧縮機101の回転数R1に基づいて吐出冷媒流量V1を算出し(式(2)参照)、かつ、空調状態を認識して吐出冷媒流量V1と空調状態とを関連づけてメモリ108bに書き込む(S5)。空調状態とは、リモコンによって設定された室内の設定温度T1と室温サーミスタ112により検出された室温T2との温度差ΔTである。冷房運転時の温度差ΔTは、ΔT=T2−T1となり、暖房運転時の温度差ΔTは、ΔT=T1−T2となる。   At this time, the control circuit 108a calculates the discharge refrigerant flow rate V1 based on the rotation speed R1 of the compressor 101 (see equation (2)), recognizes the air conditioning state, and determines the discharge refrigerant flow rate V1 and the air conditioning state. The data is written in the memory 108b in association (S5). The air conditioning state is a temperature difference ΔT between the indoor set temperature T1 set by the remote controller and the room temperature T2 detected by the room temperature thermistor 112. The temperature difference ΔT during the cooling operation is ΔT = T2−T1, and the temperature difference ΔT during the heating operation is ΔT = T1−T2.

そして、制御回路108aは、メモリ108bに書き込んだ空調状態から圧縮機101の吐出冷媒流量V1が十分か否かを確認する(S6)。制御回路108aは、ΔT≧T3のときには、空調能力が空調負荷に対し不足しているとして吐出冷媒流量V1を増加させ、T4≦ΔT<T3のときには現在の吐出冷媒流量V1を維持し、ΔT<T4のときには、空調能力が空調負荷に対し過剰であるとして吐出冷媒流量V1を減少させる。なお、圧縮機101の吐出冷媒流量V1の変化は、冷凍サイクル制御においてハンチングの原因になりやすいため、T3とT4には適切な差を設けることが望ましい。   And the control circuit 108a confirms whether the discharge refrigerant | coolant flow volume V1 of the compressor 101 is enough from the air-conditioning state written in the memory 108b (S6). When ΔT ≧ T3, the control circuit 108a increases the discharged refrigerant flow rate V1 on the assumption that the air conditioning capacity is insufficient with respect to the air conditioning load. When T4 ≦ ΔT <T3, the control circuit 108a maintains the current discharged refrigerant flow rate V1, and ΔT < At T4, the discharged refrigerant flow rate V1 is decreased on the assumption that the air conditioning capability is excessive with respect to the air conditioning load. In addition, since the change of the discharge refrigerant | coolant flow volume V1 of the compressor 101 tends to cause a hunting in refrigeration cycle control, it is desirable to provide an appropriate difference between T3 and T4.

制御回路108aは、S6において決定した圧縮機101の吐出冷媒流量V1から回転数R1を算出する(S7)。例えば、制御回路108aは、現在の吐出冷媒流量V1を維持するときには現在の回転数R1を維持し、吐出冷媒流量V1を増加あるいは減少させるときには、式(2)を用いて吐出冷媒流量V1から回転数R1を算出する。そして、制御回路108aは、算出した回転数R1で圧縮機101が運転されるように制御する(S8)。この時、制御回路108aは、S6で決定した圧縮機101の吐出冷媒流量V1と比例関係にある現在の空調負荷Qを認識し、その空調負荷Qが一定以上でないときにはS5に戻って前述した動作を繰り返す。また、制御回路108aは、前述の吐出冷媒流量V1から認識した空調負荷Qが一定以上となったときに2台目の圧縮機102も起動する。   The control circuit 108a calculates the rotational speed R1 from the discharge refrigerant flow rate V1 of the compressor 101 determined in S6 (S7). For example, the control circuit 108a maintains the current rotational speed R1 when maintaining the current discharged refrigerant flow rate V1, and rotates from the discharged refrigerant flow rate V1 using the equation (2) when increasing or decreasing the discharged refrigerant flow rate V1. The number R1 is calculated. Then, the control circuit 108a performs control so that the compressor 101 is operated at the calculated rotation speed R1 (S8). At this time, the control circuit 108a recognizes the current air conditioning load Q that is proportional to the discharge refrigerant flow rate V1 of the compressor 101 determined in S6, and returns to S5 when the air conditioning load Q is not equal to or greater than a certain value, and the operation described above. repeat. The control circuit 108a also activates the second compressor 102 when the air conditioning load Q recognized from the discharge refrigerant flow rate V1 becomes equal to or greater than a certain level.

制御回路108aは、2台目の圧縮機102を起動したときに、前述の性能データから現在の空調負荷Qに対し最高となる効率(平均効率)を認識する。その平均効率は、式(4)、(5)より得られる圧縮機101、102の効率C1、C2を式(6)を用いて算出された値である。そして、制御回路108aは、その平均効率を得たときの圧縮機101、102の効率C1、C2とそれぞれ対応する回転数R1、R2を、メモリ108bに格納された圧縮機101、102毎の回転数R1、R2と効率C1、C2の各相関データから検索する。次いで、制御回路108aは、その回転数R1、R2でそれぞれの圧縮機101、102が運転されるように制御し、吐出冷媒流量V1+V2を増加させる(S4)。   When the second compressor 102 is started, the control circuit 108a recognizes the highest efficiency (average efficiency) for the current air conditioning load Q from the above performance data. The average efficiency is a value calculated by using the equation (6) for the efficiency C1, C2 of the compressors 101, 102 obtained from the equations (4), (5). Then, the control circuit 108a rotates the rotation speeds R1 and R2 corresponding to the efficiency C1 and C2 of the compressors 101 and 102 when the average efficiency is obtained, for each compressor 101 and 102 stored in the memory 108b. Search is performed from the correlation data of the numbers R1 and R2 and the efficiencies C1 and C2. Next, the control circuit 108a controls the compressors 101 and 102 to operate at the rotation speeds R1 and R2, and increases the discharged refrigerant flow rate V1 + V2 (S4).

この時、制御回路108aは、圧縮機101の回転数R1に基づいて吐出冷媒流量V1を算出すると共に、圧縮機102の回転数R2に基づいて吐出冷媒流量V2を算出して(式(2)、(3)参照)、合計の吐出冷媒流量V1+V2をメモリ108bに書き込む。また、制御回路108aは、前記と同様に空調状態を認識して吐出冷媒流量V1+V2と関連づけてメモリ108bに書き込む(S5)。   At this time, the control circuit 108a calculates the discharge refrigerant flow rate V1 based on the rotation speed R1 of the compressor 101, and calculates the discharge refrigerant flow rate V2 based on the rotation speed R2 of the compressor 102 (formula (2)). , (3)), the total discharged refrigerant flow rate V1 + V2 is written in the memory 108b. In addition, the control circuit 108a recognizes the air-conditioning state in the same manner as described above and writes it in the memory 108b in association with the discharged refrigerant flow rate V1 + V2 (S5).

そして、制御回路108aは、メモリ108bに書き込んだ空調状態から圧縮機101、102から吐出される吐出冷媒流量V1+V2が十分か否かを確認する(S6)。制御回路108aは、前記と同様にΔT≧T3のときには吐出冷媒流量V1+V2を増加させ、T4≦ΔT<T3のときには現在の吐出冷媒流量V1+V2を維持し、ΔT<T4のときには吐出冷媒流量V1+V2を減少させる。なお、圧縮機101、102の吐出冷媒流量V1+V2の変化は、冷凍サイクル制御においてハンチングの原因になりやすいため、T3とT4には適切な差を設けることが望ましい。また、一定時間以上を経過したらメモリ108bに書き込んだ吐出冷媒流量V1+V2とΔTから、吐出冷媒流量V1+V2を増減させるか否かを判定するようにしてもよい。   Then, the control circuit 108a checks whether or not the discharged refrigerant flow rate V1 + V2 discharged from the compressors 101 and 102 is sufficient from the air conditioning state written in the memory 108b (S6). As described above, the control circuit 108a increases the discharge refrigerant flow rate V1 + V2 when ΔT ≧ T3, maintains the current discharge refrigerant flow rate V1 + V2 when T4 ≦ ΔT <T3, and decreases the discharge refrigerant flow rate V1 + V2 when ΔT <T4. Let In addition, since the change of the refrigerant flow rate V1 + V2 discharged from the compressors 101 and 102 is likely to cause hunting in the refrigeration cycle control, it is desirable to provide an appropriate difference between T3 and T4. Further, when a predetermined time or more has elapsed, it may be determined whether or not to increase or decrease the discharge refrigerant flow rate V1 + V2 from the discharge refrigerant flow rate V1 + V2 and ΔT written in the memory 108b.

制御回路108aは、S6において決定した圧縮機101の吐出冷媒流量V1から回転数R1を算出すると共に、圧縮機102の吐出冷媒流量V2から回転数R2を算出する(S7)。例えば、制御回路108aは、現在の吐出冷媒流量V1+V2を維持するときには各圧縮機101、102の現在の回転数R1、R2を維持する。また、制御回路108aは、吐出冷媒流量V1+V2を増加あるいは減少させるときには、式(2)、(3)を用いて吐出冷媒流量V1、V2から各圧縮機101、102の回転数R1、R2を算出する。そして、制御回路108aは、算出した回転数R1で圧縮機101を運転すると共に、回転数R2で圧縮機102を運転する(S8)。この時、制御回路108aは、S6で決定した圧縮機101の吐出冷媒流量V1+V2と比例関係にある現在の空調負荷Qを認識し、その空調負荷Qが一定以上のときにはS5に戻って前述した動作を繰り返す。   The control circuit 108a calculates the rotation speed R1 from the discharge refrigerant flow rate V1 of the compressor 101 determined in S6, and calculates the rotation speed R2 from the discharge refrigerant flow rate V2 of the compressor 102 (S7). For example, the control circuit 108a maintains the current rotation speeds R1 and R2 of the compressors 101 and 102 when maintaining the current discharge refrigerant flow rate V1 + V2. Further, when increasing or decreasing the discharge refrigerant flow rate V1 + V2, the control circuit 108a calculates the rotational speeds R1 and R2 of the compressors 101 and 102 from the discharge refrigerant flow rates V1 and V2 using the equations (2) and (3). To do. Then, the control circuit 108a operates the compressor 101 at the calculated rotational speed R1, and operates the compressor 102 at the rotational speed R2 (S8). At this time, the control circuit 108a recognizes the current air conditioning load Q that is proportional to the discharge refrigerant flow rate V1 + V2 of the compressor 101 determined in S6. repeat.

以上のように本実施の形態によれば、予め設定された圧縮機101の運転により、室温サーミスタ112の検出温度と設定温度の温度差に基づく空調負荷が一定以上となったときに、2台目の圧縮機102も運転し、2台の圧縮機101、102の運転による空調負荷に対し最高となる平均効率を算出し、かつ、その平均効率を得たときの各圧縮機の効率C1、C2と対応する回転数R1、R2をそれぞれ算出し、各圧縮機101、102をそれぞれの回転数R1、R2で運転する。これにより、空調負荷Qに対し各圧縮機101、102の効率の最適化を図ることができ、そのため、各圧縮機101、102の運転時の合計電流値を抑えることができ、空気調和機の消費電力量の低減を図ることができる。   As described above, according to the present embodiment, when the air conditioning load based on the temperature difference between the detected temperature of the room temperature thermistor 112 and the set temperature becomes a certain level or more due to the operation of the compressor 101 set in advance, The first compressor 102 is also operated to calculate the average efficiency that is highest for the air conditioning load due to the operation of the two compressors 101 and 102, and the efficiency C1 of each compressor when the average efficiency is obtained, The rotation speeds R1 and R2 corresponding to C2 are calculated, and the compressors 101 and 102 are operated at the respective rotation speeds R1 and R2. As a result, the efficiency of the compressors 101 and 102 can be optimized with respect to the air conditioning load Q. Therefore, the total current value during operation of the compressors 101 and 102 can be suppressed. Reduction in power consumption can be achieved.

なお、実施の形態では、圧縮機101、102を同じ小容量圧縮機として説明したが、大容量圧縮機として説明してもよい。また、圧縮機101を小容量圧縮機とし、圧縮機102を大容量圧縮機として説明してもよい。   In the embodiment, the compressors 101 and 102 are described as the same small capacity compressor, but may be described as a large capacity compressor. Further, the compressor 101 may be described as a small capacity compressor, and the compressor 102 may be described as a large capacity compressor.

100 室外機、101、102 圧縮機、103 四方弁、104 室外熱交換器、105 膨張弁、106、107 ストップバルブ、108 回路基板、108a 制御回路、108b メモリ、110 室内機、111 室内熱交換器、112 室温サーミスタ。   100 outdoor unit, 101, 102 compressor, 103 four-way valve, 104 outdoor heat exchanger, 105 expansion valve, 106, 107 stop valve, 108 circuit board, 108a control circuit, 108b memory, 110 indoor unit, 111 indoor heat exchanger 112 Room temperature thermistor.

Claims (3)

複数台の圧縮機を有する室外機と、室内の温度を検出する室温センサーを有し、前記室外機とで冷媒回路を構成する室内機とを備えた空気調和機において、
空調の運転開始の際、複数台の圧縮機のうち予め設定された1台の圧縮機の運転を開始し、前記室温センサーの検出温度と設定温度の温度差に基づく空調負荷が先に運転した圧縮機の効率よりも当該圧縮機を含む全圧縮機の効率の方が高くなる空調負荷以上となったときに、残りの圧縮機の運転を開始して、先に運転した圧縮機を含む全圧縮機における前記空調負荷に対する吐出冷媒流量に基づいて各圧縮機の平均効率を算出し、かつ、その平均効率を得たときの各圧縮機の効率にそれぞれ対応する回転数を算出し、各圧縮機をそれぞれの回転数で運転する制御回路
を備えたことを特徴とする空気調和機。
In an air conditioner comprising an outdoor unit having a plurality of compressors, an indoor unit having a room temperature sensor for detecting the indoor temperature, and an indoor unit that constitutes a refrigerant circuit with the outdoor unit,
In operation start of the air conditioning, and starts the operation of the preset one compressor of the plurality of compressors, air-conditioning load based on the temperature difference between the detected temperature and the set temperature of the room sensor is operated earlier When the efficiency of all the compressors including the compressor becomes higher than the efficiency of the compressor, the operation of the remaining compressors starts when the air-conditioning load becomes higher, and all the compressors that have been operated earlier Calculate the average efficiency of each compressor based on the flow rate of refrigerant discharged to the air conditioning load in the compressor, and calculate the number of rotations corresponding to the efficiency of each compressor when the average efficiency is obtained. An air conditioner comprising a control circuit for operating the machine at each rotation speed.
前記制御回路は、予め空調負荷と圧縮機の効率との関係を示すデータを有し、予め設定された圧縮機を運転しているときに、空調負荷に対する圧縮機の効率を前記データから認識し、当該圧縮機を前記効率に対応して設定された回転数で運転することを特徴とする請求項1記載の空気調和機。   The control circuit has data indicating the relationship between the air conditioning load and the efficiency of the compressor in advance, and recognizes the efficiency of the compressor with respect to the air conditioning load from the data when operating a preset compressor. 2. The air conditioner according to claim 1, wherein the compressor is operated at a rotation speed set corresponding to the efficiency. 前記複数台の圧縮機は、容量が同じあるいは異なっていることを特徴とする請求項1又は2記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein the plurality of compressors have the same capacity or different capacities.
JP2011170746A 2011-08-04 2011-08-04 Air conditioner Expired - Fee Related JP5766061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170746A JP5766061B2 (en) 2011-08-04 2011-08-04 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170746A JP5766061B2 (en) 2011-08-04 2011-08-04 Air conditioner

Publications (2)

Publication Number Publication Date
JP2013036631A JP2013036631A (en) 2013-02-21
JP5766061B2 true JP5766061B2 (en) 2015-08-19

Family

ID=47886404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170746A Expired - Fee Related JP5766061B2 (en) 2011-08-04 2011-08-04 Air conditioner

Country Status (1)

Country Link
JP (1) JP5766061B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108302739A (en) * 2018-01-16 2018-07-20 武汉百世节能环保有限公司 A kind of humidity control system and temperature control method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6276004B2 (en) * 2013-11-19 2018-02-07 株式会社Nttファシリティーズ refrigerator
CN107490151A (en) * 2017-09-06 2017-12-19 重庆美的通用制冷设备有限公司 Water chiller-heater unit, air-conditioning system and its energy control method
WO2020165992A1 (en) * 2019-02-14 2020-08-20 日立ジョンソンコントロールズ空調株式会社 Air conditioning system, air conditioning apparatus, operation control method, and program
CA3134702C (en) * 2019-03-29 2024-03-19 Daikin Industries, Ltd. Refrigeration cycle device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470656A (en) * 1987-09-10 1989-03-16 Toshiba Corp Air conditioner
JPH1151505A (en) * 1997-08-01 1999-02-26 Matsushita Refrig Co Ltd Multiroom type air conditioner
JP2004003827A (en) * 2002-04-04 2004-01-08 Matsushita Electric Ind Co Ltd Refrigerating cycle device
JP2008209012A (en) * 2007-02-23 2008-09-11 Matsushita Electric Ind Co Ltd Refrigeration cycle device
JP5518431B2 (en) * 2009-10-30 2014-06-11 三洋電機株式会社 Refrigeration equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108302739A (en) * 2018-01-16 2018-07-20 武汉百世节能环保有限公司 A kind of humidity control system and temperature control method
CN108302739B (en) * 2018-01-16 2020-05-19 武汉百世节能环保有限公司 Temperature adjusting system and temperature adjusting method

Also Published As

Publication number Publication date
JP2013036631A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
KR101485601B1 (en) Air conditioner and method of controlling the same
WO2022002286A1 (en) Air conditioner and control method thereof
CN107869831B (en) Air conditioner and method of controlling the same
JP5094801B2 (en) Refrigeration cycle apparatus and air conditioner
JP5766061B2 (en) Air conditioner
KR20130031090A (en) Air conditioner and controlling method of the same
JP2012141113A (en) Air conditioning/water heating device system
KR102198326B1 (en) Air conditioner
JP2014190554A (en) Air conditioner
JP4475655B2 (en) Air conditioner
JP6749471B2 (en) Air conditioner
JP4389917B2 (en) Air conditioner
KR101702178B1 (en) Chiller system
JP6576468B2 (en) Air conditioner
JP6010294B2 (en) Air conditioner
WO2022059075A1 (en) Air conditioning apparatus
JP5884381B2 (en) Refrigeration unit outdoor unit
JP5895683B2 (en) Refrigeration equipment
JP6351409B2 (en) Air conditioner
KR102462872B1 (en) Air conditioner and Control method of the same
KR101075299B1 (en) Air conditioner and method of controlling the same
JP2016161235A (en) Refrigeration cycle device
JPWO2020065731A1 (en) Air conditioner
JP6840870B2 (en) Refrigeration cycle equipment
JP6415019B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R150 Certificate of patent or registration of utility model

Ref document number: 5766061

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees