JP5766028B2 - Radiocesium adsorption method - Google Patents

Radiocesium adsorption method Download PDF

Info

Publication number
JP5766028B2
JP5766028B2 JP2011113787A JP2011113787A JP5766028B2 JP 5766028 B2 JP5766028 B2 JP 5766028B2 JP 2011113787 A JP2011113787 A JP 2011113787A JP 2011113787 A JP2011113787 A JP 2011113787A JP 5766028 B2 JP5766028 B2 JP 5766028B2
Authority
JP
Japan
Prior art keywords
activated carbon
ozone
radioactive cesium
oxidized
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011113787A
Other languages
Japanese (ja)
Other versions
JP2012230096A (en
Inventor
相部 紀夫
紀夫 相部
Original Assignee
相部 紀夫
紀夫 相部
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 相部 紀夫, 紀夫 相部 filed Critical 相部 紀夫
Priority to JP2011113787A priority Critical patent/JP5766028B2/en
Publication of JP2012230096A publication Critical patent/JP2012230096A/en
Application granted granted Critical
Publication of JP5766028B2 publication Critical patent/JP5766028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、溶存するオゾン濃度が0.01〜5mg/Lの水中で少なくとも2カ月間液相酸化された活性炭を用いて流体中の放射性セシウムを吸着する方法に関する。   The present invention relates to a method of adsorbing radioactive cesium in a fluid using activated carbon that has been subjected to liquid phase oxidation for at least 2 months in water having a dissolved ozone concentration of 0.01 to 5 mg / L.

原子力発電所の事故などに伴って、放射性セシウム134、放射性セシウム137などが大気中や水中に漏出し環境汚染を引き起こす。放射性セシウム134、放射性セシウム137の半減期は放射性ヨウ素131の半減期である約8日に比べて約30年以上と非常に長く、長期間にわたって環境汚染を引き起こし、人体に対する被爆が続くために、流体中のこれら放射性セシウムを効率よく除去する方法の出現が強く望まれている。   In association with an accident at a nuclear power plant, radioactive cesium 134, radioactive cesium 137, etc. leak into the atmosphere or water, causing environmental pollution. The half-life of radioactive cesium 134 and radioactive cesium 137 is very long, about 30 years or more compared to about 8 days, which is the half-life of radioactive iodine 131, causing environmental pollution over a long period of time. The emergence of a method for efficiently removing these radioactive cesiums in fluids is strongly desired.

放射性セシウムの吸着剤としては、天然ゼオライト、イオン交換樹脂が知られており、活性炭は、放射性セシウムをほとんど吸着しないと言われている (非特許文献1) 。
従来、放射性セシウムを吸着・除去する方法として、たとえば、硝酸水溶液中の放射性セシウムを不溶性フェロシアン化物吸着剤で吸着する方法(特許文献1)、ゼオライトイオン交換法で放射性セシウムを除去する方法(特許文献2)などが知られている。これら先行技術は、前処理工程が複雑であり、放射性セシウム除去効率が悪く、かつ、吸着容量が小さいためにこれらの吸着剤を頻繁に交換しなければならず、被爆されやすい多くの作業を伴いない実用上問題が多かった。
また、酸化処理した繊維状活性炭を放射性核種吸着材として利用すること(特許文献3)も知られている。この特許文献によれば、繊維状活性炭を酸化する方法として、300〜700℃の温度で10分間〜5時間の空気酸化、100〜500ppmの気相オゾン酸化、過酸化水素による液相酸化などが開示されているが、このような過酷な条件で酸化された繊維状活性炭では、放射性セシウムの吸着速度が遅く、また放射性セシウムの吸着容量に限界があるために満足できる吸着材ではない。
本発明者は、平成18年5月頃からオゾン・活性炭法の高度浄水処理場で行なわれている活性炭に対する液相オゾン酸化現象を追跡調査するために、実験室で模擬的なテストを長期間かけて実施し、溶存するオゾンが約1mg/Lの極低濃度で酸化された活性炭をいろいろな角度から分析、検討した。その研究の一部を全国水道研究発表会で発表した。(非特許文献2)
As a radioactive cesium adsorbent, natural zeolite and ion exchange resin are known, and activated carbon is said to hardly adsorb radioactive cesium (Non-patent Document 1).
Conventionally, as a method for adsorbing and removing radioactive cesium, for example, a method of adsorbing radioactive cesium in an aqueous nitric acid solution with an insoluble ferrocyanide adsorbent (Patent Document 1), a method of removing radioactive cesium by a zeolite ion exchange method (patent) Document 2) is known. In these prior arts, the pretreatment process is complicated, the radioactive cesium removal efficiency is poor, and the adsorption capacity is small, so these adsorbents must be replaced frequently, and many operations are easily exposed. There were not many practical problems.
It is also known to use oxidized activated fibrous activated carbon as a radionuclide adsorbent (Patent Document 3). According to this patent document, as a method for oxidizing fibrous activated carbon, air oxidation at a temperature of 300 to 700 ° C. for 10 minutes to 5 hours, gas phase ozone oxidation at 100 to 500 ppm, liquid phase oxidation with hydrogen peroxide, etc. Although it is disclosed, fibrous activated carbon oxidized under such severe conditions is not a satisfactory adsorbent because the adsorption rate of radioactive cesium is slow and the adsorption capacity of radioactive cesium is limited.
In order to follow up the liquid-phase ozone oxidation phenomenon for activated carbon that has been carried out at the advanced water treatment plant using the ozone / activated carbon method from around May 2006, the present inventor has conducted a long-term simulation test in the laboratory. The activated carbon in which dissolved ozone was oxidized at an extremely low concentration of about 1 mg / L was analyzed and examined from various angles. Part of the research was presented at the National Waterworks Research Presentation. (Non-Patent Document 2)

特開平5−317697号公報JP-A-5-317697 特開平8−271692号公報JP-A-8-271692 特開平6−343856号公報JP-A-6-343856

水道協会誌、第80巻(第4号)、70〜85(2011)Journal of Water Supply Association, Volume 80 (No. 4), 70-85 (2011) 第59回全国水道研究発表会講演集「液相オゾン酸化に伴う 粒状活性炭の物性変化に関する検討」220〜221(平成20年5月)Proceedings of the 59th National Waterworks Research Conference “Study on changes in physical properties of granular activated carbon accompanying liquid phase ozone oxidation” 220-221 (May 2008)

本発明は、流体中の放射性セシウムを簡単な操作で効率よく吸着する方法を提供することを目的としている。   An object of the present invention is to provide a method for efficiently adsorbing radioactive cesium in a fluid by a simple operation.

本発明者は、前記の点などを鑑み鋭意研究した結果、極低濃度のオゾンが溶存した水中で長期間かけて非常にゆっくり液相酸化した活性炭が、流体中の放射性セシウムを効率よく吸着することを見出した。このように長時間かけて緩やかに酸化された活性炭は、短時間に過酷な条件で酸化された活性炭に比べて、不活性ガス気流中において250℃まで加熱した際に発生する炭酸ガス量が非常に多く、放射性セシウムを極めてよく吸着することを見出した。これらの知見を基にさらに研究を重ねた結果、本発明を完成した。
すなわち本発明は、
(1)溶存するオゾン濃度が0.01〜5mg/Lの水中で少なくとも2カ月間液相オゾン酸化された活性炭を放射性セシウムまたはその化合物を含有する流体と接触させることを特徴とする流体中の放射性セシウムまたはその化合物の吸着方法、
(2)溶存するオゾン濃度が0.01〜5mg/Lの水中で少なくとも2カ月間液相オゾン酸化された活性炭が少なくとも2カ月間オゾン・活性炭法高度浄水処理により液相オゾン酸化された活性炭である(1)に記載の放射性セシウムまたはその化合物の吸着方法、
である。
As a result of diligent research in view of the above points, the present inventor efficiently adsorbs radioactive cesium in a fluid by activated carbon that has been subjected to liquid phase oxidation very slowly over a long period of time in water in which extremely low concentration of ozone is dissolved. I found out. In this way, activated carbon that has been gently oxidized over a long period of time has a significantly higher amount of carbon dioxide gas when heated to 250 ° C. in an inert gas stream than activated carbon that has been oxidized under severe conditions in a short time. It was found that it adsorbs radioactive cesium very well. As a result of further research based on these findings, the present invention was completed.
That is, the present invention
(1) In a fluid characterized by contacting activated carbon that has been subjected to liquid phase ozone oxidation in water having a dissolved ozone concentration of 0.01 to 5 mg / L for at least 2 months with a fluid containing radioactive cesium or a compound thereof. Method for adsorbing radioactive cesium or a compound thereof,
(2) Activated carbon that has been subjected to liquid phase ozone oxidation for at least 2 months in water having a dissolved ozone concentration of 0.01 to 5 mg / L for at least 2 months by liquid phase ozone oxidation by ozone / activated carbon method advanced water purification treatment. A method of adsorbing radioactive cesium or a compound thereof according to (1),
It is.

本発明で使用される吸着剤は、木炭、コークス、石炭、ヤシ殻、樹脂、石油残渣などを原料として通常の方法により賦活され、その形状は、粉末状、破砕状、円柱状、球状、ハニカム状、繊維状などいかなるものでもよい。これらの活性炭を、溶存するオゾン濃度が0.01〜5mg/L、好ましくは0.05〜2mg/L、より好ましくは0.1〜1mg/Lの極低濃度である水中で少なくとも2カ月間、好ましくは1〜6年間に亘り非常にゆっくり液相酸化したもので、比表面積は、50m/g以上、好ましくは100〜2500m/gのものが本発明で用いられる吸着剤である。 The adsorbent used in the present invention is activated by a normal method using charcoal, coke, coal, coconut husk, resin, petroleum residue, etc. as a raw material, and its shape is powder, crushed, columnar, spherical, honeycomb Any shape such as a shape or a fiber shape may be used. These activated carbons have a dissolved ozone concentration of 0.01 to 5 mg / L, preferably 0.05 to 2 mg / L, more preferably 0.1 to 1 mg / L in water at a very low concentration for at least 2 months. preferably obtained by very oxidized slowly liquid phase over 1-6 years, specific surface area, 50 m 2 / g or more, adsorbent used preferably in the present invention include the 100~2500m 2 / g.

一般に活性炭を酸化する方法として、高温下に酸素含有ガス(空気)で酸化する方法、気相でオゾン酸化する方法、過酸化水素水で液相酸化する方法などがよく知られている。このような方法による酸化では、比較的に短時間に酸化された活性炭を得ることができるが、この場合活性炭が過度の酸化を受けるために、酸化過程で炭酸ガスが激しく発生し、活性炭のガス化(活性炭の重量減少)を伴う。このような過度に酸化処理された活性炭には、放射性セシウムを吸着する活性点(表面酸化物)が酸化過程で大部分失われ、放射性セシウムの吸着性能に限界があることが判明した。   In general, as a method of oxidizing activated carbon, a method of oxidizing with an oxygen-containing gas (air) at a high temperature, a method of oxidizing with ozone in the gas phase, a method of oxidizing with liquid hydrogen with aqueous hydrogen peroxide and the like are well known. In the oxidation by such a method, activated carbon that has been oxidized in a relatively short time can be obtained. In this case, the activated carbon is excessively oxidized, so that carbon dioxide gas is generated vigorously during the oxidation process. Accompanied by a decrease in the weight of activated carbon. It has been found that the active sites (surface oxides) that adsorb radioactive cesium are mostly lost during the oxidation process in such excessively oxidized activated carbon, and the adsorption performance of radioactive cesium is limited.

これに対して、溶存するオゾンが0.01〜5mg/Lの極低濃度である水中で、活性炭を非常にゆっくり酸化すると、酸化過程で炭酸ガスの発生が非常に少なく、したがって、酸化後の活性炭の表面には放射性セシウムを吸着する有効な活性点(表面酸化物)が多量に温存され、効率よく放射性セシウムを吸着することを見出した。
すなわち本発明者は、前述の第59回全国水道研究発表会で発表したように溶存するオゾン濃度が1mg/Lである水中で各種活性炭を最長120日間液相酸化した。その結果、いずれの場合も活性炭が緩慢に液相酸化されるためにこの反応中に活性炭の重量および表面酸化物がいずれも増加し続けた。
溶存するオゾン濃度が0.01〜5mg/Lという極低濃度オゾンで活性炭を非常に緩やかに液相酸化すると、酸化に伴う炭酸ガスの発生が非常に少なく、活性炭の表面に多量の酸化物が生成し、活性炭の重量は逆に増加することは、明白な事実である。このような緩慢な酸化条件下で活性炭を液相オゾン酸化することによって、活性炭の表面には放射性セシウムを吸着する有効な活性点(表面酸化物)が多量に温存され、放射性セシウムの吸着性能が飛躍的に向上することを新たに見出したのである。
On the other hand, when activated carbon is oxidized very slowly in water in which dissolved ozone is a very low concentration of 0.01 to 5 mg / L, the generation of carbon dioxide gas is very small during the oxidation process. It was found that a large amount of effective active sites (surface oxides) that adsorb radioactive cesium were preserved on the surface of the activated carbon, and the radioactive cesium was adsorbed efficiently.
That is, the present inventor liquid-phase oxidized various activated carbons in water having a dissolved ozone concentration of 1 mg / L for up to 120 days as announced at the 59th National Waterworks Research Conference. As a result, the weight of activated carbon and the surface oxide both continued to increase during this reaction due to the slow liquid phase oxidation of the activated carbon in each case.
When activated carbon is very slowly liquid-phase oxidized with an extremely low concentration of ozone of 0.01 to 5 mg / L, the amount of carbon dioxide that accompanies the oxidation is very small, and a large amount of oxide is present on the surface of the activated carbon. It is a clear fact that the weight of the activated carbon that is produced increases on the contrary. By liquid-phase ozone oxidation of activated carbon under such slow oxidation conditions, a large amount of effective active sites (surface oxides) that adsorb radioactive cesium are preserved on the surface of activated carbon, and the adsorption performance of radioactive cesium is improved. It was newly found that it can be improved dramatically.

活性炭に対する「比較的に短時間おける激しい酸化または過酷な酸化」と「長時間かける緩やかな極低濃度オゾンでの液相酸化」との間には、明らかな差異が生じる。そのためにいろいろな酸化方法で処理した活性炭を窒素気流中で250℃まで加熱し、その際に酸化活性炭試料から発生する炭酸ガス量を水酸化バリウム水溶液に吸収させて、炭酸バリウムとして沈澱させる方法で定量したところ、酸化活性炭試料からの炭酸ガス発生量(mg/g)と酸化活性炭試料の放射性セシウム吸着性能(mg/g)との間に密接な相関関係があることを見出した。   There is a clear difference between “violent or severe oxidation over a relatively short period of time” and “liquid phase oxidation with slow, very low concentration ozone over a long period of time” for activated carbon. For this purpose, activated carbon treated by various oxidation methods is heated to 250 ° C. in a nitrogen stream, and the amount of carbon dioxide gas generated from the oxidized activated carbon sample is absorbed by the barium hydroxide aqueous solution and precipitated as barium carbonate. As a result of quantification, it was found that there is a close correlation between the amount of carbon dioxide gas generated from the oxidized activated carbon sample (mg / g) and the radioactive cesium adsorption performance (mg / g) of the oxidized activated carbon sample.

引用の特許文献3における活性炭の酸化法と本発明おける酸化法とを8〜32メッシュの瀝青炭系活性炭A(BET比表面積1150m/g)およびヤシ殻系活性炭B(BET比表面積1250m/g)について実施した。
すなわち、
1.引用の特許文献3に基づく酸化法
(1)約180ppmオゾンで15日間気相酸化したもの、
(2)250〜600℃で20分間酸素酸化したもの、
(3)5重量%過酸化水素で80℃30分間液相酸化したもの
2.本発明に基づく酸化法
(1)水中の濃度オゾン約1.0mg/Lで40日間〜120日間液相酸化したもの、
(2)オゾン・活性炭法高度浄水処理で約3年間行われた液相オゾン(濃度約0.26mg/L)酸化したもの、
のそれぞれについて分析、検討を行った。
これらの酸化処理の実験については、比較例1〜3および実施例1、2で詳しく述べる。
The activated carbon oxidation method in the cited Patent Document 3 and the oxidation method in the present invention are 8 to 32 mesh bituminous coal activated carbon A (BET specific surface area 1150 m 2 / g) and coconut shell activated carbon B (BET specific surface area 1250 m 2 / g). ).
That is,
1. Oxidation method based on cited Patent Document 3 (1) Gas phase oxidation with about 180 ppm ozone for 15 days,
(2) Oxygen-oxidized at 250 to 600 ° C. for 20 minutes,
(3) Liquid phase oxidation with 5 wt% hydrogen peroxide at 80 ° C. for 30 minutes Oxidation method based on the present invention (1) Liquid phase oxidation with ozone concentration of about 1.0 mg / L in water for 40 days to 120 days,
(2) Ozone / activated carbon method Liquid phase ozone (concentration of about 0.26 mg / L) oxidized for about 3 years by advanced water purification treatment,
Each was analyzed and examined.
These oxidation treatment experiments will be described in detail in Comparative Examples 1 to 3 and Examples 1 and 2.

東京都をはじめ大都市の浄水場では、取水の品質の悪化に伴い、1992年頃から、オゾン・活性炭法による高度浄水処理、すなわち、たとえば、[凝集沈殿→砂濾過→オゾン処理→粒状活性炭処理→後塩素注入]という処理フローで高度浄水処理が行われている。これらの浄水場では、前処理された水はオゾン接触池において10000ppm以上のオゾンを含有する酸素ガスで接触酸化され、水中の有機化合物などを酸化分解した後、濃度0.1〜1.0mg/Lの溶存オゾン水を後置の粒状活性炭層に接触させる。この活性炭層での溶存オゾン水の接触時間は、通常5〜20分(空間速度3〜12L/L/時)である。このような高度浄水処理場での活性炭に対するオゾン負荷量は、1日当たり0.02〜0.50mg/g活性炭であり、極低オゾン負荷量で長期間(1〜6年間)かけて活性炭が非常にゆっくりと液相酸化される。すなわち、このような極低濃度オゾンで長期間かけて非常にゆっくり液相酸化された活性炭は、250℃までの加熱に際して炭酸ガスが極めて多量生成することを見出した。したがって、オゾン・活性炭法による高度浄水処理場で少なくとも2ヶ月間、極低濃度オゾンで液相酸化された活性炭は流体中の放射性セシウムを非常に効果的に吸着することを確認した。 In water treatment plants in Tokyo and other large cities, with the deterioration of water intake quality, from around 1992, advanced water treatment by the ozone / active carbon method, for example, [coagulation precipitation → sand filtration → ozone treatment → granular activated carbon treatment → Advanced water purification treatment is performed with a treatment flow of “post-chlorine injection”. In these water purification plants, the pretreated water is contact-oxidized with oxygen gas containing 10000 ppm or more of ozone in an ozone contact pond, and oxidatively decomposes organic compounds in water. L dissolved ozone water is brought into contact with the granular activated carbon layer afterwards. The contact time of dissolved ozone water in this activated carbon layer is usually 5 to 20 minutes (space velocity 3 to 12 L / L / hour). Ozone load for activated carbon with such advanced water treatment plants, daily 0.02~0.50mg / g - a charcoal, a long period of time at very low ozone load (1-6 year) over activated carbon Liquid phase oxidation very slowly. That is, it has been found that such activated carbon that has been subjected to liquid phase oxidation very slowly over a long period of time with extremely low concentration ozone produces a very large amount of carbon dioxide when heated to 250 ° C. Therefore, it was confirmed that activated carbon that was liquid-phase oxidized with ultra-low concentration ozone for at least two months in an advanced water treatment plant using the ozone / active carbon method adsorbs radioactive cesium in the fluid very effectively.

日本全国でオゾン・活性炭法による高度浄水処理場は多数稼働しており、これらの高度浄水処理場から毎年数千〜数万トンのオゾン液相酸化活性炭が排出されている。このオゾン液相酸化活性炭はそのままの状態で放射性セシウムを非常によく吸着するので、オゾン液相酸化活性炭を特に製造する必要がなく、排出されたそのままの状態で放射性セシウム吸着剤として利用できることは本発明の最大の特長である。
特に原子力発電所の事故時などでは、緊急的に放射性セシウムを吸着・除去するために多量の放射性セシウム吸着剤が必要となるので、高度浄水処理場から排出される極低濃度オゾン液相酸化活性炭が放射性セシウム吸着剤として代用できることは、漏洩した放射性セシウムによる環境汚染および人体への被爆防止などの点で意義が大きい。
Many advanced water treatment plants using the ozone / activated carbon method are in operation throughout Japan, and thousands of tens of thousands of tons of ozone liquid phase oxidized activated carbon are discharged from these advanced water treatment plants every year. This ozone liquid phase oxidized activated carbon adsorbs radioactive cesium very well as it is, so it is not necessary to produce ozone liquid phase oxidized activated carbon and it can be used as a radioactive cesium adsorbent as it is discharged. This is the greatest feature of the invention.
Particularly in the event of an accident at a nuclear power plant, a large amount of radioactive cesium adsorbent is necessary to urgently adsorb and remove radioactive cesium, so extremely low concentration ozone liquid phase oxidized activated carbon discharged from advanced water treatment plants That can be substituted as a radioactive cesium adsorbent is significant in terms of environmental pollution caused by leaked radioactive cesium and prevention of exposure to human bodies.

さらに、本発明においては、上記のようにして得られた極低濃度オゾン液相酸化活性炭(本発明の吸着剤)に放射性セシウムを含む流体を通常の方法で接触させることによって、流体中の放射性セシウムを効率よく吸着することができる。たとえば、本発明の吸着剤を充填した装置に放射性セシウムを含む流体を流通する方法などが考えられる。また、ガスマスクの充填剤として本発明の吸着剤を使用する方法や、空気清浄機のフィルターとして本発明の吸着剤を利用する方法、放射性セシウムを含む水が入った容器内に本発明の吸着剤を存在させて放射性セシウムを吸着する方法など、通常、よく行なわれている方法などが考えられる。
本発明の吸着剤を気相で使用する場合、セシウム吸着性能に対する温度、湿度の影響が小さいのも本発明の他の大きな特徴の一つである。すなわち、温度が120℃以下であれば、相対湿度75%以上でも良好な放射性セシウムの吸着性能を維持する。
Further, in the present invention, the radioactive material in the fluid is brought into contact with the ultra-low concentration ozone liquid phase oxidized activated carbon (the adsorbent of the present invention) obtained as described above by contacting the fluid containing radioactive cesium by an ordinary method. Cesium can be adsorbed efficiently. For example, a method of circulating a fluid containing radioactive cesium in an apparatus filled with the adsorbent of the present invention can be considered. Further, the method of using the adsorbent of the present invention as a gas mask filler, the method of using the adsorbent of the present invention as a filter of an air cleaner, the adsorption of the present invention in a container containing water containing radioactive cesium. Usually used methods such as a method of adsorbing radioactive cesium in the presence of an agent can be considered.
When the adsorbent of the present invention is used in a gas phase, one of the other major characteristics of the present invention is that the influence of temperature and humidity on the cesium adsorption performance is small. That is, when the temperature is 120 ° C. or lower, good radiocesium adsorption performance is maintained even at a relative humidity of 75% or higher.

本発明に使用される活性炭は、溶存するオゾン濃度が0.01〜5mg/Lの水中で少なくとも2カ月間液相酸化されたもので、その表面に放射性セシウムを選択的に、かつ、効率よく吸着する活性点・表面酸化物(250℃までの加熱に伴う炭酸ガス量)を多量に有するもので、BET比表面積が大きく、かつ、耐薬品性に優れており、かつ、流体中に共存する成分(水蒸気などを含む)の影響を受けにくく、流体中の放射性セシウムを効率よく吸着できる。特に、オゾン・活性炭法による高度浄水場では、水中のオゾン濃度0.1〜1mg/Lで少なくとも1年以上の期間液相酸化され、このようにして得られる活性炭は、放射性セシウムを吸着する方法に最適である。   The activated carbon used in the present invention has been subjected to liquid phase oxidation for at least 2 months in water having a dissolved ozone concentration of 0.01 to 5 mg / L, and selectively and efficiently adds radioactive cesium to the surface thereof. It has a large amount of active sites and surface oxides to adsorb (the amount of carbon dioxide that accompanies heating up to 250 ° C), has a large BET specific surface area, excellent chemical resistance, and coexists in the fluid. It is difficult to be affected by components (including water vapor) and can efficiently adsorb radioactive cesium in the fluid. In particular, in an advanced water purification plant using the ozone / active carbon method, liquid phase oxidation is performed at a ozone concentration of 0.1 to 1 mg / L in water for a period of at least one year, and the activated carbon thus obtained adsorbs radioactive cesium. Ideal for.

以下に実施例をあげて、本発明を具体的に説明する。実施例では、便宜上、放射性セシウム化合物の代わりに非放射性のCs55の化合物を使用し、模擬液および模擬ガスで実験した。これら模擬液および模擬ガスでの実験においても、両者は化学的には全く同じ性質を有し、Cs55を用いた実験でも放射性セシウム化合物を用いた結果と同じである。
[比較例1]
The present invention will be specifically described with reference to the following examples. In the examples, for the sake of convenience, a non-radioactive Cs55 compound was used in place of the radioactive cesium compound, and experiments were performed with a simulated liquid and a simulated gas. In the experiments with the simulated liquid and the simulated gas, both have the same chemical properties, and the experiment using Cs55 is the same as the result using the radioactive cesium compound.
[Comparative Example 1]

気相オゾン酸化:特許文献3に基づく酸化法(1)
内径94mmφのアクリル製カラムに8〜32メッシュの瀝青炭系活性炭A(BET比表面積1150m/g)および8〜32メッシュのヤシ殻系活性炭B(BET比表面積1250m/g)の各400mLの充填層を形成して、下部からオゾン約180ppm含有空気を流量5L/分で吹き込み、各活性炭を気相でオゾン酸化した。オゾン酸化時間は、いずれも15日間であった。活性炭Aおよび活性炭Bとこれらの気相オゾン酸化活性炭試料のa1およびb1につい
て、次の方法で250℃加熱に伴う「炭酸ガス発生量」および「放射性セシウムの吸着性能」を測定した。これらの測定結果は、表1の通りであった。
Gas phase ozone oxidation: oxidation method based on Patent Document 3 (1)
An acrylic column with an inner diameter of 94 mmφ is packed with 400 mL each of 8-32 mesh bituminous coal-based activated carbon A (BET specific surface area 1150 m 2 / g) and 8-32 mesh coconut shell-based activated carbon B (BET specific surface area 1250 m 2 / g). A layer was formed, and air containing about 180 ppm of ozone was blown from the bottom at a flow rate of 5 L / min, and each activated carbon was subjected to ozone oxidation in the gas phase. The ozone oxidation time was 15 days for all. With respect to activated carbon A and activated carbon B and a1 and b1 of these vapor-phase ozone-oxidized activated carbon samples, “carbon dioxide generation amount” and “adsorption performance of radioactive cesium” accompanying heating at 250 ° C. were measured by the following methods. These measurement results are shown in Table 1.

炭酸ガス発生量の測定法
内径10mmφ×長さ1000mmの石英カラムに活性炭試料500mgを入れ、試料の前後は十分に乾燥させた石英ガラスウールに固定し、電気環状炉にセットした。また石英カラム両端をゴム栓で蓋をしてゴム栓には窒素を導入および排出するための孔をあける。50ml/分の流速で窒素を石英カラムに流しながら、100℃まで加熱昇温し、次いで、出口ガスを10m-mol/L水酸化バリウム水溶液100mLを入れた吸収瓶に接続し、100℃/時間の昇温速度で250℃まで加熱昇温した。250℃になってから、さらに10分間250℃で保持し、発生した炭酸ガスを水酸化バリウム水溶液に吸収させ、炭酸バリウムとして沈澱させ、上済み液をサンプリングして塩酸で中和滴定して、残留水酸化バリウム量から発生炭酸ガス量(mg/g)を求める。
Measurement method of carbon dioxide generation amount 500 mg of the activated carbon sample was put in a quartz column having an inner diameter of 10 mmφ × 1000 mm in length, and the sample was fixed on quartz glass wool that had been sufficiently dried and set in an electric annular furnace. Also, both ends of the quartz column are covered with rubber stoppers, and holes for introducing and discharging nitrogen are made in the rubber stoppers. While flowing nitrogen through the quartz column at a flow rate of 50 ml / min, the temperature was raised to 100 ° C., and then the outlet gas was connected to an absorption bottle containing 100 mL of a 10 m-mol / L barium hydroxide aqueous solution. The temperature was raised to 250 ° C. After reaching 250 ° C., hold at 250 ° C. for another 10 minutes, absorb the generated carbon dioxide gas in an aqueous barium hydroxide solution, precipitate it as barium carbonate, sample the supernatant and neutralize and titrate with hydrochloric acid, The amount of generated carbon dioxide (mg / g) is determined from the amount of residual barium hydroxide.

セシウムの吸着性能の測定法
活性炭試料を乳鉢で微粉砕した100mgをCsOH−25mg(Csイオン22mg)を含む水溶液15mLに懸濁させて、25℃で2時間振とうさせた後、ガラス濾過器で濾過した。濾液5mL中に残留するCsイオンを測定してCsの吸着性能(mg/g)を算出した。
Method of measuring cesium adsorption performance 100 mg of activated carbon sample finely pulverized in a mortar was suspended in 15 mL of an aqueous solution containing CsOH-25 mg (Cs ions 22 mg), shaken at 25 ° C. for 2 hours, and then filtered with a glass filter. Filtered. Cs ions remaining in 5 mL of the filtrate were measured to calculate Cs adsorption performance (mg / g).

表1からも明らかなように、オゾン酸化した活性炭のCs吸着性能は、酸化処理をしなかった活性炭に比してかなり高かった。
[比較例2]
As is clear from Table 1, the Cs adsorption performance of the ozone-oxidized activated carbon was considerably higher than that of the activated carbon that was not oxidized.
[Comparative Example 2]

酸素酸化:特許文献3に基づく酸化法(2)
比較例1の活性炭Aの各30gを55mmφの石英ガラス管に充填して、それぞれ250、400、500、及び600℃の各温度でO−10.0vol%含有のNガスを線流速5cm/秒で20分間流通した後、Nガス中で常温まで冷却して、酸化活性炭a2、a3、a4およびa5を得た。これらの試料について比較例1と同様な方法で、「炭酸ガス発生量」および「放射性セシウムの吸着性能」を測定した結果は、表2の通りであった。すなわち酸素酸化では、処理温度の如何を問わず、Cs吸着性能はそれほど高くはない。
Oxygen oxidation: oxidation method based on Patent Document 3 (2)
Each 30g of activated carbon A of Comparative Example 1 was filled in a quartz glass tube 55Mmfai, respectively 250,400,500, and O 2 -10.0vol% content of N 2 gas linear flow rate 5cm at each temperature of 600 ° C. After being circulated for 20 minutes at / second, the mixture was cooled to room temperature in N 2 gas to obtain oxidized activated carbons a2, a3, a4 and a5. The results of measuring “carbon dioxide generation amount” and “adsorption performance of radioactive cesium” by the same method as in Comparative Example 1 for these samples are shown in Table 2. That is, in oxygen oxidation, Cs adsorption performance is not so high regardless of the treatment temperature.

[比較例3] [Comparative Example 3]

過酸化水素水酸化:特許文献3に基づく酸化法(3)
500mLのビーカーに5重量%の過酸化水素水100mLを入れ、80℃の水浴中で80℃に加熱した。この過酸化水素水に比較例1の活性炭Aの10gを入れ攪拌しながら30分間酸化した。酸化後の活性炭をろ過して100℃で乾燥
した。この酸化処理活性炭試料a6について比較例1と同様な方法で、「炭酸ガス発生量」および「放射性セシウムの吸着性能」を測定した結果は、それぞれ17mg/gおよび32mg/gであった。
Hydrogen peroxide hydroxylation: oxidation method based on Patent Document 3 (3)
A 500 mL beaker was charged with 100 mL of 5 wt% hydrogen peroxide and heated to 80 ° C in an 80 ° C water bath. In this hydrogen peroxide solution, 10 g of the activated carbon A of Comparative Example 1 was added and oxidized with stirring for 30 minutes. The oxidized activated carbon was filtered and dried at 100 ° C. With respect to this oxidized activated carbon sample a6, the “carbon dioxide generation amount” and “adsorption performance of radioactive cesium” were measured in the same manner as in Comparative Example 1, and the results were 17 mg / g and 32 mg / g, respectively.

極低濃度オゾン液相酸化(その1):本発明に基づく酸化法(1)
内径94mmφのアクリル製カラムに比較例1の活性炭Aと活性炭Bの各400mLの充填層を形成して、この上部からオゾン1.0mg/L含有の蒸留水を線流速1cm/分で40日間、60日間、80日間、100日間および120日間流通し、活性炭を極低濃度のオゾンで非常にゆっくり液相酸化し、酸化活性炭試料a40、a60、a80、a100およびa120とb40、b60、b80、b100およびb120をそれぞれ得た。なお、この実験での活性炭に対するオゾン負荷量は1日当たり約0.45mg/g活性炭に相当する。これらの酸化活性炭試料a40〜a120とb40〜b120について、比較例1と同様な方法で、炭酸ガス発生量および放射性セシウムの吸着性能を測定した結果は、表3のとおりであった。
Extremely low concentration ozone liquid phase oxidation (part 1): oxidation method based on the present invention (1)
A packed bed of 400 mL each of activated carbon A and activated carbon B of Comparative Example 1 was formed on an acrylic column having an inner diameter of 94 mmφ, and distilled water containing 1.0 mg / L of ozone was added from this top for 40 days at a linear flow rate of 1 cm / min. Circulated for 60 days, 80 days, 100 days, and 120 days, and the activated carbon was subjected to liquid phase oxidation very slowly with extremely low concentration ozone, and oxidized activated carbon samples a40, a60, a80, a100 and a120 and b40, b60, b80, b100. And b120 were obtained respectively. In addition, the ozone load with respect to the activated carbon in this experiment is equivalent to about 0.45 mg / g - activated carbon per day. For these oxidized activated carbon samples a40 to a120 and b40 to b120, the amount of carbon dioxide gas generated and the adsorption performance of radioactive cesium were measured in the same manner as in Comparative Example 1, and the results are shown in Table 3.

活性炭Aと活性炭Bに対して溶存オゾン濃度1.0mg/Lの水中で40日間〜120日間かけて非常にゆっくり液相酸化した活性炭について炭酸ガス発生量および放射性セシウムの吸着性能を測定した結果、両者間には強い相関関係があることが明白である。いずれの活性炭に関しても溶存オゾン濃度1.0mg/Lの水中で40日間の液相オゾン酸化では、放射性セシウムの吸着性能が十分でなく、少なくとも60日間液相オゾン酸化することで、はじめて放射性セシウムの吸着性能が著しく向上することがわかる。 As a result of measuring the carbon dioxide generation amount and the adsorption performance of radioactive cesium for activated carbon that was very slowly liquid phase oxidized over 40 days to 120 days in water having a dissolved ozone concentration of 1.0 mg / L with respect to activated carbon A and activated carbon B, It is clear that there is a strong correlation between the two. As for any activated carbon, in the liquid phase ozone oxidation for 40 days in water having a dissolved ozone concentration of 1.0 mg / L, the adsorption performance of radioactive cesium is not sufficient, and the liquid phase ozone oxidation is not performed for at least 60 days. It can be seen that the adsorption performance is remarkably improved.

極低濃度オゾン液相酸化(その2):本発明に基づく酸化法(2)
比較例1の活性炭Aをオゾン・活性炭法浄水場で約3年間使用した。この浄水場においては、活性炭の充填層厚さ約2.5m、通水速度約260m/日(空間速度約4L/L/時)、オゾン濃度約0.26mg/Lで、活性炭Aに対するオゾン負荷量は1日当たり約0.045mg/g活性炭であった。この酸化活性炭試料a7について、比較例1と同様な方法で、「炭酸ガス発生量」および「放射性セシウムの吸着性能」を測定した結果は、それぞれ 28mg/gおよび90mg/gであった。
以上、比較例1〜3および実施例1〜2の結果から、酸化活性炭各試料に関して「炭酸ガス発生量」と「放射性セシウムの吸着性能」との間には、おおむね良好な相関関係が存在する。すなわち、本発明の実施例1〜2から「炭酸ガス発生量」が24mg/g以上の酸化活性炭試料では「放射性セシウムの吸着性能」は、90mg/g以上であることがわかる。他方、比較例1〜3の酸化活性炭である対照試料に関する実験結果では、「炭酸ガス発生量」は20mg/g以下で「放射性セシウムの吸着性能」は68mg/g以下となり、放射性セシウムの吸着性能が著しく劣る。
Extremely low concentration ozone liquid phase oxidation (part 2): oxidation method based on the present invention (2)
The activated carbon A of Comparative Example 1 was used at an ozone / activated carbon method water purification plant for about 3 years. In this water purification plant, the activated carbon packed bed thickness is about 2.5 m, the water flow rate is about 260 m / day (space velocity is about 4 L / L / hour), and the ozone concentration is about 0.26 mg / L. the amount per day to about 0.045 mg / g - was activated carbon. With respect to this oxidized activated carbon sample a7, the “carbon dioxide generation amount” and the “adsorption performance of radioactive cesium” were measured in the same manner as in Comparative Example 1, and the results were 28 mg / g and 90 mg / g, respectively.
As described above, from the results of Comparative Examples 1 to 3 and Examples 1 and 2, there is generally a good correlation between “carbon dioxide generation amount” and “adsorption performance of radioactive cesium” with respect to each sample of the oxidized activated carbon. . That is, it can be seen from Examples 1-2 of the present invention that the “carbon dioxide generation amount” of the oxidized activated carbon sample of 24 mg / g or more has “radioactive cesium adsorption performance” of 90 mg / g or more. On the other hand, in the experimental results on the control sample which is the oxidized activated carbon of Comparative Examples 1 to 3, the “carbon dioxide generation amount” is 20 mg / g or less and the “adsorption performance of radioactive cesium” is 68 mg / g or less, and the adsorption performance of radioactive cesium. Is significantly inferior.

比較例1の活性炭Aおよび活性炭B、これらの気相オゾン酸化活性炭試料a1およびb1、比較例2の酸素酸化活性炭試料a2、a3、a4およびa5、比較例3の過酸化水素水酸化活性炭試料a6、実施例1の極低濃度オゾン液相酸化活性炭a120およびb120、さらに実施例2の極低濃度オゾン液相酸化活性炭a7について気相流通法による放射性セシウムの吸着実験を行った。
すなわち、上記の各酸化活性炭試料中の含水率を約30重量%に調整した後、4cmφのカラムに層長が10cmになるように充填した。このカラムにCsOH−0.01mg/L含有の大気(温度25℃・相対湿度85%)を3L/分で流通して、カラムから流出するガス中のCsOH濃度を測定して、CsOH破過率が5%になる時間を調べた。その結果を表4に示した。
Activated carbon A and activated carbon B of Comparative Example 1, gas phase ozone oxidized activated carbon samples a1 and b1, oxygen oxidized activated carbon samples a2, a3, a4 and a5 of Comparative Example 2, hydrogen peroxide-oxygenated activated carbon sample a6 of Comparative Example 3 Experiments on the adsorption of radioactive cesium by the vapor-phase flow method were performed on the ultra-low concentration ozone liquid phase oxidized activated carbons a120 and b120 of Example 1 and the extremely low concentration ozone liquid phase oxidized activated carbon a7 of Example 2.
That is, after adjusting the water content in each oxidized activated carbon sample to about 30% by weight, it was packed in a 4 cmφ column so that the layer length was 10 cm. CsOH-0.01 mg / L-containing air (temperature: 25 ° C., relative humidity: 85%) was passed through this column at 3 L / min, and the CsOH concentration in the gas flowing out from the column was measured. The time when 5% was obtained was examined. The results are shown in Table 4.

本実施例からも前記で述べた「炭酸ガス発生量」と液相での「放射性セシウムの吸着性能」との関係と同様に、気相での「CsOH破過吸着性能」に関しても「炭酸ガス発生量」が24mg/g以上の酸化活性炭である本発明の試料a120、a7およびb120は、カラムからCsOHが長時間破過せず、放射性をセシウムを非常によく吸着することが明らかである。
すなわち、比較的に短時間で過酷な酸化を受けた酸化活性炭試料(対照)では、「炭酸ガス発生量」が、20mg/g以下となり、放射性セシウムを吸着する能力が非常に劣る。
これに対して、溶存するオゾン濃度が0.01〜1mg/Lという極低濃度オゾンで非常に緩やかに液相酸化された酸化活性炭試料(本発明)では、「炭酸ガス発生量」が、24mg/g以上となり、放射性セシウムを吸着する能力が飛躍的に向上することが確認された。
Similarly to the relationship between the “carbon dioxide generation amount” described above and the “adsorption performance of radioactive cesium” in the liquid phase, the “carbon dioxide gas breakthrough adsorption performance” in the gas phase is also referred to as “carbon dioxide gas”. It is clear that the samples a120, a7 and b120 of the present invention, which are oxidized activated carbon having a “generated amount” of 24 mg / g or more, do not break through CsOH from the column for a long time and adsorb cesium very well.
That is, in the oxidized activated carbon sample (control) subjected to severe oxidation in a relatively short time, the “carbon dioxide generation amount” is 20 mg / g or less, and the ability to adsorb radioactive cesium is very inferior.
On the other hand, in the oxidized activated carbon sample (invention) that was very gently liquid phase oxidized with an extremely low concentration ozone of 0.01 to 1 mg / L, the “carbon dioxide generation amount” was 24 mg. It was confirmed that the ability to adsorb radioactive cesium dramatically improved.

本発明においては、極低濃度オゾン液相酸化活性炭に放射性セシウムを含む流体を通常の方法で接触させることによって、流体中の放射性セシウムを効率よく吸着することができる。また、ガスマスクの充填剤として本発明の吸着剤を使用する方法や、空気清浄機のフィルターとして本発明の吸着剤を利用する方法、放射性セシウムを含む水が入った容器内に本発明の吸着剤を存在させて放射性セシウムを吸着する方法などがある。   In the present invention, the radioactive cesium in the fluid can be efficiently adsorbed by bringing the fluid containing radioactive cesium into contact with the ultra-low concentration ozone liquid phase oxidized activated carbon by a normal method. Further, the method of using the adsorbent of the present invention as a gas mask filler, the method of using the adsorbent of the present invention as a filter of an air cleaner, the adsorption of the present invention in a container containing water containing radioactive cesium. There is a method of adsorbing radioactive cesium in the presence of an agent.

Claims (1)

溶存するオゾン濃度が0.01〜5mg/Lの水中で少なくとも2カ月間液相オゾン酸化された活性炭を放射性セシウムまたはその化合物を含有する流体と接触させることを特徴とする流体中の放射性セシウムまたはその化合物の吸着方法。 Radioactive cesium in a fluid characterized by contacting activated carbon that has been subjected to liquid phase ozone oxidation in water having a dissolved ozone concentration of 0.01 to 5 mg / L for at least 2 months with a fluid containing radioactive cesium or a compound thereof, or Adsorption method of the compound.
JP2011113787A 2011-04-13 2011-05-20 Radiocesium adsorption method Expired - Fee Related JP5766028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011113787A JP5766028B2 (en) 2011-04-13 2011-05-20 Radiocesium adsorption method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011088920 2011-04-13
JP2011088920 2011-04-13
JP2011113787A JP5766028B2 (en) 2011-04-13 2011-05-20 Radiocesium adsorption method

Publications (2)

Publication Number Publication Date
JP2012230096A JP2012230096A (en) 2012-11-22
JP5766028B2 true JP5766028B2 (en) 2015-08-19

Family

ID=47431741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011113787A Expired - Fee Related JP5766028B2 (en) 2011-04-13 2011-05-20 Radiocesium adsorption method

Country Status (1)

Country Link
JP (1) JP5766028B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872186B2 (en) * 2011-05-16 2016-03-01 相部 紀夫 Production method of radioactive metal adsorbent and adsorption method of radioactive metal

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01241737A (en) * 1988-03-22 1989-09-26 Denki Kagaku Kogyo Kk Oxygen ion beam producing device
JP3290505B2 (en) * 1993-06-03 2002-06-10 日本原子力研究所 Radionuclide adsorbent
JPH0915389A (en) * 1995-06-27 1997-01-17 Japan Atom Energy Res Inst Radioactive nuclide adsorbent and its production method and volume reduction processing method for radioactive waste
JPH09299968A (en) * 1996-05-15 1997-11-25 Hitachi Ltd Advanced water purifying plant
JP2000202472A (en) * 1999-01-13 2000-07-25 Toshiba Corp Ozone treatment device
JP2001079573A (en) * 1999-09-13 2001-03-27 Hitachi Ltd Ozone injection control method
JP2005305328A (en) * 2004-04-22 2005-11-04 Toshiba Corp Water treatment controlling system
JP5335211B2 (en) * 2007-08-29 2013-11-06 株式会社 永光 catalyst
JP5544456B2 (en) * 2007-09-21 2014-07-09 独立行政法人産業技術総合研究所 Noble metal nanostructure and electrochemical reactor
WO2009119459A1 (en) * 2008-03-28 2009-10-01 日産自動車株式会社 Catalyst for purification of exhaust gas
JP5491037B2 (en) * 2009-01-30 2014-05-14 旭化成ケミカルズ株式会社 Catalyst for producing acrylonitrile and method for producing acrylonitrile
JP2010172871A (en) * 2009-02-02 2010-08-12 Eiko:Kk Adsorbent of lower aldehydes and method for manufacturing the same
JP4452935B1 (en) * 2009-02-18 2010-04-21 株式会社 永光 Lower aldehyde adsorbent and process for producing the same
JP2010201360A (en) * 2009-03-04 2010-09-16 Eiko:Kk Adsorbent for lower aldehydes and method for producing the same
JP2010240605A (en) * 2009-04-08 2010-10-28 Eiko:Kk Adsorbent for lower aldehydes and method for producing the adsorbent
JP5872186B2 (en) * 2011-05-16 2016-03-01 相部 紀夫 Production method of radioactive metal adsorbent and adsorption method of radioactive metal

Also Published As

Publication number Publication date
JP2012230096A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
Li et al. Importance of activated carbon's oxygen surface functional groups on elemental mercury adsorption☆
Li et al. Qualitative and quantitative correlation of physicochemical characteristics and lead sorption behaviors of crop residue-derived chars
Ji et al. Removal of methylene blue from aqueous solutions using biochar derived from a fallen leaf by slow pyrolysis: Behavior and mechanism
Awwad et al. Sorption of lanthanum and erbium from aqueous solution by activated carbon prepared from rice husk
Zhang et al. A mechanistic study on removal efficiency of four antibiotics by animal and plant origin precursors-derived biochars
US7901486B2 (en) Removal of heavy metals from hydrocarbon gases
Azzaz et al. Dynamic investigations on cationic dye desorption from chemically modified lignocellulosic material using a low-cost eluent: Dye recovery and anodic oxidation efficiencies of the desorbed solutions
Ho et al. Adsorptive removal of gaseous methyl iodide by triethylenediamine (TEDA)-metal impregnated activated carbons under humid conditions
Chen et al. Sorption of chlorinated hydrocarbons to biochars in aqueous environment: Effects of the amorphous carbon structure of biochars and the molecular properties of adsorbates
Deshmukh et al. Investigation on sorption of fluoride in water using rice husk as an adsorbent
SAMAdI et al. Removal of bisphenol, using antimony nanoparticle multi-walled carbon nanotubes composite from aqueous solutions
JP2014213233A (en) Purification method and purifier of radioactive contaminated water or industrial waste water, and volume reduction method
JP5766028B2 (en) Radiocesium adsorption method
JP4292243B2 (en) Phosphate ion adsorbent comprising activated carbon, method for producing the same, and phosphate ion adsorbing method
Rezaee et al. Adsorption properties and breakthrough model of formaldehyde on bone char
JP2010201360A (en) Adsorbent for lower aldehydes and method for producing the same
JP2007229707A (en) Organic gas adsorbent
JP5872186B2 (en) Production method of radioactive metal adsorbent and adsorption method of radioactive metal
CN105311903A (en) Industrial waste gas processing device
JP2010172871A (en) Adsorbent of lower aldehydes and method for manufacturing the same
CN107362767A (en) A kind of method of transient metal sulfide absorption mercury ion with broadening piece interlamellar spacing
BAGHAPOUR et al. Thermodynamic analysis of reactive red 198 removal from synthetic wastewater by using multiwall carbon nanotubes
JP2001170482A (en) Active carbon, its manufacturing method and device for purifying treatment of water using the same
JPH0824636A (en) Production of adsorbent and water purifying apparatus using the same
JP5946044B2 (en) Decontamination method for radioactive material contaminated soil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R150 Certificate of patent or registration of utility model

Ref document number: 5766028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees