JP5765258B2 - Secondary battery control device and control method - Google Patents

Secondary battery control device and control method Download PDF

Info

Publication number
JP5765258B2
JP5765258B2 JP2012020211A JP2012020211A JP5765258B2 JP 5765258 B2 JP5765258 B2 JP 5765258B2 JP 2012020211 A JP2012020211 A JP 2012020211A JP 2012020211 A JP2012020211 A JP 2012020211A JP 5765258 B2 JP5765258 B2 JP 5765258B2
Authority
JP
Japan
Prior art keywords
battery
capacity
secondary battery
force
battery capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012020211A
Other languages
Japanese (ja)
Other versions
JP2013161543A (en
Inventor
浩二 高畑
浩二 高畑
章浩 落合
章浩 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012020211A priority Critical patent/JP5765258B2/en
Publication of JP2013161543A publication Critical patent/JP2013161543A/en
Application granted granted Critical
Publication of JP5765258B2 publication Critical patent/JP5765258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

本発明は,外部から拘束部材によって拘束されている二次電池の制御装置および制御方法に関する。さらに詳細には,二次電池の状態に応じて拘束部材の拘束力を制御する二次電池の制御装置および制御方法に関するものである。   The present invention relates to a control device and a control method for a secondary battery that is restrained by a restraining member from the outside. More specifically, the present invention relates to a secondary battery control device and control method for controlling the restraining force of the restraining member in accordance with the state of the secondary battery.

例えば自動車用の二次電池として,複数個の電池セルを積層して束ね,モジュール化したものが多く用いられている。電池セルをモジュール化する際には,積層した複数個の電池セルをその外側から拘束する拘束部材が用いられることがある。この拘束部材によってモジュール内の電池セルに加えられる拘束力は,電池セルの特性に影響を及ぼすことが知られている。例えば特許文献1には,拘束によって電池にかかる圧力を所定の圧力範囲に保持する拘束手段が開示されている。   For example, as a secondary battery for automobiles, a plurality of battery cells stacked and bundled and modularized are often used. When modularizing battery cells, a restraining member that restrains a plurality of stacked battery cells from the outside may be used. It is known that the restraining force applied to the battery cells in the module by this restraining member affects the characteristics of the battery cells. For example, Patent Document 1 discloses a restraining means for keeping the pressure applied to the battery by restraint within a predetermined pressure range.

特開2009−238606号公報JP 2009-238606 A

リチウムイオン二次電池をモジュール化したものでは,一般に,充放電を繰り返すことにより,電池容量が低下していくことが知られている。また,拘束手段による拘束力の大きさも,二次電池の劣化や寿命に関わっていることが分かっている。そこで,電池寿命をできるだけ長くできる拘束力の大きさが求められていた。   In the case of a lithium ion secondary battery that is modularized, it is generally known that the battery capacity decreases as charging and discharging are repeated. It has also been found that the magnitude of the restraining force by the restraining means is also related to the deterioration and life of the secondary battery. Therefore, there has been a demand for a binding force that can maximize the battery life.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,二次電池に加える拘束力を制御して,充放電による劣化がある程度進んだ電池の電池容量を回復させるとともに電池寿命を延命することのできる二次電池の制御装置および制御方法を提供することにある。   The present invention has been made to solve the above-described problems of the prior art. In other words, the problem is that the secondary battery control device can control the binding force applied to the secondary battery to recover the battery capacity of the battery that has deteriorated to some extent due to charge / discharge and extend the battery life. And providing a control method.

この課題の解決を目的としてなされた本発明の二次電池の制御装置は,捲回または積層した電極板と電解液とを,他の面より大面積の一対の大側面を有する角型のケースに封入してなる二次電池を制御する二次電池の制御装置であって,ケースの大側面を外側から拘束することによって,電極板の板面同士を近づける向きに圧迫する拘束力発生部と,二次電池の電池容量を取得する電池容量取得部と,二次電池の充放電時の使用容量を積算した積算使用容量と,電池容量取得部によって取得された電池容量とに基づいて拘束力発生部による拘束力の大きさを制御する拘束力制御部とを有し,拘束力制御部は,積算使用容量の増加に対する,電池容量取得部によって取得された電池容量の減少の程度に,緩やかな第1の程度からより激しい第2の程度への変化があった場合に,拘束力発生部による拘束力を増加させるものである。   In order to solve this problem, the secondary battery control device according to the present invention is a rectangular case having a pair of large side surfaces each having a larger area than the other surfaces, with a wound or laminated electrode plate and electrolyte solution. A control device for a secondary battery for controlling a secondary battery enclosed in a container, comprising: a restraining force generator that restrains the plate surfaces of the electrode plates toward each other by restraining the large side surface of the case from the outside; The battery capacity acquisition unit for acquiring the battery capacity of the secondary battery, the accumulated usage capacity obtained by integrating the usage capacity during charging and discharging of the secondary battery, and the binding capacity based on the battery capacity acquired by the battery capacity acquisition unit A restraint force control unit that controls the magnitude of the restraint force generated by the generator, and the restraint force control unit gradually increases the degree of decrease in the battery capacity acquired by the battery capacity acquisition unit with respect to the increase in the accumulated use capacity. 1st degree to 2nd, more intense If there is a change to the extent, and increases the restraint force by the restraining force generating unit.

本発明の二次電池の制御装置によれば,拘束力制御部が,積算使用容量の増加に対する電池容量の推移を監視し,減少の程度がそれまでより大きくなったら,拘束力発生部による拘束力を増加させる。つまり,電池の劣化の進行状況が変化し,それまでより急激に電池容量が減少するようになったら,拘束力発生部による拘束力が増加される。このような状況は,電極活物質層の割れができた場合に発生しやすく,その場合には,拘束力を増加させることで,二次電池の電池容量をいくらか増加させることができるからである。従って,二次電池に加える拘束力を制御して,充放電による劣化がある程度進んだ電池の電池容量を回復させるとともに電池寿命を延命することのできる二次電池の制御装置となっている。   According to the secondary battery control apparatus of the present invention, the restraint force control unit monitors the transition of the battery capacity with respect to the increase in the accumulated usage capacity, and when the degree of decrease becomes larger than before, the restraint force generator Increase power. In other words, when the battery deterioration progresses and the battery capacity decreases more rapidly than before, the binding force by the binding force generator is increased. Such a situation is likely to occur when the electrode active material layer is cracked, in which case the battery capacity of the secondary battery can be increased somewhat by increasing the binding force. . Therefore, the secondary battery control device can control the binding force applied to the secondary battery to recover the battery capacity of the battery that has been deteriorated to some extent by charge and discharge and extend the battery life.

さらに本発明では,拘束力制御部は,積算使用容量の平方根を横軸とし電池容量取得部によって取得された電池容量を縦軸とするグラフ上に,新たに取得した電池容量と前回取得した電池容量とにより引かれる直線の縦軸切片が,その初期値に対してあらかじめ決めた割合だけ増加した値となった場合に,電池容量の減少傾向の程度に変化があったと見なすものであることが望ましい。
このようなものであれば,適切なタイミングで拘束力増加を行うことができるので,電池を適切に延命できる。
Further, in the present invention, the restraint force control unit has a newly acquired battery capacity and a previously acquired battery on a graph having the square root of the accumulated used capacity as the horizontal axis and the battery capacity acquired by the battery capacity acquisition unit as the vertical axis. When the vertical axis intercept of the straight line drawn by the capacity increases by a predetermined percentage with respect to the initial value, it may be considered that the degree of decrease in battery capacity has changed. desirable.
In such a case, the binding force can be increased at an appropriate timing, so that the battery life can be appropriately extended.

さらに本発明では,拘束力制御部は,拘束力を一旦増加させた後に元の大きさに戻す一時的増加を行ってから,電池容量取得部によって電池容量を再度取得し,電池容量が拘束力の一時的増加の前より増加した場合は,二次電池をそのまま使用し,電池容量が増加しなかった場合は,拘束力を増加させて増加させた状態を維持する定常的増加を行うことが望ましい。
このようにすれば,ケースへの負荷を大きくせずに,効果的に拘束力増加を行うことができる。
Furthermore, in the present invention, the restraint force control unit increases the restraint force once and then temporarily increases it back to the original size, and then acquires the battery capacity again by the battery capacity acquisition unit. If the battery increases from before the temporary increase, the secondary battery is used as it is. If the battery capacity does not increase, the binding force is increased to maintain the increased state. desirable.
In this way, it is possible to effectively increase the binding force without increasing the load on the case.

さらに本発明では,拘束力制御部は,拘束力発生部による拘束力の増加を,あらかじめ定めた拘束力の上限値の範囲内に限って行うことが望ましい。
このようなものであれば,適切な範囲内で拘束力を増加させるので,効果的に電池容量を増加させることができる。
Furthermore, in the present invention, it is desirable that the restraint force control unit increases the restraint force by the restraint force generation unit only within a predetermined upper limit value range of the restraint force.
In such a case, since the binding force is increased within an appropriate range, the battery capacity can be effectively increased.

さらに本発明は,捲回または積層した電極板と電解液とを,他の面より大面積の一対の大側面を有する角型のケースに封入してなる二次電池を制御する二次電池の制御方法であって,対象とする二次電池は,ケースの大側面が外側から拘束されることによって,電極板の板面同士が近づく向きに圧迫されているものであり,二次電池の充放電時の使用容量を積算した積算使用容量と,二次電池の電池容量の履歴とに基づき,積算使用容量の増加に対する,電池容量の減少の程度に,緩やかな第1の程度からより激しい第2の程度への変化があった場合に,拘束力を増加させる二次電池の制御方法にも及ぶ。   Furthermore, the present invention provides a secondary battery for controlling a secondary battery in which a wound or laminated electrode plate and an electrolyte are enclosed in a rectangular case having a pair of large side surfaces larger than the other surfaces. In the control method, the target secondary battery is pressed so that the plate surfaces of the electrode plates approach each other by restraining the large side surface of the case from the outside. Based on the accumulated used capacity obtained by integrating the used capacity at the time of discharge and the battery capacity history of the secondary battery, the degree of decrease in the battery capacity with respect to the increase in the accumulated used capacity is increased from a moderate first degree to a more severe one. This also extends to a secondary battery control method that increases the binding force when there is a change to a degree of 2.

本発明の二次電池の制御装置および制御方法によれば,二次電池に加える拘束力を制御して,充放電による劣化がある程度進んだ電池の電池容量を回復させるとともに電池寿命を延命することができる。   According to the control device and control method for a secondary battery of the present invention, the binding force applied to the secondary battery is controlled to recover the battery capacity of the battery that has been deteriorated to some extent by charge and discharge and to prolong the battery life. Can do.

本形態に係る拘束力制御のための構成を示すブロック図である。It is a block diagram which shows the structure for the restraint force control which concerns on this form. 拘束力発生部の例を示す説明図である。It is explanatory drawing which shows the example of a binding force generation | occurrence | production part. 積算使用容量と容量維持率との関係を示すグラフ図である。It is a graph which shows the relationship between integrated use capacity | capacitance and a capacity | capacitance maintenance factor. 拘束増加率と容量回復率との関係を示すグラフ図である。It is a graph which shows the relationship between a restraint increase rate and a capacity | capacitance recovery rate. 拘束力制御部による制御を示すフローチャートである。It is a flowchart which shows the control by a restraint force control part.

以下,本発明を具体化した最良の形態について,添付図面を参照しつつ詳細に説明する。本形態は,リチウムイオン二次電池に対する拘束力を制御する制御装置及び制御方法に,本発明を適用したものである。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the best mode for embodying the present invention will be described in detail with reference to the accompanying drawings. In the present embodiment, the present invention is applied to a control device and a control method for controlling a binding force for a lithium ion secondary battery.

本形態の制御構成は,図1に示すように,電池10と拘束力発生部13,拘束力制御部15,電池容量取得部17を有している。本形態に係る電池10は,いわゆる角型のリチウムイオン二次電池である。この電池10は,帯状の電極板を捲回したものを扁平に成形し,電解液とともに平たい直方体の金属ケースに封じてなるものである。電極板は,金属ケース内で,金属ケースの外面のうち面積最大の面(以下,大側面という)に略平行に配置されている。   As shown in FIG. 1, the control configuration of this embodiment includes a battery 10, a binding force generation unit 13, a binding force control unit 15, and a battery capacity acquisition unit 17. The battery 10 according to this embodiment is a so-called square lithium ion secondary battery. The battery 10 is formed by flatly forming a rolled electrode plate, and sealing it together with an electrolytic solution in a flat rectangular metal case. In the metal case, the electrode plate is disposed substantially parallel to a surface having the largest area (hereinafter referred to as a large side surface) among the outer surfaces of the metal case.

なお,本形態の電池10は,捲回タイプに限らず,積層タイプでもよい。積層タイプの場合でも,各電極板は,大側面に略平行に配置される。また,電池10は,電池セル単体であってもよいし,複数個の電池セルが積層されて一体化された電池モジュールや電池パックに含まれる電池セルであってもよい。   Note that the battery 10 of the present embodiment is not limited to the wound type but may be a stacked type. Even in the case of the laminated type, each electrode plate is arranged substantially parallel to the large side surface. Further, the battery 10 may be a single battery cell, or may be a battery cell included in a battery module or a battery pack in which a plurality of battery cells are stacked and integrated.

拘束力発生部13は,電池10に対して拘束力を加えるものである。拘束力発生部13による拘束力は,各電池セルに加えられればよい。つまり,電池モジュールや電池パックの全体を圧迫することによって,含まれる各電池セルに拘束力が加えられるようになっていてもよい。拘束力発生部13によって発生される拘束力は,金属ケースの外部から,両側の大側面を互いに近づく向きに圧迫する力である。大側面を外側から圧迫すると,電池10の電極板は,電池ケースの内部で,その面に略垂直な内向きの力を受ける。つまり,この拘束力発生部13による拘束力を受けると,電池10の電極板の面が隣接する面に圧迫される。   The restraining force generator 13 applies restraining force to the battery 10. The restraining force by the restraining force generator 13 may be applied to each battery cell. That is, a binding force may be applied to each battery cell included by pressing the entire battery module or battery pack. The restraining force generated by the restraining force generator 13 is a force that presses the large side surfaces on both sides in a direction approaching each other from the outside of the metal case. When the large side surface is pressed from the outside, the electrode plate of the battery 10 receives an inward force substantially perpendicular to the surface inside the battery case. That is, when receiving the restraining force by the restraining force generator 13, the surface of the electrode plate of the battery 10 is pressed against the adjacent surface.

拘束力制御部15は,拘束力発生部13によって発生される拘束力の大きさを制御する制御装置である。つまり,本形態の拘束力発生部13によって電池10に加えられる拘束力の大きさは,拘束力制御部15によって制御される。この制御は,例えば,拘束力発生部13が電池セルの大側面に板部材を圧接させるものであれば,その圧接力を調整することによって行ってもよい。   The restraint force controller 15 is a control device that controls the magnitude of the restraint force generated by the restraint force generator 13. That is, the magnitude of the restraining force applied to the battery 10 by the restraining force generator 13 of this embodiment is controlled by the restraining force controller 15. This control may be performed, for example, by adjusting the pressing force as long as the restraining force generator 13 presses the plate member against the large side surface of the battery cell.

拘束力発生部13の例を,図2に示す。この図の構成では,電池10は,その大側面10aを互いに接触させて,複数個並べられている。両端の電池10の外側には,それぞれエンドプレート110が大側面10aに接して配置されている。さらに,両側のエンドプレート110は,ボルト111とナット112とで互いに締め付けられている。電池10は,この締め付け力によって拘束力を受ける。つまりこの例では,エンドプレート110,ボルト111,ナット112の組が拘束力発生部13に相当する。   An example of the restraining force generator 13 is shown in FIG. In the configuration of this figure, a plurality of batteries 10 are arranged with their large side surfaces 10a in contact with each other. End plates 110 are arranged on the outside of the battery 10 at both ends so as to be in contact with the large side surface 10a. Further, the end plates 110 on both sides are fastened to each other by bolts 111 and nuts 112. The battery 10 receives a binding force due to the tightening force. That is, in this example, a set of the end plate 110, the bolt 111, and the nut 112 corresponds to the restraining force generation unit 13.

さらに,ボルト111とナット112の締め量によって,各電池10に加えられる拘束力を変更することができる。つまり,拘束力制御部15は,ナット112を制御するものとすれば,拘束力の大きさを制御することができる。拘束力制御部15による制御を適切に行うために,増し締め量と拘束力との関係を予め調べておくとよい。   Furthermore, the binding force applied to each battery 10 can be changed by the tightening amount of the bolt 111 and the nut 112. That is, if the restraint force control unit 15 controls the nut 112, the restraint force control unit 15 can control the magnitude of the restraint force. In order to appropriately perform the control by the restraining force control unit 15, it is preferable to examine the relationship between the tightening amount and the restraining force in advance.

電池容量取得部17は,電池10の電池容量を取得するものである。電池容量取得部17は,電池10を充放電するための回路や素子類と,放電時の電圧値や電流値を取得するための測定器とを有している。そして電池容量取得部17は,実使用領域での電池容量を取得する。つまり,電池容量取得部17は,電池10を実使用領域の上限電圧(例えば満充電)まで充電してからゆっくり放電させ,その放電時の電圧値と電流値とから,その時点における電池10の電池容量を算出する。電池容量取得部17による電池容量の取得は,各電池セルごとに行われる。   The battery capacity acquisition unit 17 acquires the battery capacity of the battery 10. The battery capacity acquisition unit 17 includes a circuit and elements for charging and discharging the battery 10 and a measuring instrument for acquiring a voltage value and a current value at the time of discharging. Then, the battery capacity acquisition unit 17 acquires the battery capacity in the actual use area. That is, the battery capacity acquisition unit 17 charges the battery 10 to the upper limit voltage (for example, full charge) in the actual use region and then slowly discharges the battery 10 from the voltage value and current value at the time of discharge. Calculate battery capacity. Acquisition of the battery capacity by the battery capacity acquisition unit 17 is performed for each battery cell.

電池容量取得部17が電池容量を取得する実使用領域とは,その電池10の使用される環境において,主に使用される電圧の範囲のことである。そのため,実使用領域は,電池10の搭載される車両の種別によって異なる。例えば,PHV(プラグインハイブリッド車)では,電池容量取得部17は,フル充電からハイブリッドモードに変化するまでの容量を取得する。また,EV(電気自動車)では,電池容量取得部17は,フル充電からあらかじめ決めた最低電圧までの容量を取得する。HV(ハイブリッド車)では,電池容量取得部17は,ハイブリッド走行中に使用するあらかじめ決めた電圧の範囲内で容量を取得する。例えば,HV走行により上昇しうる上限電圧から,強制的にエンジンを始動させる電圧までの範囲内とする。   The actual use area where the battery capacity acquisition unit 17 acquires the battery capacity is a voltage range mainly used in the environment where the battery 10 is used. Therefore, the actual use area varies depending on the type of vehicle on which the battery 10 is mounted. For example, in a PHV (plug-in hybrid vehicle), the battery capacity acquisition unit 17 acquires the capacity from full charge to change to the hybrid mode. In an EV (electric vehicle), the battery capacity acquisition unit 17 acquires a capacity from full charge to a predetermined minimum voltage. In the HV (hybrid vehicle), the battery capacity acquisition unit 17 acquires the capacity within a predetermined voltage range used during the hybrid travel. For example, it is within a range from an upper limit voltage that can be increased by HV traveling to a voltage for forcibly starting the engine.

電池容量取得部17によって電池容量を取得する電圧の範囲は,前述のように車両の種別や使用環境によってそれぞれ異なる。ただし通常,その範囲は電池10の使用開始時までにあらかじめ設定され,電池容量取得部17に記憶させておく。電池容量取得部17は,例えば,電池電圧3.9Vから電池電圧3.45Vまで放電し,その間の電流値を測定して電池容量を算出する。   As described above, the voltage range for acquiring the battery capacity by the battery capacity acquisition unit 17 varies depending on the type of vehicle and the usage environment. However, the range is usually set in advance by the start of use of the battery 10 and stored in the battery capacity acquisition unit 17. The battery capacity acquisition unit 17 calculates, for example, a battery capacity by discharging from a battery voltage of 3.9 V to a battery voltage of 3.45 V and measuring a current value therebetween.

本形態の拘束力制御部15は,電池10の新品時からの使用容量を積算して記憶している。すなわち,電池10の充電が行われるたびに,その充電量を取得して積算する。または,放電が行われるたびに,放電量を取得して積算するものとしてもよい。または,充電時と放電時との両方でもよい。   The binding force control unit 15 of this embodiment accumulates and stores the used capacity of the battery 10 from when it is new. That is, every time the battery 10 is charged, the amount of charge is acquired and integrated. Alternatively, each time discharge is performed, the discharge amount may be acquired and integrated. Or both at the time of charge and at the time of discharge may be sufficient.

さらに,拘束力制御部15は,電池10の新品時を含め,適切なタイミングで電池容量取得部17に電池容量を取得させ,その結果を記憶している。そして,拘束力制御部15は,電池容量取得部17によって取得された電池容量に基づいて容量維持率を算出する。容量維持率は,電池10の新品時の電池容量に対して,取得された電池容量の割合を百分率で示したものである。   Further, the restraint force control unit 15 causes the battery capacity acquisition unit 17 to acquire the battery capacity at an appropriate timing, including when the battery 10 is new, and stores the result. Then, the binding force control unit 15 calculates the capacity maintenance rate based on the battery capacity acquired by the battery capacity acquisition unit 17. The capacity maintenance rate is a percentage of the acquired battery capacity with respect to the battery capacity of the battery 10 when it is new.

さらに拘束力制御部15は,前述のように算出した使用容量と容量維持率とから,使用容量の増加に対して容量維持率の変化状況を監視する。例えば,積算使用容量の平方根に対する容量維持率を,電池10の使用開始時からグラフ化した例を,図3に示す。つまり,図中に黒塗りの菱形で示すように,容量維持率は,新品状態から電池10の使用が進むにつれて次第に低下する。なお,このグラフの横軸上のプロット間隔Qは,例えば,初期状態での電池容量の950倍である。   Further, the restraint force control unit 15 monitors the change state of the capacity maintenance rate with respect to the increase in the usage capacity, based on the usage capacity and the capacity maintenance rate calculated as described above. For example, FIG. 3 shows an example in which the capacity maintenance rate with respect to the square root of the accumulated usage capacity is graphed from the start of use of the battery 10. That is, as indicated by the black diamonds in the figure, the capacity retention rate gradually decreases as the use of the battery 10 proceeds from the new state. The plot interval Q on the horizontal axis of this graph is, for example, 950 times the battery capacity in the initial state.

図3のようにグラフ化すると,さほど劣化していない電池10では,図中に実線L1で示すように,容量維持率は,このグラフ上で直線的に低下する。しかし,あるところからこの低下の程度が大きくなり,容量維持率は,それまでの直線から離れて急激に落ち込む。つまり,図中でプロット点A(初期状態)から実線L1に沿って,プロット点B,Cと低下した後,プロット点Dは実線L1から離れて落ち込んでいる。プロット点Cとプロット点Dとを結ぶ直線が破線L2であり,この破線L2の下り勾配は実線L1より急である。この図の例では,積算使用容量の平方根に対する容量維持率の低下の程度が,プロット点Cを境にそれまでより大きくなっている。   When graphed as shown in FIG. 3, in the battery 10 that has not deteriorated so much, the capacity retention rate decreases linearly on this graph as indicated by the solid line L1 in the figure. However, the degree of this decrease increases from a certain point, and the capacity maintenance rate drops sharply away from the previous straight line. That is, in the figure, the plot point D drops from the solid line L1 after dropping from the plot point A (initial state) to the plot points B and C along the solid line L1. A straight line connecting the plot point C and the plot point D is a broken line L2, and the downward slope of the broken line L2 is steeper than the solid line L1. In the example of this figure, the degree of decrease in the capacity maintenance rate with respect to the square root of the accumulated used capacity is larger than before at the plot point C.

このように電池容量の低下の程度が急激に大きくなる原因の一つとして,正極板における正極活物質層に発生する割れがあることが分かってきた。そして,本発明者らは,活物質層に割れが発生した正極板に対し,板面をそれまでより強く圧迫することにより割れ箇所の隙間を小さくし,電池容量をある程度回復させることができることを見出した。そこで,寿命の近い電池10に対して,それまでより大きい拘束力で拘束したところ,電極板が互いに圧迫され,電池10を延命できることが分かった。   As described above, it has been found that one of the causes of the rapid increase in the battery capacity is a crack generated in the positive electrode active material layer in the positive electrode plate. Then, the present inventors have found that the gap between the cracked portions can be reduced by pressing the plate surface more strongly than before against the positive electrode plate in which the active material layer has cracked, and the battery capacity can be recovered to some extent. I found it. Therefore, it was found that when the battery 10 having a short life was restrained with a larger restraining force, the electrode plates were pressed against each other and the battery 10 could be extended in life.

拘束力増加のタイミングは,前述の図3のグラフにおけるプロット点を結ぶ直線の傾きの変化に基づいて決定される。すなわち,積算使用容量の増加に対する電池容量の減少傾向の程度が,緩やかな第1の程度からより激しい第2の程度へ変化したら,拘束力制御部15は拘束力を増加する。本形態においては拘束力制御部15は,あらかじめ決めた積算使用容量ごとの積算使用容量の平方根に対する容量維持率の減少の程度(図3のグラフ中のプロット点間の傾き)が,初期状態よりあらかじめ決めた程度を越えて大きくなったら,電池10に対する拘束力を増加させる。   The timing of increasing the binding force is determined based on the change in the slope of the straight line connecting the plot points in the graph of FIG. That is, when the degree of the battery capacity decreasing tendency with respect to the increase in the accumulated usage capacity changes from the gentle first degree to the more severe second degree, the restraining force control unit 15 increases the restraining force. In this embodiment, the restraint force control unit 15 has a degree of decrease in the capacity maintenance rate with respect to the square root of the accumulated used capacity for each predetermined accumulated used capacity (the slope between plot points in the graph of FIG. 3) from the initial state. When it becomes larger than a predetermined level, the binding force on the battery 10 is increased.

このタイミングは例えば,図3のグラフで,隣接するプロット点を結ぶ線の延長線と縦軸との交点(縦軸切片)が,その初期値よりあらかじめ決めた割合以上大きいものとなった時として把握することができる。そして,本形態の拘束力制御部15は,初期状態の容量維持率を100%として,縦軸切片が105%以上になったとき,拘束力発生部13を制御して,電池10に対する拘束力を増加させる。それにより,図3中に矢印で示すように,電池容量が増加する。この図の例では,プロット点D(黒菱形)からプロット点E(黒丸)へ容量維持率が8%程度増加している。   This timing is, for example, in the graph of FIG. 3 when the intersection (vertical intercept) between the extension line of the line connecting adjacent plot points and the vertical axis is greater than a predetermined ratio from the initial value. I can grasp it. Then, the restraint force control unit 15 of the present embodiment controls the restraint force generation unit 13 to control the restraint force on the battery 10 when the capacity retention rate in the initial state is 100% and the vertical axis intercept is 105% or more. Increase. As a result, the battery capacity increases as shown by the arrows in FIG. In the example of this figure, the capacity retention rate increases from the plot point D (black diamond) to the plot point E (black circle) by about 8%.

次に,拘束増加率(%)と容量回復率(%)との関係の例を図4に示す。この図は,同種の電池10で初期状態における拘束力が異なるものを複数個用意し,拘束力の増加率を変えて拘束力を増加させた時の電池容量の回復の程度を調べた結果である。初期状態による拘束力は,0.5,1.0,1.5,2.0(MPa)の4種類とした。この図の横軸は,初期状態における拘束力を100%とし,増加後の拘束力の大きさを初期状態の拘束力に対する百分率で表したものである。   Next, an example of the relationship between the constraint increase rate (%) and the capacity recovery rate (%) is shown in FIG. This figure shows the results of examining the degree of recovery of battery capacity when multiple types of batteries 10 of the same type with different binding forces in the initial state are prepared and the binding force is increased by changing the increasing rate of the binding force. is there. The restraining force by the initial state was made into four types, 0.5, 1.0, 1.5, and 2.0 (MPa). The horizontal axis in this figure represents the restraint force in the initial state as 100%, and the magnitude of the increased restraint force as a percentage of the restraint force in the initial state.

図4のグラフより,初期状態における拘束力の大きさに関わらず,拘束力を初期値の120%以上まで増加させれば,容量回復の効果があることが確認できた。さらに,初期値の170%〜330%の範囲内で拘束力を増加させれば,さらに大きく容量を回復させることができることが確認できた。つまり,増加前後の拘束力の大きさ自体よりも,増加率が重要であることが分かった。本形態では,拘束力増加率を170%〜330%とすることで,特に効果的に容量回復率が大きくなる。   From the graph of FIG. 4, it can be confirmed that there is an effect of capacity recovery if the restraining force is increased to 120% or more of the initial value regardless of the magnitude of the restraining force in the initial state. Furthermore, it was confirmed that the capacity could be recovered more greatly by increasing the binding force within the range of 170% to 330% of the initial value. In other words, the rate of increase is more important than the magnitude of the restraining force before and after the increase. In this embodiment, the capacity recovery rate is particularly effectively increased by setting the increase rate of the binding force to 170% to 330%.

一方,増加率が330%を超えて大きすぎる場合は,容量回復の効果が小さい。拘束力が大きいほど電池ケースへの負荷も大きいので,330%を超える拘束増加率で増加させることは好ましくない。そこで,拘束力制御部15は,前述のように拘束力増加のタイミングを決定したら,拘束力発生部13による拘束力を120%〜330%の範囲内で増加させる。その範囲内でも,拘束力増加率を170〜180%の範囲内とすればさらに好ましい。このようにすれば,増加率がさほど大きくない範囲であって,容量回復の効果が特に大きい。   On the other hand, if the rate of increase exceeds 330% and is too large, the capacity recovery effect is small. Since the load on the battery case increases as the restraining force increases, it is not preferable to increase the restraining force at a restraint increase rate exceeding 330%. Therefore, when the restraint force control unit 15 determines the restraint force increase timing as described above, the restraint force control unit 15 increases the restraint force by the restraint force generating unit 13 within a range of 120% to 330%. Even within that range, it is more preferable if the increase rate of the binding force is within the range of 170 to 180%. In this way, the rate of increase is not so large, and the capacity recovery effect is particularly great.

さらに本発明者らは,拘束力を増加させる場合に,増加させた状態で維持する定常的増加のみでなく,一旦増加させた後に元の大きさに戻す一時的増加でも,容量増加の効果があることを見出した。一時的増加の方が定常的増加よりも,電池ケースへの負荷が小さいので好ましい。そこで,本形態の拘束力制御部15は,前述のように拘束力を増加するタイミングになったら,まず一時的増加を行う。そしてその後電池容量を再度取得し,電池容量が増加していなければ,定常的増加を行う。   Furthermore, when increasing the binding force, the present inventors have not only a steady increase maintained in an increased state, but also a temporary increase that is once increased and then returned to the original size, so that the effect of increasing the capacity is effective. I found out. The temporary increase is preferable because the load on the battery case is smaller than the steady increase. Therefore, the restraint force control unit 15 of the present embodiment first temporarily increases when the restraint force is increased as described above. Thereafter, the battery capacity is acquired again, and if the battery capacity has not increased, the battery capacity is constantly increased.

なお,拘束力制御部15は,定常的増加によっても適切な効果が得られなかった場合は,さらに増加量を増加して一時的増加から繰り返す。ただし,前述したように,拘束力の増加量が大きいほど,容量がより回復するというわけではない。330%を超える拘束増加率は,容量回復の効果が小さいからである。そこで,拘束力制御部15は,例えば,まず120%程度の増加率で拘束力を増加させ,適切な効果が得られなかった場合は,170%程度の増加率とするとしてもよい。   If the appropriate effect cannot be obtained even by steady increase, the restraint force control unit 15 further increases the increase amount and repeats from the temporary increase. However, as described above, the larger the amount of increase in the binding force, the more the capacity is not recovered. This is because a constraint increase rate exceeding 330% has a small capacity recovery effect. Therefore, for example, the restraint force control unit 15 may increase the restraint force at an increase rate of about 120% first, and may set the increase rate to about 170% when an appropriate effect is not obtained.

あるいは,小さい増加率でも効果が得られた場合においても,図3中に黒丸のプロット点F〜Hで示すように,電池容量の回復した電池10をさらに使用し続けると,再び次第に容量維持率が低下する。そこで,拘束力を増加した時点を100%としてそこから新たにグラフ化し,縦軸切片が105%以上になったら,再び拘束力を増加させるとよい。この図の例では,プロット点Hにおいて再び拘束力を増加し,プロット点I(黒三角)へと容量が回復した。   Alternatively, even when an effect is obtained even with a small increase rate, as shown by the black circle plot points F to H in FIG. Decreases. Therefore, the time when the restraining force is increased is assumed to be 100%, and a new graph is generated therefrom. When the vertical axis intercept becomes 105% or more, the restraining force may be increased again. In the example of this figure, the binding force is increased again at the plot point H, and the capacity is restored to the plot point I (black triangle).

また,拘束力には物理的な上限値もある。拘束力の上限値は,電池10の大きさや電池ケースの種類等によって異なる。そこで,電池10が破損あるいは変形することなく,電極板に適切に拘束力を加えることのできる上限値を,電池10の種類ごとにあらかじめ設定しておく。この値は例えば,15MPa程度である。拘束力制御部15は,拘束力発生部13による拘束力の大きさが,あらかじめ決めた上限値を超えたら,それ以上の拘束力の増加は行わない。   There is also a physical upper limit for the binding force. The upper limit value of the binding force varies depending on the size of the battery 10 and the type of the battery case. Therefore, an upper limit value that can appropriately apply a binding force to the electrode plate without damaging or deforming the battery 10 is set in advance for each type of battery 10. This value is, for example, about 15 MPa. The restraint force control unit 15 does not increase the restraint force further when the restraint force generated by the restraint force generator 13 exceeds the predetermined upper limit value.

なお,図3中で白抜き菱形で示したプロット点Kは,縦軸切片が105%以上になっても,拘束力を強める処理を行わずにそのまま使用し続けた従来の場合の容量維持率の例である。従来,プロット点Dの後は,プロット点Kとなり,それ以降は電池容量が急激に低下してしまうので,電池10の寿命が到来したと判断されていた。   Note that the plot point K indicated by a white diamond in FIG. 3 indicates the capacity retention rate in the conventional case where the vertical axis intercept is 105% or more and continues to be used as it is without performing the process of increasing the binding force. It is an example. Conventionally, the plot point D is followed by the plot point K, and after that, the battery capacity rapidly decreases, so it has been determined that the battery 10 has reached the end of its life.

次に,本形態の拘束力制御部15による拘束力制御処理を図5に示すフローチャートに基づいて説明する。まず,拘束力制御部15は,前述のように,電池容量取得部17を制御し,電池の使用開始からあらかじめ決めた適切な間隔で容量維持率を取得する(S101)。本形態では,電池10の初期状態からの使用量の積算値が,初期の電池容量の950倍の整数倍に到達するごとに電池容量を取得し,その値の初期の電池容量に対する割合である容量維持率を算出する。   Next, the restraint force control process by the restraint force control unit 15 of this embodiment will be described based on the flowchart shown in FIG. First, as described above, the restraint force control unit 15 controls the battery capacity acquisition unit 17 and acquires the capacity maintenance rate at an appropriate interval determined in advance from the start of battery use (S101). In this embodiment, the battery capacity is acquired every time the integrated value of the usage amount from the initial state of the battery 10 reaches an integral multiple of 950 times the initial battery capacity, and the value is the ratio of the value to the initial battery capacity. The capacity maintenance rate is calculated.

そして,算出された容量維持率を図3に示したようにグラフにプロットし,前回測定値との差異から縦軸切片を求める。求めた縦軸切片の値から,容量維持率の変化の程度があらかじめ決めた範囲を超えて増大したかどうかを判断する(S102)。増大していなければ(S102:No),そのままの拘束力を維持し,再びS101に戻って,容量維持率を求める。   Then, the calculated capacity maintenance ratio is plotted on a graph as shown in FIG. 3, and the vertical axis intercept is obtained from the difference from the previous measurement value. It is determined from the obtained value of the intercept of the vertical axis whether or not the degree of change in the capacity maintenance rate has increased beyond a predetermined range (S102). If not increased (S102: No), the binding force is maintained as it is, and the process returns to S101 again to obtain the capacity maintenance rate.

容量維持率の変化の程度が大きくなり,縦軸切片の値が105%以上となったら(S102:Yes),まず,拘束力を一時的に増加させる。この場合,拘束力制御部15は,拘束力発生部13を制御して,あらかじめ決めた率(120〜330%の範囲内の値)となるまで拘束力を増加させる(S103)。さらに,拘束力があらかじめ決めた率に到達したら直ちに,拘束力を減少させて元の拘束力に戻す(S104)。すなわち,S104の終了後は,S103の実行前と,拘束力の大きさは変化していない。   When the degree of change in the capacity maintenance ratio increases and the value of the vertical axis intercept becomes 105% or more (S102: Yes), first, the binding force is temporarily increased. In this case, the restraint force controller 15 controls the restraint force generator 13 to increase the restraint force until a predetermined rate (a value within the range of 120 to 330%) is reached (S103). Further, as soon as the restraining force reaches a predetermined rate, the restraining force is decreased and returned to the original restraining force (S104). That is, after the end of S104, the magnitude of the binding force is not changed before the execution of S103.

その後,再び電池10の電池容量を測定し,S103の実行前における測定値と比較して電池容量が回復したかどうかを確認する(S105)。容量が回復していれば(S105:Yes),S101に戻って再び監視状態となる。一方,容量が回復しなかった場合は(S105:No),もう一度拘束力を増加させる(S106)。さらに,今回は拘束力を戻さず,増加した状態でそのまま維持する。今回増加させる増加率は,120〜330%の範囲内で,S103で一時的に増加させた増加率と同じでもよいし,それより小さいものとしてもよい。   Thereafter, the battery capacity of the battery 10 is measured again, and compared with the measured value before the execution of S103, it is confirmed whether the battery capacity has been recovered (S105). If the capacity has been recovered (S105: Yes), the process returns to S101 and enters the monitoring state again. On the other hand, if the capacity has not recovered (S105: No), the restraining force is increased again (S106). Furthermore, this time, the restraint force is not returned, but it is maintained in an increased state. The increase rate to be increased this time may be the same as or smaller than the increase rate temporarily increased in S103 within a range of 120 to 330%.

その後,電池10の電池容量を再び測定し,S103の実行前における測定値と比較して電池容量が回復したかどうかを確認する(S107)。容量が増加していれば(S107:Yes),そのままS101に戻って再び監視状態となる。一方,容量が増加しなかった場合は(S107:No),拘束力があらかじめ決めた上限値に到達したかどうかを確認する(S108)。   Thereafter, the battery capacity of the battery 10 is measured again, and it is confirmed whether or not the battery capacity has been restored by comparison with the measured value before the execution of S103 (S107). If the capacity has increased (S107: Yes), the process returns to S101 as it is and enters the monitoring state again. On the other hand, if the capacity has not increased (S107: No), it is confirmed whether the binding force has reached a predetermined upper limit (S108).

上限値に達していなければ(S108:No),まだ拘束力を増加する余地があるので,S103に戻ってもう一度拘束力を一時的に増加させる。このときは,先回のS103で採用したものより大きい増加率を採用する。さらに,先回と同様に電池容量を監視しつつ拘束力をさらに増加し,拘束力が上限値に達するまで,S103〜S108を実行する。そして,拘束力が上限値に達したら(S108:Yes),これ以上増加させることは好ましくない。この場合には,この電池10に対して,拘束力増加によるこれ以上の容量回復は望めない。これで,本処理の説明を終了する。   If the upper limit has not been reached (S108: No), there is still room for increasing the binding force, so the process returns to S103 to temporarily increase the binding force again. At this time, an increase rate larger than that employed in the previous S103 is employed. Further, the binding force is further increased while monitoring the battery capacity in the same manner as the previous time, and S103 to S108 are executed until the binding force reaches the upper limit value. When the binding force reaches the upper limit (S108: Yes), it is not preferable to increase it further. In this case, no further capacity recovery can be expected for the battery 10 due to an increase in binding force. This is the end of the description of this process.

以上詳細に説明したように,本形態の二次電池の制御装置は,拘束力発生部13,拘束力制御部15,電池容量取得部17を有している。そして,拘束力制御部15は,二次電池の使用容量を積算した積算使用容量に対する電池容量の変化状況を監視し,変化の程度がそれまでに比較して大きくなった場合に,拘束力を増加させる。これにより,二次電池の電池容量を回復させ,二次電池を延命させることができる。従って,二次電池に加える拘束力を制御して,充放電による劣化がある程度進んだ電池の電池容量を回復させるとともに電池寿命を延命することができる。   As described above in detail, the secondary battery control device of the present embodiment includes the binding force generation unit 13, the binding force control unit 15, and the battery capacity acquisition unit 17. The restraint force control unit 15 monitors the change state of the battery capacity with respect to the accumulated use capacity obtained by integrating the use capacity of the secondary battery, and when the degree of change becomes larger than before, the restraint force is increased. increase. Thereby, the battery capacity of the secondary battery can be recovered and the life of the secondary battery can be extended. Therefore, by controlling the binding force applied to the secondary battery, it is possible to recover the battery capacity of the battery that has been deteriorated to some extent by charging and discharging and to prolong the battery life.

なお,本形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。   In addition, this form is only a mere illustration and does not limit this invention at all. Therefore, the present invention can naturally be improved and modified in various ways without departing from the gist thereof.

10 電池
10a 大側面
13 拘束力発生部
15 拘束力制御部
17 電池容量取得部
DESCRIPTION OF SYMBOLS 10 Battery 10a Large side surface 13 Restraint force generation part 15 Restraint force control part 17 Battery capacity acquisition part

Claims (5)

捲回または積層した電極板と電解液とを,他の面より大面積の一対の大側面を有する角型のケースに封入してなる二次電池を制御する二次電池の制御装置において,
前記ケースの前記大側面を外側から拘束することによって,前記電極板の板面同士を近づける向きに圧迫する拘束力発生部と,
前記二次電池の電池容量を取得する電池容量取得部と,
前記二次電池の充放電時の使用容量を積算した積算使用容量と,前記電池容量取得部によって取得された電池容量とに基づいて前記拘束力発生部による拘束力の大きさを制御する拘束力制御部とを有し,
前記拘束力制御部は,
前記積算使用容量の増加に対する,前記電池容量取得部によって取得された電池容量の減少の程度に,緩やかな第1の程度からより激しい第2の程度への変化があった場合に,前記拘束力発生部による拘束力を増加させるものであることを特徴とする二次電池の制御装置。
In a secondary battery control device for controlling a secondary battery in which a wound or laminated electrode plate and an electrolyte are enclosed in a square case having a pair of large side surfaces larger than the other surfaces,
A restraining force generating portion that compresses the plate surfaces of the electrode plates toward each other by restraining the large side surface of the case from the outside;
A battery capacity acquisition unit for acquiring a battery capacity of the secondary battery;
Restraint force for controlling the magnitude of the restraint force generated by the restraint force generation unit based on the accumulated use capacity obtained by integrating the use capacities during charging / discharging of the secondary battery and the battery capacity obtained by the battery capacity obtaining unit. A control unit,
The restraint force control unit
When the degree of decrease in the battery capacity acquired by the battery capacity acquisition unit with respect to the increase in the accumulated usage capacity has changed from a gradual first degree to a more severe second degree, the binding force A control device for a secondary battery, characterized in that the restraining force by the generator is increased.
請求項1に記載の二次電池の制御装置において,
前記拘束力制御部は,前記積算使用容量の平方根を横軸とし前記電池容量取得部によって取得された電池容量を縦軸とするグラフ上に,新たに取得した電池容量と前回取得した電池容量とにより引かれる直線の縦軸切片が,その初期値に対してあらかじめ決めた割合だけ増加した値となった場合に,電池容量の減少傾向の程度に変化があったと見なすものであることを特徴とする二次電池の制御装置。
The control apparatus for a secondary battery according to claim 1,
The restraint force control unit includes a newly acquired battery capacity, a previously acquired battery capacity, and a previously acquired battery capacity on a graph having the horizontal axis of the square root of the accumulated used capacity and the vertical axis of the battery capacity acquired by the battery capacity acquisition unit. If the vertical axis intercept of the straight line drawn by is increased by a predetermined rate with respect to its initial value, it is considered that the degree of decrease in battery capacity has changed. Secondary battery control device.
請求項1または請求項2に記載の二次電池の制御装置において,
前記拘束力制御部は,
拘束力を一旦増加させた後に元の大きさに戻す一時的増加を行ってから,前記電池容量取得部によって電池容量を再度取得し,
電池容量が拘束力の前記一時的増加の前より増加した場合は,前記二次電池をそのまま使用し,
電池容量が増加しなかった場合は,拘束力を増加させて増加させた状態を維持する定常的増加を行うことを特徴とする二次電池の制御装置。
The control apparatus for a secondary battery according to claim 1 or 2,
The restraint force control unit
After temporarily increasing the binding force and then temporarily increasing it back to its original size, the battery capacity acquisition unit acquires the battery capacity again,
If the battery capacity has increased from before the temporary increase in binding force, use the secondary battery as it is,
When the battery capacity does not increase, the secondary battery control device performs a steady increase that maintains the increased state by increasing the binding force.
請求項1から請求項3までのいずれか1つに記載の二次電池の制御装置において,
前記拘束力制御部は,前記拘束力発生部による拘束力の増加を,あらかじめ定めた拘束力の上限値の範囲内に限って行うことを特徴とする二次電池の制御装置。
In the control apparatus of the secondary battery as described in any one of Claim 1- Claim 3,
The control device for a secondary battery, wherein the restraint force control unit performs the increase of the restraint force by the restraint force generating unit only within a predetermined upper limit value range of the restraint force.
捲回または積層した電極板と電解液とを,他の面より大面積の一対の大側面を有する角型のケースに封入してなる二次電池を制御する二次電池の制御方法において,
対象とする二次電池は,前記ケースの前記大側面が外側から拘束されることによって,前記電極板の板面同士が近づく向きに圧迫されているものであり,
前記二次電池の充放電時の使用容量を積算した積算使用容量と,前記二次電池の電池容量の履歴とに基づき,
前記積算使用容量の増加に対する,前記電池容量の減少の程度に,緩やかな第1の程度からより激しい第2の程度への変化があった場合に,拘束力を増加させることを特徴とする二次電池の制御方法。
In a secondary battery control method for controlling a secondary battery in which a wound or laminated electrode plate and an electrolyte are enclosed in a square case having a pair of large side surfaces larger than the other surfaces,
The target secondary battery is one in which the large side surfaces of the case are constrained from the outside so that the plate surfaces of the electrode plates are pressed toward each other.
Based on the accumulated usage capacity obtained by integrating the usage capacity at the time of charge and discharge of the secondary battery, and the history of the battery capacity of the secondary battery,
The binding force is increased when there is a change from a gradual first degree to a more severe second degree in the degree of decrease in the battery capacity with respect to the increase in the accumulated usage capacity. Secondary battery control method.
JP2012020211A 2012-02-01 2012-02-01 Secondary battery control device and control method Active JP5765258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012020211A JP5765258B2 (en) 2012-02-01 2012-02-01 Secondary battery control device and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012020211A JP5765258B2 (en) 2012-02-01 2012-02-01 Secondary battery control device and control method

Publications (2)

Publication Number Publication Date
JP2013161543A JP2013161543A (en) 2013-08-19
JP5765258B2 true JP5765258B2 (en) 2015-08-19

Family

ID=49173660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012020211A Active JP5765258B2 (en) 2012-02-01 2012-02-01 Secondary battery control device and control method

Country Status (1)

Country Link
JP (1) JP5765258B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020134822A1 (en) 2020-01-17 2021-07-22 Toyota Jidosha Kabushiki Kaisha SECONDARY BATTERY DIAGNOSTIC DEVICE AND SECONDARY BATTERY RECOVERY PROCEDURE

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102085344B1 (en) * 2016-10-24 2020-04-23 주식회사 엘지화학 Battery pack for a vehicle and Vehicle including the same
JP6845989B2 (en) * 2017-02-06 2021-03-24 トヨタ自動車株式会社 Batteries
JP6760241B2 (en) * 2017-09-29 2020-09-23 トヨタ自動車株式会社 Rechargeable battery system
JP7061259B2 (en) * 2017-12-21 2022-04-28 トヨタ自動車株式会社 How to recover the capacity of the secondary battery cell
CN114024048B (en) * 2021-11-04 2024-02-06 中南大学 Recovery method for lithium ion battery negative electrode lithium precipitation

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892867B2 (en) * 2005-05-20 2012-03-07 トヨタ自動車株式会社 Assembly method of battery pack
JP2009048965A (en) * 2007-08-23 2009-03-05 Toyota Motor Corp Battery pack, and manufacturing method thereof
JP5481796B2 (en) * 2008-03-27 2014-04-23 株式会社デンソー Battery equipment module and battery pack having battery stack restraining means
JP2010009989A (en) * 2008-06-27 2010-01-14 Sanyo Electric Co Ltd Charge/discharge method of secondary battery and battery device
JP2010040295A (en) * 2008-08-04 2010-02-18 Toyota Motor Corp Battery device
JP2010205479A (en) * 2009-03-02 2010-09-16 Toyota Motor Corp All-solid battery employing power compact
JP5459139B2 (en) * 2010-08-05 2014-04-02 トヨタ自動車株式会社 Assembled battery
JP5545168B2 (en) * 2010-10-22 2014-07-09 トヨタ自動車株式会社 Vehicle assembled battery and vehicle
JP2012129029A (en) * 2010-12-14 2012-07-05 Toyota Motor Corp Power storage device
JP5605252B2 (en) * 2011-02-08 2014-10-15 トヨタ自動車株式会社 Power storage device
JP2013020891A (en) * 2011-07-13 2013-01-31 Toyota Motor Corp Binding structure of battery pack and binding force variable method of battery pack
JP5601311B2 (en) * 2011-11-24 2014-10-08 トヨタ自動車株式会社 Band assembling apparatus and band assembling method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020134822A1 (en) 2020-01-17 2021-07-22 Toyota Jidosha Kabushiki Kaisha SECONDARY BATTERY DIAGNOSTIC DEVICE AND SECONDARY BATTERY RECOVERY PROCEDURE
JP2021114388A (en) * 2020-01-17 2021-08-05 トヨタ自動車株式会社 Secondary battery diagnostic device and recovery method
JP7200954B2 (en) 2020-01-17 2023-01-10 トヨタ自動車株式会社 Diagnostic device and recovery method for secondary battery
US11757141B2 (en) 2020-01-17 2023-09-12 Toyota Jidosha Kabushiki Kaisha Diagnostic device for secondary battery and recovery method for secondary battery
US11811030B2 (en) 2020-01-17 2023-11-07 Toyota Jidosha Kabushiki Kaisha Diagnostic device for secondary battery and recovery method for secondary battery
US12113185B2 (en) 2020-01-17 2024-10-08 Toyota Jidosha Kabushiki Kaisha Diagnostic device for secondary battery and recovery method for secondary battery

Also Published As

Publication number Publication date
JP2013161543A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5765258B2 (en) Secondary battery control device and control method
CN108075199B (en) Battery system for vehicle and control method thereof
KR101850602B1 (en) Controller for lithium ion secondary battery, and vehicle
JP5660003B2 (en) A secondary battery deterioration state determination system and a deterioration state determination method.
JP6500789B2 (en) Control system of secondary battery
KR101167801B1 (en) Control method for lithium ion secondary battery, and lithium ion secondary battery system
US20170010327A1 (en) Soc estimation device for secondary battery
JP6355552B2 (en) Lithium ion secondary battery charging method and charging control system thereof
WO2012137456A1 (en) Method for determining remaining lifetime
JP6037166B2 (en) Secondary battery control method and secondary battery control device
KR20110081286A (en) Lithium secondary battery and use thereof
US20140111163A1 (en) Battery Energy Storage System
CN107799837B (en) Recovery method and reuse method for secondary battery
JP2010009983A (en) Charging unevenness reduction method and manufacturing method of secondary battery
US11448702B2 (en) Charging method for nonaqueous electrolyte secondary cell and charging system for nonaqueous electrolyte secondary cell
JP5353741B2 (en) Charge / discharge control device for lithium ion secondary battery
US20200328401A1 (en) Process for heat treating a lithium battery
US20130026996A1 (en) Charge/discharge control method for alkaline storage battery, and power supply system
CN104835988A (en) Battery system and correcting method of state of charge (SOC) of the battery system
JP5644722B2 (en) Battery system
JP6977599B2 (en) All-solid-state battery system
JP2013027243A (en) Battery pack and discharge control method thereof
CN112133924A (en) All-solid-state battery and all-solid-state battery system
JP5143923B2 (en) Rolled copper foil and secondary battery using the same
JP6708120B2 (en) Power storage system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R151 Written notification of patent or utility model registration

Ref document number: 5765258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250