JP5765250B2 - Ferrite sintered body and electronic parts - Google Patents

Ferrite sintered body and electronic parts Download PDF

Info

Publication number
JP5765250B2
JP5765250B2 JP2012010433A JP2012010433A JP5765250B2 JP 5765250 B2 JP5765250 B2 JP 5765250B2 JP 2012010433 A JP2012010433 A JP 2012010433A JP 2012010433 A JP2012010433 A JP 2012010433A JP 5765250 B2 JP5765250 B2 JP 5765250B2
Authority
JP
Japan
Prior art keywords
phase
mol
sintered body
oxide
ferrite sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012010433A
Other languages
Japanese (ja)
Other versions
JP2013147395A (en
Inventor
弘勝 佐々木
弘勝 佐々木
綱 伊藤
綱 伊藤
伊藤 守
守 伊藤
達哉 川口
達哉 川口
栄光 ▲高▼木
栄光 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012010433A priority Critical patent/JP5765250B2/en
Publication of JP2013147395A publication Critical patent/JP2013147395A/en
Application granted granted Critical
Publication of JP5765250B2 publication Critical patent/JP5765250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、自動車用トランスポンダ、チョークコイルおよびインダクタなどのフェライトコアの製造に好適なフェライト焼結体と、該焼結体から構成されるフェライトコアのたとえば周囲に巻き線が巻回してあるコイル部品などの電子部品と、に関する。   The present invention relates to a ferrite sintered body suitable for manufacturing a ferrite core such as an automobile transponder, choke coil, and inductor, and a coil component in which a winding is wound around, for example, a ferrite core composed of the sintered body. And so on.

フェライト焼結体で構成されるフェライトコアは、主としてコイル部品、センサ、アンテナ、偏向ヨーク等の部品に用いられており、これらの部品は、各種電子機器に用いられていた。   Ferrite cores composed of ferrite sintered bodies are mainly used for parts such as coil parts, sensors, antennas, deflection yokes, etc., and these parts have been used for various electronic devices.

しかしながら、近年、携帯電話やノート型パソコン等の携帯用機器の急速な普及が進み、たとえばコイル部品が組み込まれた機器には、厳しい使用環境、とりわけ温度変化に耐え得る特性が要求される。具体的には、使用可能な温度域が広範囲に及ぶことや、かつその温度域での初透磁率の変化が小さい、望ましくは全く変化しないことが挙げられる。   However, in recent years, portable devices such as mobile phones and notebook personal computers have rapidly spread. For example, a device incorporating a coil component is required to have a characteristic that can withstand harsh use environments, particularly temperature changes. Specifically, the usable temperature range covers a wide range, and the change in the initial magnetic permeability in the temperature range is small, preferably not changed at all.

さらに近年、特にトランスポンダなどのタイヤ空気圧センサやエンジンルーム内の制御回路等の自動車用部品としても、コイル部品の用途が拡大しており、このような用途には、厳しい使用環境、とりわけ温度変化に耐え得る特性が要求される。   In recent years, coil parts have also been used for automobile parts such as tire pressure sensors such as transponders and control circuits in engine rooms. Characteristics that can be withstood are required.

しかも、コイル部品は、用途に応じて、その初透磁率が特定の範囲内にあるものが選択される。したがって、コイル部品には、初透磁率の温度変化が小さいことに加え、その初透磁率が特定の範囲にあることが求められる。   In addition, a coil component whose initial permeability is in a specific range is selected according to the application. Therefore, the coil component is required to have the initial permeability within a specific range in addition to the small temperature change of the initial permeability.

ところで、特許文献1では、Ni−Cu−Zn系フェライト焼結体において、FeとZnOとの比を特定の範囲とすることで、初透磁率の相対温度係数を良好にできるフェライトが記載されている。 By the way, in Patent Document 1, in a Ni—Cu—Zn-based ferrite sintered body, a ferrite that can improve the relative temperature coefficient of initial permeability by setting the ratio of Fe 2 O 3 and ZnO within a specific range is disclosed. Have been described.

特開2006−206420号公報JP 2006-206420 A

本発明は、このような実状に鑑みてなされ、広い温度範囲(たとえば、−40〜125℃)において、初透磁率μiの変化率が小さく、しかも初透磁率μiが特定の範囲(たとえば、350〜700程度)にあるフェライト焼結体と、該フェライト焼結体で構成してあるフェライトコアを有する電子部品とを、提供することを目的とする。   The present invention has been made in view of such a situation, and in a wide temperature range (for example, −40 to 125 ° C.), the change rate of the initial permeability μi is small and the initial permeability μi is in a specific range (for example, 350 It is an object of the present invention to provide a ferrite sintered body at about 700 to an electronic component having a ferrite core composed of the ferrite sintered body.

上記目的を達成するために、本発明に係るフェライト焼結体は、スピネル構造を有し、酸化鉄と、酸化亜鉛と、酸化銅と、酸化ニッケルと、を含む主成分を有するフェライト焼結体である。該フェライト焼結体はA相とB相とを有している。A相は、酸化鉄のFe換算での含有割合(モル%)が酸化亜鉛のZnO換算での含有割合(モル%)よりも大きい領域であり、B相は、酸化鉄のFe換算での含有割合(モル%)が酸化亜鉛のZnO換算での含有割合(モル%)以下の領域である。主成分100モル%に占める酸化鉄のFe換算での含有割合をx(モル%)とし、A相の面積とB相の面積との合計面積に対するA相の面積割合をy(%)とした場合に、変数(x,y)が、下記の点A〜Dを頂点とする四角形に囲まれた領域内(線上を含む)にある。
点A(46,97)
点B(46,83)
点C(47.9,70)
点D(47.9,85)
In order to achieve the above object, a ferrite sintered body according to the present invention has a spinel structure and has a main component containing iron oxide, zinc oxide, copper oxide, and nickel oxide. It is. The ferrite sintered body has an A phase and a B phase. The A phase is a region in which the content ratio (mol%) of iron oxide in terms of Fe 2 O 3 is larger than the content ratio (mol%) of zinc oxide in terms of ZnO, and the B phase is Fe 2 of iron oxide. The content ratio (mol%) in terms of O 3 is a region below the zinc oxide content ratio (mol%) in terms of ZnO. The content ratio of iron oxide in 100 mol% of the main component in terms of Fe 2 O 3 is x (mol%), and the area ratio of the A phase to the total area of the area of the A phase and the area of the B phase is y (% ), The variable (x, y) is in an area (including a line) surrounded by a rectangle whose vertices are the following points A to D.
Point A (46,97)
Point B (46, 83)
Point C (47.9, 70)
Point D (47.9, 85)

本発明に係るフェライト焼結体では、主成分中に占める酸化鉄のFe換算での含有量(モル%)と、上記のA相の面積比率(%)と、が特定の範囲にある。このようにすることで、広い温度範囲における初透磁率の変化率を小さくすることができ、しかも、初透磁率を特定の範囲内とすることができる。 In the ferrite sintered body according to the present invention, the content (mol%) of iron oxide in the main component in terms of Fe 2 O 3 and the area ratio (%) of the A phase are within a specific range. is there. By doing in this way, the rate of change of the initial permeability in a wide temperature range can be reduced, and the initial permeability can be set within a specific range.

本発明に係る電子部品は、上記に記載のフェライト焼結体から構成されるフェライトコアを有する電子部品である。   The electronic component which concerns on this invention is an electronic component which has a ferrite core comprised from the ferrite sintered compact as described above.

本発明に係る電子部品は、μiの温度変化が少なく、しかもμiが特定の範囲(たとえば、350〜700程度)にあるため、1Hz〜5MHzまでの周波数帯における応用製品のコイル部品、トランス部品、磁気ヘッド部品に好適である。コイル部品としては、自動車用トランスポンダ、インダクタやチョークコイル等が挙げられ、トランス部品としては、スイッチング用、インバータ用等の電源トランス等が挙げられる。   Since the electronic component according to the present invention has a small temperature change of μi and μi is in a specific range (for example, about 350 to 700), the coil component, the transformer component, and the application product in the frequency band from 1 Hz to 5 MHz. Suitable for magnetic head components. Examples of the coil component include a transponder for an automobile, an inductor, a choke coil, and the like. Examples of the transformer component include a power transformer for switching and an inverter.

図1は、本発明の一実施形態に係るコイル部品用フェライトコアである。FIG. 1 shows a ferrite core for a coil component according to an embodiment of the present invention. 図2は、フェライト焼結体の主成分100モル%に対する酸化鉄のFe換算での含有量をx軸とし、A相の面積およびB相の面積の合計100%に対するA相の面積割合をy軸としたグラフである。2, the area of the content calculated as Fe 2 O 3 of iron oxide with respect to 100 moles of the main% of the ferrite sintered body as the x-axis, the A-phase to the total 100% of the area of the A-phase area and the B-phase It is a graph which made the ratio the y-axis. 図3は、表2に示す本発明の実施例および比較例を、図2に示すグラフにプロットしたグラフである。FIG. 3 is a graph in which the examples of the present invention and comparative examples shown in Table 2 are plotted on the graph shown in FIG.

以下、本発明を図面に示す実施形態に基づき説明する。   Hereinafter, the present invention will be described based on embodiments shown in the drawings.

本実施形態に係るコイル部品用フェライトコアとしては、図1に示したドラム型のほか、FT型、ET型、EI型、UU型、EE型、EER型、UI型、トロイダル型、ポット型、カップ型等を例示することができる。図1では、コイル部品10は、フェライトコア12の周囲に巻き線14を所定巻数だけ巻回することにより得られる。   As a ferrite core for coil parts according to the present embodiment, in addition to the drum type shown in FIG. 1, FT type, ET type, EI type, UU type, EE type, EER type, UI type, toroidal type, pot type, A cup type etc. can be illustrated. In FIG. 1, the coil component 10 is obtained by winding the winding 14 around the ferrite core 12 by a predetermined number of turns.

コイル部品10のフェライトコア12は、本実施形態に係るフェライト焼結体で構成してある。該フェライト焼結体は、Ni−Cu−Zn系フェライトであり、その主成分は、酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルから構成される。   The ferrite core 12 of the coil component 10 is composed of a ferrite sintered body according to this embodiment. The ferrite sintered body is Ni—Cu—Zn based ferrite, and its main component is composed of iron oxide, copper oxide, zinc oxide and nickel oxide.

また、本実施形態に係るフェライト焼結体は、主として、A相とB相とから構成されている。なお、該フェライト焼結体は、A相およびB相以外の相を有していてもよい。   The ferrite sintered body according to the present embodiment is mainly composed of an A phase and a B phase. The sintered ferrite body may have a phase other than the A phase and the B phase.

本実施形態では、A相およびB相の両方が、構成成分として、酸化鉄、酸化銅、酸化亜鉛および酸化ニッケルを少なくとも有しており、酸化鉄と酸化亜鉛との含有割合によりA相とB相とに分けられている。すなわち、A相は、酸化鉄のFe換算での含有量(モル%)が、酸化亜鉛のZnO換算での含有量(モル%)よりも大きい領域(相)である。また、B相は、酸化鉄のFe換算での含有量(モル%)が、酸化亜鉛のZnO換算での含有量(モル%)以下である領域(相)である。 In this embodiment, both the A phase and the B phase have at least iron oxide, copper oxide, zinc oxide, and nickel oxide as constituent components, and the A phase and B depend on the content ratio of iron oxide and zinc oxide. It is divided into phases. That is, the A phase is a region (phase) in which the content (mol%) of iron oxide in terms of Fe 2 O 3 is larger than the content (mol%) of zinc oxide in terms of ZnO. The B phase is a region (phase) in which the content (mol%) of iron oxide in terms of Fe 2 O 3 is equal to or less than the content (mol%) of zinc oxide in terms of ZnO.

本実施形態では、主成分100モル%中の酸化鉄の含有量と、フェライト焼結体におけるA相の面積およびB相の面積の合計100%に対するA相の面積割合と、を制御している。具体的には、主成分100モル%中のFeの含有量を「x」(モル%)とし、A相の面積割合を「y」(%)とした場合、変数(x,y)が、図2に示す点A(46,97)、点B(46,83)、点C(47.9,70)および点D(47.9,85)を頂点とする四角形に囲まれる領域内(線上を含む)にある(図2の斜線部)。すなわち、主成分100モル%中、酸化鉄の含有量は、Fe換算で、46.0〜47.9モル%である。なお、酸化鉄の含有量は、主成分を100モル%としたときに、酸化鉄がFe換算で占める量であり、特定の相における含有量ではない。 In the present embodiment, the content of iron oxide in 100 mol% of the main component and the area ratio of the A phase with respect to 100% of the total area of the A phase and the B phase in the ferrite sintered body are controlled. . Specifically, when the content of Fe 2 O 3 in 100 mol% of the main component is “x” (mol%) and the area ratio of the A phase is “y” (%), the variable (x, y ) Are surrounded by a rectangle having points A (46, 97), B (46, 83), C (47.9, 70) and D (47.9, 85) as vertices shown in FIG. It is within the area (including the line) (shaded area in FIG. 2). That is, in the main component 100 mol%, the content of iron oxide, calculated as Fe 2 O 3 is from 46.0 to 47.9 mol%. The content of iron oxide is the amount that iron oxide occupies in terms of Fe 2 O 3 when the main component is 100 mol%, and is not the content in a specific phase.

フェライト焼結体中において、主成分中の酸化鉄の含有量と、A相の面積割合と、が上記の関係を満足することで、初透磁率を特定の範囲にしつつ、フェライト焼結体の初透磁率の温度特性を良好にすることができる。具体的には、−40〜85℃、25〜85℃および25〜125℃での各温度範囲において、25℃における初透磁率に対する変化率(Δμi/μi25℃)を−5.0〜+5.0%とすることができる。 In the ferrite sintered body, the content of the iron oxide in the main component and the area ratio of the A phase satisfy the above relationship, so that the initial permeability is in a specific range, and the ferrite sintered body The temperature characteristics of the initial permeability can be improved. Specifically, in each temperature range of −40 to 85 ° C., 25 to 85 ° C., and 25 to 125 ° C., the change rate (Δμi / μi 25 ° C. ) with respect to the initial permeability at 25 ° C. is −5.0 to +5. 0.0%.

A相およびB相の面積を求める方法については特に制限されないが、本実施形態では、たとえば以下のようにして求めることができる。まず、フェライト焼結体を切断し研磨する。研磨面に対して、電子線マイクロアナライザ(EPMA)を用いて、特定の領域(たとえば100μm×100μmの正方形領域)について、面分析を行う。   The method for obtaining the areas of the A phase and the B phase is not particularly limited, but in the present embodiment, for example, it can be obtained as follows. First, the ferrite sintered body is cut and polished. A surface analysis is performed on the polished surface of a specific region (for example, a 100 μm × 100 μm square region) using an electron beam microanalyzer (EPMA).

測定点において得られる各元素の含有割合から、Fe元素のFe換算での含有割合がZn元素のZnO換算での含有割合よりも大きい測定点の集合(領域)をA相とし、Fe元素のFe換算での含有割合が、Zn元素のZnO換算での含有割合以下である測定点の集合(領域)をB相とする。 From the content ratio of each element obtained at the measurement point, a set (area) of measurement points in which the content ratio of Fe element in terms of Fe 2 O 3 is larger than the content ratio of Zn element in terms of ZnO is defined as A phase, and Fe A set (region) of measurement points in which the content ratio of the element in terms of Fe 2 O 3 is equal to or less than the content ratio of the Zn element in terms of ZnO is defined as a B phase.

そして、面分析を行った領域のマッピング画像について画像処理等を行うことにより、A相およびB相の面積を算出し、これらの値からA相の面積割合を算出すればよい。   Then, the area of the A phase and the B phase is calculated by performing image processing or the like on the mapping image of the area subjected to the surface analysis, and the area ratio of the A phase may be calculated from these values.

なお、EPMAを用いて面分析を行う領域全体がA相およびB相から構成されている必要はなく、該領域内に、A相およびB相以外の相が存在していてもよい。この場合であっても、上記のA相の面積割合は、A相の面積とB相の面積との合計100%に対する割合として算出される。   In addition, the whole area | region which performs surface analysis using EPMA does not need to be comprised from A phase and B phase, and phases other than A phase and B phase may exist in this area | region. Even in this case, the area ratio of the A phase is calculated as a ratio with respect to a total of 100% of the area of the A phase and the area of the B phase.

上述したA相およびB相の面積比は、後述するが、焼成条件の制御や酸化亜鉛の原料を複数用いることで容易に実現することができる。   The area ratio of the A phase and the B phase described above can be easily realized by controlling firing conditions and using a plurality of zinc oxide raw materials.

フェライト焼結体における他の成分の含有量は、酸化鉄の含有量が上記の範囲であれば特に制限されないが、本実施形態では、以下の範囲にあることが好ましい。   The content of other components in the ferrite sintered body is not particularly limited as long as the content of iron oxide is in the above range, but in the present embodiment, it is preferably in the following range.

主成分100モル%中、酸化銅の含有量は、CuO換算で、好ましくは2.0〜8.0モル%、より好ましくは4.0〜6.0モル%である。   In 100 mol% of the main component, the content of copper oxide is preferably 2.0 to 8.0 mol%, more preferably 4.0 to 6.0 mol% in terms of CuO.

主成分100モル%中、酸化亜鉛の含有量は、ZnO換算で、好ましくは28.0〜34.0モル%、より好ましくは30.0〜32.0モル%である。   In 100 mol% of the main component, the content of zinc oxide is preferably 28.0 to 34.0 mol%, more preferably 30.0 to 32.0 mol% in terms of ZnO.

主成分100モル%中、酸化ニッケルの含有量は、NiO換算で、好ましくは12.0〜20.0モル%、より好ましくは14.0〜16.0モル%である。   In 100 mol% of the main component, the content of nickel oxide is preferably 12.0 to 20.0 mol%, more preferably 14.0 to 16.0 mol% in terms of NiO.

本実施形態に係るフェライト焼結体は、上記の主成分に加え、該フェライト焼結体が有する効果を低下させない程度であれば、所望の特性を得るために、副成分を含有してもよい。副成分としては、特に制限されないが、たとえば、酸化タングステン、酸化モリブデン、酸化ビスマスなどが挙げられる。   In addition to the above main components, the ferrite sintered body according to the present embodiment may contain subcomponents in order to obtain desired characteristics as long as the effects of the ferrite sintered body are not reduced. . The subcomponent is not particularly limited, and examples thereof include tungsten oxide, molybdenum oxide, bismuth oxide and the like.

また、本実施形態に係るフェライト焼結体には、不可避的不純物元素の酸化物が含まれ得る。   In addition, the ferrite sintered body according to the present embodiment may include oxides of inevitable impurity elements.

具体的には、B、C、Si、P、S、Cl、As、Se、Br、Te、Iや、Li、Na、Mg、Al、K、Ca、Ga、Ge、Sr、Cd、In、Sn、Sb、Ba、Pb等の典型金属元素や、Sc、Ti、V、Cr、Mn、Co、Y、Zr、Nb、Pd、Ag、Hf、Ta等の遷移金属元素が挙げられる。   Specifically, B, C, Si, P, S, Cl, As, Se, Br, Te, I, Li, Na, Mg, Al, K, Ca, Ga, Ge, Sr, Cd, In, Typical metal elements such as Sn, Sb, Ba, and Pb, and transition metal elements such as Sc, Ti, V, Cr, Mn, Co, Y, Zr, Nb, Pd, Ag, Hf, and Ta can be given.

次に、本実施形態に係るフェライト焼結体の製造方法の一例を説明する。   Next, an example of a method for manufacturing a ferrite sintered body according to the present embodiment will be described.

まず、出発原料として、主成分の原料を準備する。主成分の原料としては、酸化鉄(α−Fe )、酸化銅(CuO)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)、あるいは複合酸化物などを用いることができる。さらに、その他、焼成により上記した酸化物や複合酸化物となる各種化合物等を用いることができる。焼成により上記した酸化物になるものとしては、たとえば、金属単体、炭酸塩、シュウ酸塩、硝酸塩、水酸化物、ハロゲン化物、有機金属化合物等が挙げられる。 First, a main component material is prepared as a starting material. As a raw material of the main component, iron oxide (α-Fe 2 O 3 ), copper oxide (CuO), zinc oxide (ZnO), nickel oxide (NiO), composite oxide, or the like can be used. In addition, various compounds that become oxides or composite oxides by firing can be used. Examples of the oxide that becomes the above-mentioned oxide upon firing include simple metals, carbonates, oxalates, nitrates, hydroxides, halides, organometallic compounds, and the like.

酸化亜鉛の原料としては、2種類以上の原料を用いることが好ましく、特に、主成分の他の原料(酸化鉄等)と仮焼きを行う原料と、仮焼きを行わない原料と、を用いることが好ましい。   As the raw material for zinc oxide, it is preferable to use two or more kinds of raw materials, and in particular, other raw materials (such as iron oxide) of the main component, a raw material to be calcined, and a raw material not to be calcined Is preferred.

仮焼きを行わない原料としては、金属亜鉛、酸化亜鉛、炭酸亜鉛、塩化亜鉛、亜鉛を含む複合酸化物などを用いることが好ましい。酸化亜鉛の原料として2種類以上の原料を用いることで、焼成後のフェライト焼結体において、上述したA相の面積割合を制御することが容易となる。   As a raw material not to be calcined, it is preferable to use metal zinc, zinc oxide, zinc carbonate, zinc chloride, a composite oxide containing zinc, or the like. By using two or more kinds of raw materials as the raw material for zinc oxide, it becomes easy to control the area ratio of the A phase described above in the sintered ferrite body after firing.

フェライト焼結体に副成分が含有される場合には、副成分の原料として、上記と同様に、該成分の酸化物や混合物、複合酸化物を用いることができる。また、その他、焼成により上記した酸化物や複合酸化物となる各種化合物を用いることができる。   When the ferrite sintered body contains a subcomponent, the component oxide, mixture, or composite oxide can be used as a subcomponent material in the same manner as described above. In addition, various compounds that become oxides or composite oxides by firing can be used.

準備した出発原料を、所定の組成比となるように秤量して混合し、原料混合物を得る。混合する方法としては、たとえば、ボールミルを用いて行う湿式混合や、乾式ミキサーを用いて行う乾式混合が挙げられる。なお、仮焼きを行わない原料は、原料混合物には含ませず、後述する原料混合物の仮焼き後に添加することが好ましい。また、平均粒径が0.1〜3μmの出発原料を用いることが好ましい。   The prepared starting materials are weighed and mixed so as to have a predetermined composition ratio to obtain a raw material mixture. Examples of the mixing method include wet mixing using a ball mill and dry mixing using a dry mixer. In addition, it is preferable not to include the raw material which does not perform calcination in a raw material mixture, but to add after the calcination of the raw material mixture mentioned later. Further, it is preferable to use a starting material having an average particle diameter of 0.1 to 3 μm.

次に、原料混合物の仮焼きを行い、仮焼き材料を得る。仮焼きは、好ましくは800〜1100℃の温度で、通常1〜3時間程度行う。仮焼きは、大気(空気)中で行ってもよく、大気中よりも酸素分圧が高い雰囲気や純酸素雰囲気で行っても良い。   Next, the raw material mixture is calcined to obtain a calcined material. The calcining is preferably performed at a temperature of 800 to 1100 ° C., usually for about 1 to 3 hours. The calcination may be performed in the air (air), or may be performed in an atmosphere having a higher oxygen partial pressure or in a pure oxygen atmosphere than in the air.

次に、仮焼き材料の粉砕を行い、粉砕材料を得る。粉砕は、粗粉砕を行ってからさらに微粉砕を行ってもよい。微粉砕は、ボールミルやアトライターなどを用いた湿式粉砕を行うことが好ましい。湿式粉砕は、仮焼き材料の平均粒径が、好ましくは1〜2μm程度となるまで行う。仮焼きを行わない原料は、仮焼き材料の粗粉砕前に添加してもよいし、粗粉砕後に添加してもよい。   Next, the calcined material is pulverized to obtain a pulverized material. The pulverization may be performed after coarse pulverization and further fine pulverization. The fine pulverization is preferably performed by wet pulverization using a ball mill or an attritor. The wet pulverization is performed until the average particle diameter of the calcined material is preferably about 1 to 2 μm. The raw material that is not calcined may be added before coarse pulverization of the calcined material, or may be added after coarse pulverization.

次に、粉砕材料の造粒(顆粒)を行い、造粒物を得る。造粒する方法としては、たとえば、加圧造粒法やスプレードライ法などが挙げられる。スプレードライ法は、粉砕材料に、ポリビニルアルコールなどの通常用いられるバインダを加えた後、スプレードライヤー中で霧化し、低温乾燥する方法である。   Next, the pulverized material is granulated (granular) to obtain a granulated product. Examples of the granulation method include a pressure granulation method and a spray drying method. The spray drying method is a method in which a commonly used binder such as polyvinyl alcohol is added to the pulverized material, and then atomized in a spray dryer and dried at a low temperature.

次に、造粒物を所定形状に成形し、成形体を得る。造粒物の成形としては、たとえば、乾式成形、湿式成形、押出成形などが挙げられる。乾式成形法は、造粒物を、金型に充填して圧縮加圧(プレス)することにより行う成形法である。成形体の形状は、特に限定されず、用途に応じて適宜決定すればよいが、本実施形態ではトロイダル型形状とされる。   Next, the granulated product is molded into a predetermined shape to obtain a molded body. Examples of the molding of the granulated product include dry molding, wet molding, and extrusion molding. The dry molding method is a molding method in which a granulated product is filled in a mold and compressed and pressed (pressed). The shape of the molded body is not particularly limited, and may be appropriately determined according to the application. In the present embodiment, the shape is a toroidal shape.

次に、成形体の本焼成を行い、焼結体(本実施形態のフェライト焼結体)を得る。本焼成は、好ましくは900〜1300℃の温度で、通常2〜5時間程度行う。本焼成は、大気(空気)中で行ってもよく、大気中よりも酸素分圧が高い雰囲気で行っても良い。   Next, the compact is fired to obtain a sintered body (ferrite sintered body of the present embodiment). The main baking is preferably performed at a temperature of 900 to 1300 ° C., usually for about 2 to 5 hours. The main calcination may be performed in the atmosphere (air) or in an atmosphere having a higher oxygen partial pressure than in the atmosphere.

このような工程を経て、本実施形態に係るフェライト焼結体は製造される。   The ferrite sintered body according to the present embodiment is manufactured through such steps.

以上、本発明の実施形態について説明してきたが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment at all, Of course, in the range which does not deviate from the summary of this invention, it can implement in various aspects. .

たとえば、上述した実施形態では、トロイダル型形状とするために、本焼成前に該形状に成形しているが、本焼成後に該形状に成形(加工)してもよい。   For example, in the above-described embodiment, in order to obtain a toroidal shape, the shape is formed before the main baking, but may be formed (processed) after the main baking.

以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。   Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

まず、フェライト焼結体の原料として、Fe、NiO、CuO、ZnOおよび表1に示す原料を準備した。 First, as raw materials for the ferrite sintered body, Fe 2 O 3 , NiO, CuO, ZnO and raw materials shown in Table 1 were prepared.

Figure 0005765250
Figure 0005765250

次に、Fe、NiO、CuO、ZnOの各粉末を秤量した後、ボールミルで5時間湿式混合して原料混合物を得た。 Next, each powder of Fe 2 O 3 , NiO, CuO, and ZnO was weighed and then wet-mixed with a ball mill for 5 hours to obtain a raw material mixture.

次に、得られた原料混合物を、空気中において900℃で2時間仮焼きして仮焼き材料を得た。この仮焼き材料に対し、表1に示す原料を、仮焼き材料100重量%に表1に示す割合の範囲内で添加し、ボールミルで比表面積が3m/gとなるまで湿式粉砕して粉砕材料を得た。なお、表1に示すZnOは、平均粒径5μmの粉体と、平均粒径1μmの粉体と、を1:1の割合で混合した粉体である。 Next, the obtained raw material mixture was calcined in the air at 900 ° C. for 2 hours to obtain a calcined material. To this calcined material, the raw materials shown in Table 1 are added to 100% by weight of the calcined material within the range shown in Table 1, and wet pulverized with a ball mill until the specific surface area becomes 3 m 2 / g. Obtained material. ZnO shown in Table 1 is a powder obtained by mixing a powder having an average particle diameter of 5 μm and a powder having an average particle diameter of 1 μm at a ratio of 1: 1.

次に、この粉砕材料を乾燥した後、該粉砕材料100重量%に、バインダとしてのポリビニルアルコール(3重量%水溶液)を10重量%添加して造粒し、20メッシュの篩で整粒して顆粒とした。この顆粒を、100kPaの圧力で加圧成形して、トロイダル形状の成形体を得た。   Next, after drying this pulverized material, 10% by weight of polyvinyl alcohol (3% by weight aqueous solution) as a binder was added to 100% by weight of the pulverized material, granulated, and sized with a 20 mesh sieve. Granules were used. This granule was press-molded at a pressure of 100 kPa to obtain a toroidal shaped compact.

次に、これら各成形体を、空気中において、1150℃で2時間焼成して、焼結体としてのトロイダルコアサンプル(外径18mm×内径10mm×高さ5mm)を得た。得られたサンプルについて、蛍光X線分析を行い、フェライトコアの組成を測定した。また、フェライトコアに対し以下の特性評価を行った。   Next, each of these molded bodies was fired in air at 1150 ° C. for 2 hours to obtain a toroidal core sample (outer diameter 18 mm × inner diameter 10 mm × height 5 mm) as a sintered body. The obtained sample was subjected to fluorescent X-ray analysis to measure the composition of the ferrite core. Moreover, the following characteristic evaluation was performed with respect to the ferrite core.

(A相およびB相の面積比の測定)
得られたサンプルを切断し、樹脂に埋め込んだ後、研磨し、その研磨面に対しEPMA分析を行った。電子線マイクロアナライザ(島津製作所製EPMA−1600)を用いて、100μm×100μmの正方形領域に対し、加速電圧15kV、照射電流0.3μA、計数時間60秒の条件でマッピング分析を行った。
(Measurement of area ratio of A phase and B phase)
The obtained sample was cut, embedded in resin, polished, and EPMA analysis was performed on the polished surface. Using an electron beam microanalyzer (EPMA-1600 manufactured by Shimadzu Corporation), mapping analysis was performed on a 100 μm × 100 μm square region under conditions of an acceleration voltage of 15 kV, an irradiation current of 0.3 μA, and a counting time of 60 seconds.

得られたマッピング分析における各測定点でのFe元素およびZn元素の含有割合の大小から、測定領域においてA相とB相とに分け、その面積比率を求めた。結果を表2および図3に示す。   From the magnitude of the content ratio of Fe element and Zn element at each measurement point in the obtained mapping analysis, the area ratio was obtained by dividing into the A phase and the B phase in the measurement region. The results are shown in Table 2 and FIG.

(初透磁率(μi))
得られたトロイダルコアサンプルに、巻線を20回巻回した後、LCRメータ(アジレント社製4284A)を用いて、初透磁率μiを測定した。測定条件は、測定周波数1kHz、測定温度25℃、測定レベル0.4mAとした。本実施例では、25℃における初透磁率が350〜700の範囲内にある試料を良好とした。
(Initial permeability (μi))
After winding the winding around the obtained toroidal core sample 20 times, the initial permeability μi was measured using an LCR meter (4284A manufactured by Agilent). The measurement conditions were a measurement frequency of 1 kHz, a measurement temperature of 25 ° C., and a measurement level of 0.4 mA. In this example, a sample having an initial permeability in the range of 350 to 700 at 25 ° C. was considered good.

(初透磁率の温度特性)
続いて、上記の測定条件において、−40〜125℃における初透磁率(μi)を測定した。得られた初透磁率から、25℃における初透磁率に対する変化率(Δμi/μi)を算出した。本実施例では、−40〜25℃におけるΔμi/μi(25℃)(=μi−40℃−μi25℃/μi25℃)は−5〜+5%を良好とし、25〜85℃におけるΔμi/μi(85℃)(=μi85℃−μi25℃/μi25℃)は−5〜+5%を良好とし、25〜125℃におけるΔμi/μi(125℃)(=μi125℃−μi25℃/μi25℃)は−5〜+5%を良好とした。結果を表2に示す。
(Temperature characteristics of initial permeability)
Subsequently, the initial permeability (μi) at −40 to 125 ° C. was measured under the above measurement conditions. From the obtained initial permeability, the rate of change (Δμi / μi) relative to the initial permeability at 25 ° C. was calculated. In this example, Δμi / μi (−25 ° C.) at −40 to 25 ° C. (= μi− 40 ° C. −μi 25 ° C./μi 25 ° C. ) is good from −5 to + 5%, and Δμi / at 25 to 85 ° C. μi (85 ° C.) (= μi 85 ° C. −μi 25 ° C./μi 25 ° C. ) is preferably −5 to + 5%, and Δμi / μi (125 ° C.) at 25 to 125 ° C. (= μi 125 ° C. −μi 25 ° C. / Μi 25 ° C. ) made -5 to + 5% good. The results are shown in Table 2.

Figure 0005765250
Figure 0005765250

表2より、x(Fe含有量)と、y(A相面積比率)とが、上述した範囲内である場合には(実施例1〜20)、幅広い温度範囲において、初透磁率の温度変化を小さくでき、しかも、初透磁率が特定の範囲内(350〜700)にあることが確認できた。また、図3より、実施例1〜20は、上述した点A〜点Dを頂点とする四角形に囲まれた領域内にあることが視覚的に確認できた。 From Table 2, when x (Fe 2 O 3 content) and y (A phase area ratio) are within the above-described ranges (Examples 1 to 20), the initial magnetic permeability in a wide temperature range. Further, it was confirmed that the temperature change of the initial magnetic permeability was in a specific range (350 to 700). Further, from FIG. 3, it was visually confirmed that Examples 1 to 20 were in an area surrounded by a quadrangle having the above points A to D as vertices.

Claims (2)

スピネル構造を有し、酸化鉄と、酸化亜鉛と、酸化銅と、酸化ニッケルと、を含む主成分を有するフェライト焼結体であって、
前記フェライト焼結体が、A相とB相とを有し、
前記A相は、前記酸化鉄のFe換算での含有割合(モル%)が前記酸化亜鉛のZnO換算での含有割合(モル%)よりも大きい領域であり、前記B相は、前記酸化鉄のFe換算での含有割合(モル%)が前記酸化亜鉛のZnO換算での含有割合(モル%)以下の領域であり、
前記主成分100モル%に占める前記酸化鉄のFe換算での含有割合をx(モル%)とし、前記A相の面積と前記B相の面積との合計面積に対する前記A相の面積割合をy(%)とした場合に、変数(x,y)が、下記の点A〜Dを頂点とする四角形に囲まれた領域内(線上を含む)にあることを特徴とするフェライト焼結体。
点A(46,97)
点B(46,83)
点C(47.9,70)
点D(47.9,85)
A ferrite sintered body having a spinel structure and having a main component including iron oxide, zinc oxide, copper oxide, and nickel oxide,
The ferrite sintered body has an A phase and a B phase,
The A phase is a region in which the content ratio (mol%) of the iron oxide in terms of Fe 2 O 3 is larger than the content ratio (mol%) of the zinc oxide in terms of ZnO, and the B phase is The content ratio (mol%) of iron oxide in terms of Fe 2 O 3 is a region below the content ratio (mol%) of zinc oxide in terms of ZnO,
The content ratio of the iron oxide in 100 mol% of the main component in terms of Fe 2 O 3 is x (mol%), and the area of the A phase with respect to the total area of the area of the A phase and the area of the B phase When the ratio is y (%), the variable (x, y) is in the region (including the line) surrounded by a quadrangle having the following points A to D as vertices. Union.
Point A (46,97)
Point B (46, 83)
Point C (47.9, 70)
Point D (47.9, 85)
請求項1に記載のフェライト焼結体から構成されるフェライトコアを有する電子部品。   The electronic component which has a ferrite core comprised from the ferrite sintered compact of Claim 1.
JP2012010433A 2012-01-20 2012-01-20 Ferrite sintered body and electronic parts Active JP5765250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010433A JP5765250B2 (en) 2012-01-20 2012-01-20 Ferrite sintered body and electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010433A JP5765250B2 (en) 2012-01-20 2012-01-20 Ferrite sintered body and electronic parts

Publications (2)

Publication Number Publication Date
JP2013147395A JP2013147395A (en) 2013-08-01
JP5765250B2 true JP5765250B2 (en) 2015-08-19

Family

ID=49045296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010433A Active JP5765250B2 (en) 2012-01-20 2012-01-20 Ferrite sintered body and electronic parts

Country Status (1)

Country Link
JP (1) JP5765250B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6024843B1 (en) * 2015-04-02 2016-11-16 Tdk株式会社 Ferrite composition and electronic component
KR20160118973A (en) 2015-04-02 2016-10-12 티디케이가부시기가이샤 Ferrite composition and electronic component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03196602A (en) * 1989-12-26 1991-08-28 Taiyo Yuden Co Ltd Manufacture of ni-zn ferrite
JPH07272919A (en) * 1994-03-28 1995-10-20 Tokin Corp Oxide magnetic material and inductor using the same
JPH097816A (en) * 1995-06-22 1997-01-10 Samsung Corning Co Ltd Ni-cu-zn system oxide magnetic material
JPH1135369A (en) * 1997-07-17 1999-02-09 Tokin Corp Thermal shock resistant ferrite
JP4107667B2 (en) * 2003-09-03 2008-06-25 Tdk株式会社 Ferrite material and inductor element
JP4183187B2 (en) * 2004-04-22 2008-11-19 Tdk株式会社 Ferrite sintered body
JP2006282347A (en) * 2005-04-01 2006-10-19 Ishida Co Ltd Sorting system

Also Published As

Publication number Publication date
JP2013147395A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP6147638B2 (en) Ferrite composition and electronic component
JP4873064B2 (en) Ferrite composition, ferrite core and electronic component
JP5880517B2 (en) Ferrite composition and electronic component
JP5423962B2 (en) Ferrite composition, ferrite core and electronic component
JP5516848B2 (en) Ferrite composition, ferrite core and electronic component
JP5699542B2 (en) Ferrite composition, ferrite core and electronic component
JP5699540B2 (en) Ferrite composition, ferrite core and electronic component
JP5765250B2 (en) Ferrite sintered body and electronic parts
JP6322987B2 (en) Ferrite composition, ferrite core and electronic component
JP5510273B2 (en) Ferrite composition, ferrite core and electronic component
JP5510296B2 (en) Ferrite composition, ferrite core and electronic component
JP5526612B2 (en) Ferrite composition, ferrite core and electronic component
JP5637152B2 (en) Ferrite sintered body and electronic parts
JP5811860B2 (en) Ferrite sintered body and electronic parts
JP5831256B2 (en) Ferrite composition, ferrite core and electronic component
JP5672974B2 (en) Ferrite sintered body and electronic parts
JP6380730B2 (en) Ferrite composition, ferrite core and electronic component
JP6323042B2 (en) Ferrite composition, ferrite core and electronic component
JP6064525B2 (en) Ferrite composition, ferrite core and electronic component
JP5831255B2 (en) Ferrite composition, ferrite core and electronic component
JP5811816B2 (en) Ferrite composition, ferrite core and electronic component
JP6051930B2 (en) Ferrite composition, ferrite core and electronic component
JP5812069B2 (en) Ferrite composition, ferrite core and electronic component
JP2012148931A (en) Ferrite sintered body and electronic component
JP6311298B2 (en) Ferrite composition, ferrite core and electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150601

R150 Certificate of patent or registration of utility model

Ref document number: 5765250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250