JPH097816A - Ni-cu-zn system oxide magnetic material - Google Patents
Ni-cu-zn system oxide magnetic materialInfo
- Publication number
- JPH097816A JPH097816A JP7179399A JP17939995A JPH097816A JP H097816 A JPH097816 A JP H097816A JP 7179399 A JP7179399 A JP 7179399A JP 17939995 A JP17939995 A JP 17939995A JP H097816 A JPH097816 A JP H097816A
- Authority
- JP
- Japan
- Prior art keywords
- mno
- amount
- added
- mgo
- magnetic material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
- Compounds Of Iron (AREA)
- Magnetic Ceramics (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は主としてVTRに使用
するロータリートランス用のコアーに用いられる材料
で、使用周波数が数MHZで少なくとも透磁率(μi)
が450以上で、損失も少なく、且つ、トランスコアー
の形状の構成上から精度の高い研削加工が必要とされる
ことにより靱性,抗析応力の高い等の多面的な特性が要
求されるNi−Cu−Zn系材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is a material mainly used for cores of rotary transformers used in VTRs, and has a magnetic permeability (μi) of at least several MHZ.
Ni- is required to have multifaceted characteristics such as high toughness and high electro-deposition stress due to the need for highly accurate grinding due to the configuration of the shape of the transformer core. The present invention relates to a Cu-Zn material.
【0002】[0002]
【従来の技術】従来、此の種ロータリートランス用コア
ーの製品を製造するに当たっては酸化ニッケル(以下、
「NiO」と表示する。)、酸化亜鉛(以下、「Zn
O」と表示する。)、酸化銅(以下、「CuO」と表示
する。)及び残部として酸化第二鉄(以下、「Fe2 O
3 」と表示する。)を混合し、仮焼成・粉砕・成型し
て、これを大気中で燒結した後、磁束の漏洩を少なくし
てトランスの効率を上げるために突き合わせ面を高い精
度で研削する事により実効比透磁率を上げる事が行われ
ている。2. Description of the Related Art Conventionally, nickel oxide (hereinafter
Displayed as "NiO". ), Zinc oxide (hereinafter “Zn
"O" is displayed. ), Copper oxide (hereinafter referred to as “CuO”), and the balance ferric oxide (hereinafter referred to as “Fe 2 O”).
3 ”is displayed. ) Are mixed, calcinated, crushed and molded, and then sintered in the atmosphere, and the effective contact ratio is ground by highly accurate grinding to reduce the leakage of magnetic flux and improve the efficiency of the transformer. Increasing magnetic susceptibility is done.
【0003】然し、研削精度を上げるためには研削速度
を下げなければならず、その研削速度を下げれば効率が
下がってコストが上昇する。この研削速度を落とさない
で研削すると、コアーに欠けやひび割れが生じ易くなる
ので、コアーの靱性・抗析力の向上が必要とされている
(特開平2−137767号参照)。However, in order to improve the grinding accuracy, the grinding speed must be decreased, and if the grinding speed is decreased, the efficiency is lowered and the cost is increased. Grinding without decreasing the grinding speed easily causes chipping and cracking of the core, and therefore, improvement of toughness and anti-sedimentation force of the core is required (see JP-A-2-137767).
【0004】更に、研削精度によって特性向上を期待す
るにしても、本来材料が持っている初透磁率が或る程度
以上高い方が有利に設計出来る事は申すまでもない。加
えて、トランスの効率に直結する損失の少ないことも要
望される所である。Further, even if it is expected that the characteristics will be improved by the grinding accuracy, it goes without saying that it is possible to design the material having an initial magnetic permeability higher than a certain value, which is advantageous. In addition, it is also desired that the loss directly connected to the efficiency of the transformer be small.
【0005】従来の材料技術では此の様な多面的要求特
性に答えられるものは見当たらず、一方の特性を満たせ
ば一方の特性を犠牲にする,所謂、バランス対応技術が
多かった。No conventional material technology can meet such multifaceted required characteristics, and there are many so-called balance-supporting technologies that sacrifice one characteristic if one characteristic is satisfied.
【0006】[0006]
【発明が解決しようとする課題】本発明の技術に於ては
一般に製鉄のプロセスに係って混入して来る酸化鉄のM
nO不純分に着目し、詳細に実験を繰り返した結果、従
来見落とされていた微量領域の不純物酸化マンガン(以
下、「MnO」と表示する。)と従来既知の微量領域の
酸化マグネシューム(以下、「MgO」と表示する。)
を同時に複合添加する事によりコアーの透磁率・損失・
強靱性・抗析力を同時に向上させ得る事を見出し、その
Ni−Cu−−Zn系酸化物磁性材料を提供する。In the technique of the present invention, M of iron oxide which is generally mixed in the process of iron making is mixed.
As a result of repeating the experiment in detail, focusing on nO impurities, a trace amount of impurity manganese oxide (hereinafter referred to as “MnO”) that has been overlooked and a conventionally known trace amount of magnesium oxide (hereinafter, referred to as “MnO”). It is displayed as "MgO".)
The magnetic permeability, loss, and
It has been found that the toughness and the anti-segregation force can be improved at the same time, and the Ni—Cu——Zn-based oxide magnetic material is provided.
【0007】即ち、一般に透磁率を500以上にとって
靱性を高く維持したり、高い靱性のままで800程度の
初透磁率を得ることは難しいとされていたが、本発明に
よれば比較的容易に得られる事が判明したのである。That is, it is generally said that it is difficult to maintain high toughness with a magnetic permeability of 500 or more, or to obtain an initial magnetic permeability of about 800 with high toughness, but according to the present invention, it is relatively easy. It turned out to be obtained.
【0008】然も、ロータリートランスに要求される実
効透磁率の値は機種によって異り、その都度材料を調整
することは大変な作業が必要とされる。然し、本発明に
よれば工程の条件を変化させる事なく、MgOの一定量
に対し同時添加するMnOの量のみを0.1〜0.4w
t%変化させるだけで、他の特性を劣化させる事なく、
μiacを600〜800と約30%も変化させる事が
出来、多目的のR/T用の材料を簡単に提供する手段を
得る事が出来る様になり、そのNi−Cu−Zn系酸化
物磁性材料を提供することを目的とする。However, the value of the effective magnetic permeability required for the rotary transformer differs depending on the model, and it requires a great deal of work to adjust the material each time. However, according to the present invention, the amount of MnO added at the same time with respect to a certain amount of MgO is 0.1 to 0.4 w without changing the process conditions.
Only by changing t%, without degrading other characteristics,
The μiac can be changed from 600 to 800 by about 30%, and a means for easily providing a multipurpose R / T material can be obtained. The Ni—Cu—Zn oxide magnetic material The purpose is to provide.
【0009】[0009]
【課題を解決するための手段】本発明に係るNi−Cu
−Zn系酸化物磁性材料においては、14.0〜19.
0モル%のNiO,29.0〜35.0モル%のZn
O,3.0〜6.0モル%のCuO,残部:Fe2 O3
を主成分とし、副成分としてSiO2 :0.02wt%
(0を含まず)以下、CaO:0.02wt%(0を含
まず)以下、Bi2 O3 :0.10wt%以下からなる
組成物に、MgO:0.1〜0.3wt%,原料中に含
まれるMnOの量を含め、MnO:0.1〜0.4wt
%を複合含有させたものである。Ni-Cu according to the present invention
In the Zn-based oxide magnetic material, 14.0 to 19.
0 mol% NiO, 29.0-35.0 mol% Zn
O, 3.0 to 6.0 mol% CuO, balance: Fe 2 O 3
As a main component and SiO 2 as a sub-component: 0.02 wt%
(Not including 0), CaO: 0.02 wt% (not including 0) or less, Bi 2 O 3 : 0.10 wt% or less, MgO: 0.1 to 0.3 wt%, raw material Including the amount of MnO contained therein, MnO: 0.1-0.4 wt
% Is a composite content.
【0010】[0010]
【作用】本発明のNi−Cu−Zn系酸化物磁性材料に
おいては、副成分として含有又は添加される0.02w
t%以下(0を含まず)のSiO2 ,0.02wt%以
下のCaO,0.07wt%以下(0を含まず)のBi
2 O3 は、主成分である14.0〜19.0モル%のN
iO,29.0〜35.0モル%のZnO,3.0〜
6.0モル%のCuO,残部:Fe2 O3 の組成範囲で
は結晶を成長させて透磁率を高めるように作用し、反対
に損失は上昇する傾向を示す。更に、此の組成物にMg
Oを0.1〜0.5wt%を添加すると靱性は顕著に向
上するが、初透磁率も可成り大幅に減少する。In the Ni-Cu-Zn oxide magnetic material of the present invention, 0.02w contained or added as an auxiliary component.
t 2 or less (not including 0) SiO 2 , 0.02 wt% or less CaO, 0.07 wt% or less (not including 0) Bi
2 O 3 is a main component of 14.0 to 19.0 mol% N.
iO, 29.0-35.0 mol% ZnO, 3.0-
In the composition range of 6.0 mol% CuO and the balance: Fe 2 O 3 , it acts to grow crystals and increase the magnetic permeability, and on the contrary, the loss tends to increase. In addition, Mg in this composition
When 0.1 to 0.5 wt% of O is added, the toughness is remarkably improved, but the initial magnetic permeability is considerably reduced.
【0011】然し、本発明に於いては添加するMgO:
0.1〜0.3%と使用酸化鉄中のMnOの量が特性に
影響する度合いを十分検討した所、MgO:0.1〜
0.3wt%,原料中のMnOの量を含め、MnO:
0.1〜0.4wt%の領域では複合同時添加によって
透磁率が向上し、同時に損失も低下する領域がある事が
新に見い出されたものである。However, in the present invention, MgO added:
When 0.1 to 0.3% and the amount of MnO in the iron oxide used affect the characteristics, MgO: 0.1
0.3 wt%, including the amount of MnO in the raw material, MnO:
It has been newly found that in the region of 0.1 to 0.4 wt%, the magnetic permeability is improved by the composite simultaneous addition, and at the same time, the loss is also reduced.
【0012】即ち、従来技術では強靱性を有する特性を
得るための制限・条件として、不純分はなるべく少な
く、としていた条件の微量な領域中に、一般常識的には
相反すると思われていたμi,Qの特性の傾向が同時に
良化する領域が存在する事が解かったのである。That is, in the prior art, as a restriction / condition for obtaining the characteristics having toughness, the impurity content was as small as possible, and it was generally considered to be contradictory in the minute range of the condition. It was found that there is a region where the tendency of the characteristics of Q and Q are improved at the same time.
【0013】主成分の範囲は製品の用途上、キュウリー
点が100℃以上になる様に、インバーススピネルを構
成する成分NiO+CuOのモル%量と、対応するノル
マルスピネルを構成する成分ZnOモル%量を定めてい
る。The range of the main component is, in terms of the use of the product, the mol% amount of the component NiO + CuO forming the inverse spinel and the corresponding ZnO mol% amount forming the normal spinel so that the Curie point is 100 ° C. or higher. It has established.
【0014】又、この組み合わせで発生する初透磁率が
おおよそ450を切らない範囲で第一次的に主成分範囲
を定め、次に適量のMnO,MgOの添加モル%によっ
て450〜800の透磁率が容易に得られる様に設定し
ている。Further, the main component range is primarily determined within the range in which the initial magnetic permeability generated by this combination does not fall below about 450, and then the magnetic permeability of 450 to 800 is determined by the addition mol% of an appropriate amount of MnO and MgO. Is set so that can be easily obtained.
【0015】いずれにしても本発明の結果からすれば、
透磁率・損失(固有抵抗を含む)、靱性が同時に良化す
る事が要求される高性能・高靱性材料はSiO2 ,Ca
O,Bi2 O3 が上記の制限限度以下の微量である条件
と、MnO+MgOの特定の複合微量添加領域の範囲で
得られる事が確認されたものである。したがって、ミク
ロな機構解明は今後に待つ部分も多いが電子顕微鏡等の
観察からすれば、結晶粒界における添加微量成分の挙動
の結果である事は間違いないと判断される。In any case, according to the results of the present invention,
SiO 2 and Ca are high performance and high toughness materials that are required to improve magnetic permeability, loss (including specific resistance) and toughness at the same time.
It has been confirmed that O and Bi 2 O 3 can be obtained under the condition that the amount of O and Bi 2 O 3 is a trace amount below the above-mentioned limit and in the range of a specific composite trace amount addition region of MnO + MgO. Therefore, although there are many points to wait for the elucidation of the microscopic mechanism in the future, from the observation of electron microscopes, it is certain that it is the result of the behavior of the added trace components at the grain boundaries.
【0016】[0016]
【実施例】実施例−1として、32.15mol%のZ
nO,14.67mol%のNiO,5.64mol%
のCuO及び残部Fe2 O3 を含む主成分に、副成分と
して0.006wt%のSiO2 ,0.006wt%の
CaO,0.1wt%のMnO,及び0.035wt%
のBi2 O3 をすでに含有又は添加している粉末に、M
gOを0.0,0.1,0.2,0.3wt%の4水準
別々に添加した材料を調合して、混合乾燥し900℃で
仮焼し、粉砕してスプレードライヤーで造粒し、この粉
末をプレスで成形した後、1080℃の温度で1時間保
持し燒結をした。EXAMPLE As Example-1, 32.15 mol% Z
nO, 14.67 mol% NiO, 5.64 mol%
Of CuO and the balance of Fe 2 O 3 , and 0.006 wt% SiO 2 , 0.006 wt% CaO, 0.1 wt% MnO, and 0.035 wt% as subcomponents.
Powder containing Bi 2 O 3 already added or
4 levels of gO 0.0, 0.1, 0.2, 0.3wt% were added separately, mixed, dried, calcined at 900 ° C, pulverized and granulated with a spray dryer. After molding this powder by a press, it was held at a temperature of 1080 ° C. for 1 hour for sintering.
【0017】これらの試片の1MHzにおける初透磁率
と損失係数の測定結果を図1に、曲げ強度(「Modu
lus Of Ruture」、以下、「MOR強度」
と表示する。)を図2に示す。The measurement results of the initial permeability and the loss coefficient of these test pieces at 1 MHz are shown in FIG. 1, and the bending strength (“Modu
lus Of Rule ”, hereafter“ MOR strength ”
Is displayed. ) Is shown in FIG.
【0018】図1に示す測定の結果では、前記主成分の
粉末にMgOの添加量を増加していくと、損失係数が減
少する傾向を示し、MgOが無添加の時に比べてMgO
を0.3wt%添加した場合損失係数の値が約32%減
少し、特性が向上する。反対に、1MHzにおける初期
透磁率μiはMgOの添加量が増加すると劣化する傾向
を示し、0.1wt%において13%劣化,0.3wt
%で約29%劣化している。The measurement results shown in FIG. 1 show that the loss coefficient tends to decrease as the amount of MgO added to the powder of the main component increases, as compared with the case where MgO is not added.
When 0.3 wt% is added, the loss coefficient value is reduced by about 32%, and the characteristics are improved. On the contrary, the initial magnetic permeability μi at 1 MHz tends to deteriorate as the amount of MgO added increases, and at 0.1 wt% it deteriorates 13% and 0.3 wt%.
% Is about 29% deteriorated.
【0019】図2に示す測定の結果はMgOの添加量を
増加していくとMOR強度の値が増加し、MgOが0.
1wt%で最大となり、MgOが無添加の時に比べて約
9%増となり、その後減少する値を示す。The results of the measurement shown in FIG. 2 show that the MOR strength value increases as the amount of MgO added increases, and MgO becomes less than 0.
It shows a maximum at 1 wt%, an increase of about 9% compared to the case where MgO is not added, and a decrease thereafter.
【0020】以上の結果から、Ni−Cu−Zn系酸化
物磁性材料を主成分とした粉末に、0.3wt%以下の
MgOを適量添加して1080℃で燒結することにより
初透磁率の値は劣化し、相対損失係数が向上し、MOR
強度も向上する傾向が確認された。From the above results, the initial magnetic permeability value was obtained by adding an appropriate amount of 0.3 wt% or less of MgO to the powder containing the Ni—Cu—Zn-based oxide magnetic material as the main component and sintering at 1080 ° C. Deteriorates, the relative loss coefficient improves, and the MOR
It was confirmed that the strength also improved.
【0021】実施例−2としては実施例−1の主成分
に、副成分として0.006wt%のSiO2 ,0.0
06wt%のCaO,0.1wt%のMnO及び0.0
35wt%のBi2 O3 をすでに含有又は添加している
粉末に、MnOを0.0,0.1,0.2,0.3wt
%の4水準を別々に添加して材料を調合し、実施例−1
と同様な方法で試片を製造した。In Example 2, as the main component of Example 1, 0.006 wt% SiO 2 , 0.0 was added as a minor component.
06 wt% CaO, 0.1 wt% MnO and 0.0
To powders already containing or adding 35 wt% Bi 2 O 3 , 0.0, 0.1, 0.2, 0.3 wt of MnO
% Of 4 levels were added separately to formulate the material, Example-1
A test piece was manufactured in the same manner as in.
【0022】これらの試片の1MHzにおける初透磁率
と損失係数の測定結果を図3に、MOR強度を図4に示
す。FIG. 3 shows the measurement results of the initial permeability and loss coefficient of these test pieces at 1 MHz, and FIG. 4 shows the MOR strength.
【0023】図3に示す測定の結果では、前記成分から
なる材料の粉末にMnOの添加量を増加していくと、初
透磁率が上昇する傾向を示し、MnOが0.1wt%含
有の時に比べてMnOが0.4wt%含有の場合、初期
透磁率が約20%増加する特性を示す。又、損失係数も
MnOの添加量を増加していくと顕著に向上する傾向を
示す。即ち、MnOを0.4wt%含有した場合、0.
1wt%含有時と比べて約27%も向上する特性を示
す。The measurement results shown in FIG. 3 show that the initial permeability tends to increase as the amount of MnO added to the powder of the above-mentioned components increases, and when the content of MnO is 0.1 wt%. On the other hand, when MnO is contained in an amount of 0.4 wt%, the initial magnetic permeability increases by about 20%. Further, the loss coefficient also tends to significantly improve as the amount of MnO added increases. That is, when 0.4 wt% of MnO is contained,
It shows the characteristic that it is improved by about 27% as compared with the case of containing 1 wt%.
【0024】反面、図4に示す如くMOR強度の値はM
nOの添加量が増加するにつれて若干減少する傾向を示
す。On the other hand, as shown in FIG. 4, the value of MOR strength is M
It tends to decrease slightly as the amount of nO added increases.
【0025】実施例−3として実施例−1の主成分で、
副成分として0.006wt%のSiO2 ,0.006
wt%のCaO,0.1wt%のMnO,0.035w
t%のBi2 O3 及び0.1wt%のMgOをすでに含
有又は添加している粉末に、MnOを0.0,0.1,
0.2,0.3wt%の4水準を別々に添加して材料を
調合し、実施例−1と同様な方法で試片を製造した。The main component of Example-1 is as Example-3,
0.006 wt% SiO 2 , 0.006 as an accessory component
wt% CaO, 0.1 wt% MnO, 0.035w
0.02% MnO was added to the powder which already contained or added t% Bi 2 O 3 and 0.1 wt% MgO.
4 levels of 0.2 and 0.3 wt% were added separately to compound the material, and a sample was manufactured in the same manner as in Example-1.
【0026】これらの試片の1MHzにおける初透磁率
と損失係数測定結果を図5に、MOR強度を図4に示
す。FIG. 5 shows the results of measurement of the initial permeability and loss coefficient of these test pieces at 1 MHz, and FIG. 4 shows the MOR strength thereof.
【0027】図5に示す測定の結果では、上記成分の粉
末にMnOの添加量を増加していくと初透磁率が顕著に
上昇する傾向を示し、損失係数の値も大幅に減少する傾
向を示す。第4図に示したMOR強度の値はMnOの添
加量について若干減少する傾向を示すが、MnOの含有
量が0.2wt%の場合、0.1wt%含有の時と略同
等の値を示している。又、MnOが0.3〜0.4wt
%附近ではMgO無添加の時と0.1wt%添加の時略
同等の値を示している。According to the measurement results shown in FIG. 5, the initial permeability tends to increase remarkably as the amount of MnO added to the powder of the above components increases, and the loss coefficient also tends to decrease significantly. Show. The value of MOR strength shown in FIG. 4 shows a tendency to decrease a little with the addition amount of MnO, but when the content of MnO is 0.2 wt%, it shows a value almost equal to that when the content is 0.1 wt%. ing. Further, MnO is 0.3 to 0.4 wt.
%, The values are almost the same when MgO is not added and when 0.1 wt% is added.
【0028】以上の結果から、上記Ni−Cu−Zn系
酸化物磁性材料を主成分とした粉末に実験の範囲である
0.3wt%以下のMgO,0.4wt%以下のMnO
を複合添加すると初期透磁率は向上し、同時に損失が減
少し、合せてMOR曲強度が増加するという領域がある
ことを見出したものである。From the above results, 0.3 wt% or less of MgO and 0.4 wt% or less of MnO, which are the experimental ranges, were added to the powder containing the above Ni—Cu—Zn oxide magnetic material as the main component.
It has been found that there is a region in which the initial permeability is improved, the loss is decreased at the same time, and the MOR bending strength is also increased by the combined addition of the above.
【0029】[0029]
【発明の効果】本発明に係るNi−Cu−Zn系酸化物
磁性材料によれば、高精度の加工が必要とされるコアー
の材料特性を有し、且つ、高透磁率・低損失の材料が得
られることとなった。According to the Ni—Cu—Zn-based oxide magnetic material of the present invention, a material having core material characteristics that require high-precision processing, and having high magnetic permeability and low loss. Will be obtained.
【0030】例えば、ロータリートランス、高周波用E
I・EE型、フライバックトランス用U型、等研削した
面の状態で実効透磁率を稼ぐ必要のある用途に有効であ
る多目的の多積Ni−Cu−Zn系材料を提供する事が
容易になった。For example, rotary transformer, high frequency E
It is easy to provide a multi-purpose multi-product Ni-Cu-Zn-based material that is effective for I / EE type, U-type for flyback transformer, etc. where it is necessary to obtain effective magnetic permeability in the state of ground surface. became.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の実施例1に係る酸化物磁性材料のMg
Oの量と初透磁率,損失係数との関係を示すグラフであ
る。FIG. 1 is a graph showing the Mg content of an oxide magnetic material according to Example 1 of the present invention.
It is a graph which shows the relationship of the amount of O, initial permeability, and a loss coefficient.
【図2】本発明の実施例1に係る酸化物磁性材料のMg
Oの量とMOR強度との関係を示すグラフである。FIG. 2 is a graph showing the Mg content of the oxide magnetic material according to Example 1 of the present invention.
It is a graph which shows the relationship between the amount of O, and MOR intensity.
【図3】本発明の実施例2に係る酸化物磁性材料のMn
Oの量と初透磁率,損失係数との関係を示すグラフであ
る。FIG. 3 is an Mn of an oxide magnetic material according to Example 2 of the present invention.
It is a graph which shows the relationship of the amount of O, initial permeability, and a loss coefficient.
【図4】本発明の実施例2並びに3に係る酸化物磁性材
料のMnOの量とMOR強度との関係を示すグラフであ
る。FIG. 4 is a graph showing a relationship between MnO content and MOR strength of oxide magnetic materials according to Examples 2 and 3 of the present invention.
【図5】本発明の実施例3に係る酸化物磁性材料のMn
Oの量と初透磁率,損失係数との関係を示すグラフであ
る。FIG. 5: Mn of the oxide magnetic material according to Example 3 of the present invention
It is a graph which shows the relationship of the amount of O, initial permeability, and a loss coefficient.
Claims (1)
nO:29.0〜35.0モル%,CuO:3.0〜
6.0モル%,残部:Fe2 O3 を主成分とし、副成分
としてSiO2 :0.02wt%以下(0を含まず),
CaO:0.02wt%以下(0を含まず),Bi2 O
3 :0.10wt%以下からなる組成物に、MgO:
0.1〜0.3wt%,原料中に含まれるMnOの量を
含め、MnO:0.1〜0.4wt%を複合含有させた
事を特徴とするNi−Cu−Zn酸化物磁性材料。1. NiO: 14.0 to 19.0 mol%, Z
nO: 29.0-35.0 mol%, CuO: 3.0-
6.0 mol%, balance: Fe 2 O 3 as main component, and SiO 2 as auxiliary component: 0.02 wt% or less (not including 0),
CaO: 0.02 wt% or less (not including 0), Bi 2 O
3 : In a composition consisting of 0.10 wt% or less, MgO:
A Ni-Cu-Zn oxide magnetic material comprising 0.1 to 0.3 wt% of MnO and 0.1 to 0.4 wt% of MnO in the raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7179399A JPH097816A (en) | 1995-06-22 | 1995-06-22 | Ni-cu-zn system oxide magnetic material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7179399A JPH097816A (en) | 1995-06-22 | 1995-06-22 | Ni-cu-zn system oxide magnetic material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH097816A true JPH097816A (en) | 1997-01-10 |
Family
ID=16065194
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7179399A Pending JPH097816A (en) | 1995-06-22 | 1995-06-22 | Ni-cu-zn system oxide magnetic material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH097816A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151564A (en) * | 1999-11-26 | 2001-06-05 | Kyocera Corp | High saturation magnetic flux density ferrite material and ferrite core using the same |
JP2008290893A (en) * | 2007-05-22 | 2008-12-04 | Jfe Chemical Corp | Ni-Cu-Zn-BASED FERRITE |
JPWO2008096795A1 (en) * | 2007-02-07 | 2010-05-27 | 日立金属株式会社 | Low loss ferrite and electronic parts using the same |
JP2011246343A (en) * | 2010-04-27 | 2011-12-08 | Kyocera Corp | Ferrite sintered compact and noise filter equipped with the same |
JP2013147395A (en) * | 2012-01-20 | 2013-08-01 | Tdk Corp | Ferrite sintered body and electronic component |
-
1995
- 1995-06-22 JP JP7179399A patent/JPH097816A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001151564A (en) * | 1999-11-26 | 2001-06-05 | Kyocera Corp | High saturation magnetic flux density ferrite material and ferrite core using the same |
JPWO2008096795A1 (en) * | 2007-02-07 | 2010-05-27 | 日立金属株式会社 | Low loss ferrite and electronic parts using the same |
JP2010180125A (en) * | 2007-02-07 | 2010-08-19 | Hitachi Metals Ltd | Electronic component |
JP4573065B2 (en) * | 2007-02-07 | 2010-11-04 | 日立金属株式会社 | Electronic components |
JP2011018913A (en) * | 2007-02-07 | 2011-01-27 | Hitachi Metals Ltd | Electronic part and dc/dc converter |
US8237529B2 (en) | 2007-02-07 | 2012-08-07 | Hitachi Metals, Ltd. | Low-loss ferrite and electronic device formed by such ferrite |
JP2008290893A (en) * | 2007-05-22 | 2008-12-04 | Jfe Chemical Corp | Ni-Cu-Zn-BASED FERRITE |
JP2011246343A (en) * | 2010-04-27 | 2011-12-08 | Kyocera Corp | Ferrite sintered compact and noise filter equipped with the same |
JP2013147395A (en) * | 2012-01-20 | 2013-08-01 | Tdk Corp | Ferrite sintered body and electronic component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0131840B1 (en) | Magnetic oxidel of ni-cu-zn system | |
JP2674623B2 (en) | Magnetic material for high frequency | |
JPH097816A (en) | Ni-cu-zn system oxide magnetic material | |
JP2005330161A (en) | Ferrite material | |
US6984337B2 (en) | Mn—Zn ferrite containing less than 50 mol% Fe2O3 | |
JP4183187B2 (en) | Ferrite sintered body | |
JP4599752B2 (en) | Method for producing sintered ferrite magnet | |
JP3446082B2 (en) | Mn-Zn ferrite and method for producing the same | |
KR20020077798A (en) | Oxide magnetic material and coil part using the same | |
JPH0725618A (en) | Production of soft ferrite | |
JPH0661033A (en) | Low-loss oxide magnetic material | |
JPH09306718A (en) | Ferrite magnetic material and method of fabricating the same | |
JPH11199235A (en) | Ferrite material | |
JPH06333719A (en) | Ni-zn soft ferrite | |
KR100222599B1 (en) | Ni-cu-zn magnet icoxide material and producing method | |
JP7580014B1 (en) | MnZn ferrite | |
JP5660698B2 (en) | Magnetic oxide material | |
JPH10270231A (en) | Mn-ni ferrite material | |
JP2001348226A (en) | Magnetic ferrite material | |
JP4849777B2 (en) | Mn-Ni-Zn ferrite | |
JP3617070B2 (en) | Low loss ferrite manufacturing method | |
JPH09263442A (en) | Copper-magnesium-zinc material having satisfactory temperature characteristic | |
JP5580961B2 (en) | Oxidized magnetic material and manufacturing method thereof | |
JPH06295811A (en) | Soft magnetic oxide material | |
JP2002208510A (en) | High-permeability oxide magnetic material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030610 |