JP5764407B2 - Luminous flux control member, light emitting device, and surface light source device - Google Patents

Luminous flux control member, light emitting device, and surface light source device Download PDF

Info

Publication number
JP5764407B2
JP5764407B2 JP2011145240A JP2011145240A JP5764407B2 JP 5764407 B2 JP5764407 B2 JP 5764407B2 JP 2011145240 A JP2011145240 A JP 2011145240A JP 2011145240 A JP2011145240 A JP 2011145240A JP 5764407 B2 JP5764407 B2 JP 5764407B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting device
surface portion
optical axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011145240A
Other languages
Japanese (ja)
Other versions
JP2013012632A (en
Inventor
齊藤 共啓
共啓 齊藤
康幸 福田
康幸 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2011145240A priority Critical patent/JP5764407B2/en
Publication of JP2013012632A publication Critical patent/JP2013012632A/en
Application granted granted Critical
Publication of JP5764407B2 publication Critical patent/JP5764407B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Lenses (AREA)
  • Planar Illumination Modules (AREA)

Description

この発明は、発光素子(例えば、LED)からの光を出射制御する光束制御部材、この
光束制御部材を使用した発光装置、及びこの発光装置を使用して液晶表示パネル等の被照
明部材を面状に照明する面光源装置に関するものである。
The present invention relates to a light beam control member that controls the emission of light from a light emitting element (for example, an LED), a light emitting device that uses the light beam control member, and a surface to be illuminated such as a liquid crystal display panel using the light emitting device. The present invention relates to a surface light source device that illuminates in a shape.

近年、省エネルギーや環境保全の観点から、LEDを光源とする発光装置によって広告
パネル等の被照明部材を照明するようになっている。
In recent years, from the viewpoint of energy saving and environmental protection, illuminated members such as advertising panels are illuminated by light emitting devices using LEDs as light sources.

例えば、図4(b)に示す発光装置100は、LED101からの光が光方向変換用光
学素子102を介して照明光として出射されるようになっている。この発光装置100の
光方向変換用光学素子102は、LED101からの光を光入射面103から内部に入射
させ、その光入射面103から入射した光の一部を光反射面104によって反射して光出
射面(円筒状の側面)105から出射させ、光入射面103から入射した光のうちの光出
射面104から出射した光を除く光の一部を光反射面104から出射するようになってい
る。そして、このような発光装置100は、基板上に一列に複数配置され、広告パネル等
の被照明部材(図示せず)を背面側から面状に照明する面光源装置を構成するようになっ
ている(特許文献1)。
For example, the light emitting device 100 shown in FIG. 4B is configured such that light from the LED 101 is emitted as illumination light through the optical direction conversion optical element 102. The light direction changing optical element 102 of the light emitting device 100 causes the light from the LED 101 to enter the inside from the light incident surface 103, and reflects a part of the light incident from the light incident surface 103 by the light reflecting surface 104. A part of the light that is emitted from the light exit surface (cylindrical side surface) 105 and is emitted from the light exit surface 104 out of the light incident from the light incident surface 103 is emitted from the light reflecting surface 104. ing. A plurality of such light emitting devices 100 are arranged in a line on the substrate, and constitute a surface light source device that illuminates an illuminated member (not shown) such as an advertising panel in a planar shape from the back side. (Patent Document 1).

また、サイドビューLEDを面光源装置(面照明装置)の中央に配置し、サイドビュー
LEDからの出射光を中空導光領域へ導き、発光面部材を均一に照射するような面光源装
置も提案されている(特許文献2(図5、図6))。
Also proposed is a surface light source device in which the side view LED is arranged in the center of the surface light source device (surface illumination device), the emitted light from the side view LED is guided to the hollow light guide region, and the light emitting surface member is evenly irradiated. (Patent Document 2 (FIGS. 5 and 6)).

再公表特許第WO2008/007492号公報Republished Patent No. WO2008 / 007492 特開2010−009785号公報JP 2010-009785 A

この特許文献2のサイドビューLEDに替えて、特許文献1の発光装置100を特許文
献2の面光源装置に用いた場合、発光面上で発光装置100が配置される列の直上が特に
明るくなる。このような問題は、発光装置100が一列に複数配置され、その列に直交す
る方向において発光装置100の配置密度が疎となるような面光源装置において生じる。
When the light emitting device 100 of Patent Document 1 is used in the surface light source device of Patent Document 2 instead of the side view LED of Patent Document 2, the portion directly above the row where the light emitting device 100 is arranged on the light emitting surface becomes particularly bright. . Such a problem occurs in a surface light source device in which a plurality of light emitting devices 100 are arranged in a row and the arrangement density of the light emitting devices 100 is sparse in a direction orthogonal to the rows.

発光装置100の光方向変換用光学素子102は、その中心軸に対して回転対称形状に
形成されているため、平面視の状態において中心軸から360度全方向に等方的に光が出
射される。そのため、発光装置100が配置される列の直上は、複数の発光装置100か
らの光の照射範囲が重なり合い、発光装置100の配置密度が疎の方向に比べて明部が発
生し易くなる。
The light direction changing optical element 102 of the light emitting device 100 is formed in a rotationally symmetric shape with respect to its central axis, so that light is emitted isotropically in all directions 360 degrees from the central axis in a plan view. The Therefore, immediately above the row in which the light emitting devices 100 are arranged, the light irradiation ranges from the plurality of light emitting devices 100 overlap, and a bright portion is more likely to occur than in a direction where the arrangement density of the light emitting devices 100 is sparse.

そこで、本発明は、発光装置の配置密度が直交する2方向で異なる面光源装置に適用可
能な、異方的配向特性を有する光束制御部材,この光束制御部材を使用した発光装置、及
びこの発光装置を使用した面光源装置を提供することを目的とする。
Therefore, the present invention is applicable to a surface light source device having different arrangement densities of light emitting devices in two directions orthogonal to each other, a light flux controlling member having anisotropic orientation characteristics, a light emitting device using the light flux controlling member, and the light emission An object of the present invention is to provide a surface light source device using the device.

請求項1の発明は、図1及び図11に示すように、発光素子3に対して、前記発光素子3からの立体的な出射光束の中心の光が進行する方向である光軸Lを中心とするように配置される光束制御部材4に関するものである。この発明に係る光束制御部材4は、前記発光素子3からの光を入射させる光入射面部7と、この光入射面部7から入射した光を反射する光反射面部11と、前記光束制御部材4の側面に位置し前記光反射面部11で反射された光を出射する光出射面部12と、を有している。そして、前記光入射面部7は、前記光束制御部材4のうちの前記発光素子3に対向する裏面5側に形成されており、前記光軸Lを中心とするように配置され且つ前記発光素子3に対向するように配置されている。また、前記光入射面部7は、前記出射光束のうちの前記光軸Lの近傍に位置する中心側の光束部分である第1光束部分を入射させる第1光入射面部分13と、前記第1光入射面部分13を取り囲むように配置され、前記出射光束のうちの前記第1光束部分を取り囲むように位置する第2光束部分の光の進行方向が前記光軸Lにほぼ沿った方向となるように光路変換して前記光束制御部材4内へ入射させる第2光入射面部分14と、を有している。そして、前記第2光入射面部分14が、前記光軸Lを中心として同心円状に突出形成された複数の突起15a,15bからなるフレネルレンズである。また、前記光反射面部11は、前記光束制御部材4のうちの前記裏面5の反対側に位置する頂面8から前記裏面5側へ向かって凹むテーパー形状の凹所10を形作るテーパー面であって、前記光軸L上に収斂するように形成され、前記光入射面部7から入射した光を前記光出射面部12に向けて反射するようになっている。そして、前記光出射面部12は、前記光軸Lを含む仮想面に対して面対称に形成される一対の第1出射面17a,17bと、前記一対の第1出射面17a,17bを接続する第2出射面18,18とを有している。また、前記第1出射面17a,17bは、前記第2出射面18,18よりも、前記光反射面部11を経由して到達する光を発散させて出射するように形成されており、前記光軸Lに直交する方向を側方とすると、前記光反射面部11で反射された光を前記第1出射面17a,17bと前記第2出射面18,18から前記側方側へ向けて出射するようになっている。 As shown in FIGS. 1 and 11, the invention of claim 1 is centered on an optical axis L, which is a direction in which light at the center of a three-dimensional outgoing light beam from the light emitting element 3 travels with respect to the light emitting element 3. The light flux control member 4 is arranged as follows. The light flux controlling member 4 according to the present invention includes a light incident surface portion 7 on which light from the light emitting element 3 is incident, a light reflecting surface portion 11 that reflects light incident from the light incident surface portion 7, and the light flux controlling member 4. A light emitting surface portion 12 that is located on the side surface and emits light reflected by the light reflecting surface portion 11. The light incident surface portion 7 is formed on the back surface 5 side of the light flux controlling member 4 facing the light emitting element 3 , arranged so as to be centered on the optical axis L, and the light emitting element 3. It arrange | positions so that it may oppose. In addition, the light incident surface portion 7 includes a first light incident surface portion 13 on which a first light beam portion that is a central light beam portion located in the vicinity of the optical axis L of the emitted light beam is incident, and the first light incident surface portion 13. The light traveling direction of the second light beam portion, which is disposed so as to surround the light incident surface portion 13 and is positioned so as to surround the first light beam portion of the emitted light beam, is substantially along the optical axis L. In this way, the second light incident surface portion 14 that is converted into an optical path and is incident on the light flux controlling member 4 is provided. The second light incident surface portion 14 is a Fresnel lens including a plurality of protrusions 15a and 15b that are formed so as to protrude concentrically around the optical axis L. The light reflecting surface portion 11 is a tapered surface that forms a tapered recess 10 that is recessed from the top surface 8 located on the opposite side of the back surface 5 of the light flux controlling member 4 toward the back surface 5 side. Thus, the light is formed so as to converge on the optical axis L, and the light incident from the light incident surface portion 7 is reflected toward the light emitting surface portion 12. The light exit surface portion 12 connects the pair of first exit surfaces 17a and 17b formed symmetrically with respect to the virtual plane including the optical axis L and the pair of first exit surfaces 17a and 17b. Second exit surfaces 18 and 18 are provided. Further, the first emission surfaces 17a and 17b are formed so as to diverge and emit the light reaching via the light reflecting surface portion 11, rather than the second emission surfaces 18 and 18. When the direction orthogonal to the axis L is a side, the light reflected by the light reflecting surface portion 11 is emitted from the first emission surfaces 17a and 17b and the second emission surfaces 18 and 18 toward the side. It is like that.

請求項2の発明は、図1に示すように、請求項1の発明に係る光束制御部材4において
、前記光出射面部12の前記第2出射面18に特徴を有するものである。すなわち、前記
第2出射面18は、前記光軸Lを中心とする円筒面の一部である。
The invention of claim 2 is characterized in that the second exit surface 18 of the light exit surface portion 12 of the light flux controlling member 4 according to the invention of claim 1 is characterized as shown in FIG. That is, the second emission surface 18 is a part of a cylindrical surface centered on the optical axis L.

請求項3の発明は、図11に示すように、請求項1の発明に係る光束制御部材4におい
て、前記光出射面部12の前記第2出射面18に特徴を有するものである。すなわち、前
記第2出射面18は、前記頂面8側が前記裏面5側よりも小径となるテーパー面で且つ前
記光軸Lを中心とするテーパー面の一部である。
The invention of claim 3 is characterized in that the second exit surface 18 of the light exit surface 12 in the light flux controlling member 4 according to the invention of claim 1 as shown in FIG. That is, the second emission surface 18 is a tapered surface having a smaller diameter on the top surface 8 side than the back surface 5 side, and is a part of a tapered surface centered on the optical axis L.

請求項4の発明は、図1及び図11に示すように、請求項1乃至3のいずれかの発明に係る光束制御部材4において、前記第1出射面17a,17bに特徴を有するものである。すなわち、前記第1出射面17a,17bは、前記光軸Lと平行な一対の平面で且つ前記光軸Lを含む面に面対称の一対の平面からなっているAs shown in FIGS. 1 and 11, the light beam control member 4 according to any one of the first to third aspects is characterized in that the first emission surfaces 17 a and 17 b have a feature. . That is, the first emission surfaces 17a and 17b are a pair of planes parallel to the optical axis L and a pair of planes symmetrical with respect to the plane including the optical axis L.

請求項の発明は、図1及び図11に示すように、基板2上に設置された発光素子3と、前記請求項1乃至のいずれかの発明に係る光束制御部材4とを有する、ことを特徴とする発光装置1,32に関するものである。 As shown in FIGS. 1 and 11, the invention of claim 5 includes a light emitting element 3 installed on a substrate 2 and a light flux controlling member 4 according to any one of claims 1 to 4 . The light-emitting devices 1 and 32 are characterized by the above.

請求項の発明は、図9に示すように、前記請求項の発明に係る発光装置1,32を一列に複数配置し、これら複数の発光装置から出射した光を反射部材25で反射し、前記発光装置1,32から出射され直接到達した光と前記反射部材25で反射した光とによって被照明部材26を面状に照明する面光源装置22に関するものである。この面光源装置22において、隣り合う前記発光装置1,32の前記光束制御部材4は、互いの前記第1出射面17a,17b同士が対向するように配置される。 In the invention of claim 6 , as shown in FIG. 9, a plurality of light emitting devices 1 and 32 according to the invention of claim 5 are arranged in a row, and the light emitted from the plurality of light emitting devices is reflected by the reflecting member 25. The present invention relates to the surface light source device 22 that illuminates the illuminated member 26 in a planar shape by the light emitted directly from the light emitting devices 1 and 32 and the light reflected by the reflecting member 25. In the surface light source device 22, the light flux controlling members 4 of the adjacent light emitting devices 1 and 32 are arranged such that the first emission surfaces 17 a and 17 b face each other.

本発明の光束制御部材によれば、異方的な配向特性を実現することができ、配置密度が密となるように複数配置されたとしても、密に配置された隣り合う他の光束制御部材に向かう光を光出射面部の第1出射面で抑えることができ、密に配置された隣り合う他の光束制御部材との中間位置において複数の光源からの光が重複して同一箇所を照明することに起因する明部の発生を抑えることができる。その結果、本発明の光束制御部材によれば、被照射面上における照度分布のばらつきを抑えることができ、照明品質を向上させることができる。 According to the light flux controlling member of the present invention, anisotropic alignment characteristics can be realized, and even if a plurality of densely arranged light flux controlling members are arranged adjacent to each other, the light flux controlling members are densely arranged. Can be suppressed by the first emission surface of the light emission surface portion, and the light from a plurality of light sources overlaps at the intermediate position with other light flux control members arranged closely to illuminate the same portion. It is possible to suppress the occurrence of bright portions due to the above. As a result, according to the light flux controlling member of the present invention, variation in illuminance distribution on the irradiated surface can be suppressed, and illumination quality can be improved.

本発明の第1実施形態に係る発光装置を示すものである。図1(a)が発光装置の正面図であり、図1(b)が発光装置の平面図であり、図1(c)が発光装置の側面図であり、図1(d)が発光装置を構成する光束制御部材の裏面図、図1(e)が図1(b)のA1−A1線に沿って切断して示す発光装置の断面図、図1(f)が図1(b)のA2−A2線に沿って切断して示す発光装置の断面図である。1 shows a light emitting device according to a first embodiment of the present invention. 1A is a front view of the light emitting device, FIG. 1B is a plan view of the light emitting device, FIG. 1C is a side view of the light emitting device, and FIG. 1D is a light emitting device. FIG. 1E is a cross-sectional view of the light-emitting device shown by cutting along the line A1-A1 of FIG. 1B, and FIG. 1F is FIG. 1B. It is sectional drawing of the light-emitting device cut | disconnected and shown along A2-A2 line | wire. 本発明の第1実施形態に係る発光装置を構成する光束制御部材の第2光入射面部分の拡大図であり、図2(a)が第2光入射面部分の第1の例、図2(b)が第2光入射面部分の第2の例、図2(c)が第2光入射面部分の第3の例を示す図である。FIG. 2 is an enlarged view of a second light incident surface portion of a light flux controlling member constituting the light emitting device according to the first embodiment of the present invention, and FIG. 2A is a first example of the second light incident surface portion, FIG. FIG. 2B is a diagram illustrating a second example of the second light incident surface portion, and FIG. 2C is a diagram illustrating a third example of the second light incident surface portion. 本発明の第1実施形態に係る発光装置と従来の発光装置の光路図を対比して示す図であり、図3(a)が第1実施形態に係る発光装置を平面視した場合の光路図、図3(b)が従来の発光装置を平面視した場合の光路図である。FIG. 3 is a diagram showing an optical path diagram of a light emitting device according to the first embodiment of the present invention and a conventional light emitting device in comparison, and FIG. 3A is an optical path diagram when the light emitting device according to the first embodiment is viewed in plan view. FIG. 3B is an optical path diagram when the conventional light emitting device is viewed in plan. 本発明の第1実施形態に係る発光装置と従来の発光装置の光路図を対比して示す図であり、図4(a)が第1実施形態に係る発光装置の縦断面における光路図、図4(b)が従来の発光装置の縦断面における光路図である。FIG. 4 is a diagram showing an optical path diagram of the light emitting device according to the first embodiment of the present invention and a conventional light emitting device in comparison, and FIG. 4A is an optical path diagram in a longitudinal section of the light emitting device according to the first embodiment. 4 (b) is an optical path diagram in a longitudinal section of a conventional light emitting device. 比較例1に係る発光装置を示すものである。図5(a)が発光装置の正面図であり、図5(b)が発光装置の平面図であり、図5(c)が発光装置を構成する光束制御部材の裏面図であり、図5(d)が図5(b)のA3−A3線に沿って切断して示す発光装置の断面図である。1 shows a light emitting device according to Comparative Example 1; FIG. 5A is a front view of the light emitting device, FIG. 5B is a plan view of the light emitting device, and FIG. 5C is a back view of a light flux controlling member constituting the light emitting device. (D) is sectional drawing of the light-emitting device shown cut along the A3-A3 line of FIG.5 (b). 本発明の第1実施形態に係る発光装置と比較例1に係る発光装置の照度分布を対比して示す図である。It is a figure which contrasts and shows the illumination distribution of the light-emitting device which concerns on 1st Embodiment of this invention, and the light-emitting device which concerns on the comparative example 1. FIG. 図7(a)が本発明の第1実施形態に係る発光装置の照度分布の測定状態を示す正面側断面図、図7(b)が比較例1に係る発光装置の照度分布の測定状態を示す正面側断面図である。7A is a front cross-sectional view illustrating a measurement state of the illuminance distribution of the light emitting device according to the first embodiment of the present invention, and FIG. 7B illustrates a measurement state of the illuminance distribution of the light emitting device according to Comparative Example 1. It is front sectional drawing shown. 図8(a)が本発明の第1実施形態に係る発光装置の照度分布の測定状態を示す平面図、図8(b)が比較例1に係る発光装置の照度分布の測定状態を示す平面図である。8A is a plan view showing a measurement state of the illuminance distribution of the light emitting device according to the first embodiment of the present invention, and FIG. 8B is a plan view showing a measurement state of the illuminance distribution of the light emitting device according to Comparative Example 1. FIG. 図9(a)が面光源装置の平面図、図9(b)が図9(a)のA4−A4線に沿って切断して示す面光源装置の断面図、図9(c)が図9(a)のA5−A5線に沿って切断して示す面光源装置の断面図である。9A is a plan view of the surface light source device, FIG. 9B is a sectional view of the surface light source device cut along the line A4-A4 of FIG. 9A, and FIG. It is sectional drawing of the surface light source device cut | disconnected and shown along the A5-A5 line | wire of 9 (a). 図10(a)が面光源装置の照度分布の測定領域を示す図であり、図10(b)が図10(a)のF部(照度分布の測定領域)を拡大して示す図である。FIG. 10A is a diagram showing an illuminance distribution measurement region of the surface light source device, and FIG. 10B is an enlarged view of a portion F (illuminance distribution measurement region) of FIG. 10A. . 本発明の第2実施形態に係る発光装置を示すものである。図11(a)が発光装置の正面図であり、図11(b)が発光装置の平面図であり、図11(c)が発光装置の側面図であり、図11(d)が発光装置を構成する光束制御部材の裏面図、図11(e)が図11(b)のA6−A6線に沿って切断して示す発光装置の断面図、図11(f)が図11(b)のA7−A7線に沿って切断して示す発光装置の断面図である。2 shows a light emitting device according to a second embodiment of the present invention. 11A is a front view of the light emitting device, FIG. 11B is a plan view of the light emitting device, FIG. 11C is a side view of the light emitting device, and FIG. 11D is a light emitting device. FIG. 11 (e) is a cross-sectional view of the light-emitting device shown by cutting along the line A6-A6 of FIG. 11 (b), and FIG. 11 (f) is FIG. 11 (b). It is sectional drawing of the light-emitting device shown cut | disconnected along A7-A7 line | wire. 比較例2に係る発光装置を示すものである。図12(a)が発光装置の正面図であり、図12(b)が発光装置の平面図であり、図12(c)が発光装置を構成する光束制御部材の裏面図であり、図12(d)が図12(b)のA8−A8線に沿って切断して示す発光装置の断面図である。4 shows a light emitting device according to Comparative Example 2. 12A is a front view of the light-emitting device, FIG. 12B is a plan view of the light-emitting device, and FIG. 12C is a back view of a light flux controlling member constituting the light-emitting device. (D) is sectional drawing of the light-emitting device shown cut along the A8-A8 line of FIG.12 (b). 本発明の第2実施形態に係る発光装置と比較例2に係る発光装置の照度分布を対比して示す図である。It is a figure which contrasts and shows the illumination distribution of the light-emitting device which concerns on 2nd Embodiment of this invention, and the light-emitting device which concerns on the comparative example 2. FIG. 図14(a)が本発明の第2実施形態に係る発光装置の照度分布の測定状態を示す正面側断面図、図14(b)が比較例2に係る発光装置の照度分布の測定状態を示す正面側断面図である。FIG. 14A is a front cross-sectional view showing the measurement state of the illuminance distribution of the light emitting device according to the second embodiment of the present invention, and FIG. 14B shows the measurement state of the illuminance distribution of the light emitting device according to Comparative Example 2. It is front sectional drawing shown. 図15(a)が本発明の第1実施形態に係る発光装置の照度分布の測定状態を示す平面図、図15(b)が比較例1に係る発光装置の照度分布の測定状態を示す平面図である。15A is a plan view showing a measurement state of the illuminance distribution of the light emitting device according to the first embodiment of the present invention, and FIG. 15B is a plan view showing a measurement state of the illuminance distribution of the light emitting device according to Comparative Example 1. FIG.

以下、本発明の実施の形態を図面に基づき詳述する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

[第1実施形態]
(発光装置)
図1は、本実施形態に係る発光装置1を示すものである。なお、図1(a)が発光装置
1の正面図であり、図1(b)が発光装置1の平面図であり、図1(c)が発光装置1の
側面図であり、図1(d)が発光装置1の裏面図であり、図1(e)が図1(b)のA1
−A1線に沿って切断して示す発光装置1の断面図であり、図1(f)が図1(b)のA
2−A2線に沿って切断して示す発光装置1の断面図である。
[First Embodiment]
(Light emitting device)
FIG. 1 shows a light emitting device 1 according to this embodiment. 1A is a front view of the light emitting device 1, FIG. 1B is a plan view of the light emitting device 1, FIG. 1C is a side view of the light emitting device 1, and FIG. d) is a rear view of the light emitting device 1, and FIG. 1 (e) is A1 in FIG. 1 (b).
FIG. 2 is a cross-sectional view of the light-emitting device 1 shown cut along the line A <b> 1, and FIG.
It is sectional drawing of the light-emitting device 1 shown cut | disconnected along 2-A2 line.

この図1に示すように、発光装置1は、基板2上に設置された発光素子3(例えば、L
ED及び封止部材によって封止されたLED)からの光を光束制御部材4を介して出射す
るようになっており、発光素子3と光束制御部材4とが一対一で対応している。そして、
この発光装置1は、発光素子3が実装された基板2上に光束制御部材4の裏面5側に立設
された脚部6が接着剤で固定され、光束制御部材4の中心軸L1が発光素子3の光軸Lと
同心上に位置するようになっている。ここで、発光素子3の光軸Lとは、発光素子3から
の立体的な出射光束の中心における光の進行方向をいう。
As shown in FIG. 1, the light emitting device 1 includes a light emitting element 3 (for example, L) installed on a substrate 2.
The light from the ED and the LED sealed by the sealing member is emitted through the light flux control member 4, and the light emitting element 3 and the light flux control member 4 correspond one-to-one. And
In the light emitting device 1, a leg 6 erected on the back surface 5 side of the light flux controlling member 4 is fixed on the substrate 2 on which the light emitting element 3 is mounted with an adhesive, and the central axis L 1 of the light flux controlling member 4 emits light. It is positioned concentrically with the optical axis L of the element 3. Here, the optical axis L of the light emitting element 3 refers to the traveling direction of light at the center of the three-dimensional emitted light beam from the light emitting element 3.

(光束制御部材)
光束制御部材4は、例えば、PMMA(ポリメタクリル酸メチル)、PC(ポリカーボ
ネート)、EP(エポキシ樹脂)等の透明樹脂材料や透明なガラスで形成されている。
(Flux control member)
The light flux controlling member 4 is made of, for example, a transparent resin material such as PMMA (polymethyl methacrylate), PC (polycarbonate), EP (epoxy resin), or transparent glass.

この光束制御部材4は、円を二面幅で切り落としたような平面形状に形成されており、
その中心軸L1が平面形状の図心に合致している。そして、この光束制御部材4は、発光
素子3に対向する裏面5(図1(a),(d)の下面)に形成された光入射面部7と、裏
面5の反対側に位置する頂面8(図1(a),(d)の上面)と、この頂面8から略円錐
状に凹む凹所10を形作るテーパー状凹面の光反射面部11と、裏面5の外縁と頂面8の
外縁とを接続する光出射面部12と、を有している。ここで、円錐状とは、凹所10の表
面が円錐形状である場合はもちろんのこと、凹所10の表面が円錐形状に似た曲面である
場合や、凹所10の表面が円錐形状に似た非球面である場合(本実施形態の場合)をも含
むことを意味している。なお、この光束制御部材4は、光入射面部7よりも径方向外方側
の裏面5に、基板上に固定される4本の脚部6が立設されている。
The light flux controlling member 4 is formed in a planar shape obtained by cutting off a circle with a width of two faces.
The central axis L1 is coincident with the planar centroid. The light flux controlling member 4 includes a light incident surface portion 7 formed on the back surface 5 (the bottom surface of FIGS. 1A and 1D) facing the light emitting element 3, and a top surface located on the opposite side of the back surface 5. 8 (the upper surface of FIGS. 1A and 1D), a tapered light reflecting surface portion 11 that forms a recess 10 recessed in a substantially conical shape from the top surface 8, and the outer edge and the top surface 8 of the back surface 5 And a light emitting surface portion 12 that connects the outer edge. Here, the term “conical” means not only when the surface of the recess 10 has a conical shape, but also when the surface of the recess 10 has a curved surface resembling a conical shape, or when the surface of the recess 10 has a conical shape. This also includes the case of a similar aspherical surface (in this embodiment). In this light flux controlling member 4, four leg portions 6 that are fixed on the substrate are erected on the back surface 5 radially outward from the light incident surface portion 7.

光入射面部7は、光束制御部材4の中心軸L1を中心とする円形状の平坦面である第1
光入射面部分13と、この第1光入射面部分13を取り囲むように形成された第2光入射
面部分14と、からなっている。第1光入射面部分13は、発光素子3からの出射光束の
うちの光軸L近傍に位置する中心側の光束部分であって、光の進行方向が光軸Lにほぼ沿
った方向である第1光束部分を入射させるようになっている。また、第2光入射面部分1
4は、発光素子3からの出射光束のうちの第1光束部分以外の光束部分であって、第1光
束部分を取り囲むように位置する第2光束部分を入射させるようになっている。この第2
光入射面部分14は、リング状の突起15a,15bが同心円状に複数形成されてなるフ
レネルレンズであって、突起15a,15bの各々は内側(中心軸L1寄り)に位置する
面15a1,15b1と外側に位置する面15a2,15b2との組み合わせで構成され
、第2光束部分の光の進行方向が光軸Lとほぼ平行な方向に揃うように、第2光束部分の
光を面15a1,15b1から入射し、面15a2,15b2で全反射するようになって
いる(図2(a)参照)。ここで、第2光束部分の光の進行方向が光軸Lと「ほぼ」平行
な方向に揃うとしたのは、第2光入射面部分14としてのフレネルレンズの製造誤差や、
発光素子3と光束制御部材4の組付誤差や、発光素子3の発光点が1点ではなく、ある面
積をもって発光していることにより、第2光束部分の光の進行方向が光軸Lと平行な方向
から(設計値から)ずれることを考慮したものである。
The light incident surface portion 7 is a first circular flat surface centered on the central axis L1 of the light flux controlling member 4.
The light incident surface portion 13 and a second light incident surface portion 14 formed so as to surround the first light incident surface portion 13. The first light incident surface portion 13 is a central light flux portion located in the vicinity of the optical axis L of the light flux emitted from the light emitting element 3, and the traveling direction of the light is substantially along the optical axis L. The first light beam portion is made incident. The second light incident surface portion 1
Reference numeral 4 denotes a light beam portion other than the first light beam portion of the emitted light beam from the light emitting element 3, and a second light beam portion positioned so as to surround the first light beam portion is made incident thereon. This second
The light incident surface portion 14 is a Fresnel lens in which a plurality of ring-shaped protrusions 15a and 15b are concentrically formed, and each of the protrusions 15a and 15b is a surface 15a1 and 15b1 positioned on the inner side (near the central axis L1). And the surfaces 15a2 and 15b2 positioned on the outer side, and the light of the second light flux portion is made to face the surfaces 15a1, 15b1 so that the light traveling direction of the second light flux portion is aligned in a direction substantially parallel to the optical axis L. And is totally reflected by the surfaces 15a2 and 15b2 (see FIG. 2A). Here, the reason why the traveling direction of the light in the second light beam portion is aligned in a direction “substantially” parallel to the optical axis L is that the manufacturing error of the Fresnel lens as the second light incident surface portion 14,
Assembling error between the light emitting element 3 and the light flux controlling member 4 and the light emitting point of the light emitting element 3 emit light with a certain area instead of one point. Considering deviation from the parallel direction (from the design value).

光反射面部11は、図1(e),(f)に示すように、中心軸L1を中心とする回転対
称のテーパー形状の凹所10を形作るテーパー面(略円錐状の凹面であり、中心軸L1を
中心とする回転対称の非球面)であり、そのテーパー面の頂点16が中心軸L1上に位置
するように(テーパー面が中心軸L1上に収斂するように)形成され、一部分が後述する
二面幅部分17によって切り欠かれたようになっている。また、この光反射面部11は、
その頂面8側端部の直径D2が光入射面部7の外周端側の直径D1以上の大きさ(D1≦
D2)になっている。このような光反射面部11は、光入射面部7から入射した光を光出
射面部12に向けて全反射するようになっている。なお、光反射面部11の頂面8側端部
の直径D2は、頂面8の外周端における直径D3よりも小さくなっている。
1 (e) and 1 (f), the light reflecting surface portion 11 is a tapered surface (substantially conical concave surface that forms a rotationally symmetric tapered recess 10 centered on the central axis L1. (A rotationally symmetric aspherical surface about the axis L1), and the apex 16 of the tapered surface is formed so as to be located on the central axis L1 (so that the tapered surface converges on the central axis L1), and a part thereof It is cut out by a dihedral width portion 17 described later. In addition, the light reflecting surface portion 11 is
The diameter D2 of the end portion on the top surface 8 side is larger than the diameter D1 on the outer peripheral end side of the light incident surface portion 7 (D1 ≦
D2). Such a light reflecting surface portion 11 totally reflects the light incident from the light incident surface portion 7 toward the light emitting surface portion 12. Note that the diameter D2 of the end portion on the top surface 8 side of the light reflecting surface portion 11 is smaller than the diameter D3 at the outer peripheral end of the top surface 8.

光出射面部12は、中心軸L1と平行な一対の平面17a,17bで且つ中心軸L1含む面に面対称の一対の平面17a,17bからなる第1出射面としての二面幅部分17と、これら一対の平面17a,17b,頂面8及び裏面5を接続する一対の曲面18a,18bであり且つ光軸Lを中心とする円筒面の一部をなす一対の曲面18a,18bである第2出射面としての曲面部分18とからなっている。すなわち、光出射面部12は、円柱の外周面が円柱の中心軸と平行な一対の仮想平面で且つ円柱の中心軸を含む面に面対称の一対の仮想平面によって切断されることによって形成されるような側面形状になっている。このような光出射面部12は、光軸Lに直交する方向を側方とすると、光反射面部11で全反射された光を二面幅部分17及び曲面部分18から側方側へ向けて出射するようになっている。なお、光出射面部12は、射出成形金型(図示せず)からの光束制御部材4の離型を容易にするために、抜け勾配がZ軸方向に沿って設けられている。 The light emission surface portion 12 includes a pair of flat surfaces 17a and 17b parallel to the central axis L1 and a two-surface width portion 17 as a first emission surface including a pair of planes 17a and 17b that are plane-symmetric with respect to a plane including the central axis L1. A pair of curved surfaces 18a and 18b connecting the pair of flat surfaces 17a and 17b, the top surface 8 and the back surface 5 and a pair of curved surfaces 18a and 18b forming a part of a cylindrical surface centered on the optical axis L. It consists of a curved surface portion 18 as two exit surfaces. That is, the light emission surface portion 12 is formed by cutting the outer peripheral surface of the cylinder by a pair of virtual planes parallel to the central axis of the cylinder and a plane symmetric with respect to a plane including the central axis of the cylinder. It has a side shape like this. Such a light emitting surface portion 12 emits light totally reflected by the light reflecting surface portion 11 from the two-surface width portion 17 and the curved surface portion 18 to the side when the direction orthogonal to the optical axis L is the side. It is supposed to be. The light exit surface portion 12 is provided with a draft gradient along the Z-axis direction in order to facilitate the release of the light flux controlling member 4 from an injection mold (not shown).

図2(a)は、図1(f)に示した光束制御部材4における第2光入射面部分14を拡
大して示す図である。この図2(a)に示すように、第2光入射面部分14は、最外周の
リング状の突起15bを除き、他のリング状の突起15aが同一高さとなるように形成さ
れている。なお、第2光入射面部分14は、図2(a)に示す形状に限定されるものでは
なく、図2(b)〜(c)に示すような形状にしてもよい。すなわち、図2(b)に示す
第2光入射面部分14は、最外周のリング状の突起15bに隣り合うリング状の突起15
aから最内周のリング状の突起15aまでが裏面5に対してθ1の角度で発光素子3に近
づくように斜めに形成されている(図1参照)。また、図2(c)に示す第2光入射面部
分14は、最外周のリング状の突起15bに隣り合うリング状の突起15aから最内周の
リング状の突起15aに向かうにしたがって突起高さが漸増するように形成されている。
ここで、図2(a)〜(c)に示す各第2光入射面部分14は、最外周のリング状の突起
15bに隣り合うリング状の突起15aの形成位置が裏面5からλの位置にある。このよ
うに第2光入射面部分14の形状を工夫することにより、面15a1,15b1から入射
して面15a2,15b2を経由せずに直接、光出射面部12へ到達する光を減少させる
ことができる。
FIG. 2A is an enlarged view showing the second light incident surface portion 14 in the light flux controlling member 4 shown in FIG. As shown in FIG. 2A, the second light incident surface portion 14 is formed such that other ring-shaped protrusions 15a have the same height except for the outermost ring-shaped protrusion 15b. In addition, the 2nd light-incidence surface part 14 is not limited to the shape shown to Fig.2 (a), You may make it a shape as shown to FIG.2 (b)-(c). That is, the second light incident surface portion 14 shown in FIG. 2B has a ring-shaped protrusion 15 adjacent to the outermost ring-shaped protrusion 15b.
From a to the innermost ring-shaped protrusion 15a is formed obliquely so as to approach the light emitting element 3 at an angle θ1 with respect to the back surface 5 (see FIG. 1). Further, the second light incident surface portion 14 shown in FIG. 2C has a protrusion height as it goes from the ring-shaped protrusion 15a adjacent to the outermost ring-shaped protrusion 15b to the innermost ring-shaped protrusion 15a. Is formed to gradually increase.
Here, in each of the second light incident surface portions 14 shown in FIGS. 2A to 2C, the formation position of the ring-shaped protrusion 15 a adjacent to the outermost ring-shaped protrusion 15 b is a position λ from the back surface 5. It is in. Thus, by devising the shape of the second light incident surface portion 14, it is possible to reduce the light that enters from the surfaces 15 a 1 and 15 b 1 and reaches the light emitting surface portion 12 directly without passing through the surfaces 15 a 2 and 15 b 2. it can.

なお、本実施形態に係る光束制御部材4は、二面幅部分17を形作る一対の平面17a
,17b間の幅寸法Wと曲面部分18の直径D3の比(W/D3)が0.7となるように
形成されているが、これに限られず、要求される光束制御性能に応じた最適の数値(W/
D3)が採用される。
The light flux controlling member 4 according to the present embodiment has a pair of flat surfaces 17a that form the dihedral width portion 17.
, 17b is formed so that the ratio (W / D3) of the width dimension W between the curved surface portion 18 and the diameter D3 of the curved surface portion 18 is 0.7, but is not limited thereto, and is optimal in accordance with the required light flux control performance. Number (W /
D3) is employed.

(発光特性)
図3及び図4は、本実施形態に係る発光装置1と従来の発光装置100の光路図を対比
して示すものである。なお、図3(a)は、本実施形態に係る発光装置1を平面視した場
合の光路図である。また、図3(b)は、従来の発光装置100を平面視した場合の光路
図である。また、図4(a)は、本実施形態に係る発光装置1の縦断面(図1(f)に対
応する断面)における光路図である。また図4(b)は、従来の発光装置100の縦断面
における光路図である。
(Luminescent characteristics)
3 and 4 show the optical path diagrams of the light emitting device 1 according to the present embodiment and the conventional light emitting device 100 in comparison. FIG. 3A is an optical path diagram when the light emitting device 1 according to this embodiment is viewed in plan. FIG. 3B is an optical path diagram when the conventional light emitting device 100 is viewed in plan. FIG. 4A is an optical path diagram in a longitudinal section (a section corresponding to FIG. 1F) of the light emitting device 1 according to the present embodiment. FIG. 4B is an optical path diagram in a longitudinal section of the conventional light emitting device 100.

先ず、図3に基づいて、本実施形態に係る発光装置1の発光特性と従来の発光装置10
0の発光特性とを対比して説明する。図3(b)に示すように、従来の発光装置100は
、光軸Lを中心として、光方向変換用光学素子102の周囲(X−Y平面内の360°の
全方向)に光を均等に(等方的に)出射する。これに対し、図3(a)に示すように、本
実施形態に係る発光装置1は、光束制御部材4の二面幅部分17から出射する光が光束制
御部材4の曲面部分18から出射する光よりもY方向寄りに広がって出射し、X軸方向寄
りの出射光を疎とし、X軸とY軸との中間近傍からY軸方向寄りの出射光を密とするよう
に光を出射する。
First, based on FIG. 3, the light emission characteristics of the light emitting device 1 according to the present embodiment and the conventional light emitting device 10.
This will be described in comparison with the light emission characteristics of zero. As shown in FIG. 3B, the conventional light emitting device 100 distributes light uniformly around the optical element for optical direction conversion 102 (all directions of 360 ° in the XY plane) around the optical axis L. (Isotropically). On the other hand, as shown in FIG. 3A, in the light emitting device 1 according to this embodiment, light emitted from the two-surface width portion 17 of the light flux controlling member 4 is emitted from the curved surface portion 18 of the light flux controlling member 4. Outgoes light closer to the Y direction than the light, emits light closer to the X axis direction, sparse, and emits light from the vicinity of the middle between the X axis and the Y axis so that the emitted light closer to the Y axis direction becomes dense. .

次に、図4に基づいて、本実施形態に係る発光装置1の発光特性と従来の発光装置100の発光特性とを対比して説明する。図4(b)に示すように、従来の発光装置100は、LED101からの光を光方向変換用光学素子102の光入射面103から光方向変換用光学素子102の内部に入射させ、その光入射面103から入射した光の一部を光方向変換用光学素子102の光反射面104によって反射して光方向変換用光学素子102の光出射面(円筒状の側面)105から出射させ、光方向変換用光学素子102の光入射面103から入射した光のうちの光方向変換用光学素子102の光出射面105から出射した光を除く光の一部を光方向変換用光学素子102の光反射面104から出射するようになっている。これに対し図4(a)に示すように、本実施形態に係る発光装置1は、発光素子3からの光を光束制御部材4の光入射面部7から光束制御部材4の内部に入射させ、その光入射面部7から入射した光を光反射面部11によって光出射面部12側へ向けて全反射し、その光反射面部11によって全反射された光を光出射面部12から光束制御部材4の側方へ出射させるようになっている。ここで、本実施形態に係る発光装置1は、発光素子3からの出射光束のうちの光軸L近傍に位置する中心側の光束部分である第1光束部分を光束制御部材4の第1光入射面部分13から光軸Lに沿う方向へ進行するように入射させるようになっている。また、本実施形態に係る発光装置1は、発光素子3からの出射光束のうちの第1光束部分を取り囲むように位置する第2光束部分を第2光入射面部分14によって光軸Lとほぼ平行となるように光路変換して入射させるようになっている。その結果、本実施形態に係る発光装置1は、光束制御部材4の光入射面部7から入射した発光素子3からの光を効率良く光反射面部11によって全反射することが可能になり、光が光反射面部11から発光素子3の直上方向(Z軸方向)に出射することが抑えられる。 Next, the light emission characteristics of the light emitting device 1 according to the present embodiment and the light emission characteristics of the conventional light emitting device 100 will be described based on FIG. As shown in FIG. 4B, the conventional light emitting device 100 causes the light from the LED 101 to enter the light direction changing optical element 102 from the light incident surface 103 of the light direction changing optical element 102, and the light. A part of the light incident from the incident surface 103 is reflected by the light reflecting surface 104 of the light direction converting optical element 102 and is emitted from the light emitting surface (cylindrical side surface) 105 of the light direction converting optical element 102. Of the light incident from the light incident surface 103 of the direction changing optical element 102, a part of the light except the light emitted from the light emitting surface 105 of the light direction changing optical element 102 is used as the light of the light direction changing optical element 102. The light is emitted from the reflection surface 104. On the other hand, as shown in FIG. 4A, the light emitting device 1 according to the present embodiment causes the light from the light emitting element 3 to enter the light beam control member 4 from the light incident surface portion 7 of the light beam control member 4, The light incident from the light incident surface portion 7 is totally reflected by the light reflecting surface portion 11 toward the light emitting surface portion 12 side, and the light totally reflected by the light reflecting surface portion 11 is transmitted from the light emitting surface portion 12 to the light flux controlling member 4 side. It is made to emit to the direction. Here, the light emitting device 1 according to the present embodiment uses the first light beam of the light beam control member 4 as the first light beam portion, which is the light beam portion on the center side located in the vicinity of the optical axis L of the emitted light beam from the light emitting element 3. Incident light is made to travel from the incident surface portion 13 in a direction along the optical axis L. Further, in the light emitting device 1 according to the present embodiment, the second light beam portion positioned so as to surround the first light beam portion of the emitted light beam from the light emitting element 3 is approximately aligned with the optical axis L by the second light incident surface portion 14. The light path is changed so as to be parallel and incident. As a result, the light emitting device 1 according to the present embodiment can efficiently totally reflect the light from the light emitting element 3 incident from the light incident surface portion 7 of the light flux controlling member 4 by the light reflecting surface portion 11. It is possible to suppress emission from the light reflecting surface portion 11 in the direction directly above the light emitting element 3 (Z-axis direction).

(比較例1)
図5は、比較例1に係る発光装置20を示すものである。この比較例1に係る発光装置
20は、光束制御部材4の光出射面部12の形状が円筒面であり、光束制御部材4に二面
幅部分17が形成されていない点において、本実施形態に係る発光装置1と異なる。なお
、この比較例1に係る発光装置20は、光出射面部12の形状を除き、他の構成が本実施
形態に係る発光装置1と共通するので、本実施形態に係る発光装置1と共通する構成部分
には本実施形態に係る発光装置1と同一の符号を付して、本実施形態に係る発光装置1の
説明と重複する説明を省略する。
(Comparative Example 1)
FIG. 5 shows a light emitting device 20 according to Comparative Example 1. The light emitting device 20 according to the comparative example 1 is in the present embodiment in that the light exit surface portion 12 of the light flux controlling member 4 is a cylindrical surface and the two-surface width portion 17 is not formed on the light flux controlling member 4. Different from the light emitting device 1. The light-emitting device 20 according to Comparative Example 1 is common to the light-emitting device 1 according to this embodiment because the other configurations are the same as those of the light-emitting device 1 according to this embodiment except for the shape of the light emission surface portion 12. Components that are the same as those in the light-emitting device 1 according to the present embodiment are denoted by the same reference numerals, and descriptions that overlap with those of the light-emitting device 1 according to the present embodiment are omitted.

この比較例1に係る発光装置20は、従来例に係る発光装置100と同様に、平面視の
状態において、光軸から360°の全方向に等方的に光が出射される。また、この比較例
1に係る発光装置20は、本実施形態に係る発光装置1の光束制御部材4と同様に、光反
射面部11からの光の出射を抑えることができる。したがって、この比較例1に係る発光
装置20は、従来例に係る発光装置100と比較して、発光素子3の直上方向(Z軸方向
)への光の出射を抑えることができる。
Similar to the light emitting device 100 according to the conventional example, the light emitting device 20 according to Comparative Example 1 emits light isotropically in all directions of 360 ° from the optical axis in a planar view. Further, the light emitting device 20 according to the comparative example 1 can suppress the emission of light from the light reflecting surface portion 11 in the same manner as the light flux controlling member 4 of the light emitting device 1 according to the present embodiment. Therefore, the light emitting device 20 according to the comparative example 1 can suppress the emission of light in the direction directly above the light emitting element 3 (Z-axis direction) as compared with the light emitting device 100 according to the conventional example.

(比較例1との対比)
このような比較例1に係る発光装置20と本実施形態に係る発光装置1の照度分布を対
比して示したのが図6である。すなわち、図6は、本実施形態に係る発光装置1から出射
した光が照射される被照射面上の照度分布と、比較例1に係る発光装置20から出射した
光が照射される被照射面上の照度分布と、を対比して示す図である。この図6において、
実線で表した線図が本実施形態に係る発光装置1による照度分布を示し、点線で表した線
図が比較例1に係る発光装置20による照度分布を示している。なお、図6において、横
軸が発光素子3(光軸L)からの距離(mm)を示し、縦軸が比較例1の最大照度を1と
したときの照度比を示している。
(Comparison with Comparative Example 1)
FIG. 6 shows the illuminance distribution of the light emitting device 20 according to the comparative example 1 and the light emitting device 1 according to the present embodiment in comparison. That is, FIG. 6 shows the illuminance distribution on the irradiated surface irradiated with the light emitted from the light emitting device 1 according to this embodiment and the irradiated surface irradiated with the light emitted from the light emitting device 20 according to Comparative Example 1. It is a figure which compares and shows the upper illumination distribution. In FIG. 6,
A diagram represented by a solid line shows the illuminance distribution by the light emitting device 1 according to the present embodiment, and a diagram represented by a dotted line shows the illuminance distribution by the light emitting device 20 according to Comparative Example 1. In FIG. 6, the horizontal axis indicates the distance (mm) from the light emitting element 3 (optical axis L), and the vertical axis indicates the illuminance ratio when the maximum illuminance of Comparative Example 1 is 1.

また、被照射面上の照度分布は、図7及び図8に示すように、被照射面21上において
、光軸Lから±X方向へ測定点を所定間隔で移動させて測定した結果を示すものである。
また、被照射面21は、基板2からZ軸方向に沿ってHだけ離れた位置に配置されている
。また、本実施形態に係る発光装置1の光束制御部材4は、光出射面部12の二面幅部分
17が±X軸方向に対して直交するように配置されている。
Further, the illuminance distribution on the irradiated surface shows the result of measurement by moving the measurement point from the optical axis L in the ± X direction at a predetermined interval on the irradiated surface 21, as shown in FIGS. Is.
Further, the irradiated surface 21 is disposed at a position separated from the substrate 2 by H along the Z-axis direction. Further, the light flux controlling member 4 of the light emitting device 1 according to the present embodiment is disposed so that the two-surface width portion 17 of the light emitting surface portion 12 is orthogonal to the ± X axis direction.

この図6に示すように、本実施形態に係る発光装置1は、比較例1に係る発光装置20
よりもX軸直上における被照射面21上の照度を低く抑えることができる。これは、本実
施形態に係る発光装置1における光束制御部材4の二面幅部分17の機能(図3(a)参
照)に起因するものである。
As shown in FIG. 6, the light emitting device 1 according to the present embodiment includes a light emitting device 20 according to Comparative Example 1.
As a result, the illuminance on the irradiated surface 21 immediately above the X axis can be kept low. This is due to the function (see FIG. 3A) of the dihedral width portion 17 of the light flux controlling member 4 in the light emitting device 1 according to the present embodiment.

(面光源装置)
図9は、上述の発光装置1を使用した面光源装置22を示す図である。なお、図9(a
)が面光源装置22の平面図、図9(b)が図9(a)のA4−A4線に沿って切断して
示す面光源装置22の断面図、図9(c)が図9(a)のA5−A5線に沿って切断して
示す面光源装置22の断面図である。
(Surface light source device)
FIG. 9 is a diagram showing a surface light source device 22 using the above-described light emitting device 1. Note that FIG.
) Is a plan view of the surface light source device 22, FIG. 9B is a sectional view of the surface light source device 22 cut along the line A4-A4 of FIG. 9A, and FIG. 9C is FIG. It is sectional drawing of the surface light source device 22 cut | disconnected and shown along the A5-A5 line of a).

図9に示すように、面光源装置22は、平面形状が矩形形状で且つ上方に向けて開口す
る筐体23と、この筐体23の内部底面24上に配置された反射部材25と、筐体23の
中央部で且つ筐体3の長手方向(図9(a)のX方向)に沿って反射部材25上に一列に
且つ等間隔に配置された複数の発光装置1と、筐体23の開口部を塞ぐように配置される
被照明部材26(例えば、液晶パネル,広告パネル)と、を有している。ここで、隣り合
う発光装置1,1同士は、光束制御部材4の二面幅部分17を形作る平面17a,17b
が互いに対向するように配置されている。
As shown in FIG. 9, the surface light source device 22 includes a casing 23 having a rectangular planar shape and opening upward, a reflecting member 25 disposed on the inner bottom surface 24 of the casing 23, and a casing. A plurality of light emitting devices 1 arranged in a row and at equal intervals on the reflecting member 25 along the longitudinal direction of the housing 3 along the longitudinal direction of the housing 3 (X direction in FIG. 9A), and the housing 23 And an illuminated member 26 (for example, a liquid crystal panel or an advertising panel) arranged so as to close the opening. Here, the light emitting devices 1 and 1 adjacent to each other are flat surfaces 17 a and 17 b that form the dihedral width portion 17 of the light flux controlling member 4.
Are arranged so as to face each other.

この面光源装置22において、反射部材25は、例えば光反射性能に優れた板状部材で
形成されており、図9(c)に示すように、筐体23の内部底面24と平行で且つ筐体2
3の中央部を一定の幅でX方向に沿って延びる平坦面25aと、この平坦面25aのY方
向両端から筐体23の開口端に向かって斜めに立ち上がる一対の傾斜面25b,25bと
からなっている。
In this surface light source device 22, the reflecting member 25 is formed of, for example, a plate-like member having excellent light reflecting performance, and is parallel to the inner bottom surface 24 of the housing 23 as shown in FIG. Body 2
3 and a flat surface 25a extending along the X direction with a constant width, and a pair of inclined surfaces 25b and 25b rising obliquely from both ends of the flat surface 25a in the Y direction toward the opening end of the housing 23. It has become.

このように構成された面光源装置22は、発光装置1から側方に向けて出射された光を
反射部材25及び筐体23の内壁面27で反射し、その反射光によって被照明部材26を
裏面側から面状に照明するようになっている。
The surface light source device 22 configured as described above reflects light emitted from the light emitting device 1 toward the side by the reflecting member 25 and the inner wall surface 27 of the housing 23, and the reflected light causes the illuminated member 26 to be illuminated. It is designed to illuminate in a planar form from the back side.

(本実施形態に係る面光源装置と比較例1に係る面光源装置の対比)
次に、本実施形態に係る面光源装置22と比較例1に係る面光源装置28に関し、被照
射面30(被照明部材26の内側の面であって、発光装置1に対向する面)上の照度分布
を、以下に示す表1乃至表3に基づき、対比して説明する。ここで、比較例1に係る面光
源装置28は、本実施形態に係る面光源装置22の発光装置1を、比較例1に係る発光装
置20に置き換えたものである(図9参照)。
(Contrast of the surface light source device according to this embodiment and the surface light source device according to Comparative Example 1)
Next, regarding the surface light source device 22 according to the present embodiment and the surface light source device 28 according to Comparative Example 1, on the irradiated surface 30 (the surface inside the illuminated member 26 and facing the light emitting device 1). The illuminance distribution will be described in comparison with Tables 1 to 3 shown below. Here, the surface light source device 28 according to Comparative Example 1 is obtained by replacing the light emitting device 1 of the surface light source device 22 according to the present embodiment with the light emitting device 20 according to Comparative Example 1 (see FIG. 9).

Figure 0005764407
Figure 0005764407

Figure 0005764407
Figure 0005764407

Figure 0005764407
Figure 0005764407

表1は、比較例1に係る面光源装置28における被照射面30上の照度分布を示すもの
である(図9及び図10参照)。また、表2は、本実施形態に係る面光源装置22におけ
る被照射面30上の照度分布を示すものである。ただし、図10に示すように、照度分布
の測定範囲としての被照射面30は、長辺の寸法が700mmで且つ短辺の寸法が400
mmの被照射部材26を平面視した場合、中央の発光装置1(20)の光軸Lとその中央
の発光装置1(20)の右隣に位置する他の発光装置1(20)の光軸Lを含み、且つ、
隣り合う発光装置1(20),1(20)の光軸L,L同士を結ぶ中心線31(図9に示
したように、複数の発光装置1,20が一列に配置されるようになっている面光源装置2
2(28)の中心線31)から中心線31と直交する方向(Y方向)へ50mmの位置を
含む矩形形状の範囲である。そして、この被照射面30において、中央の発光装置1(2
0)の光軸Lを通り且つ中心線31に直交する列をa列とし、中央の発光装置1(20)
の光軸Lとこれに隣り合う他の発光装置1(20)の光軸Lの中間位置を通り且つ中心線
31に直交する列をb列とし、中央の発光装置1(20)に隣り合う他の発光装置1(2
0)の光軸Lを通り且つ中心線31に直交する列をcとすると、各列a〜cの中心線31
上の位置(0mm)と、各列a〜cの中心線31からY方向へ25mmの位置と、各列a
〜cの中心線31からY方向へ50mmの位置の合計9箇所が照度の測定箇所である。ま
た、比較例1に係る面光源装置28の被照射面30上における照度の最大値を100とし
、この最大値(100)を基準として、表1及び表2の照度分布を表した。
Table 1 shows the illuminance distribution on the irradiated surface 30 in the surface light source device 28 according to Comparative Example 1 (see FIGS. 9 and 10). Table 2 shows the illuminance distribution on the irradiated surface 30 in the surface light source device 22 according to the present embodiment. However, as shown in FIG. 10, the irradiated surface 30 as the measurement range of the illuminance distribution has a long side dimension of 700 mm and a short side dimension of 400 mm.
When the irradiated member 26 of mm is viewed in plan, the light axis L of the central light emitting device 1 (20) and the light of the other light emitting device 1 (20) located to the right of the central light emitting device 1 (20). Including an axis L, and
A center line 31 connecting the optical axes L and L of the adjacent light emitting devices 1 (20) and 1 (20) (as shown in FIG. 9, a plurality of light emitting devices 1 and 20 are arranged in a line. Surface light source device 2
2 (28) center line 31) to a direction orthogonal to the center line 31 (Y direction) is a rectangular range including a position of 50 mm. And in this irradiated surface 30, central light-emitting device 1 (2
The light emitting device 1 (20) at the center is defined as a row passing through the optical axis L of 0) and orthogonal to the center line 31.
The column passing through the intermediate position of the optical axis L of the other light emitting device 1 (20) and the optical axis L of the other light emitting device 1 (20) and orthogonal to the center line 31 is b row, and is adjacent to the central light emitting device 1 (20). Other light emitting device 1 (2
0), the column passing through the optical axis L and orthogonal to the center line 31 is c, and the center line 31 of each column a to c.
The upper position (0 mm), the position 25 mm in the Y direction from the center line 31 of each row a to c, and each row a
A total of nine locations of 50 mm in the Y direction from the center line 31 of ~ c are illuminance measurement locations. Moreover, the maximum value of the illumination intensity on the to-be-irradiated surface 30 of the surface light source device 28 which concerns on the comparative example 1 was set to 100, and the illumination intensity distribution of Table 1 and Table 2 was represented on the basis of this maximum value (100).

表1に示したように、比較例1に係る面光源装置28は、一列に配列した複数の発光装
置20からの光が発光装置20の配列上を重複して照明するため、中心線31上における
照度の値が高く、中心線31上に明部が発生していることが分かる。比較例1においては
、特に隣り合う発光装置20,20の中間位置(b列で且つY方向へ0mmの位置)にお
ける照度の値が他部よりも目立って高く(最大値の100に近く)、隣り合う発光装置2
0,20の中間位置に明部が発生していることが分かる。
As shown in Table 1, in the surface light source device 28 according to Comparative Example 1, the light from the plurality of light emitting devices 20 arranged in a row illuminates the array of the light emitting devices 20 in an overlapping manner. It can be seen that the value of illuminance at is high and a bright portion is generated on the center line 31. In Comparative Example 1, the illuminance value is particularly high at the intermediate position between adjacent light emitting devices 20 and 20 (position in row b and 0 mm in the Y direction) higher than other parts (close to the maximum value of 100). Adjacent light emitting device 2
It can be seen that a bright portion is generated at an intermediate position between 0 and 20.

これに対し、表2に示したように、本実施形態に係る面光源装置22は、一列に配列し
た複数の発光装置1からの光が発光装置1の配列の直上を重複して照明するのを抑えるこ
とができるため、中心線31上における照度の値をほぼ均一化することができ、各列a〜
cの中心線31上における照度の値と各列a〜cの50mmの位置における照度の値の差
が表1よりも小さくなっている。
On the other hand, as shown in Table 2, in the surface light source device 22 according to the present embodiment, light from the plurality of light emitting devices 1 arranged in a row overlaps and illuminates immediately above the arrangement of the light emitting devices 1. Therefore, the illuminance value on the center line 31 can be made substantially uniform, and each column a to
The difference between the illuminance value on the center line 31 of c and the illuminance value at the position of 50 mm in each column a to c is smaller than that in Table 1.

ここで、表1における照度の測定値の最大値を最小値で割った値を均整度とすると、比
較例1に係る面光源装置28の均整度は1.72である。また、表2における照度の測定
の最大値を最小値で割った値を均整度とすると、本実施形態に係る面光源装置22の均整
度は1.38となる。このように、本実施形態に係る面光源装置22は、その均整度が比
較例1に係る面光源装置28の均整度よりも小さく、被照射面30における照度分布が比
較例1に係る面光源装置28の被照射面30における照度分布よりも均一化している。
Here, assuming that the value obtained by dividing the maximum value of the illuminance measurement value in Table 1 by the minimum value is the degree of uniformity, the degree of uniformity of the surface light source device 28 according to Comparative Example 1 is 1.72. Further, if the value obtained by dividing the maximum value of the illuminance measurement in Table 2 by the minimum value is the degree of uniformity, the degree of uniformity of the surface light source device 22 according to the present embodiment is 1.38. As described above, the surface light source device 22 according to the present embodiment has a degree of uniformity smaller than that of the surface light source device 28 according to Comparative Example 1, and the illuminance distribution on the irradiated surface 30 is a surface light source according to Comparative Example 1. It is made more uniform than the illuminance distribution on the irradiated surface 30 of the device 28.

表3は、比較例1に係る面光源装置28の各測定点における照度の測定値(表1参照)
に対する本実施形態に係る面光源装置22の各測定点における照度の測定値(表2参照)
の変化率(照度変化率)を、「照度比」として示すものである。この表3に示すように、
照度の差は、各列a〜cにおいて、50mmの位置から中心線(0mm)に向かうにした
がって大きくなっており、b列の中心線(0mm)上の測定点において最も大きくなって
いる。このような照度変化率は、本実施形態に係る光束制御部材4の二面幅部分17の機
能に起因するものである。
Table 3 shows measured values of illuminance at each measurement point of the surface light source device 28 according to Comparative Example 1 (see Table 1).
Measurement value of illuminance at each measurement point of the surface light source device 22 according to the present embodiment (see Table 2)
The change rate (illuminance change rate) is shown as “illuminance ratio”. As shown in Table 3,
The difference in illuminance increases from the position of 50 mm toward the center line (0 mm) in each column a to c, and is the largest at the measurement point on the center line (0 mm) of the b column. Such an illuminance change rate is attributed to the function of the dihedral width portion 17 of the light flux controlling member 4 according to the present embodiment.

なお、上記表1乃至3は、被照明部材26の内側の面の全体(全被照射面)における照
度を示すものではないが、本実施形態に係る面光源装置22と比較例1に係る面光源装置
28における全被照射面の照度の平均値がほぼ同じであった。このことから、本実施形態
に係る面光源装置22は、比較例1に係る面光源装置28と比較し、光のロスを生じてい
ないことが確認できた。
Although Tables 1 to 3 above do not indicate the illuminance of the entire inner surface (all irradiated surfaces) of the illuminated member 26, the surface light source device 22 according to the present embodiment and the surface according to the comparative example 1. The average value of illuminance on all irradiated surfaces in the light source device 28 was substantially the same. From this, it was confirmed that the surface light source device 22 according to the present embodiment did not cause light loss as compared with the surface light source device 28 according to Comparative Example 1.

[第2実施形態]
(発光装置)
図11は、本発明の第2実施形態に係る発光装置32を示すものである。この図11に
示す発光装置32は、光束制御部材4の光出射面部12の形状が第1実施形態に係る光束
制御部材4と相違するが、他の構成が第1実施形態に係る発光装置1と同様であるので、
第1実施形態に係る発光装置1に対応する構成部分には同一符号を付し、第1実施形態に
係る発光装置1の説明と重複する説明を省略する。
[Second Embodiment]
(Light emitting device)
FIG. 11 shows a light emitting device 32 according to a second embodiment of the present invention. The light emitting device 32 shown in FIG. 11 is different from the light flux controlling member 4 according to the first embodiment in the shape of the light exit surface 12 of the light flux controlling member 4, but the other configuration is the light emitting device 1 according to the first embodiment. So that
Constituent parts corresponding to the light emitting device 1 according to the first embodiment are denoted by the same reference numerals, and descriptions overlapping with those of the light emitting device 1 according to the first embodiment are omitted.

この第2実施形態に係る発光装置32を構成する光束制御部材4は、光出射面部12の
曲面部分18がテーパー面の一部である。すなわち、光出射面部12の曲面部分18は、
頂面8側が裏面5側よりも小径となるテーパー面で、且つ、中心軸L1(光軸L)を中心
とするテーパー面の一部である。なお、第2実施形態において、光束制御部材4は、裏面
5側の外径をD4とし、頂面8側の外径をD5とすると、D5/D4を0.8としている
。また、第2実施形態において、光束制御部材4は、二面幅部分17の幅寸法をWとする
と、W/D4を0.7としている。しかしながら、第2実施形態に係る光束制御部材4は
、このようなD5/D4,W/D4の値に限られず、要求される光束制御性能に応じた最
適の数値(D5/D4,W/D4)が採用される。
In the light flux controlling member 4 constituting the light emitting device 32 according to the second embodiment, the curved surface portion 18 of the light emitting surface portion 12 is a part of a tapered surface. That is, the curved surface portion 18 of the light emitting surface portion 12 is
The top surface 8 side is a tapered surface having a smaller diameter than the back surface 5 side, and is a part of the tapered surface centered on the central axis L1 (optical axis L). In the second embodiment, the light flux controlling member 4 has D5 / D4 of 0.8, where the outer diameter on the back surface 5 side is D4 and the outer diameter on the top surface 8 side is D5. Further, in the second embodiment, the light flux controlling member 4 sets W / D4 to 0.7, where W is the width dimension of the two-surface width portion 17. However, the light flux controlling member 4 according to the second embodiment is not limited to such a value of D5 / D4, W / D4, and optimum numerical values (D5 / D4, W / D4) according to the required light flux controlling performance. ) Is adopted.

(発光特性)
第2実施形態に係る発光装置32は、光束制御部材4の曲面部分18がテーパー形状で
あるため、発光素子3の曲面部分18が円筒形状である場合よりも、曲面部分18からの
出射光の光軸Lに対する出射角度がやや大きくなるため、発光装置32近傍に発生し易い
明部を第1実施形態に係る発光装置1よりも一層効果的に抑えることができる点を除き、
第1実施形態に係る発光装置1と同様の発光特性を発揮するようになっている。
(Luminescent characteristics)
In the light emitting device 32 according to the second embodiment, since the curved surface portion 18 of the light flux controlling member 4 has a tapered shape, the light emitted from the curved surface portion 18 is emitted more than when the curved surface portion 18 of the light emitting element 3 has a cylindrical shape. Since the emission angle with respect to the optical axis L is slightly larger, the bright part that is likely to occur in the vicinity of the light emitting device 32 can be more effectively suppressed than the light emitting device 1 according to the first embodiment,
The light emitting characteristics similar to those of the light emitting device 1 according to the first embodiment are exhibited.

(比較例2)
図12は、比較例2に係る発光装置33を示すものである。この比較例2に係る発光装
置33は、光束制御部材4の光出射面部12の形状がテーパー面であり、光束制御部材4
に二面幅部分17が形成されていない点において、第2実施形態に係る発光装置32と異
なる。なお、この比較例2に係る発光装置33は、光出射面部12の形状を除き、他の構
成が第2実施形態に係る発光装置32と共通するので、第2実施形態に係る発光装置32
に対応する構成部分には第2実施形態に係る発光装置32と同一の符号を付して、第2実
施形態に係る発光装置32の説明と重複する説明を省略する。
(Comparative Example 2)
FIG. 12 shows a light emitting device 33 according to Comparative Example 2. In the light emitting device 33 according to the comparative example 2, the shape of the light emitting surface portion 12 of the light flux controlling member 4 is a tapered surface, and the light flux controlling member 4
The second embodiment differs from the light emitting device 32 according to the second embodiment in that the dihedral width portion 17 is not formed. The light emitting device 33 according to the comparative example 2 has the same configuration as the light emitting device 32 according to the second embodiment except for the shape of the light emitting surface portion 12, and therefore the light emitting device 32 according to the second embodiment.
The components corresponding to are assigned the same reference numerals as those of the light emitting device 32 according to the second embodiment, and the description overlapping the description of the light emitting device 32 according to the second embodiment is omitted.

この比較例2に係る発光装置33は、従来例に係る発光装置100と同様に、平面視の
状態において、光軸Lから360°の全方向に向けて光出射面部12から等方的に光が出
射される。また、この比較例2は、第2実施形態に係る発光装置32の光束制御部材4と
同様に、光反射面部11からの光の出射を抑えることができる。したがって、この比較例
2に係る発光装置33は、従来例に係る発光装置100と比較して、発光素子3の直上方
向への光の出射を抑えることができる。
Similar to the light emitting device 100 according to the conventional example, the light emitting device 33 according to the comparative example 2 isotropically emits light from the light emitting surface portion 12 in all directions of 360 ° from the optical axis L in a planar view state. Is emitted. Further, in the comparative example 2, similarly to the light flux controlling member 4 of the light emitting device 32 according to the second embodiment, the emission of light from the light reflecting surface portion 11 can be suppressed. Therefore, the light emitting device 33 according to the comparative example 2 can suppress the emission of light in the direction directly above the light emitting element 3 as compared with the light emitting device 100 according to the conventional example.

(比較例2との対比)
このような比較例2に係る発光装置33と第2実施形態に係る発光装置32の照度分
布を対比して示したのが図13である。すなわち、図13は、第2実施形態に係る発光装
置32から出射した光が照射される被照射面21上の照度分布と、比較例2に係る発光装
置33から出射した光が照射される被照射面21上の照度分布と、を対比して示す図であ
る(図14参照)。この図13において、実線で表した線図が第2実施形態に係る発光装
置32による照度分布を示し、点線で表した線図が比較例2に係る発光装置33による照
度分布を示している。
(Comparison with Comparative Example 2)
FIG. 13 shows the illuminance distribution of the light emitting device 33 according to Comparative Example 2 and the light emitting device 32 according to the second embodiment in comparison. That is, FIG. 13 shows the illuminance distribution on the irradiated surface 21 irradiated with light emitted from the light emitting device 32 according to the second embodiment and the irradiated light irradiated from the light emitting device 33 according to Comparative Example 2. It is a figure which compares and shows the illumination distribution on the irradiation surface 21 (refer FIG. 14). In FIG. 13, a diagram represented by a solid line shows the illuminance distribution by the light emitting device 32 according to the second embodiment, and a diagram represented by a dotted line shows the illuminance distribution by the light emitting device 33 according to Comparative Example 2.

また、被照射面21上の照度分布は、図14及び図15に示すように、被照射面21上
において、光軸Lから±X方向へ測定点を所定間隔で移動させて測定した結果を示すもの
である。また、被照射面21は、基板2からZ軸方向に沿ってHだけ離れた位置に配置さ
れている。また、第2実施形態に係る発光装置32の光束制御部材4は、光出射面部12
の二面幅部分17が±X軸方向に対して直交するように配置されている。
Further, as shown in FIGS. 14 and 15, the illuminance distribution on the irradiated surface 21 is obtained by measuring the measurement points by moving the measurement points from the optical axis L in the ± X direction at a predetermined interval on the irradiated surface 21. It is shown. Further, the irradiated surface 21 is disposed at a position separated from the substrate 2 by H along the Z-axis direction. Further, the light flux controlling member 4 of the light emitting device 32 according to the second embodiment has the light emitting surface portion 12.
Are disposed so as to be orthogonal to the ± X-axis direction.

この図13に示すように、第2実施形態に係る発光装置32は、比較例2に係る発光装
置33よりもX軸直上における被照射面21上の照度を低く抑えることができる。
As shown in FIG. 13, the light emitting device 32 according to the second embodiment can suppress the illuminance on the irradiated surface 21 immediately above the X axis lower than the light emitting device 33 according to Comparative Example 2.

(面光源装置)
第2実施形態に係る発光装置32は、図9に示した面光源装置22において、第1実施
形態に係る発光装置1に替えて使用することにより、第2実施形態に係る面光源装置を構
成することができる。また、比較例2に係る発光装置33は、比較例1に係る発光装置2
0に替えて使用することにより、比較例2に係る面光源装置を構成することができる。
(Surface light source device)
The light emitting device 32 according to the second embodiment constitutes the surface light source device according to the second embodiment by using the surface light source device 22 shown in FIG. 9 instead of the light emitting device 1 according to the first embodiment. can do. The light emitting device 33 according to Comparative Example 2 is the same as the light emitting device 2 according to Comparative Example 1.
By using instead of 0, the surface light source device according to Comparative Example 2 can be configured.

(第2実施形態に係る面光源装置と比較例2に係る面光源装置の対比)
次に、第2実施形態に係る面光源装置と比較例2に係る面光源装置に関し、被照射面3
0上の照度分布を、以下に示す表4乃至表6に基づき、対比して説明する。なお、被照射
面30は、図10に示した照度分布の測定範囲としての被照射面30に対応している。そ
して、表4乃至6における9箇所の照度測定箇所(各列a〜cの0mm、25mm,50
mmの各3箇所)は、表1乃至3における9箇所の照度測定箇所に対応している。また、
比較例1に係る面光源装置28の被照射面30上における照度の測定値のうちの最大値を
100とし、この最大値(100)を基準として、表4及び表5の照度分布を表した。
(Contrast of the surface light source device according to the second embodiment and the surface light source device according to Comparative Example 2)
Next, regarding the surface light source device according to the second embodiment and the surface light source device according to Comparative Example 2, the irradiated surface 3
The illuminance distribution on 0 will be described in comparison with Tables 4 to 6 shown below. The irradiated surface 30 corresponds to the irradiated surface 30 as the measurement range of the illuminance distribution shown in FIG. And nine illuminance measurement locations in Tables 4 to 6 (0 mm, 25 mm, 50 in each row ac)
Each of three locations in mm corresponds to the nine illuminance measurement locations in Tables 1 to 3. Also,
The maximum value of the measured values of the illuminance on the irradiated surface 30 of the surface light source device 28 according to Comparative Example 1 is defined as 100, and the illuminance distributions in Tables 4 and 5 are expressed using this maximum value (100) as a reference. .

Figure 0005764407
Figure 0005764407

Figure 0005764407
Figure 0005764407

Figure 0005764407
Figure 0005764407

表4は、比較例2に係る面光源装置における被照射面30上の照度分布を示すものであ
る。また、表5は、第2実施形態に係る面光源装置における被照射面30上の照度分布を
示すものである。
Table 4 shows the illuminance distribution on the irradiated surface 30 in the surface light source device according to Comparative Example 2. Table 5 shows the illuminance distribution on the irradiated surface 30 in the surface light source device according to the second embodiment.

表4に示したように、比較例2に係る面光源装置は、一列に配置した複数の発光装置3
3からの光が発光装置33の配列上を重複して照明するため、中心線31上における照度
が高く、中心線31上に明部が発生していることが分かる。また、比較例2においては、
特に隣り合う発光装置33,33の中間位置(b列で且つ0mmの位置)における照度の
値が他部よりも目立って高く、隣り合う発光装置33,33の中間位置に明部が発生して
いることが分かる。これらの点は、表1に示した比較例1に係る面光源装置28と共通す
る。しかし、比較例2に係る面光源装置は、曲面部分18からの出射光の光軸Lに対する
角度を比較例1に係る面光源装置28よりも大きくすることができ、発光装置33近傍の
明部の発生を抑えることができるため、照度分布のばらつきが小さくなっている(表1、
表4参照)。
As shown in Table 4, the surface light source device according to Comparative Example 2 includes a plurality of light emitting devices 3 arranged in a line.
Since the light from 3 illuminates the light emitting device 33 in an overlapping manner, it can be seen that the illuminance on the center line 31 is high and a bright portion is generated on the center line 31. In Comparative Example 2,
In particular, the illuminance value at an intermediate position between the adjacent light emitting devices 33 and 33 (b row and 0 mm position) is conspicuously higher than the other portions, and a bright portion is generated at an intermediate position between the adjacent light emitting devices 33 and 33. I understand that. These points are common to the surface light source device 28 according to Comparative Example 1 shown in Table 1. However, the surface light source device according to the comparative example 2 can make the angle of the light emitted from the curved surface portion 18 with respect to the optical axis L larger than that of the surface light source device 28 according to the comparative example 1, and the bright portion near the light emitting device 33. Variation in illuminance distribution is reduced (Table 1,
(See Table 4).

これに対し、表5に示したように、第2実施形態に係る面光源装置は、一列に配置した
複数の発光装置32からの光が発光装置32の配列の直上を重複して照明するのを抑える
ことができるため、中心線31上における照度の値をほぼ均一化することができ、各列a
〜cの中心線31上における照度の値と各列a〜cの50mmの位置における照度の値の
差が表4よりも小さくなっている。すなわち、第2実施形態に係る面光源装置は、比較例
2に係る面光源装置よりも被照射面30上における照度のばらつきを小さくすることがで
きる。
On the other hand, as shown in Table 5, in the surface light source device according to the second embodiment, the light from the plurality of light emitting devices 32 arranged in a row overlaps and illuminates directly above the arrangement of the light emitting devices 32. Therefore, the illuminance value on the center line 31 can be made substantially uniform, and each column a
The difference between the illuminance value on the center line 31 of ˜c and the illuminance value at the position of 50 mm in each column a to c is smaller than that in Table 4. That is, the surface light source device according to the second embodiment can reduce variation in illuminance on the irradiated surface 30 as compared with the surface light source device according to Comparative Example 2.

ここで、表4における照度の測定値の最大値を最小値で割った値を均整度とすると、比
較例2に係る面光源装置の均整度は1.43である。また、表5における照度の測定の最
大値を最小値で割った値を均整度とすると、第2実施形態に係る面光源装置の均整度は1
.17となる。このように、第2実施形態に係る面光源装置は、その均整度が比較例2に
係る面光源装置の均整度よりも小さく、被照射面30における照度分布が比較例2に係る
面光源装置の被照射面30における照度分布よりも均一化している。
Here, when the value obtained by dividing the maximum value of the illuminance value in Table 4 by the minimum value is defined as the degree of uniformity, the degree of uniformity of the surface light source device according to Comparative Example 2 is 1.43. Further, assuming that the value obtained by dividing the maximum value of illuminance measurement in Table 5 by the minimum value is the degree of uniformity, the degree of uniformity of the surface light source device according to the second embodiment is 1.
. 17 As described above, the surface light source device according to the second embodiment has a degree of uniformity smaller than that of the surface light source device according to Comparative Example 2, and the illuminance distribution on the irradiated surface 30 is according to Comparative Example 2. Is more uniform than the illuminance distribution on the irradiated surface 30.

表6は、比較例2に係る面光源装置の各測定点における照度の測定値(表4参照)に対
する第2実施形態に係る面光源装置の各測定点における照度の測定値(表5参照)の変化
率(照度変化率)を、「照度比」として示すものである。この表6に示すように、照度の
差は、各列a〜cにおいて、50mmの位置から中心線(0mm)に向かうにしたがって
大きくなっており、b列の中心線31(0mm)上の測定点において最も大きくなってい
る。このような照度変化率は、第2実施形態に係る光束制御部材4の二面幅部分17の機
能に起因するものである。
Table 6 shows the measured values of illuminance at each measurement point of the surface light source device according to the second embodiment (see Table 5) with respect to the measured values of illuminance at each measurement point of the surface light source device according to Comparative Example 2 (see Table 4). The change rate (illuminance change rate) is shown as “illuminance ratio”. As shown in Table 6, the difference in illuminance increases from the position of 50 mm toward the center line (0 mm) in each row ac, and the measurement on the center line 31 (0 mm) in row b. It is the largest in terms. Such an illuminance change rate is caused by the function of the two-surface width portion 17 of the light flux controlling member 4 according to the second embodiment.

なお、上記表4乃至6は、被照明部材26の内側の面の全体(全被照射面)における照
度を示すものではないが、第2実施形態に係る面光源装置と比較例2に係る面光源装置に
おける全被照射面の照度の平均値がほぼ同じであった。このことから、第2実施形態に係
る面光源装置は、比較例2に係る面光源装置と比較し、光のロスを生じていないことが確
認できた。
Although Tables 4 to 6 above do not indicate the illuminance of the entire inner surface (all irradiated surfaces) of the illuminated member 26, the surface light source device according to the second embodiment and the surface according to the comparative example 2. The average value of illuminance on all irradiated surfaces in the light source device was almost the same. From this, it was confirmed that the surface light source device according to the second embodiment did not cause light loss as compared with the surface light source device according to Comparative Example 2.

[変形例]
本発明の第1実施形態に係る光束制御部材4の頂面8及び第2実施形態に係る光束制御
部材4の頂面8を粗面化してもよい。
[Modification]
The top surface 8 of the light flux controlling member 4 according to the first embodiment of the present invention and the top surface 8 of the light flux controlling member 4 according to the second embodiment may be roughened.

また、本発明に係る面光源装置22は、複数の発光装置1を一列に密に配置してあるが
、これに限られず、複数の発光装置1を密に配置した列を複数列設けるようにしてもよい
。ただし、配列上における発光装置1の密度よりも、その配列と直交方向における発光装
置1の密度の方が疎となるように配置される。また、隣り合う列の発光装置1同士は、千
鳥状にずらして配置されるようにしてもよい。
Further, in the surface light source device 22 according to the present invention, the plurality of light emitting devices 1 are densely arranged in one row. However, the present invention is not limited to this, and a plurality of rows in which the plurality of light emitting devices 1 are densely arranged are provided. May be. However, the light emitting devices 1 are arranged so that the density of the light emitting devices 1 in the direction orthogonal to the arrangement is sparser than the density of the light emitting devices 1 on the array. In addition, the light emitting devices 1 in adjacent rows may be arranged so as to be staggered.

また、光束制御部材4の第1出射面としての二面幅部分17を、第1実施形態及び第2
実施形態では平面17a,17bに形成したが、これに限られず、配列方向へ向かう出射
光を減少させる効果が得られるような光を発散させる面を適用してもよい。例えば、光束
制御部材4の第2出射面としての曲面部分18よりも曲率半径の大きな凸面(発散効果は
平面よりも低いが回転対称な曲面部分18よりは高い)や、凹面(平面よりも発散効果が
高い)等が挙げられる。
Further, the two-surface width portion 17 as the first emission surface of the light flux controlling member 4 is the same as that of the first embodiment and the second embodiment.
In the embodiment, the flat surfaces 17a and 17b are formed. However, the present invention is not limited to this, and a surface that diverges light may be applied so as to obtain an effect of reducing emitted light toward the arrangement direction. For example, a convex surface having a larger radius of curvature than the curved surface portion 18 as the second exit surface of the light flux controlling member 4 (the divergence effect is lower than that of the plane but higher than that of the rotationally symmetric curved surface portion 18), or a concave surface (divergent than the plane). High effect).

本発明に係る発光装置は、面光源装置に使用される場合に限られず、案内灯や間接照明
具等として単独で使用することが可能である。
The light emitting device according to the present invention is not limited to being used in a surface light source device, and can be used alone as a guide light, an indirect illumination tool, or the like.

1,32……発光装置、2……基板、3……発光素子(例えば、LED)、4……光束
制御部材、5……裏面、7……光入射面部、8……頂面、10……凹所、11……光反射
面部、12……光出射面部、13……第1光入射面部分、14……第2光入射面部分、1
5a,15b……突起、17……二面幅部分、17a,17b……平面(第1出射面)、
18……曲面部分(第2出射面)、22……面光源装置、25……反射部材、26……被
照明部材、L……光軸(光束の中心)
DESCRIPTION OF SYMBOLS 1,32 ... Light-emitting device, 2 ... Board | substrate, 3 ... Light-emitting element (for example, LED), 4 ... Light flux control member, 5 ... Back surface, 7 ... Light incident surface part, 8 ... Top surface, 10 ...... Recess, 11 …… Light reflecting surface portion, 12 …… Light emitting surface portion, 13 …… First light incident surface portion, 14 …… Second light incident surface portion, 1
5a, 15b... Projection, 17... Width across flats, 17a and 17b... Flat surface (first exit surface),
18 …… Curved surface portion (second exit surface), 22 …… Surface light source device, 25 …… Reflecting member, 26 …… Illuminated member, L …… Optical axis (center of luminous flux)

Claims (6)

発光素子に対して、前記発光素子からの立体的な出射光束の中心の光が進行する方向である光軸を中心とするように配置される光束制御部材であって、
前記発光素子からの光を入射させる光入射面部と、この光入射面部から入射した光を反射する光反射面部と、前記光束制御部材の側面に位置し前記光反射面部で反射された光を出射する光出射面部と、を有し、
・前記光入射面部は、
前記光束制御部材のうちの前記発光素子に対向する裏面側に形成されており、
前記光軸を中心とするように配置され且つ前記発光素子に対向するように配置され、
前記出射光束のうちの前記光軸の近傍に位置する中心側の光束部分である第1光束部分を入射させる第1光入射面部分と、
前記第1光入射面部分を取り囲むように配置され、前記出射光束のうちの前記第1光束部分を取り囲むように位置する第2光束部分の光の進行方向が前記光軸にほぼ沿った方向となるように光路変換して前記光束制御部材内へ入射させる第2光入射面部分と、を有し、
前記第2光入射面部分が、前記光軸を中心として同心円状に突出形成された複数の突起からなるフレネルレンズであり、
・前記光反射面部は、
前記光束制御部材のうちの前記裏面の反対側に位置する頂面から前記裏面側へ向かって凹むテーパー形状の凹所を形作るテーパー面であって、前記光軸上に収斂するように形成され、
前記光入射面部から入射した光を前記光出射面部に向けて反射するようになっており、
・前記光出射面部は、
前記光軸を含む仮想面に対して面対称に形成される一対の第1出射面と、前記一対の第1出射面を接続する第2出射面と、を有し、
前記第1出射面は、前記第2出射面よりも、前記光反射面部を経由して到達する光を発散させて出射するように形成され、
前記光軸に直交する方向を側方とすると、前記光反射面部で反射された光を前記第1出射面と前記第2出射面から前記側方側へ向けて出射するようになっている、
ことを特徴とする光束制御部材。
A light flux controlling member disposed so as to be centered on an optical axis that is a direction in which light at the center of a three-dimensional emitted light flux from the light emitting element travels with respect to the light emitting element,
A light incident surface portion for allowing light from the light emitting element to enter, a light reflecting surface portion for reflecting light incident from the light incident surface portion, and emitting light reflected by the light reflecting surface portion located on a side surface of the light flux controlling member A light emitting surface portion to be
The light incident surface portion is
It is formed on the back side facing the light emitting element of the light flux controlling member,
Arranged to be centered on the optical axis and opposed to the light emitting element,
A first light incident surface portion for entering a first light flux portion that is a central light flux portion located in the vicinity of the optical axis of the emitted light flux;
A light traveling direction of a second light beam portion, which is disposed so as to surround the first light incident surface portion and is positioned so as to surround the first light beam portion of the emitted light beam, is a direction substantially along the optical axis. A second light incident surface portion that changes the optical path so as to be incident on the light flux controlling member, and
The second light incident surface portion is a Fresnel lens composed of a plurality of protrusions formed concentrically around the optical axis;
-The light reflecting surface portion is
A tapered surface that forms a tapered recess recessed from the top surface located on the opposite side of the back surface of the light flux control member toward the back surface, and is formed so as to converge on the optical axis;
The light incident from the light incident surface portion is reflected toward the light emitting surface portion,
-The light exit surface is
A pair of first emission surfaces formed symmetrically with respect to a virtual plane including the optical axis, and a second emission surface connecting the pair of first emission surfaces,
The first emission surface is formed so as to diverge and emit the light reaching via the light reflection surface portion than the second emission surface,
When the direction orthogonal to the optical axis is a side, the light reflected by the light reflecting surface portion is emitted from the first emission surface and the second emission surface toward the side.
A light flux controlling member characterized by the above.
前記第2出射面は、前記光軸を中心とする円筒面の一部である、
ことを特徴とする請求項1に記載の光束制御部材。
The second emission surface is a part of a cylindrical surface centered on the optical axis.
The light flux controlling member according to claim 1.
前記第2出射面は、前記頂面側が前記裏面側よりも小径となるテーパー面で且つ前記光軸を中心とするテーパー面の一部である、
ことを特徴とする請求項1に記載の光束制御部材。
The second emission surface is a tapered surface whose top surface side is smaller in diameter than the back surface side and is a part of a tapered surface centered on the optical axis.
The light flux controlling member according to claim 1.
前記第1出射面は、前記光軸と平行な一対の平面で且つ前記光軸を含む面に面対称の一対の平面からなる、
ことを特徴とする請求項1乃至3のいずれかに記載の光束制御部材。
The first emission surface is a pair of planes parallel to the optical axis and a pair of planes symmetrical with respect to a plane including the optical axis.
The light flux controlling member according to any one of claims 1 to 3.
基板上に設置された発光素子と、前記請求項1乃至4のいずれかに記載の光束制御部材とを有する、A light-emitting element installed on a substrate, and the light flux controlling member according to any one of claims 1 to 4,
ことを特徴とする発光装置。  A light emitting device characterized by that.
前記請求項5に記載の発光装置を一列に複数配置し、これら複数の発光装置から出射した光を反射部材で反射し、前記発光装置から出射され直接到達した光と前記反射部材で反射した光とによって被照明部材を面状に照明する面光源装置であって、A plurality of the light emitting devices according to claim 5 are arranged in a line, the light emitted from the plurality of light emitting devices is reflected by a reflecting member, the light emitted from the light emitting device and directly reached, and the light reflected by the reflecting member A surface light source device that illuminates the illuminated member in a planar shape,
隣り合う前記発光装置の前記光束制御部材は、互いの前記第1出射面同士が対向するように配置される、  The light flux controlling members of the adjacent light emitting devices are arranged such that the first emission surfaces face each other.
ことを特徴とする面光源装置。  A surface light source device.
JP2011145240A 2011-06-30 2011-06-30 Luminous flux control member, light emitting device, and surface light source device Active JP5764407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011145240A JP5764407B2 (en) 2011-06-30 2011-06-30 Luminous flux control member, light emitting device, and surface light source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011145240A JP5764407B2 (en) 2011-06-30 2011-06-30 Luminous flux control member, light emitting device, and surface light source device

Publications (2)

Publication Number Publication Date
JP2013012632A JP2013012632A (en) 2013-01-17
JP5764407B2 true JP5764407B2 (en) 2015-08-19

Family

ID=47686264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011145240A Active JP5764407B2 (en) 2011-06-30 2011-06-30 Luminous flux control member, light emitting device, and surface light source device

Country Status (1)

Country Link
JP (1) JP5764407B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839686B2 (en) * 2012-01-27 2016-01-06 株式会社エンプラス Luminous flux control member and light emitting device
KR101524914B1 (en) * 2013-03-28 2015-06-01 엘지이노텍 주식회사 Light diffusion device, and light emitting device array unit having the same
KR101524777B1 (en) * 2013-07-05 2015-06-01 엘지이노텍 주식회사 Material for controlling luminous flux, light emitting device and display device
US9010951B2 (en) 2013-07-05 2015-04-21 Lg Innotek Co., Ltd. Optical lens, light emitting device, and display
KR101759344B1 (en) * 2015-02-11 2017-07-18 엘지이노텍 주식회사 Material for controlling luminous flux, light emitting device and display device
JP6798535B2 (en) 2018-09-28 2020-12-09 日亜化学工業株式会社 Light emitting device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0918058A (en) * 1995-06-29 1997-01-17 Sharp Corp Semiconductor light-emitting device
JP2000299500A (en) * 1999-04-15 2000-10-24 Mayumi Ishida Light emitting diode
JP3715635B2 (en) * 2002-08-21 2005-11-09 日本ライツ株式会社 Light source, light guide and flat light emitting device
JP2009152307A (en) * 2007-12-19 2009-07-09 Nikon Corp Light-emitting diode element
JP2010239021A (en) * 2009-03-31 2010-10-21 Koha Co Ltd Light source module

Also Published As

Publication number Publication date
JP2013012632A (en) 2013-01-17

Similar Documents

Publication Publication Date Title
CN103163576B (en) Light-emitting diode lens and light-emitting device thereof
TWI539211B (en) Light guide plate and backlight module using the same
JP5813717B2 (en) Car lighting equipment
KR100616598B1 (en) Light emitting diode lens and backlight module having the same
TWI422861B (en) Light control lens and light source device using the same
US8967833B2 (en) LED lens and light source device using the same
JP5764407B2 (en) Luminous flux control member, light emitting device, and surface light source device
TWI535978B (en) Optical lens and lighting element using same
US9453633B2 (en) Lens for light-emitting diode, backlight unit and display device including same
TWI537523B (en) Optical lens and lighting element using the same
KR101458686B1 (en) Aspheric lens with rectangular light distribution spread for display
KR101690740B1 (en) Asymmetric light diffusion lens
KR101419031B1 (en) Light emitting device and lighting device having the same
US20190024855A1 (en) Luminous flux control member, light-emitting device, planar light source device, and display device
TWI506229B (en) Light emitting apparatus and lens
US9222646B2 (en) Luminous flux control member, light emitting apparatus, and illuminating apparatus
JP5733750B2 (en) Luminous flux control member, light emitting device, and surface light source device
KR101583647B1 (en) Light Guide Lens for LED
TWI567338B (en) Lens having through hole and lighting module
CN211203787U (en) Projection lamp
KR101901317B1 (en) Lens for wide diffusion light
KR20130133569A (en) Back light unit and liquid crystal display comprising the same
KR101488382B1 (en) Side emitting light emitting diode lens, back light unit and display device including the same
CN213777604U (en) Light diffusion lens and lighting device
TW201508393A (en) LED element and backlight module using the same

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150615

R150 Certificate of patent or registration of utility model

Ref document number: 5764407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250