JP3715635B2 - Light source, light guide and flat light emitting device - Google Patents

Light source, light guide and flat light emitting device Download PDF

Info

Publication number
JP3715635B2
JP3715635B2 JP2003176685A JP2003176685A JP3715635B2 JP 3715635 B2 JP3715635 B2 JP 3715635B2 JP 2003176685 A JP2003176685 A JP 2003176685A JP 2003176685 A JP2003176685 A JP 2003176685A JP 3715635 B2 JP3715635 B2 JP 3715635B2
Authority
JP
Japan
Prior art keywords
light
light source
incident
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003176685A
Other languages
Japanese (ja)
Other versions
JP2004140327A (en
Inventor
カリル カランタル
Original Assignee
日本ライツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライツ株式会社 filed Critical 日本ライツ株式会社
Priority to JP2003176685A priority Critical patent/JP3715635B2/en
Publication of JP2004140327A publication Critical patent/JP2004140327A/en
Application granted granted Critical
Publication of JP3715635B2 publication Critical patent/JP3715635B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Led Device Packages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体発光素子を用いて半導体発光素子のサイド方向に出射する光源と、この光源を中心に設けて放射方向に進んだ光線を平坦な表面部から出射する導光体と、これら光源と導光体を用いて高輝度な平面発光装置を得て、例えば鉄道信号灯、交通信号灯や大型のディスプレや車のテールランプ等に利用できる光源および導光体ならびに平面発光装置に関する。
【0002】
【従来の技術】
従来の光源としては、リードフレームや基板上の載置面に半導体発光素子を載置し、この半導体発光素子からリードフレームや基板とは反対方向(半導体発光素子の上部表面方向)に出射される光を集光するため、透明樹脂等によって半導体発光素子の出射面側を砲弾形状にモールドをしたり、単に半導体発光素子を封印した構成が知られている。
【0003】
また、従来の導光体としては、矩形形状で4辺の1辺や2辺若しくは隅の近傍に光源を備え、導光体の表面部や裏面部にプリズム等の溝を施したり、凸形状や凹形状のドット等を設け、光源から離れる程、これら溝やドット等を多く設けるものが知られている。
【0004】
さらに、従来の平面発光装置としては、上記の光源や導光体を用いたもので、砲弾形状にモールド成形した半導体発光素子や矩形形状にモールド成形した半導体発光素子チップ等やこれらをアレー状に並べた光源を表面部や裏面部に光源から離れる程多くプリズム等の溝や凸形状、凹形状のドット等を設けた導光体の側面や隅に光源を備えたものが知られている。この平面発光装置では、光源の一方向から導光体内に光を導き、導光体の一方向から進んでくる光を表面部方向に反射させて表面部から出射させている。
【0005】
【発明が解決しようとする課題】
上述した従来の光源は、リードフレームや基板上の載置面に半導体発光素子を載置し、リードフレームや基板とは反対方向(半導体発光素子の上部表面方向)から出射される光を集光するため、透明樹脂等によって半導体発光素子の出射面側を砲弾形状にモールドをしたり、単に半導体発光素子を封印した構成となっている。これにより、半導体発光素子の光は、リードフレームや基板上に載置した載置面の上方(半導体発光素子の表面からの出射方向)に出射される。このため、特に砲弾形状の場合には、指向性の強い(狭い出射角度の)ビームになって出射してしまう課題がある。
【0006】
また、従来の導光体は、矩形形状で4辺の1辺や2辺若しくは隅の近傍に光源を備え、導光体の表面部や裏面部にプリズム等の溝を施したり、凸形状や凹形状のドット等を設け、光源から離れる程、これら溝やドット等を多く設ける構成となっている。これにより、光源からの光を一方向または二方向から取り込み、導光体の一方向から進んでくる光を表面部方向等へ反射や屈折等によって出射している。従って、入射面部から距離が長いと、両端での輝度差が出たり、側面部での出射等によるロス等の発生に課題がある。
【0007】
さらに、従来の平面発光装置として、上記の光源や導光体を用い、砲弾形状にモールド成形した半導体発光素子や矩形形状にモールド成形した半導体発光素子チップ等やこれらをアレー状に並べた光源を表面部や裏面部に光源から離れる程多くプリズム等の溝や凸形状、凹形状のドット等を設けた導光体の側面や隅に光源を備えた構成となっている。これにより、光源の一方向から導光体内に光を導き、導光体の一方向から進んでくる光を表面部方向に反射させて表面部から出射させている。しかし、この構成では、光源からの光線が直接的に導光体の入射面部から進入する。しかも、光源自身に指向性が強くあるため、入射面部の近傍に光源の映り込みが現れてしまう課題がある。
【0008】
また、アレー状に並べた光源の場合には、光源自身の指向性により輝度的に波のように斑が現れてしまう課題がある。
さらに、図12(a),(b)に示すように、従来の光源40,41を本発明の導光体3を用いて平面発光装置50を構成した場合に於いても以下に説明するような課題がある。図12(a),(b)に於いて、導光体3の中心位置に光源40,41を配置するとき、導光体3の開口部21が円形状や四角形状なので、光源40,41を円や四角の環状に設けなければ成らない。このため、光源40,41の配置方法や必要空間やリード42等の接続配線等の課題がある。しかも、図12(a)に示すように、光源40,41自身の指向性により、光源40,41個々の光線L40,L41が放射状になり、はっきりとした光線の斑が発生してしまう課題がある。
【0009】
本発明は、上記のような課題を解決するためになされたもので、リードフレームや基板上の載置面に載置した半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行うように円柱形状や四角柱形状の上部の半導体発光素子に対向する位置が逆向きの円錐形状や四角錐形状に切除し、載置面に略並行に放射状に出射するようにモールドした光源と、光源からの光を導く入射部が中心に位置し、光源を挿入する円形または四角形状の開口部または裏面部に凹部を設けるとともに裏面部に前記入射部を中心として放射状に同心円上または平行に入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から横方向の放射状に出射した光線を傾斜部で全反射や屈折して導光体の表面部から出射し、輝度が高く斑の無い発光が得られる光源および導光体ならびに平面発光装置を提供することにある。
【0010】
【課題を解決するための手段】
上記課題を解決するため、本発明の請求項1に係る光源は、モールドが、下部が円柱形状を成し、半導体発光素子に対向する上部位置が円柱形状よりも外側に放射状の曲線を有した漏斗形状であるとともに上部位置が逆向きの円錐形状に切除した形状を有し、円錐形状の円錐面と放射状の曲線の曲面とで全反射を繰り返して漏斗形状の先端から水平に円周方向に放射状に出射することを特徴とする。
【0011】
請求項1に係る光源は、モールドが、下部が円柱形状を成し、半導体発光素子に対向する上部位置が円柱形状よりも外側に放射状の曲線を有した漏斗形状であるとともに上部位置が逆向きの円錐形状に切除した形状を有し、円錐形状の円錐面と放射状の曲線の曲面とで全反射を繰り返して漏斗形状の先端から水平に円周方向に放射状に出射するので、円錐形状の面と放射状の曲面とで全反射を繰り返し、漏斗形状の先端部から円周方向(360度の範囲を出射する)に半導体発光素子からの光を大部分出射することができる
【0012】
また、請求項2に係る光源は、モールドが、全体が略円錐形状を成し、半導体発光素子に対向する位置が逆向きの円錐形状に切除した形状を有し、円錐形状の円錐面で全反射をし、やや下方向に傾きを有して放射状に出射することを特徴とする。
【0013】
請求項2に係る光源は、モールドが、全体が略円錐形状を成し、半導体発光素子に対向する位置が逆向きの円錐形状に切除した形状を有し、円錐形状の円錐面で全反射をし、やや下方向に傾きを有して放射状に出射するので、円錐面で全反射をして円周方向(360度の範囲を出射する)に半導体発光素子からの光を大部分出射することができる。
【0018】
さらに、請求項に係る光源は、半導体発光素子を赤色発光または緑色発光または青色発光の単色光あるいは赤色発光、緑色発光、青色発光を一体にしたことを特徴とする。
【0019】
請求項に係る光源は、半導体発光素子を赤色発光または緑色発光または青色発光の単色光あるいは赤色発光、緑色発光、青色発光を一体にしたので、単色光は白色光を得ることができる。
【0020】
また、請求項に係る導光体は、入射部が導光体の中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに表面部または/および裏面部に入射部を中心として放射状に同心円上に入射部方向に向く傾斜部を有した凹形状を設けたことを特徴とする。
【0021】
請求項に係る導光体は、入射部が導光体の中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに表面部または/および裏面部に入射部を中心として放射状に同心円上に入射部方向に向く傾斜部を有した凹形状を設けたので、入射部から進入した光源からの光を傾斜部で全反射や屈折等をして導光体の表面部の中心から円周方向(360度の範囲)に放射状に出射することができる。
【0022】
さらに、請求項に係る導光体は、入射部が導光体の中心に位置し、光源を挿入する四角形状の開口部または裏面部に四角形状の凹部を設けるとともに表面部または/および裏面部に入射部を中心として平行に入射部方向に向く傾斜部を有した凹形状を設けたことを特徴とする。
【0023】
請求項に係る導光体は、入射部が導光体の中心に位置し、光源を挿入する四角形状の開口部または裏面部に四角形状の凹部を設けるとともに表面部または/および裏面部に入射部を中心として平行に入射部方向に向く傾斜部を有した凹形状を設けたので、入射部から進入した光源からの光を傾斜部で全反射や屈折等をして導光体の表面部の中心から四方向(180度の範囲で四方向)に放射状に出射することができる。
【0024】
また、請求項に係る導光体は、入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であることを特徴とする。
【0025】
請求項に係る導光体は、入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であるので、導光体が入射部から遠ざかるに従って導光体の厚さが厚くなる場合には、入射部から進入した光はすぐには導光体内から出られず、入射部の反対方向に進み、ここで反射されて入射部方向に向かう時にテーパーリークにより出射する、また導光体の厚さが一定である場合には、テーパ−リークにより出射する事無く光偏向素子によって屈折や全反射を起し出射する。
【0026】
さらに、請求項に係る導光体は、表面部および裏面部に対して球および楕円球の一部ならびに三角錐、円錐、四角錐、三角柱、四角柱、円柱等から成る形状を垂直にまたは三角柱、四角柱、半円柱等から成る形状を水平にランダムおよび直線状や曲線状ならびに任意の分布で光偏向素子を設けることを特徴とする。
【0027】
請求項に係る導光体は、表面部および裏面部に対して球および楕円球の一部ならびに三角錐、円錐、四角錐、三角柱、四角柱、円柱等から成る形状を垂直にまたは三角柱、四角柱、半円柱等から成る形状を水平にランダムおよび直線状や曲線状ならびに任意の分布で光偏向素子を設けるので、屈折させて外部に出射したり、一度屈折してから全反射して再度導光体に戻したり、全反射して反対側から出射したり全反射して再度導光体に戻すことができる。
【0028】
また、請求項に係る平面発光装置は、リードフレームや基板上の載置面に半導体発光素子が載置され、半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い、載置面に略並行に放射状に出射するように半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、光源からの光を導く入射部が中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに表面部および裏面部に入射部を中心として放射状に同心円上に入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から円周方向な放射状に出射した光線を傾斜部で全反射または/および屈折して導光体の表面部から出射することを特徴とする。
【0029】
請求項に係る平面発光装置は、リードフレームや基板上の載置面に半導体発光素子が載置され、半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い、載置面に略並行に放射状に出射するように半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、光源からの光を導く入射部が中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに表面部および裏面部に入射部を中心として放射状に同心円上に入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から円周方向な放射状(360度の範囲)に出射した光線を傾斜部で全反射または/および屈折して導光体の表面部から出射するので、半導体発光素子からの出射光を効率良く導光体の表面部から出射でき、どの位置でも高輝度で斑の無い平面発光を得ることができる。
【0030】
さらにまた、請求項に係る平面発光装置は、リードフレームや基板上の載置面に矩形状の半導体発光素子が載置され、半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状に半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、光源からの光を導く入射部が中心に位置し、光源を挿入する四角形状の開口部または裏面部に四角形状の凹部を設けるとともに表面部または/および裏面部に入射部を中心として平行に入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から開口部または裏面部の凹部に平行に出射した光線を傾斜部で全反射または/および屈折して導光体の表面部から出射することを特徴とする。
【0031】
請求項に係る平面発光装置は、リードフレームや基板上の載置面に矩形状の半導体発光素子が載置され、半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状に半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、光源からの光を導く入射部が中心に位置し、光源を挿入する四角形状の開口部または裏面部に四角形状の凹部を設けるとともに表面部または/および裏面部に入射部を中心として平行に入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から開口部または裏面部の凹部に平行(180度の範囲で四方)に出射した光線を傾斜部で全反射または/および屈折して導光体の表面部から出射するので、半導体発光素子からの出射光を効率良く導光体の四方の表面部から出射でき、どの位置でも高輝度の斑の無い平面発光を得ることができる。
【0032】
またさらに、請求項10に係る平面発光装置は、赤色発光または緑色発光または青色発光の単色光を出射する各光源を3つの導光体の開口部または裏面部の凹部に各々挿入し、各導光体の表面部から赤色光、緑色光、青色光の各々を出射する3つの導光体を重ね合わせたことを特徴とする。
【0033】
請求項10に係る平面発光装置は、赤色発光または緑色発光または青色発光の単色光を出射する各光源を3つの導光体の開口部または裏面部の凹部に各々挿入し、各導光体の表面部から赤色光、緑色光、青色光の各々を出射する3つの導光体を重ね合わせたので、光源を制御することによって出射光がフルカラを表せることができるとともに赤色光、緑色光、青色光を同時に出射することによって白色光を得ることができる。
【0034】
また、請求項11に係る平面発光装置は、リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い載置面に略並行に放射状に出射するようにモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、表面部または/および裏面部に光偏向素子を設けた導光体と、入射部と出射面部以外の光を反射する反射体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から円周方向で放射状に出射した光線を光偏向素子で全反射または/および屈折して導光体の表面部から出射することを特徴とする。
【0035】
請求項11に係る平面発光装置は、リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い載置面に略並行に放射状に出射するようにモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、表面部または/および裏面部に光偏向素子を設けた導光体と、入射部と出射面部以外の光を反射する反射体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から円周方向で放射状に出射した光線を光偏向素子で全反射または/および屈折して導光体の表面部から出射するので、出射光の方向や視野角をコントロールすることができる。
【0036】
さらに、請求項12に係る平面発光装置は、リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状にモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の開口部または裏面部に凹部を設けるとともに入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、表面部または/および裏面部に光偏向素子を設けた導光体と、入射部と出射面部以外の光を反射する反射体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から開口部または裏面部の凹部に平行に出射した光線を光偏向素子で全反射または/および屈折して導光体の表面部から出射することを特徴とする。
【0037】
請求項12に係る平面発光装置は、リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状にモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の開口部または裏面部に凹部を設けるとともに入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、表面部または/および裏面部に光偏向素子を設けた導光体と、入射部と出射面部以外の光を反射する反射体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から開口部または裏面部の凹部に平行に出射した光線を光偏向素子で全反射または/および屈折して導光体の表面部から出射するので、出射光の方向や視野角をコントロールすることができる。
【0038】
また、請求項13に係る平面発光装置は、リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い載置面に略並行に放射状に出射するようにモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する開口部を設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部から遠ざかるに従って厚さが厚くなる導光体と、光源からの光を導く入射部を中心に位置し、光源を挿入する凹部を裏面部に設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部に近づくに従って厚さが厚くなる導光体と、光を反射する反射体とを備え、入射部から遠ざかるに従って厚さが厚くなる導光体の上方に入射部に近づくに従って厚さが厚くなる導光体を互いに傾斜する面を向かい合わせにし、光源を前記各々の導光体の開口部および裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを反射体で覆い、入射部から遠ざかるに従って厚さが厚くなる導光体内に進んだ光を反射体によって入射部方向に反射した光を光偏向素子やテーパーリークにより出射する出射光と、導光体と入射部に近づくに従って厚さが厚くなる導光体内に進んだ光を光偏向素子やテーパーリークにより出射する出射光を得ることを特徴とする。
【0039】
請求項13に係る平面発光装置は、リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い載置面に略並行に放射状に出射するようにモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する開口部を設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部から遠ざかるに従って厚さが厚くなる導光体と、光源からの光を導く入射部を中心に位置し、光源を挿入する凹部を裏面部に設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部に近づくに従って厚さが厚くなる導光体と、光を反射する反射体とを備え、入射部から遠ざかるに従って厚さが厚くなる導光体の上方に入射部に近づくに従って厚さが厚くなる導光体を互いに傾斜する面を向かい合わせにし、光源を前記各々の導光体の開口部および裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを反射体で覆い、入射部から遠ざかるに従って厚さが厚くなる導光体内に進んだ光を反射体によって入射部方向に反射した光を光偏向素子やテーパーリークにより出射する出射光と、導光体と入射部に近づくに従って厚さが厚くなる導光体内に進んだ光を光偏向素子やテーパーリークにより出射する出射光を得るので、互いに出射方向の異なる導光体を用いることによって視野角の広い出射光を得ることかできるとともに多くの出射光を出射することができる。
【0040】
さらに、請求項14に係る平面発光装置は、リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状にモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の開口部を設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部から遠ざかるに従って厚さが厚くなる導光体と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の凹部を裏面部に設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部に近づくに従って厚さが厚くなる導光体と、光を反射する反射体とを備え、入射部から遠ざかるに従って厚さが厚くなる導光体の上方に入射部に近づくに従って厚さが厚くなる導光体を互いに傾斜する面を向かい合わせにし、光源を各々の導光体の開口部および裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを反射体で覆い、入射部から遠ざかるに従って厚さが厚くなる導光体内に進んだ光を反射体によって入射部方向に反射した光を光偏向素子やテーパーリークにより出射する出射光と、導光体と入射部に近づくに従って厚さが厚くなる導光体内に進んだ光を光偏向素子やテーパーリークにより出射する出射光を得ることを特徴とする。
【0041】
請求項14に係る平面発光装置は、リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状にモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の開口部を設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部から遠ざかるに従って厚さが厚くなる導光体と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の凹部を裏面部に設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部に近づくに従って厚さが厚くなる導光体と、光を反射する反射体とを備え、入射部から遠ざかるに従って厚さが厚くなる導光体の上方に入射部に近づくに従って厚さが厚くなる導光体を互いに傾斜する面を向かい合わせにし、光源を各々の導光体の開口部および裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを反射体で覆い、入射部から遠ざかるに従って厚さが厚くなる導光体内に進んだ光を反射体によって入射部方向に反射した光を光偏向素子やテーパーリークにより出射する出射光と、導光体と入射部に近づくに従って厚さが厚くなる導光体内に進んだ光を光偏向素子やテーパーリークにより出射する出射光を得るので、互いに出射方向の異なる導光体を用いることによって視野角の広い出射光を得ることができるとともに多くの出射光を出射することができる。
【0042】
【発明の実施の形態】
以下、本発明の実施の形態を添付図面に基づき説明する。
なお、本発明は、セラミック基板、液晶ポリマー樹脂基板、ガラス布エポキシ樹脂基板等の基板や金属薄板からなるリードフレーム上、またはこれら基板やリードフレームの電気配線パターン上に設けた半導体発光素子を透明樹脂等で全体を円柱や四角柱にし、その上部を円錐状や四角錘状に切除した形状にモールドし、半導体発光素子からの上方に出射する出射光をモールドの円錐や四角錐の面で全反射をして横方向(放射状方向)に光線を偏向させて出射する光源と、中心位置に設けた円形状や四角形状の開口部または裏面の凹部に光源を挿入し、開口部または凹部の周壁面による入射部を中心に入射部方向に向く傾斜部を有した凹形状を設けた導光体とによって、導光体の入射部から進入した光源からの光を凹形状の傾斜部で全反射や屈折等をして導光体の表面部の中心から放射状に出射することができる光源および導光体ならびに平面発光装置を提供することにある。
【0043】
図1は本発明に係る平面発光装置の概略構成を示す斜視図、図2乃至図6は本発明に係る光源の各実施の形態を示す図、図7および図8は本発明に係る導光体の実施の形態を示す図、図9は本発明に係る導光体の凹形状における光の軌跡の概略図、図10は本発明に係る導光体の他の実施の形態を示す図、図11は本発明に係る平面発光装置の光の軌跡の概略図、図13は本発明に係る平面発光装置の概略構成を示す図、図14は図13の平面発光装置における右半部の光の軌跡の概略図、図15は本発明に係る平面発光装置の概略構成を示す図、図16は図15の平面発光装置における右半部の光の軌跡の概略図である。なお、図1、図7、図8、図10に於いて、凹形状は1本の細線で簡略的に表現している。
【0044】
本例の平面発光装置1は、図1に示すように、円形の導光体3の中心に開口部21が設けられ、この開口部21に半導体発光素子からの出射方向(垂直)を略並行に放射状に出射する光源22(22A〜22E)が挿入されて概略構成される。図11に示すように、開口部21の周壁面は、光源22からの光を導く入射部20を形成している。また、表面部31や裏面部32には、開口部21の入射部20を中心として放射状に同心円上に入射部20方向に向く傾斜部を有した凹形状34が形成される。なお、開口部21に代えて、導光体3の裏面部32の中心に凹部21を形成しても良い。この場合、凹部21の周壁面が光源22からの光線を導光体2内に導く入射部20となる。
【0045】
本例の平面発光装置1には、例えば図2乃至図6に示す構成の光源22(22A〜22E)を採用している。図2に示すように、光源22は、有機金属気相成長法等で製作された4元素化合物等からなる半導体発光素子2がリードフレーム23や基板23等の基台上の載置面に載置される。そして、半導体発光素子2の光の出射面側が全体が透明樹脂等による円柱形状のモールド24(24A〜24E)で覆われる。モールド24は、半導体発光素子2に対向する位置が逆向きの円錐形状25に切除した形状に構成される。また、基台をなすリードフレーム23や基板23等には、半導体発光素子2に駆動電源を供給するためのリード端子26が設けられる。
【0046】
リードフレーム23は、導通性および弾力性のある燐青銅等の銅合金材等で構成される。図示しないが、リードフレーム23には、電気的接続をするための配線パターンやリード端子26等のパターンがパターンプレスによって形成される。そして、この薄板のリードフレーム23に対し、樹脂によりインサート成形が施され、モールド24が形成される。
【0047】
基板23は、電気絶縁性に優れたセラミック、液晶ポリマー樹脂、ガラス布エポキシ樹脂等で構成される。図示しないが、基板23の表面には、電気的接続をするための配線パターンが形成される。
【0048】
さらに説明すると、セラミックからなる基板23は、AlOやSiOを主成分とし、さらにZrO,TiO,TiC,SiCおよびSiN等との化合物からなり、耐熱性や硬度、強度に優れ、白色系の表面を持ち、半導体発光素子2からの発光された光を効率良く反射する。
【0049】
また、液晶ポリマー樹脂やガラス布エポキシ樹脂からなる基板23は、液晶ポリマーやガラス布エポキシ樹脂などの絶縁性の有る材料に、チタン酸バリウム等の白色粉体を混入または塗布させて成形し、半導体発光素子2からの発光された光を効率良く反射する。
【0050】
なお、基板23としては、珪素樹脂、紙エポキシ樹脂、合成繊維布エポキシ樹脂および紙フェノール樹脂等の積層板や変成ポリイミド、ポリブチレンテレフタレート、ポリカーボネートや芳香族ポリエステル等からなる板にパターン印刷を施して半導体発光素子2からの発光された光を効率良く反射する構成としてもよい。
【0051】
また、図示しないパターンは、セラミック基板、液晶ポリマー樹脂基板、ガラス布エポキシ樹脂基板のいずれかの基板23上に真空蒸着スパッタリング、イオンプレーティング、CVD(化学蒸着)、エッチング(ウエット、ドライ)等により電気的接続をするパターン形状に形成される。そして、パターンの上に金属メッキを施した後、さらに金や銀等の貴金属メッキを施し、リード端子26に電気的に接続される。
【0052】
半導体発光素子2は、4元素化合物やInGaAlP系、InGaAlN系、InGaN系等の化合物の半導体チップ等からなる高輝度発光素子であり、赤色発光、緑色発光、青色発光の単色光である。
【0053】
また、赤色発光、緑色発光、青色発光を一体化して3種の色発光により白色光を可能とし、さらに波長変換材料を用いる構成としてもよい。例えば、青色発光の半導体発光素子2と、この青色発光の半導体発光素子2によって励起し、黄色発光の波長変換材料(蛍光材)による黄色の発光色と青色の発光色との混合によって白色発光させたものでも良い。
【0054】
さらに、半導体発光素子2は、表面に取り付ける電極をIn2 3 ,SnO2 ,ITO等からなる導電性透明電極等をスパッタリング、真空蒸着、化学蒸着等により生成させて製作する。
【0055】
半導体発光素子2は、図示しないが、半導体発光素子2の電極と配線パターンとを金線等の導通線からなるボンディングワイヤでワイヤーボンディングされ、電気的に接続される。
【0056】
モールド24(24A〜24E)は、透明性の良い材料、例えば無色透明なエポキシ樹脂やシリコーン樹脂等で形成される。図2に示すモールド24Aは、全体が円柱形状をなし、半導体発光素子2の対向する位置が逆向きの円錐形状25に切除した形状に構成される。
【0057】
そして、モールド24Aの円錐形状25の面25a(リードフレーム23や基板23に半導体発光素子2を載置した面に対向する面25a)で半導体発光素子2から出射する光を全反射して、半導体発光素子2を載置面に略並行に放射状に360度の範囲に出射させる。
【0058】
図3(a),(b)に示すモールド24Bは、下部が円柱形状をなし、半導体発光素子2の対向する上部位置が円柱形状よりも外側に放射状の曲面27aを有した漏斗形状27をなしており、上部位置が逆向きの円錐形状25に切除した形状に構成される。
【0059】
そして、図3(a),(b)に示した光源22Bのモールド24Bは、半導体発光素子2からの光線を漏斗形状27内に導くとともに、円錐形状25の円錐面25aと放射状の曲面27aとで全反射を繰り返して漏斗形状27の先端27bから水平に円周方向に360度の範囲に指向性を持つ光線を出射する。
【0060】
図4に示す光源22Cは、リードフレーム23や基板23上に載置した矩形状の半導体発光素子2に対応させてモールド24Cが形成される。さらに説明すると、このモールド24Cは、全体が半導体発光素子2の側面に対応した四角柱形状をなし、半導体発光素子2に対向する位置が逆向きの四角錐形状28に切除され、四角柱の側面と四角錐の底辺とが四角柱の上部4辺28bで接続する形状に構成される。
【0061】
そして、モールド24Cの四角錐形状28の面28a(リードフレーム23や基板23に半導体発光素子2を載置した面に対向する面28a)で半導体発光素子2から出射する光を全反射して、半導体発光素子2を載置面に略並行に180度の範囲で4方向に出射させる。
【0062】
さらに、図5および図6は、光源22に於けるモールド24の変形例を示している。図5(a),(b)に示すモールド24Dは、全体が略円錐形状をなし、半導体発光素子2の対向する位置が逆向きの円錐形状25に切除した形状に構成される。
【0063】
この場合は、円錐形状25の面25aで半導体発光素子2から出射する光を全反射して、半導体発光素子2を載置面に略並行に放射状に出射する。そして、モールド24Dの全体が略円錐形状をしているので、出射光がモールド24Dでやや下方向に傾きを有して放射状に360度の範囲に光線として出射する。
【0064】
同様に、図6(a),(b)に示すモールド24Eは、全体が円柱形状をなし、半導体発光素子2の対向する位置が逆向きの内側に反った曲面25bを有した円錐形状25に切除した形状に構成される。
【0065】
この場合は、円錐形状25の曲面25bで半導体発光素子2から出射する光を全反射する時に、やや下方向に傾きを有して放射状に360度の範囲に光線として出射する。
【0066】
ところで、上述したモールド24(24A〜24E)は、全反射させる面(25a,25b,28a)に金等を蒸着したり、光の反射性の良いチタン酸バリウム等を塗布して反射面を形成し、半導体発光素子2からの光を効率良く反射させても良い。
【0067】
なお、モールド24(24A〜24E)は、透明なアクリルやポリカーボネート等で成形した物を無色透明なエポキシ樹脂等の接着剤で半導体発光素子2を包囲するようにリードフレーム23や基板23に接着しても良い。
【0068】
リード端子26は、導通性および弾性力のある燐青銅等の銅合金材等からなるリードフレーム23を直接取り出して形成される。また、基板23にリード端子26を設けて配線パターンと電気的に接続するように構成することもできる。
【0069】
このように、光源22A,22D,22Eは、半導体発光素子2からの光を円錐面25a,25bで全反射するので、円周方向に半導体発光素子2からの光を大部分出射することができる。
【0070】
同様に光源22Bは、半導体発光素子2からの光を円錐面25aと放射状の曲面27aとで全反射を繰り返して、漏斗形状27の先端部27bから円周方向に反射するので、半導体発光素子2からの光を大部分出射することができる。
【0071】
さらに、光源22Cは、半導体発光素子2からの光を四角錐面28aで全反射をして四方向に反射するので、半導体発光素子2からの光を大部分出射することができる。
【0072】
なお、平面発光装置1に利用する場合、これら光源22(22A〜22E)の頂部には、平面全体が均一な出射光を必要とするために微量の光の漏れがあっても良い。
【0073】
導光体3は、屈折率が1.4〜1.7程度の透明なアクリル樹脂(PMMA)やポリカーボネート(PC)等により形成される。図7(a),(b)に示す導光体3は、外形が円形状に形成されている。この導光体3の中心位置には、光源22Aや22Bを挿入する円形の開口部21または裏面部32に円形の凹部21が設けられる。開口部21または凹部21の周壁面は、光源22Aや22Bからの光を導く円形状の入射部20を形成している。
【0074】
また、導光体3には、表面部31や裏面部32に入射部(開口部21)を中心として放射状に同心円上に入射部20(開口部21)方向に向く傾斜部33を有した凹形状34(34A)が設けられている。
【0075】
即ち、この傾斜部33を有した凹形状34Aは、開口部21を中心に環状の凹形状34Aが同心に多重に導光体3の表面部31や裏面部32に設けた構造である。
【0076】
なお、図7(a),(b)の例では、裏面部32のみに傾斜部33を有した凹形状34Aを設けている。
【0077】
また、導光体3としては、図8(a),(b)に示す構成を採用しても良い。図8(a),(b)に示す導光体3は、外形が四角形状に形成される。この導光体3の中心位置には、光源22Cを挿入する四角形状の開口部21または裏面部32に四角形状の凹部21が設けられる。開口部21または凹部21の周壁面は、光源22Cからの光を導く四角形状の入射部20を形成している。
【0078】
また、導光体3には、表面部31や裏面部32に入射部(開口部21)を中心として平行に入射部20(開口部21)方向に向く傾斜部33を有した凹形状34(34B)が設けられている。
【0079】
即ち、この傾斜部33を有した凹形状34Bは、開口部21からの同距離に設けた入射部20(開口部21)に平行な4つの凹部の端部が接続されたものであり、開口部21を中心に四角の環状が同心に多重に導光体3の表面部31や裏面部32に設けた構造である。
【0080】
なお、図8(a),(b)の例では、裏面部32のみに傾斜部33を有した凹形状34Bを設けている。また、凹形状34は、傾斜部(傾斜面)33が入射部20方向に向く形状であれば良い。例えば図9に示すように、断面形状が二等辺三角形の傾斜部33aや直角三角形の傾斜部33bを傾斜部33として採用することができる。
【0081】
上記のように構成される導光体3は、図9に示すように、開口部21に備えた光源22A〜22Eからの略平行な光線を入射部20から導く。そして、導光体3内に導かれた光線Lは、導光体3の裏面部32に設けた凹形状34(34A,34B)の入射部20方向に向く傾斜部33aで全反射して表面部31の上方へ光線L1を出射する。
【0082】
同様に、導光体3は、図9に示すように、開口部21に備えた光源22A〜22Eからの光線が入射部20から導入されると、導光体3内に導かれた光線Lは、導光体3の表面部31に設けた凹形状34(34A,34B)の入射部20方向に向く傾斜部33bで屈折して表面部31の上方へ光線L2を出射する。
【0083】
このように、導光体3は、入射部20方向に向く傾斜部33(33a,33b)によって入射部20から進入した光源22からの光を傾斜部33で全反射や屈折等をして導光体3の表面部31の中心から円周方向や四方向に放射状に表面部31から光線L1やL2を出射することができる。
【0084】
なお、凹形状34の形状は、出射角を決定するような形状を選択すれば、表面部31から出射する出射光の目的等に合わせることができる。また、凹形状34は、入射部20方向に向く傾斜部33を有する形状ならどんな形状でも良い。
【0085】
例えば図9に示すように、断面形状が二等辺三角形や直角三角形の他、逆三角、矩形、円弧等で、連続な溝やドット等の形状およびサイズを自由に選択することができる。
【0086】
また、図10(a)〜(d)に示すように、導光体3の中心位置に光源22Aや22Bを挿入する円形の開口部21または裏面部32に円形の凹部21を設け、入射部20方向に向く傾斜部33を有する凹形状34を備えた各種の形状を採用することができる。例えば図10(a)や図10(b)の様な形状の導光体3を採用した場合、開口部21または裏面部32に円形の凹部21に橙色等の光源22Aや22Bを挿入し、導光体3を回転を可能にする。これにより、道路交通のガードレール等に用いられる注意表示器をもっと明るく自発光により自動車の運転者に知らせることが可能である。
【0087】
また、導光体3を図10(c)や図10(d)に示す形状とし、ディスプレイ単体として、光源22Aや22Bの発光色をカラフルにすることにより利用することが可能である。
【0088】
平面発光装置1は、図11に示すように、光源22(22A,22B,22D,22Eの何れか)と、円形の導光体3Aとを備えて概略構成される。この場合の光源22は、前述したように、リードフレーム23や基板23上の載置面に載置した半導体発光素子2からの光の出射方向に透明樹脂等で半導体発光素子2の載置面の対向方向に出射する光を半導体発光素子2の対向する面25a,25bで全反射を行い、載置面に略並行に放射状に出射するようにモールドしたものである。導光体3Aは、光源22(22A,22B,22D,22Eの何れか)からの光を導く入射部20が中心に位置し、光源22(22A,22B,22D,22Eの何れか)を挿入する開口部21または裏面部32に凹部21を有している。また、導光体3は、入射部20を中心として放射状に同心円上に入射部20方向に向く傾斜部33を有した凹形状34Aが表面部31や裏面部32に設けられている。
【0089】
そして、上記構成による平面発光装置1では、光源22(22A,22B,22D,22Eの何れか)から円周方向な放射状に出射した光線Lを凹形状34の傾斜部33で全反射や屈折等をして導光体3の表面部31から光線L1,L2を出射する。
【0090】
よって、半導体発光素子2からの出射光L1,L2を効率良く導光体3の表面部31から出射でき、どの位置でも高輝度で斑の無い平面発光を得ることができる。
【0091】
また、平面発光装置1としては、別の構成も考えられる。この場合の光源22Cは、前述したように、リードフレーム23や基板23上の載置面に載置した矩形状の半導体発光素子2からの光の出射方向に透明樹脂等で半導体発光素子2の側面に対応した四角柱形状を成し、半導体発光素子2に対向する位置が逆向きの四角錐形状28に切除し、四角柱の側面と四角錐の底辺とが接続する形状にモールドしたものである。導光体3Bは、光源22Cからの光を導く入射部20が中心に位置し、光源22Cを挿入する四角形状の開口部21または裏面部32に四角形状の凹部21が設けられる。また、導光体3Bは、入射部20を中心として平行に入射部20方向に向く傾斜部33を有した凹形状34Bが表面部31や裏面部32に設けられる。
【0092】
そして、上記構成による平面発光装置1の場合も同様に、光源22Cから開口部21または裏面部32の凹部21に平行に出射した光線Lを凹形状34Bの傾斜部33で全反射や屈折等をして導光体3の表面部31から光線L1,L2を出射する。
【0093】
よって、半導体発光素子2からの出射光L1,L2を効率良く導光体3の四方の表面部31から出射でき、どの位置でも高輝度で斑の無い平面発光を得ることができる。
【0094】
また、平面発光装置1は、光源22(22A,22B,22C,22D,22E)に載置する半導体発光素子2の出射光を赤色発光または緑色発光または青色発光の単色光を各々3つの導光体3の開口部21または裏面部32の凹部21に各々挿入し、各導光体3の表面部31から赤色光、緑色光、青色光の各々を出射する3つの導光体3を重ね合わせた構成とすることができる。この他、導光体3をモザイクに並べ、光源22を制御することにより、出射光をフルカラで表せることができる。しかも、光源22の赤色光、緑色光、青色光を同時に出射することにより、白色光を得ることができる。例えば、交通信号や自動車のテールランプの様な単色利用やモザイク状に並べることによって大型のフルカラ画面を再現することができる。
【0095】
なお、ここでは図示しないが、導光体3からの微小の漏れ光や、反射効率を良くするために導光体3の裏面部32の下側近傍に反射体を別途設けても良い。
この場合の反射体は、熱可塑性樹脂に例えば酸化チタンのような白色材料を混入したシートや熱可塑性樹脂のシートにアルミニウム等の金属蒸着を施したり、金属箔を積層した物やシート状金属で構成される。
【0096】
先に説明したように、導光体の屈折率はn=1.49程度であるので、導光体の入射部で屈折する屈折角γはγ=0〜±42°程度の範囲内になる。また、屈折角γ=0〜±42°の範囲内で導光体内に入射した光は、導光体と空気層(屈折率n=1)との境界面で臨界角αがα=42°程度になる。したがって、導光体の表面部や裏面部に光線を偏向する凸や凹等がない場合や臨界角αを越えなければ、導光体内の光は表面部や裏面部で全て全反射しながら入射部の反対方向の反入射部35方向へ進むことになる。
【0097】
図13は本発明に係る平面発光装置の他の構成例を示している。図13に示す平面発光装置1は、上述した構成の光源22と、光源22からの光を導く入射部20bを中心に位置し、光源22を挿入する挿入部としての開口部21または裏面部32に凹部21を設け、入射部20bから遠ざかるに従って厚さが厚くなる楔形状の導光体3と、光を反射する反射体60からなる。なお、光源22が挿入される開口部21または裏面部32の凹部21は、使用される光源22の外形に合わせた形状とされる。
【0098】
ここで、入射部20bから遠ざかるに従って厚さが厚くなる楔形状の導光体3での光の軌跡について図14を参照しながら説明する。
入射部20bから入射した光は、屈折角γ=0〜±42°の範囲内で導光体3内に入射し、光偏向素子34が存在しなければ、楔形状であっても光がリークすることなく反入射部35にまで達する。
しかし、反入射部35まで達した光は、反射体60によって反射され、光線Lrとして再度入射部20b方向に進みながら表面部31や裏面部32で全反射を繰り返し、幾度かの表面部31や裏面部32に対しての入射角が導光体3のテーパ角によって臨界角αを破り表面部31から出射角の大きな出射光LLを出射する。
【0099】
以上のように、本例では、入射部20bから遠ざかるに従って厚さが厚くなる楔形状の導光体3により入射部20b(光源22)方向にテーパーリークを利用している。これにより、一般のような入射部から遠ざかるに従って厚さが薄くなる楔形状の導光体では、入射部から離れるように広がって出射してしまうため、平面発光装置の正面からの観測では輝度の低下として認識されてしまうが、本発明の導光体3や平面発光装置1では、入射部20bに向かって出射するため、平面発光装置1の正面からの観測では輝度の向上として認識される。
【0100】
なお、ここでは図示しないが、このような出射角の大きな出射光を効率良く利用するために導光体3の上部に頂角が導光体3に向くようにプリズムシート等を用いることができる。この場合、出射光をプリズムの一側面からプリズム内に導き、さらに他のプリズムの一側面で全反射をして、略垂直に上方に出射することができる。
【0101】
また、導光体3の表面部31や裏面部32に光偏向素子34を設ける構成としても良い。
なお、光偏向素子34は、表面部31および裏面部32に対して球および楕円球の一部ならびに三角錐、円錐、四角錐、三角柱、四柱柱、円柱等から成る形状を垂直に設けたり、三角柱、四角柱、半円柱等から成る形状を水平に設ける。
また、これら球および楕円球の一部ならびに三角錐、円錐、四角錐、三角柱、四角柱、円柱等をランダムおよび直線状や曲線状ならびに任意の分布で表面部31および裏面部32に対して垂直に設けたり、三角柱、四角柱、半円柱等を直線や曲線に任意の分布で表面部31および裏面部32に対して水平に設ける。
【0102】
光偏向素子34を設けることで、導光体3の楔形状により反入射部35まで達した光が反射体60によって反射された臨界角ぎりぎりの光を屈折させて出射することができる。また、全反射をして反対側に光を偏向しで反対側から出射することができる。さらに、光偏向素子34の分布によって出射量や出射させる位置をコントロールすることができる。
【0103】
図15は本発明に係る平面発光装置の更に他の構成例を示している。図15に示す平面発光装置1は、上述した構成の光源22と、光源22からの光を導く入射部20bを中心に位置し、光源22を挿入する挿入部としての開口部21を設け、入射部20bから遠ざかるに従って厚さが厚くなる楔形状の導光体3と、同様に光源22からの光を導く入射部20bを中心に位置し、光源22を挿入する挿入部としての裏面部32に凹部21を設け、入射部20から遠ざかるに従って厚さが薄くなる(入射部20に近づく従って厚さが厚くなる)楔形状の導光体3とを互いに傾斜する面31,32を向かい合わせにし、光源22を開口部21および裏面部32の凹部21に挿入し、最終裏面部32と入射部以外の側面部35,36(反入射部35,36)とを覆う反射体60からなる。なお、光源22が挿入される開口部21または裏面部32の凹部21は、使用される光源22の外形に合わせた形状とされる。
【0104】
ここで、入射部20bから遠ざかるに従って厚さが厚くなる楔形状の導光体3を下方に配置し、入射部20から遠ざかるに従って厚さが薄くなる楔形状の導光体3を上方に配置して重ね合わせた場合の光の軌跡について図16を参照しながら説明する。
【0105】
下方にある入射部20bから遠ざかるに従って厚さが厚くなる導光体3の光の軌跡については図14で説明したのでここでは省略する。
また、入射部20から遠ざかるに従って厚さが薄くなる楔形状の導光体3は、テーパー形状であるために、屈折角γ=±42°に近い光が導光体3の傾斜角度とによって臨界角を破り入射部20から離れるように出射する。
【0106】
以上に様に、テーパーリークの利用のみの説明であるが、光偏向素子34を設けることによってより効果的な出射光が得られる点ついて説明する。
下部方向にある導光体3は、反入射部35まで達した光が反射体60によって反射され、入射部20b方向に進む時、一部はテーパーリークによって表面部31bから光線LLを出射し、この光線LLが上部にある導光体3の裏面部32に設けた光偏向素子34に達する。例えば光偏向素子34がプリズム形状をなす場合、一度光線LLはプリズムの一側面からプリズム内に進入し、プリズムの他の側面で全反射をして、略垂直に導光体3を透過して表面部31から光線L1を出射する。
【0107】
また、導光体3の反入射部35まで達して反射体60により反射され、入射部20b方向に進んだ光線Lrは、裏面部32bに設けた光偏向素子34によって全反射する。この全反射した光線L10は、表面部31b方向に進み、表面部31bから出射して、上部の導光体3の裏面部32から導光体3内に進み、この導光体3を透過して表面部31から光線L1を出射する。
【0108】
さらに、ここでは図示しないが裏面部32bから出射したリーク光等は、裏面部32bの下方に設けた反射体60によって反射され再度導光体3内に光を戻す。
【0109】
また、上部方向にある導光体3は、入射部20からの光の内、屈折角γ=±42°に近い臨界角ぎりぎりの光を光偏向素子34で屈折し、表面部31から光線L2を出射する。
さらに、導光板3内に閉じ込められ、反入射部36方向に進み反射体60によって反射され再び入射部20方向に進む時にも光偏向素子34で屈折して表面部31から光線を出射することができる。
【0110】
なお、ここでは、光偏向素子34をプリズムで説明したが、形状はどんなものでも良く、光に対して傾斜面を有すれば良い。
【0111】
このように、平面発光装置1は光源22からの光を入射部20と入射部20bから導光体3内に光を導き、1つの導光体3によって導光体3内に進んだ光を反射体60によって入射部20b方向に反射した光を光偏向素子34やテーパーリークにより入射部30b方向に出射する出射光と、他の導光体3内に進んだ光を光偏向素子34やテーパーリークにより反入射部36方向に出射する出射光とによって嗜好性の異なる2つの出射光を出射することができる。
【0112】
【発明の効果】
以上のように、請求項1に係る光源は、モールドが、下部が円柱形状を成し、半導体発光素子に対向する上部位置が円柱形状よりも外側に放射状の曲線を有した漏斗形状であるとともに上部位置が逆向きの円錐形状に切除した形状を有し、円錐形状の円錐面と放射状の曲線の曲面とで全反射を繰り返して漏斗形状の先端から水平に円周方向に放射状に出射するので、円錐形状の面と放射状の曲面とで全反射を繰り返し、漏斗形状の先端部から円周方向(360度の範囲を出射する)に半導体発光素子からの光を大部分出射することができる。これにより、光エネルギの大部分を円周方向に偏向することができる。
【0113】
また、請求項2に係る光源は、モールドが、全体が略円錐形状を成し、半導体発光素子に対向する位置が逆向きの円錐形状に切除した形状を有し、円錐形状の円錐面で全反射をし、やや下方向に傾きを有して放射状に出射するので、円錐面で全反射をして円周方向(360度の範囲を出射する)に半導体発光素子からの光を大部分出射することができる。これにより、光エネルギの大部分を偏向することができる。
【0116】
さらに、請求項に係る光源は、半導体発光素子を赤色発光または緑色発光または青色発光の単色光あるいは赤色発光、緑色発光、青色発光を一体にしたので、単色光や白色光を得ることができる。その結果、自由な発光色を再現することができる。
【0117】
また、請求項に係る導光体は、入射部が導光体の中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに表面部または/および裏面部に入射部を中心として放射状に同心円上に入射部方向に向く傾斜部を有した凹形状を設けたので、入射部から進入した光源からの光を傾斜部で全反射や屈折等をして導光体の表面部の中心から円周方向(360度の範囲)に放射状に出射することができる。これにより、高輝度で斑の無い出射光を得ることができる。
【0118】
さらに、請求項に係る導光体は、入射部が導光体の中心に位置し、光源を挿入する四角形状の開口部または裏面部に四角形状の凹部を設けるとともに表面部または/および裏面部に入射部を中心として平行に入射部方向に向く傾斜部を有した凹形状を設けたので、入射部から進入した光源からの光を傾斜部で全反射や屈折等をして導光体の表面部の中心から四方向(180度の範囲で四方向)に放射状に出射することができる。その結果、高輝度で斑の無い出射光を得ることができる。
【0119】
また、請求項に係る導光体は、入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であるので、導光体が入射部から遠ざかるに従って導光体の厚さが厚くなる場合には、入射部から進入した光はすぐには導光体内から出られず、入射部の反対方向に進み、ここで反射されて入射部方向に向かう時にテーパーリークにより出射する、また導光体の厚さが一定である場合には、テーパ−リークにより出射する事無く光偏向素子によって屈折や全反射を起し出射する。これにより、目的とする出射方向に対応した出射光を得ることができる。
【0120】
さらに、請求項に係る導光体は、表面部および裏面部に対して球および楕円球の一部ならびに三角錐、円錐、四角錐、三角柱、四角柱、円柱等から成る形状を垂直にまたは三角柱、四角柱、半円柱等から成る形状を水平にランダムおよび直線状や曲線状ならびに任意の分布で光偏向素子を設けるので、屈折させて外部に出射したり、一度屈折してから全反射して再度導光体に戻したり、全反射して反対側から出射したり全反射して再度導光体に戻すことができる。これにより、光の進ませる方向を目的通りに制御することができる。
【0121】
また、請求項に係る平面発光装置は、リードフレームや基板上の載置面に半導体発光素子が載置され、半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い、載置面に略並行に放射状に出射するように半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、光源からの光を導く入射部が中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに表面部および裏面部に入射部を中心として放射状に同心円上に入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から円周方向な放射状に出射した光線を傾斜部で全反射または/および屈折して導光体の表面部から出射するので、半導体発光素子からの出射光を効率良く導光体の表面部から出射でき、どの位置でも高輝度で斑の無い平面発光を得ることができる。このため、自由な色の出射光を高輝度で斑の無い出射光が得ることができるとともに薄く広い面積を得ることができ、交通信号や自動車等およびディスプレイ等に利用するのに最適な形状をしている。
【0122】
さらにまた、請求項に係る平面発光装置は、リードフレームや基板上の載置面に矩形状の半導体発光素子が載置され、半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状に半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、光源からの光を導く入射部が中心に位置し、光源を挿入する四角形状の開口部または裏面部に四角形状の凹部を設けるとともに表面部または/および裏面部に入射部を中心として平行に入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から開口部または裏面部の凹部に平行(180度の範囲で四方)に出射した光線を傾斜部で全反射または/および屈折して導光体の表面部から出射するので、半導体発光素子からの出射光を効率良く導光体の四方の表面部から出射でき、どの位置でも高輝度の斑の無い平面発光を得ることができる。これにより、自由な色の出射光を高輝度で斑の無い出射光が得ることができるとともに薄く広い面積を得ることができ、大型の表示画面等に利用するのに最適な形状を有している。
【0123】
またさらに、請求項10に係る平面発光装置は、赤色発光または緑色発光または青色発光の単色光を出射する各光源を3つの導光体の開口部または裏面部の凹部に各々挿入し、各導光体の表面部から赤色光、緑色光、青色光の各々を出射する3つの導光体を重ね合わせたので、光源を制御することによって出射光がフルカラを表せることができるとともに赤色光、緑色光、青色光を同時に出射することによって白色光を得ることができる。このため、フィルタ等が要らなく応答速度の速い平面発光装置を得ることができる。
【0124】
さらに、請求項11に係る平面発光装置は、リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い載置面に略並行に放射状に出射するようにモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する開口部または裏面部に凹部を設けるとともに入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、表面部または/および裏面部に光偏向素子を設けた導光体と、入射部と出射面部以外の光を反射する反射体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から円周方向で放射状に出射した光線を光偏向素子で全反射または/および屈折して導光体の表面部から出射するので、出射光の方向や視野角をコントロールすることができる。これにより、目的に合った円盤状の高輝度な出射光を得ることができる。
【0125】
また、請求項12に係る平面発光装置は、リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状にモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の開口部または裏面部に凹部を設けるとともに入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、表面部または/および裏面部に光偏向素子を設けた導光体と、入射部と出射面部以外の光を反射する反射体とを備え、光源を開口部または裏面部の凹部に挿入し、光源から開口部または裏面部の凹部に平行に出射した光線を光偏向素子で全反射または/および屈折して導光体の表面部から出射するので、出射光の方向や視野角をコントロールすることができる。これにより、目的に合った四角状の高輝度な出射光を得ることができる。
【0126】
さらに、請求項13に係る平面発光装置は、リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の載置面の対向方向に出射する光を半導体発光素子の対向する位置に設けた面で全反射を行い載置面に略並行に放射状に出射するようにモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する開口部を設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部から遠ざかるに従って厚さが厚くなる導光体と、光源からの光を導く入射部を中心に位置し、光源を挿入する凹部を裏面部に設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部に近づくに従って厚さが厚くなる導光体と、光を反射する反射体とを備え、入射部から遠ざかるに従って厚さが厚くなる導光体の上方に入射部に近づくに従って厚さが厚くなる導光体を互いに傾斜する面を向かい合わせにし、光源を前記各々の導光体の開口部および裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを反射体で覆い、入射部から遠ざかるに従って厚さが厚くなる導光体内に進んだ光を反射体によって入射部方向に反射した光を光偏向素子やテーパーリークにより出射する出射光と、導光体と入射部に近づくに従って厚さが厚くなる導光体内に進んだ光を光偏向素子やテーパーリークにより出射する出射光を得るので、互いに出射方向の異なる導光体を用いることによって視野角の広い出射光を得ることかできるとともに多くの出射光を出射することができる。これにより、円形状で広範囲で高輝度の出射光を得ることができる。
【0127】
また、請求項14に係る平面発光装置は、リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で半導体発光素子の側面に対応した四角柱形状を成し、半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、四角柱の側面と四角錐の底辺とが接続する形状にモールドした光源と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の開口部を設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部から遠ざかるに従って厚さが厚くなる導光体と、光源からの光を導く入射部を中心に位置し、光源を挿入する四角形状の凹部を裏面部に設け、表面部または/および裏面部に光偏向素子を設けるとともに入射部に近づくに従って厚さが厚くなる導光体と、光を反射する反射体とを備え、入射部から遠ざかるに従って厚さが厚くなる導光体の上方に入射部に近づくに従って厚さが厚くなる導光体を互いに傾斜する面を向かい合わせにし、光源を各々の導光体の開口部および裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを反射体で覆い、入射部から遠ざかるに従って厚さが厚くなる導光体内に進んだ光を反射体によって入射部方向に反射した光を光偏向素子やテーパーリークにより出射する出射光と、導光体と入射部に近づくに従って厚さが厚くなる導光体内に進んだ光を光偏向素子やテーパーリークにより出射する出射光を得るので、互いに出射方向の異なる導光体を用いることによって視野角の広い出射光を得ることができるとともに多くの出射光を出射することができる。これにより、四角状で広範囲で高輝度の出射光を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る平面発光装置の概略構成を示す斜視図
【図2】本発明に係る光源の実施の形態を示す斜視図
【図3】(a)本発明に係る光源の実施の形態を示す斜視図
(b)(a)の側面図
【図4】本発明に係る光源の実施の形態を示す斜視図
【図5】(a)本発明に係る光源の実施の形態を示す斜視図
(b)(a)の側面図
【図6】(a)本発明に係る光源の実施の形態を示す斜視図
(b)(a)の側面図
【図7】(a)本発明に係る導光体の平面図
(b)(a)の側断面図
【図8】(a)本発明に係る導光体の平面図
(b)(a)の側断面図
【図9】(a)〜(d)本発明に係る導光体の他の実施の形態を示す平面図
【図10】本発明に係る導光体の凹形状に於ける光の軌跡の概略図
【図11】本発明に係る平面発光装置の光の軌跡の概略図
【図12】(a)従来の平面発光装置の一部拡大平面図
(b)(a)の側断面図であって、光の軌跡の概略図
【図13】本発明に係る平面発光装置の概略構成を示す図
【図14】図13の平面発光装置における右半部の光の軌跡の概略図
【図15】本発明に係る平面発光装置の概略構成を示す図
【図16】図15の平面発光装置における右半部の光の軌跡の概略図
【符号の説明】
1…平面発光装置、2…半導体発光素子、3(3A,3B)…導光体、20,20b…入射部、21…開口部、凹部、22(22A〜22E)…光源、23…リードフレーム、基板、24(24A〜24E)…モールド、25…円錐形状、25a…面、25b…曲面、26…リード端子、27…漏斗形状、27a…曲面、27b…先端、28…四角錐形状、28a…面、31,31b…表面部、32,32b…裏面部、33(33a,33b)…傾斜部、34(34A,34B)…凹形状、35,36…反入射部、60…反射体、L,L1,L2,Lr,LL…光線。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light source that emits light in a side direction of a semiconductor light emitting element using a semiconductor light emitting element, a light guide that is provided around the light source and emits a light beam traveling in a radial direction from a flat surface portion, and these light sources. The present invention relates to a light source, a light guide, and a planar light emitting device that can be used for, for example, railway signal lights, traffic signal lights, large displays, car tail lamps, and the like.
[0002]
[Prior art]
As a conventional light source, a semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, and emitted from the semiconductor light emitting element in a direction opposite to the lead frame or the substrate (upper surface direction of the semiconductor light emitting element). In order to condense light, a configuration is known in which the exit surface side of the semiconductor light emitting element is molded into a shell shape with a transparent resin or the like, or the semiconductor light emitting element is simply sealed.
[0003]
In addition, as a conventional light guide, a light source is provided in the vicinity of one side, two sides, or corners of four sides, and a groove such as a prism is provided on the front or back side of the light guide, or a convex shape. It is known that a plurality of grooves and dots are provided as the distance from the light source increases.
[0004]
Furthermore, as a conventional planar light emitting device, the above light source or light guide is used, a semiconductor light emitting element molded into a shell shape, a semiconductor light emitting element chip molded into a rectangular shape, or the like in an array. It is known that light sources are provided on the side surfaces and corners of a light guide provided with grooves such as prisms and convex or concave dots as the arranged light sources are separated from the light source on the front and back surfaces. In this flat light emitting device, light is guided from one direction of the light source into the light guide, and light traveling from one direction of the light guide is reflected toward the surface portion and emitted from the surface portion.
[0005]
[Problems to be solved by the invention]
In the conventional light source described above, the semiconductor light emitting element is mounted on the mounting surface on the lead frame or the substrate, and the light emitted from the direction opposite to the lead frame or the substrate (upper surface direction of the semiconductor light emitting element) is collected. Therefore, the emitting surface side of the semiconductor light emitting element is molded into a shell shape with a transparent resin or the like, or the semiconductor light emitting element is simply sealed. Thereby, the light of the semiconductor light emitting element is emitted above the mounting surface placed on the lead frame or the substrate (in the emission direction from the surface of the semiconductor light emitting element). For this reason, particularly in the case of a shell shape, there is a problem that the beam is emitted with a strong directivity (narrow emission angle).
[0006]
Further, the conventional light guide has a rectangular shape and is provided with a light source near one side, two sides, or corners of four sides, and a groove such as a prism is provided on the front and back sides of the light guide, A concave dot or the like is provided, and as the distance from the light source increases, a larger number of these grooves or dots are provided. Thereby, the light from the light source is taken in from one direction or two directions, and the light traveling from one direction of the light guide is emitted toward the surface portion or the like by reflection or refraction. Therefore, when the distance from the incident surface portion is long, there is a problem in the occurrence of a difference in luminance at both ends, or loss due to emission from the side surface portion.
[0007]
Furthermore, as a conventional flat light emitting device, a semiconductor light emitting device molded into a bullet shape, a semiconductor light emitting device chip molded into a rectangular shape, or the like, or a light source in which these are arranged in an array using the above light source or light guide. The light source is provided on the side and corners of the light guide provided with grooves such as prisms and convex or concave dots as the distance from the light source increases on the front surface and back surface. Accordingly, light is guided from one direction of the light source into the light guide, and light traveling from one direction of the light guide is reflected toward the surface portion and emitted from the surface portion. However, in this configuration, the light beam from the light source directly enters from the incident surface portion of the light guide. Moreover, since the directivity of the light source itself is strong, there is a problem that the reflection of the light source appears in the vicinity of the incident surface portion.
[0008]
In the case of light sources arranged in an array, there is a problem that spots appear like waves in terms of luminance due to the directivity of the light sources themselves.
Further, as shown in FIGS. 12 (a) and 12 (b), a description will be given below even when a conventional light source 40, 41 is used to form a flat light emitting device 50 using the light guide 3 of the present invention. There is a big problem. 12A and 12B, when the light sources 40 and 41 are arranged at the center position of the light guide 3, the light sources 40 and 41 are formed because the opening 21 of the light guide 3 is circular or square. Must be provided in a circle or square ring. For this reason, there are problems such as an arrangement method of the light sources 40 and 41, a necessary space, connection wiring of the leads 42, and the like. Moreover, as shown in FIG. 12A, due to the directivity of the light sources 40 and 41 themselves, the individual light rays L40 and L41 of the light sources 40 and 41 are radiated, and a clear spot of light rays is generated. is there.
[0009]
The present invention has been made in order to solve the above-described problems, and the semiconductor light-emitting element is made of a transparent resin or the like in the light emission direction from the semiconductor light-emitting element placed on the mounting surface on the lead frame or the substrate. A cone whose position facing the upper semiconductor light emitting element in a cylindrical shape or quadrangular prism shape is reversed so that light emitted in the direction facing the mounting surface is totally reflected by the surface provided at the position facing the semiconductor light emitting element A light source that has been cut into a shape or a quadrangular pyramid shape and molded so as to be emitted radially in parallel with the mounting surface, and an incident portion that guides light from the light source is located at the center, and a circular or square shape into which the light source is inserted A light source provided with a concave portion provided with a concave portion in the opening portion or the back surface portion and provided with a concave shape with a concentric or radially inclined concentric circle around the incident portion on the back surface portion. In the recess in the opening or back A light source, a light guide, and a flat surface that emit light that is emitted from the light source in a radial direction in a horizontal direction and is totally reflected or refracted by the inclined portion and emitted from the surface portion of the light guide to obtain light emission with high brightness and no spots. The object is to provide a light emitting device.
[0010]
[Means for Solving the Problems]
  In order to solve the above problems, the light source according to claim 1 of the present invention is a mold.The lower part has a cylindrical shape,Semiconductor light emitting deviceThe upper position opposite the cylindrical shape is a funnel shape having a radial curve outside the cylindrical shape, and the upper position has a shape cut into a conical shape in the opposite direction, with a conical surface having a conical shape and a curved surface having a radial curve And repeat the total reflection in the circumferential direction horizontally from the funnel-shaped tipThe light is emitted radially.
[0011]
  The light source according to claim 1 is a mold.The lower part has a cylindrical shape,Semiconductor light emitting deviceThe upper position opposite the cylindrical shape is a funnel shape having a radial curve outside the cylindrical shape, and the upper position has a shape cut into a conical shape in the opposite direction, with a conical surface having a conical shape and a curved surface having a radial curve And repeat the total reflection in the circumferential direction horizontally from the funnel-shaped tipBecause it emits radially,Total reflection is repeated between the conical surface and the radial curved surface, and most of the light from the semiconductor light emitting element can be emitted in the circumferential direction (emits a range of 360 degrees) from the funnel-shaped tip..
[0012]
  The light source according to claim 2 is a mold.But,WholeAlmost conical shapeAnd the shape facing the semiconductor light emitting element is cut into a conical shape in the opposite directionWith total conical reflection on the conical surface of the conical shape, and emits radially with a slight downward inclinationIt is characterized by doing.
[0013]
  The light source according to claim 2 is a mold.But,WholeAlmost conical shapeAnd the shape facing the semiconductor light emitting element is cut into a conical shape in the opposite directionWith total conical reflection on the conical surface of the conical shape, and emits radially with a slight downward inclinationTherefore, it is possible to emit most of the light from the semiconductor light emitting element in the circumferential direction (emits a range of 360 degrees) by total reflection at the conical surface.
[0018]
  And claims3The light source according to the present invention is characterized in that the semiconductor light emitting element is configured to integrate red light emission, green light emission, or blue light emission monochromatic light or red light emission, green light emission, and blue light emission.
[0019]
  Claim3In the light source according to the present invention, the monochromatic light can obtain white light because the semiconductor light emitting element is integrated with red light emission, green light emission, or blue light emission monochromatic light or red light emission, green light emission, and blue light emission.
[0020]
  Claims4In the light guide according to the present invention, the incident part is located at the center of the light guide, and a recess is provided in the opening or the back part for inserting the light source, and the front part or / and the back part are radially concentrically centered on the incident part A concave shape having an inclined portion facing in the direction of the incident portion is provided.
[0021]
  Claim4In the light guide according to the present invention, the incident part is located at the center of the light guide, and a recess is provided in the opening or the back part for inserting the light source, and the front part or / and the back part are radially concentrically centered on the incident part Since a concave shape with an inclined part facing the incident part direction is provided, the light from the light source entering from the incident part is totally reflected and refracted by the inclined part, and the circumference from the center of the surface part of the light guide Radiation can be emitted radially in a direction (range of 360 degrees).
[0022]
  And claims5In the light guide according to the present invention, the incident portion is located at the center of the light guide, and the rectangular opening is provided in the rectangular opening or the back surface portion into which the light source is inserted, and the incident portion is provided on the front surface portion and / or the back surface portion. A concave shape having an inclined part parallel to the incident part direction as a center is provided.
[0023]
  Claim5In the light guide according to the present invention, the incident portion is located at the center of the light guide, and the rectangular opening is provided in the rectangular opening or the back surface portion into which the light source is inserted, and the incident portion is provided on the front surface portion and / or the back surface portion. Since the concave shape having an inclined portion parallel to the incident portion as the center is provided, the light from the light source entering from the incident portion is totally reflected and refracted by the inclined portion, and the center of the surface portion of the light guide Can be emitted radially in four directions (four directions in a range of 180 degrees).
[0024]
  Claims6The thickness of the light guide is increased as the distance from the incident part increases.Is thickThe characteristic is that the length is constant.
[0025]
  Claim6The thickness of the light guide is increased as the distance from the incident part increases.Is thickTherefore, when the thickness of the light guide increases as the light guide moves away from the incident portion, the light that has entered from the incident portion does not immediately exit the light guide, Proceeding in the opposite direction, it is reflected here and exits by taper leak when heading toward the incident part.LedWhen the thickness of the light body is constant, the light deflecting element causes refraction and total reflection without exiting due to taper-leak and exits.
[0026]
  And claims7The light guide body according to the present invention has a shape composed of a part of a sphere and an elliptic sphere and a triangular pyramid, a cone, a quadrangular pyramid, a triangular prism, a quadrangular prism, a cylinder and the like perpendicular to the front surface portion and the back surface portion, or The light deflection element is characterized in that the shape composed of a semi-cylinder or the like is horizontally and randomly arranged in a straight line shape, a curved line shape and an arbitrary distribution.
[0027]
  Claim7The light guide body according to the present invention has a shape composed of a part of a sphere and an elliptic sphere and a triangular pyramid, a cone, a quadrangular pyramid, a triangular prism, a quadrangular prism, a cylinder and the like perpendicular to the front surface portion and the back surface portion, or a triangular prism, a rectangular prism, Since the light deflection element is provided in a random, straight or curved shape and arbitrarily distributed in a shape consisting of a semi-cylinder, etc., it is refracted and emitted to the outside, or once refracted and then totally reflected to again guide the light Or totally reflected and emitted from the opposite side, or totally reflected and returned to the light guide again.
[0028]
  Claims8In the flat light emitting device according to the above, a semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, and light emitted in a direction opposite to the mounting surface of the semiconductor light emitting element is provided at a position facing the semiconductor light emitting element. A light source molded with a transparent resin or the like in the direction of light emission from the semiconductor light-emitting element so that it is totally reflected on the surface and emitted radially parallel to the mounting surface, and an incident part that guides the light from the light source Positioned and provided with a recess in the opening or back side to insert the light source and the surfaceDepartmentAnd a light guide body having a concave shape having an inclined portion concentrically arranged in a concentric circle centered on the incident portion on the back surface portion, and a light source is inserted into the opening portion or the concave portion of the back surface portion. A light beam emitted radially in the circumferential direction is totally reflected or / and refracted by the inclined portion and is emitted from the surface portion of the light guide.
[0029]
  Claim8In the flat light emitting device according to the above, a semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, and light emitted in a direction opposite to the mounting surface of the semiconductor light emitting element is provided at a position facing the semiconductor light emitting element. A light source molded with a transparent resin or the like in the direction of light emission from the semiconductor light-emitting element so that it is totally reflected on the surface and emitted radially parallel to the mounting surface, and an incident part that guides the light from the light source Positioned and provided with a recess in the opening or back side to insert the light source and the surfaceDepartmentAnd a light guide body having a concave shape having an inclined portion concentrically arranged in a concentric circle centered on the incident portion on the back surface portion, and a light source is inserted into the opening portion or the concave portion of the back surface portion. Since the light emitted in the circumferential direction (in the range of 360 degrees) from the light is totally reflected or / and refracted by the inclined portion and emitted from the surface portion of the light guide, the emitted light from the semiconductor light emitting element is efficiently guided. The light can be emitted from the surface of the light body, and can emit flat light with high brightness and no spots at any position.
[0030]
  Furthermore, the claims9In the planar light emitting device according to the present invention, a rectangular semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, forms a quadrangular prism shape corresponding to the side surface of the semiconductor light emitting element, and faces the semiconductor light emitting element. Is cut into a square pyramid shape in the opposite direction, and a light source molded with a transparent resin or the like in the direction of light emission from the semiconductor light emitting element in a shape where the side surface of the quadrangular prism and the base of the square pyramid are connected, and the light from the light source The leading incident part is located at the center, and a quadrangular concave part is provided in the rectangular opening or back part for inserting the light source, and the front part or / and the back part is inclined parallel to the incident part in the direction of the incident part. The light source is provided with a concave shape having a concave portion, and the light source is inserted into the concave portion of the opening portion or the back surface portion, and the light emitted from the light source in parallel to the concave portion of the opening portion or the back surface portion is totally reflected by the inclined portion. Or / and refracted light guide Characterized by emitting from the surface portion.
[0031]
  Claim9In the planar light emitting device according to the present invention, a rectangular semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, forms a quadrangular prism shape corresponding to the side surface of the semiconductor light emitting element, and faces the semiconductor light emitting element. Is cut into a square pyramid shape in the opposite direction, and a light source molded with a transparent resin or the like in the direction of light emission from the semiconductor light emitting element in a shape where the side surface of the quadrangular prism and the base of the square pyramid are connected, and the light from the light source The leading incident part is located at the center, and a quadrangular concave part is provided in the rectangular opening or back part for inserting the light source, and the front part or / and the back part is inclined parallel to the incident part in the direction of the incident part. The light source is provided with a concave shape having a concave portion, and the light source is inserted into the concave portion of the opening portion or the rear surface portion, and emitted from the light source in parallel to the concave portion of the opening portion or the rear surface portion (four directions within a range of 180 degrees). The reflected light is totally reflected on the inclined part or / And refracted and emitted from the surface portion of the light guide, so that the emitted light from the semiconductor light emitting element can be efficiently emitted from the four surface portions of the light guide, and can emit flat light with high brightness and no spots at any position. Obtainable.
[0032]
  Furthermore, the claim10In the planar light emitting device according to the present invention, each light source that emits monochromatic light of red light emission, green light emission, or blue light emission is inserted into each of the openings of the three light guides or the recesses on the back surface, and from the surface part of each light guide. Three light guides that emit red light, green light, and blue light are superposed.
[0033]
  Claim10In the planar light emitting device according to the present invention, each light source that emits monochromatic light of red light emission, green light emission, or blue light emission is inserted into each of the openings of the three light guides or the recesses on the back surface, and from the surface part of each light guide. Since the three light guides that emit red light, green light, and blue light are superimposed, the emitted light can be displayed in full color by controlling the light source, and the red light, green light, and blue light can be simultaneously displayed. By emitting the light, white light can be obtained.
[0034]
  Claims11The planar light emitting device according to the present invention is configured such that light emitted in the direction opposite to the mounting surface of the semiconductor light emitting element is made of a transparent resin or the like in the light emitting direction from the semiconductor light emitting element mounted on the lead frame or the substrate. A light source molded so as to be totally reflected on the surface provided at a position where it is emitted and radially emitted substantially parallel to the mounting surface, and an opening for inserting the light source, which is positioned around the incident part that guides light from the light source, or A concave portion is provided on the back surface, and the thickness increases as the distance from the incident portion increases.Is thickA light guide having a light deflection element on the front surface or / and the back surface, and a reflector that reflects light other than the incident surface and the output surface, and the light source is provided on the opening or the back surface. A light beam that is inserted into the concave portion and emitted radially from the light source in the circumferential direction is totally reflected or / and refracted by the light deflecting element, and is emitted from the surface portion of the light guide.
[0035]
  Claim11The planar light emitting device according to the present invention is configured such that light emitted in the direction opposite to the mounting surface of the semiconductor light emitting element is made of a transparent resin or the like in the light emitting direction from the semiconductor light emitting element mounted on the lead frame or the substrate. A light source molded so as to be totally reflected on the surface provided at a position where it is emitted and radially emitted substantially parallel to the mounting surface, and an opening for inserting the light source, which is positioned around the incident part that guides light from the light source, or A concave portion is provided on the back surface, and the thickness increases as the distance from the incident portion increases.Is thickA light guide having a light deflection element on the front surface or / and the back surface, and a reflector that reflects light other than the incident surface and the output surface, and the light source is provided on the opening or the back surface. The light beam that is inserted into the recess and is emitted radially from the light source in the circumferential direction is totally reflected or / and refracted by the light deflecting element and is emitted from the surface portion of the light guide, thereby controlling the direction and viewing angle of the emitted light. be able to.
[0036]
  And claims12The planar light emitting device according to the present invention has a rectangular pillar shape corresponding to the side surface of the semiconductor light emitting element with a transparent resin or the like in the light emission direction from the rectangular semiconductor light emitting element placed on the lead frame or the substrate, and emits semiconductor light The position facing the element is cut into a quadrangular pyramid shape in the opposite direction, the light source molded in a shape where the side of the quadrangular prism and the base of the quadrangular pyramid are connected, and the incident part that guides the light from the light source is located at the center, A concave portion is provided in the rectangular opening or back surface where the light source is inserted, and the thickness increases as the distance from the incident portion increases.Is thickA light guide having a light deflection element on the front surface or / and the back surface, and a reflector that reflects light other than the incident surface and the output surface, and the light source is provided on the opening or the back surface. A light beam inserted into the concave portion and emitted in parallel to the opening portion or the concave portion of the back surface portion from the light source is totally reflected or / and refracted by the light deflecting element and is emitted from the surface portion of the light guide.
[0037]
  Claim12The planar light emitting device according to the present invention has a rectangular pillar shape corresponding to the side surface of the semiconductor light emitting element with a transparent resin or the like in the light emission direction from the rectangular semiconductor light emitting element placed on the lead frame or the substrate, and emits semiconductor light The position facing the element is cut into a quadrangular pyramid shape in the opposite direction, the light source molded in a shape where the side of the quadrangular prism and the base of the quadrangular pyramid are connected, and the incident part that guides the light from the light source is located at the center, A concave portion is provided in the rectangular opening or back surface where the light source is inserted, and the thickness increases as the distance from the incident portion increases.Is thickA light guide having a light deflection element on the front surface or / and the back surface, and a reflector that reflects light other than the incident surface and the output surface, and the light source is provided on the opening or the back surface. The light beam inserted into the recess and emitted in parallel to the opening or the recess on the back surface from the light source is totally reflected or / and refracted by the light deflecting element and is emitted from the surface portion of the light guide. The corner can be controlled.
[0038]
  Claims13In the planar light emitting device according to the present invention, the light emitted from the semiconductor light emitting element mounted on the lead frame or the substrate is emitted in the direction opposite to the mounting surface of the semiconductor light emitting element with a transparent resin or the like in the light emitting direction of the semiconductor light emitting element. A light source molded so as to be totally reflected on the surface provided at a position where it is emitted and radially emitted substantially parallel to the mounting surface, and an opening for inserting the light source is positioned around the incident part that guides light from the light source. A light guide that is provided on the front surface portion and / or back surface portion and has a thickness that increases with increasing distance from the incident portion, and a concave portion that is positioned around the incident portion that guides light from the light source and into which the light source is inserted. Is provided on the back surface portion, a light deflector is provided on the front surface portion and / or the back surface portion, and a light guide body that increases in thickness as it approaches the incident portion, and a reflector that reflects light, and as the distance from the incident portion increases. Thick RushirubekotaiAboveLight guide that increases in thickness as it approaches the entranceBodyFace each other, face each other, insert the light source into the opening of each of the light guides and the concave part of the back part, cover the final back part and the side part other than the incident part with a reflector, and away from the incident part The light that has traveled into the light guide increases in thickness according to the incident direction of the light reflected by the reflector and is emitted by the light deflecting element or taper leak. The present invention is characterized in that an outgoing light is obtained in which the light that has traveled into the light guide becomes thicker and is emitted by an optical deflection element or a taper leak.
[0039]
  Claim13The planar light emitting device according to the present invention is configured such that light emitted in the direction opposite to the mounting surface of the semiconductor light emitting element is made of a transparent resin or the like in the light emitting direction from the semiconductor light emitting element mounted on the lead frame or the substrate. A light source molded so as to be totally reflected on the surface provided at a position where it is emitted and radially emitted substantially parallel to the mounting surface, and an opening for inserting the light source is positioned around the incident part that guides light from the light source. A light guide that is provided with a light deflection element on the front surface part and / or the back surface part, and whose thickness increases as the distance from the incident part increases, and a concave part in which the light source is inserted, centered on the incident part that guides light from the light source Is provided on the back surface portion, a light deflection element is provided on the front surface portion or / and the back surface portion, and a light guide body that increases in thickness as it approaches the incident portion, and a reflector that reflects light, and as the distance from the incident portion increases. Thick RushirubekotaiAboveLight guide that increases in thickness as it approaches the entranceBodyFace each other, face each other, insert the light source into the opening of each of the light guides and the concave part of the back part, cover the final back part and the side part other than the incident part with a reflector, and away from the incident part The light that has traveled into the light guide increases in thickness according to the incident direction of the light reflected by the reflector and is emitted by the light deflecting element or taper leak. Since light that travels through the light guide that becomes thicker is emitted by a light deflector or taper leak, it is possible to obtain light with a wide viewing angle by using light guides with different emission directions. Can be emitted.
[0040]
  And claims14The planar light emitting device according to the present invention has a rectangular pillar shape corresponding to the side surface of the semiconductor light emitting element with a transparent resin or the like in the light emission direction from the rectangular semiconductor light emitting element placed on the lead frame or the substrate, and emits semiconductor light The position facing the element is cut into a quadrangular pyramid shape in the opposite direction, the light source molded in a shape where the side of the quadrangular prism and the base of the quadrangular pyramid are connected, and the incident part that guides the light from the light source is located at the center, A rectangular opening for inserting a light source is provided, a light deflecting element is provided on the front surface part and / or the back surface part, and a light guide whose thickness increases as the distance from the incident part increases, and an incident part for guiding light from the light source A light guide that is located in the center and has a rectangular recess for inserting a light source on the back surface, a light deflection element on the front surface or / and the back surface, and the thickness increases as it approaches the incident portion; With reflective reflector For example, the light guide body thickness is increased as the distance from the entrance portionAboveLight guide that increases in thickness as it approaches the entranceBodyFace each other, face each other, insert the light source into the opening of each light guide and the concave portion of the back surface, cover the final back surface and the side surface other than the incident part with a reflector, and away from the incident part Increasing the thickness of light as it gets closer to the light guide and the incident part. It is characterized in that an outgoing light is obtained in which the light that has traveled into the light guide is emitted by an optical deflection element or a taper leak.
[0041]
  Claim14The planar light emitting device according to the present invention has a rectangular pillar shape corresponding to the side surface of the semiconductor light emitting element with a transparent resin or the like in the light emission direction from the rectangular semiconductor light emitting element placed on the lead frame or the substrate, and emits semiconductor light The position facing the element is cut into a quadrangular pyramid shape in the opposite direction, the light source molded in a shape where the side of the quadrangular prism and the base of the quadrangular pyramid are connected, and the incident part that guides the light from the light source is located at the center, A rectangular opening for inserting a light source is provided, a light deflecting element is provided on the front surface part and / or the back surface part, and a light guide whose thickness increases as the distance from the incident part increases, and an incident part for guiding light from the light source A light guide that is located in the center and has a rectangular recess for inserting a light source on the back surface, a light deflection element on the front surface or / and the back surface, and the thickness increases as it approaches the incident portion; With reflective reflector For example, the light guide body thickness is increased as the distance from the entrance portionAboveLight guide that increases in thickness as it approaches the entranceBodyFace each other, face each other, insert the light source into the opening of each light guide and the concave portion of the back surface, cover the final back surface and the side surface other than the incident part with a reflector, and away from the incident part Increasing the thickness of light as it gets closer to the light guide and the incident part. The light that has traveled into the light guide is obtained by the light deflecting element or the taper leak, so that the light having a wide viewing angle can be obtained by using the light guides having different emission directions. The emitted light can be emitted.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
In the present invention, a semiconductor light-emitting element provided on a lead frame made of a substrate such as a ceramic substrate, a liquid crystal polymer resin substrate, a glass cloth epoxy resin substrate or a metal thin plate, or on an electric wiring pattern of the substrate or the lead frame is transparent. The whole is made into a cylinder or square column with resin, etc., and the upper part is molded into a shape cut into a cone or square pyramid shape, and the emitted light emitted upward from the semiconductor light emitting element is completely reflected on the surface of the mold cone or square pyramid. A light source that reflects and emits light by deflecting light rays in the lateral direction (radial direction) and a circular or square opening or back recess provided at the center position are inserted into the periphery of the opening or recess. The light from the light source that has entered from the incident part of the light guide is totally reflected by the concave inclined part by the light guide having the concave part having the inclined part directed toward the incident part centering on the incident part by the wall surface. And It is to provide a light source and the light guide member and a plane light emitting device capable of emitting by the folding and the like from the center of the surface portion of the light guide radially.
[0043]
FIG. 1 is a perspective view illustrating a schematic configuration of a flat light emitting device according to the present invention, FIGS. 2 to 6 are diagrams illustrating embodiments of a light source according to the present invention, and FIGS. 7 and 8 are light guides according to the present invention. The figure which shows embodiment of a body, FIG. 9 is the schematic of the locus | trajectory of the light in the concave shape of the light guide which concerns on this invention, FIG. 10 is the figure which shows other embodiment of the light guide which concerns on this invention, FIG. 11 is a schematic diagram of a light locus of the flat light emitting device according to the present invention, FIG. 13 is a diagram illustrating a schematic configuration of the flat light emitting device according to the present invention, and FIG. 14 is a right half light in the flat light emitting device of FIG. FIG. 15 is a diagram showing a schematic configuration of the flat light emitting device according to the present invention, and FIG. 16 is a schematic diagram of the right half of the light locus in the flat light emitting device of FIG. In FIG. 1, FIG. 7, FIG. 8, and FIG. 10, the concave shape is simply expressed by a single thin line.
[0044]
As shown in FIG. 1, the planar light emitting device 1 of this example is provided with an opening 21 at the center of a circular light guide 3, and the emission direction (vertical) from the semiconductor light emitting element is substantially parallel to the opening 21. The light source 22 (22A-22E) which radiate | emits radially is inserted in, and is comprised roughly. As shown in FIG. 11, the peripheral wall surface of the opening 21 forms an incident portion 20 that guides light from the light source 22. The front surface 31 and the back surface 32 are formed with a concave shape 34 having an inclined portion that is radially concentrically centered on the incident portion 20 of the opening 21 and directed toward the incident portion 20. Instead of the opening 21, the recess 21 may be formed at the center of the back surface 32 of the light guide 3. In this case, the peripheral wall surface of the concave portion 21 becomes the incident portion 20 that guides the light beam from the light source 22 into the light guide 2.
[0045]
For example, light sources 22 (22A to 22E) configured as shown in FIGS. 2 to 6 are employed in the flat light emitting device 1 of this example. As shown in FIG. 2, the light source 22 includes a semiconductor light emitting element 2 made of a quaternary compound manufactured by metal organic chemical vapor deposition or the like on a mounting surface on a base such as a lead frame 23 or a substrate 23. Placed. The light emission surface side of the semiconductor light emitting element 2 is entirely covered with a cylindrical mold 24 (24A to 24E) made of a transparent resin or the like. The mold 24 is configured in a shape in which a position facing the semiconductor light emitting element 2 is cut into a conical shape 25 in the reverse direction. A lead terminal 26 for supplying drive power to the semiconductor light emitting element 2 is provided on the lead frame 23, the substrate 23, and the like that form a base.
[0046]
The lead frame 23 is made of a copper alloy material such as phosphor bronze having electrical conductivity and elasticity. Although not shown, the lead frame 23 is formed with a pattern press to form a wiring pattern for electrical connection, a pattern of the lead terminals 26 and the like. The thin lead frame 23 is insert-molded with resin to form a mold 24.
[0047]
The substrate 23 is made of ceramic, liquid crystal polymer resin, glass cloth epoxy resin, or the like excellent in electrical insulation. Although not shown, a wiring pattern for electrical connection is formed on the surface of the substrate 23.
[0048]
More specifically, the substrate 23 made of ceramic is mainly composed of AlO or SiO, and further composed of a compound such as ZrO, TiO, TiC, SiC and SiN, and has excellent heat resistance, hardness and strength, and has a white surface. The light emitted from the semiconductor light emitting element 2 is efficiently reflected.
[0049]
The substrate 23 made of a liquid crystal polymer resin or a glass cloth epoxy resin is molded by mixing or applying a white powder such as barium titanate to an insulating material such as a liquid crystal polymer or a glass cloth epoxy resin. The light emitted from the light emitting element 2 is efficiently reflected.
[0050]
As the substrate 23, pattern printing is performed on a laminated plate such as silicon resin, paper epoxy resin, synthetic fiber cloth epoxy resin and paper phenol resin, or a plate made of modified polyimide, polybutylene terephthalate, polycarbonate, aromatic polyester, or the like. The light emitted from the semiconductor light emitting element 2 may be reflected efficiently.
[0051]
A pattern (not shown) is formed on the substrate 23 of any one of a ceramic substrate, a liquid crystal polymer resin substrate, and a glass cloth epoxy resin substrate by vacuum deposition sputtering, ion plating, CVD (chemical vapor deposition), etching (wet, dry), etc. It is formed in a pattern shape for electrical connection. Then, after metal plating is performed on the pattern, noble metal plating such as gold or silver is further applied to be electrically connected to the lead terminal 26.
[0052]
The semiconductor light-emitting element 2 is a high-intensity light-emitting element made of a semiconductor chip of a compound such as a quaternary compound or an InGaAlP-based, InGaAlN-based, or InGaN-based compound, and is monochromatic light of red light emission, green light emission, and blue light emission.
[0053]
Alternatively, red light emission, green light emission, and blue light emission may be integrated to enable white light by using three types of color light emission, and a wavelength conversion material may be used. For example, the blue light emitting semiconductor light emitting element 2 is excited by the blue light emitting semiconductor light emitting element 2, and white light is emitted by mixing a yellow light emitting color and a blue light emitting color by a yellow light emitting wavelength conversion material (fluorescent material). It may be good.
[0054]
Further, the semiconductor light emitting element 2 has an electrode attached to the surface of In 2.2OThree, SnO2A conductive transparent electrode made of ITO, etc. is produced by sputtering, vacuum vapor deposition, chemical vapor deposition or the like.
[0055]
Although not shown, the semiconductor light emitting element 2 is wire-bonded by bonding the electrodes of the semiconductor light emitting element 2 and the wiring pattern with a bonding wire made of a conductive wire such as a gold wire.
[0056]
The mold 24 (24A to 24E) is formed of a material with good transparency, for example, a colorless and transparent epoxy resin or silicone resin. The mold 24 </ b> A shown in FIG. 2 has a cylindrical shape as a whole, and is configured in a shape in which the opposing positions of the semiconductor light emitting element 2 are cut into a conical shape 25 in the opposite direction.
[0057]
Then, the light emitted from the semiconductor light emitting element 2 is totally reflected by the surface 25a of the conical shape 25 of the mold 24A (the surface 25a opposite to the surface on which the semiconductor light emitting element 2 is placed on the lead frame 23 or the substrate 23), and the semiconductor The light emitting element 2 is emitted in a range of 360 degrees radially in parallel with the mounting surface.
[0058]
The mold 24B shown in FIGS. 3A and 3B has a funnel shape 27 in which the lower portion has a cylindrical shape, and the upper position where the semiconductor light emitting element 2 faces has a radially curved surface 27a outside the cylindrical shape. The upper position is configured to be cut into a conical shape 25 in the opposite direction.
[0059]
The mold 24B of the light source 22B shown in FIGS. 3A and 3B guides the light beam from the semiconductor light emitting element 2 into the funnel shape 27, and also includes a conical surface 25a having a conical shape 25 and a radial curved surface 27a. Then, total reflection is repeated, and a light beam having directivity in the range of 360 degrees in the circumferential direction is emitted from the tip 27b of the funnel shape 27 horizontally.
[0060]
In the light source 22 </ b> C shown in FIG. 4, a mold 24 </ b> C is formed corresponding to the rectangular semiconductor light emitting element 2 placed on the lead frame 23 or the substrate 23. More specifically, the mold 24C has a quadrangular prism shape as a whole corresponding to the side surface of the semiconductor light emitting element 2, and a position facing the semiconductor light emitting element 2 is cut into a reverse quadrangular pyramid shape 28. And the base of the quadrangular pyramid are connected to each other at the upper four sides 28b of the quadrangular prism.
[0061]
Then, the light emitted from the semiconductor light emitting element 2 is totally reflected by the surface 28a of the quadrangular pyramid shape 28 of the mold 24C (the surface 28a facing the surface on which the semiconductor light emitting element 2 is mounted on the lead frame 23 or the substrate 23). The semiconductor light emitting element 2 is emitted in four directions within a range of 180 degrees substantially parallel to the mounting surface.
[0062]
5 and 6 show a modification of the mold 24 in the light source 22. The mold 24D shown in FIGS. 5A and 5B has a substantially conical shape as a whole, and is configured in a shape in which the opposing position of the semiconductor light emitting element 2 is cut into a conical shape 25 in the reverse direction.
[0063]
In this case, the light emitted from the semiconductor light emitting element 2 is totally reflected by the surface 25a of the conical shape 25, and the semiconductor light emitting element 2 is emitted radially in parallel with the mounting surface. Since the entire mold 24D has a substantially conical shape, the emitted light is emitted from the mold 24D as a light beam having a slight downward inclination in a radial range of 360 degrees.
[0064]
Similarly, the mold 24E shown in FIGS. 6A and 6B has a cylindrical shape as a whole, and has a conical shape 25 having a curved surface 25b in which the facing position of the semiconductor light emitting element 2 is bent inwardly. It is configured in a cut shape.
[0065]
In this case, when the light emitted from the semiconductor light emitting element 2 is totally reflected by the curved surface 25b of the conical shape 25, it is emitted as a light beam in a range of 360 degrees radially with a slight inclination.
[0066]
By the way, the above-described mold 24 (24A to 24E) forms a reflective surface by depositing gold or the like on the surface (25a, 25b, 28a) to be totally reflected, or applying barium titanate having a good light reflectivity. The light from the semiconductor light emitting element 2 may be reflected efficiently.
[0067]
The mold 24 (24A to 24E) is bonded to the lead frame 23 or the substrate 23 so as to surround the semiconductor light emitting element 2 with an adhesive such as a colorless transparent epoxy resin, which is molded with transparent acrylic or polycarbonate. May be.
[0068]
The lead terminal 26 is formed by directly taking out a lead frame 23 made of a copper alloy material such as phosphor bronze having electrical conductivity and elasticity. Alternatively, the substrate 23 may be provided with lead terminals 26 so as to be electrically connected to the wiring pattern.
[0069]
Thus, since the light sources 22A, 22D, and 22E totally reflect the light from the semiconductor light emitting element 2 by the conical surfaces 25a and 25b, most of the light from the semiconductor light emitting element 2 can be emitted in the circumferential direction. .
[0070]
Similarly, the light source 22B repeats total reflection at the conical surface 25a and the radial curved surface 27a and reflects the light from the semiconductor light emitting device 2 in the circumferential direction from the tip portion 27b of the funnel shape 27, so that the semiconductor light emitting device 2 Most of the light from can be emitted.
[0071]
Furthermore, since the light source 22C totally reflects the light from the semiconductor light emitting element 2 at the quadrangular pyramid surface 28a and reflects it in four directions, most of the light from the semiconductor light emitting element 2 can be emitted.
[0072]
In addition, when utilizing for the plane light-emitting device 1, since the whole plane needs the emitted light uniformly in the top part of these light sources 22 (22A-22E), a slight amount of light may leak.
[0073]
The light guide 3 is formed of a transparent acrylic resin (PMMA) or polycarbonate (PC) having a refractive index of about 1.4 to 1.7. The light guide 3 shown in FIGS. 7A and 7B has a circular outer shape. At the center position of the light guide 3, a circular recess 21 is provided in the circular opening 21 or the back surface 32 into which the light sources 22 </ b> A and 22 </ b> B are inserted. The peripheral wall surface of the opening 21 or the recess 21 forms a circular incident portion 20 that guides light from the light sources 22A and 22B.
[0074]
In addition, the light guide 3 has a concave portion having concentric circles 33 on the front surface portion 31 and the back surface portion 32 that are radially concentric with respect to the incident portion (opening portion 21) and directed toward the incident portion 20 (opening portion 21). A shape 34 (34A) is provided.
[0075]
That is, the concave shape 34 </ b> A having the inclined portion 33 has a structure in which an annular concave shape 34 </ b> A is provided concentrically and multiply on the front surface portion 31 and the back surface portion 32 of the light guide 3 around the opening 21.
[0076]
In the example of FIGS. 7A and 7B, a concave shape 34 </ b> A having an inclined portion 33 is provided only on the back surface portion 32.
[0077]
Moreover, as the light guide 3, you may employ | adopt the structure shown to Fig.8 (a), (b). The light guide 3 shown in FIGS. 8A and 8B has a quadrangular outer shape. At the center position of the light guide 3, a rectangular recess 21 is provided in the rectangular opening 21 or the back surface 32 into which the light source 22 </ b> C is inserted. The peripheral wall surface of the opening 21 or the recess 21 forms a rectangular incident portion 20 that guides light from the light source 22C.
[0078]
In addition, the light guide 3 has a concave shape 34 (having an inclined portion 33 that faces the incident portion 20 (opening 21) in parallel with the front portion 31 and the back surface 32 around the incident portion (opening 21). 34B) is provided.
[0079]
That is, the concave shape 34B having the inclined portion 33 is formed by connecting the end portions of four concave portions parallel to the incident portion 20 (opening portion 21) provided at the same distance from the opening portion 21. This is a structure in which a square ring centering on the portion 21 is provided concentrically and multiply on the front surface portion 31 and the back surface portion 32 of the light guide 3.
[0080]
In the example of FIGS. 8A and 8B, the concave shape 34 </ b> B having the inclined portion 33 is provided only on the back surface portion 32. Moreover, the concave shape 34 should just be a shape in which the inclined part (inclined surface) 33 faces the incident part 20 direction. For example, as shown in FIG. 9, an inclined portion 33 a having an isosceles triangle cross section or an inclined portion 33 b having a right triangle can be employed as the inclined portion 33.
[0081]
As shown in FIG. 9, the light guide 3 configured as described above guides substantially parallel light rays from the light sources 22 </ b> A to 22 </ b> E provided in the opening 21 from the incident portion 20. The light beam L guided into the light guide 3 is totally reflected by the inclined portion 33a of the concave shape 34 (34A, 34B) provided on the back surface portion 32 of the light guide 3 and directed toward the incident portion 20, and the surface is reflected. A light beam L1 is emitted above the portion 31.
[0082]
Similarly, as shown in FIG. 9, when light from the light sources 22 </ b> A to 22 </ b> E provided in the opening 21 is introduced from the incident portion 20, the light guide 3 is guided to the light L in the light guide 3. Is refracted by the inclined portion 33b of the concave portion 34 (34A, 34B) provided on the surface portion 31 of the light guide 3 and directed toward the incident portion 20, and emits a light beam L2 above the surface portion 31.
[0083]
As described above, the light guide 3 guides the light from the light source 22 that has entered from the incident portion 20 by the inclined portion 33 (33a, 33b) facing the incident portion 20 through total reflection or refraction by the inclined portion 33. Light rays L1 and L2 can be emitted from the surface portion 31 radially from the center of the surface portion 31 of the light body 3 in the circumferential direction and the four directions.
[0084]
The shape of the concave shape 34 can be matched to the purpose of the outgoing light emitted from the surface portion 31 if a shape that determines the outgoing angle is selected. Further, the concave shape 34 may be any shape as long as it has the inclined portion 33 facing the incident portion 20 direction.
[0085]
For example, as shown in FIG. 9, the cross-sectional shape is an isosceles triangle, a right triangle, an inverted triangle, a rectangle, an arc, etc., and the shape and size of continuous grooves and dots can be freely selected.
[0086]
Further, as shown in FIGS. 10A to 10D, a circular recess 21 is provided in the circular opening 21 or the back surface 32 into which the light source 22A or 22B is inserted at the center position of the light guide 3, and the incident portion. Various shapes including the concave shape 34 having the inclined portion 33 facing the 20 direction can be adopted. For example, when the light guide 3 having a shape as shown in FIG. 10A or FIG. 10B is adopted, light sources 22A and 22B such as orange are inserted into the circular recess 21 in the opening 21 or the back surface 32, The light guide 3 can be rotated. As a result, it is possible to notify the driver of the car by a brighter and self-lighting of a caution indicator used for a guardrail for road traffic.
[0087]
Further, the light guide 3 can be used by making the shape shown in FIGS. 10C and 10D and making the light emission colors of the light sources 22A and 22B colorful as a single display.
[0088]
As shown in FIG. 11, the flat light emitting device 1 is schematically configured to include a light source 22 (any one of 22A, 22B, 22D, and 22E) and a circular light guide 3A. As described above, the light source 22 in this case is a mounting surface of the semiconductor light emitting element 2 with a transparent resin or the like in the light emitting direction from the semiconductor light emitting element 2 mounted on the mounting surface on the lead frame 23 or the substrate 23. The light emitted in the opposite direction is totally reflected by the opposing surfaces 25a and 25b of the semiconductor light emitting element 2, and is molded so as to be emitted radially in parallel to the mounting surface. In the light guide 3A, the incident portion 20 that guides light from the light source 22 (any one of 22A, 22B, 22D, and 22E) is located at the center, and the light source 22 (any one of 22A, 22B, 22D, and 22E) is inserted. The opening 21 or the back surface portion 32 to be formed has a recess 21. In addition, the light guide 3 is provided with a concave shape 34 </ b> A on the front surface portion 31 and the back surface portion 32, which has an inclined portion 33 that is radially concentrically centered on the incident portion 20 and directed toward the incident portion 20.
[0089]
In the planar light emitting device 1 configured as described above, the light beam L emitted radially from the light source 22 (any one of 22A, 22B, 22D, and 22E) is totally reflected and refracted by the inclined portion 33 of the concave shape 34. Then, the light beams L1 and L2 are emitted from the surface portion 31 of the light guide 3.
[0090]
Therefore, the emitted lights L1 and L2 from the semiconductor light emitting element 2 can be efficiently emitted from the surface portion 31 of the light guide 3, and a flat light emission with high brightness and no spots can be obtained at any position.
[0091]
Further, another configuration of the flat light emitting device 1 can be considered. As described above, the light source 22C in this case is made of a transparent resin or the like in the light emitting direction from the rectangular semiconductor light emitting element 2 placed on the placement surface on the lead frame 23 or the substrate 23. A quadrangular prism shape corresponding to the side surface is formed, and the position facing the semiconductor light emitting element 2 is cut into a quadrangular pyramid shape 28 in the opposite direction, and molded into a shape in which the side surface of the quadrangular column and the bottom of the quadrangular pyramid are connected. is there. In the light guide 3B, the incident portion 20 that guides light from the light source 22C is located at the center, and the rectangular recess 21 is provided in the rectangular opening 21 or the back surface portion 32 into which the light source 22C is inserted. The light guide 3 </ b> B is provided with a concave shape 34 </ b> B on the front surface portion 31 and the back surface portion 32 having an inclined portion 33 parallel to the incident portion 20 and parallel to the incident portion 20 direction.
[0092]
Similarly, in the case of the planar light emitting device 1 having the above-described configuration, the light beam L emitted in parallel from the light source 22C to the concave portion 21 of the opening 21 or the back surface portion 32 is totally reflected or refracted by the inclined portion 33 of the concave shape 34B. Then, the light beams L 1 and L 2 are emitted from the surface portion 31 of the light guide 3.
[0093]
Therefore, the emitted lights L1 and L2 from the semiconductor light emitting element 2 can be efficiently emitted from the four surface portions 31 of the light guide 3, and a flat light emission with high brightness and no spots can be obtained at any position.
[0094]
Further, the planar light emitting device 1 guides the emitted light of the semiconductor light emitting element 2 placed on the light source 22 (22A, 22B, 22C, 22D, 22E) to three single colors of red light, green light, or blue light. Three light guides 3 that are respectively inserted into the opening 21 of the body 3 or the recess 21 of the back surface part 32 and emit red light, green light, and blue light from the front surface part 31 of each light guide 3 are superimposed. Can be configured. In addition, by arranging the light guides 3 in a mosaic and controlling the light source 22, the emitted light can be expressed in full color. Moreover, white light can be obtained by simultaneously emitting red light, green light, and blue light from the light source 22. For example, a large full-color screen can be reproduced by using a single color such as a traffic light or a car tail lamp or arranging them in a mosaic pattern.
[0095]
Although not shown here, a small reflector from the light guide 3 or a reflector near the lower side of the back surface 32 of the light guide 3 may be provided separately in order to improve reflection efficiency.
In this case, the reflector is a sheet in which a white material such as titanium oxide is mixed into a thermoplastic resin or a sheet of a thermoplastic resin, such as aluminum, or a metal foil laminated or a sheet metal. Composed.
[0096]
As described above, since the refractive index of the light guide is about n = 1.49, the refraction angle γ refracted at the incident portion of the light guide is in the range of about γ = 0 to ± 42 °. . In addition, light incident on the light guide within the range of refraction angle γ = 0 to ± 42 ° has a critical angle α of α = 42 ° at the boundary surface between the light guide and the air layer (refractive index n = 1). It will be about. Therefore, if there are no protrusions or depressions that deflect the light beam on the front and back surfaces of the light guide, or if the critical angle α is not exceeded, all the light in the light guide is incident on the front and back surfaces while being totally reflected. It proceeds in the anti-incident part 35 direction opposite to the part.
[0097]
FIG. 13 shows another configuration example of the flat light emitting device according to the present invention. The planar light emitting device 1 shown in FIG. 13 is positioned around the light source 22 having the above-described configuration and the incident portion 20b that guides light from the light source 22, and has an opening 21 or a back surface portion 32 as an insertion portion into which the light source 22 is inserted. The concave portion 21 is provided in the light guide body 3. The light guide body 3 has a wedge shape whose thickness increases as the distance from the incident portion 20 b increases, and a reflector 60 that reflects light. Note that the opening 21 into which the light source 22 is inserted or the concave portion 21 of the back surface portion 32 is shaped to match the outer shape of the light source 22 to be used.
[0098]
Here, the trajectory of light in the wedge-shaped light guide 3 whose thickness increases with increasing distance from the incident portion 20b will be described with reference to FIG.
The light incident from the incident portion 20b enters the light guide 3 within the range of the refraction angle γ = 0 to ± 42 °, and if the light deflecting element 34 is not present, the light leaks even in the wedge shape. The anti-incident part 35 is reached without doing so.
However, the light that has reached the anti-incident part 35 is reflected by the reflector 60 and repeats total reflection at the front surface part 31 and the rear surface part 32 while proceeding again in the direction of the incident part 20b as the light ray Lr. The incident angle with respect to the back surface portion 32 breaks the critical angle α by the taper angle of the light guide 3, and the outgoing light LL having a large emission angle is emitted from the front surface portion 31.
[0099]
As described above, in this example, the taper leak is used in the direction of the incident portion 20b (light source 22) by the wedge-shaped light guide 3 whose thickness increases as the distance from the incident portion 20b increases. As a result, in a wedge-shaped light guide that becomes thinner as the distance from the incident part increases, the light spreads away from the incident part and is emitted. Although it is recognized as a decrease, in the light guide 3 and the flat light emitting device 1 of the present invention, the light is emitted toward the incident portion 20b, so that it is recognized as an improvement in luminance when observed from the front of the flat light emitting device 1.
[0100]
Although not shown here, a prism sheet or the like can be used at the top of the light guide 3 so that the apex angle faces the light guide 3 in order to efficiently use the emitted light having such a large output angle. . In this case, the emitted light can be guided into the prism from one side surface of the prism, further totally reflected by one side surface of the other prism, and emitted upward substantially vertically.
[0101]
Further, the light deflection element 34 may be provided on the front surface portion 31 or the back surface portion 32 of the light guide 3.
In addition, the light deflection element 34 is provided perpendicularly to the front surface portion 31 and the back surface portion 32 in a shape composed of a part of a sphere and an elliptical sphere and a triangular pyramid, a cone, a quadrangular pyramid, a triangular prism, a four-pillar column, a cylinder, A shape composed of a triangular prism, a quadrangular prism, a semi-cylindrical column, etc. is provided horizontally.
Further, a part of these spheres and elliptical spheres, and triangular pyramids, cones, quadrangular pyramids, triangular prisms, quadrangular prisms, cylinders, etc. are perpendicular to the front surface portion 31 and the rear surface portion 32 in a random, linear or curved shape and in an arbitrary distribution. Or a triangular column, a quadrangular column, a semi-cylinder, etc. are provided horizontally with respect to the front surface portion 31 and the back surface portion 32 in an arbitrary distribution in a straight line or a curved line.
[0102]
By providing the light deflecting element 34, the light reaching the anti-incident part 35 due to the wedge shape of the light guide 3 can be refracted and emitted at the critical angle reflected by the reflector 60. Further, the light can be totally reflected and deflected to the opposite side to be emitted from the opposite side. Furthermore, the emission amount and the emission position can be controlled by the distribution of the light deflection element 34.
[0103]
FIG. 15 shows still another configuration example of the flat light emitting device according to the present invention. A flat light emitting device 1 shown in FIG. 15 is provided with an opening 21 as an insertion portion into which the light source 22 is inserted, with the light source 22 having the above-described configuration and the incident portion 20b that guides light from the light source 22 as the center. The wedge-shaped light guide 3 that increases in thickness as it moves away from the portion 20b, and the incident portion 20b that similarly guides light from the light source 22, are located on the back surface portion 32 as an insertion portion into which the light source 22 is inserted. A concave portion 21 is provided, and the wedge-shaped light guide 3 that is thinner as it gets away from the incident portion 20 (thicker as it gets closer to the incident portion 20) faces the surfaces 31 and 32 that are inclined to each other, The light source 22 is inserted into the opening 21 and the concave portion 21 of the back surface portion 32, and includes a reflector 60 that covers the final back surface portion 32 and the side surface portions 35 and 36 (anti-incident portions 35 and 36) other than the incident portion. Note that the opening 21 into which the light source 22 is inserted or the concave portion 21 of the back surface portion 32 is shaped to match the outer shape of the light source 22 to be used.
[0104]
Here, the wedge-shaped light guide 3 whose thickness increases as it moves away from the incident portion 20b is disposed below, and the wedge-shaped light guide 3 whose thickness decreases as it moves away from the incident portion 20 is disposed above. With reference to FIG. 16, a description will be given of the light trajectory in the case of overlapping the images.
[0105]
Since the light locus of the light guide 3 that increases in thickness as it moves away from the incident portion 20b located below has been described with reference to FIG. 14, it is omitted here.
In addition, since the wedge-shaped light guide 3 whose thickness decreases as it moves away from the incident portion 20 has a tapered shape, light close to the refraction angle γ = ± 42 ° is critical depending on the inclination angle of the light guide 3. The light is emitted to break the corner and away from the incident portion 20.
[0106]
As described above, although only the use of the taper leak is described, the point that more effective outgoing light can be obtained by providing the light deflection element 34 will be described.
In the light guide 3 in the lower direction, when the light reaching the anti-incident part 35 is reflected by the reflector 60 and proceeds in the direction of the incident part 20b, a part of the light guide 3 emits the light beam LL from the surface part 31b due to a taper leak, The light beam LL reaches the light deflection element 34 provided on the back surface portion 32 of the light guide 3 at the top. For example, when the light deflection element 34 has a prism shape, the light beam LL once enters the prism from one side surface of the prism, undergoes total reflection on the other side surface of the prism, and passes through the light guide 3 substantially vertically. A light beam L1 is emitted from the surface portion 31.
[0107]
Further, the light beam Lr that reaches the anti-incident part 35 of the light guide 3 and is reflected by the reflector 60 and travels in the direction of the incident part 20b is totally reflected by the light deflection element 34 provided on the back surface part 32b. The totally reflected light beam L10 travels in the direction of the surface portion 31b, exits from the surface portion 31b, travels from the back surface portion 32 of the upper light guide 3 into the light guide 3, and passes through the light guide 3. The light beam L1 is emitted from the surface portion 31.
[0108]
Further, although not shown here, leak light or the like emitted from the back surface portion 32 b is reflected by the reflector 60 provided below the back surface portion 32 b and returns light into the light guide 3 again.
[0109]
Further, the light guide 3 in the upper direction refracts light at a critical angle close to a refraction angle γ = ± 42 ° among the light from the incident portion 20 by the light deflecting element 34, and the light L <b> 2 from the surface portion 31. Is emitted.
Furthermore, when the light is confined in the light guide plate 3, travels in the direction of the anti-incident part 36, is reflected by the reflector 60, and travels again in the direction of the incident part 20, it can be refracted by the light deflecting element 34 and emit light from the surface part 31. it can.
[0110]
Here, the light deflection element 34 has been described as a prism, but any shape may be used as long as it has an inclined surface with respect to the light.
[0111]
As described above, the planar light emitting device 1 guides the light from the light source 22 from the incident part 20 and the incident part 20 b into the light guide 3, and the light that has traveled into the light guide 3 by one light guide 3. Light reflected by the reflector 60 in the direction of the incident portion 20b is emitted in the direction of the incident portion 30b due to the light deflection element 34 or taper leak, and light that has traveled into the other light guide 3 is reflected in the light deflection element 34 or taper. Two outgoing lights having different preferences can be emitted depending on the outgoing light emitted in the direction of the anti-incident portion 36 due to leakage.
[0112]
【The invention's effect】
  As described above, the light source according to claim 1 is a mold.The lower part has a cylindrical shape,Semiconductor light emitting deviceThe upper position opposite the cylindrical shape is a funnel shape having a radial curve outside the cylindrical shape, and the upper position has a shape cut into a conical shape in the opposite direction, with a conical surface having a conical shape and a curved surface having a radial curve And repeat the total reflection in the circumferential direction horizontally from the funnel-shaped tipBecause it emits radially,Total reflection is repeated between the conical surface and the radial curved surface, and most of the light from the semiconductor light emitting device can be emitted in the circumferential direction (emits a range of 360 degrees) from the funnel-shaped tip. Thereby, most of the light energy can be deflected in the circumferential direction.
[0113]
  The light source according to claim 2 is a mold.But,WholeAlmost conical shapeAnd the shape facing the semiconductor light emitting element is cut into a conical shape in the opposite directionWith total conical reflection on the conical surface of the conical shape, and emits radially with a slight downward inclinationTherefore, it is possible to emit most of the light from the semiconductor light emitting element in the circumferential direction (emits a range of 360 degrees) by total reflection at the conical surface. Thereby, most of the light energy can be deflected.
[0116]
  And claims3In the light source according to the present invention, since the semiconductor light emitting element is integrated with monochromatic light of red light emission, green light emission, or blue light emission, or red light emission, green light emission, and blue light emission, monochromatic light or white light can be obtained. As a result, a free luminescent color can be reproduced.
[0117]
  Claims4In the light guide according to the present invention, the incident part is located at the center of the light guide, and a recess is provided in the opening or the back part for inserting the light source, and the front part or / and the back part are radially concentrically centered on the incident part Since a concave shape with an inclined part facing the incident part direction is provided, the light from the light source entering from the incident part is totally reflected and refracted by the inclined part, and the circumference from the center of the surface part of the light guide Radiation can be emitted radially in a direction (range of 360 degrees). Thereby, it is possible to obtain emission light having high brightness and no spots.
[0118]
  And claims5In the light guide according to the present invention, the incident portion is located at the center of the light guide, and the rectangular opening is provided in the rectangular opening or the back surface portion into which the light source is inserted, and the incident portion is provided on the front surface portion and / or the back surface portion. Since the concave shape having an inclined portion parallel to the incident portion as the center is provided, the light from the light source entering from the incident portion is totally reflected and refracted by the inclined portion, and the center of the surface portion of the light guide Can be emitted radially in four directions (four directions in a range of 180 degrees). As a result, it is possible to obtain emitted light with high brightness and no spots.
[0119]
  Claims6The thickness of the light guide is increased as the distance from the incident part increases.Is thickTherefore, when the thickness of the light guide increases as the light guide moves away from the incident portion, the light that has entered from the incident portion does not immediately exit the light guide, Proceeding in the opposite direction, it is reflected here and exits by taper leak when heading toward the incident part.LedWhen the thickness of the light body is constant, the light deflecting element causes refraction and total reflection without exiting due to taper-leak and exits. Thereby, the emitted light corresponding to the target emission direction can be obtained.
[0120]
  And claims7The light guide body according to the present invention has a shape composed of a part of a sphere and an elliptic sphere and a triangular pyramid, a cone, a quadrangular pyramid, a triangular prism, a quadrangular prism, a cylinder and the like perpendicular to the front surface portion and the back surface portion, or a triangular prism, a rectangular prism, Since the light deflection element is provided in a random, straight or curved shape and arbitrarily distributed in a shape consisting of a semi-cylinder, etc., it is refracted and emitted to the outside, or once refracted and then totally reflected to again guide the light Or totally reflected and emitted from the opposite side, or totally reflected and returned to the light guide again. Thereby, the direction in which the light travels can be controlled as intended.
[0121]
  Claims8In the flat light emitting device according to the above, a semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, and light emitted in a direction opposite to the mounting surface of the semiconductor light emitting element is provided at a position facing the semiconductor light emitting element. A light source molded with a transparent resin or the like in the direction of light emission from the semiconductor light-emitting element so that it is totally reflected on the surface and emitted radially parallel to the mounting surface, and an incident part that guides the light from the light source Positioned and provided with a recess in the opening or back side to insert the light source and the surfaceDepartmentAnd a light guide body having a concave shape having an inclined portion concentrically arranged in a concentric circle centered on the incident portion on the back surface portion, and a light source is inserted into the opening portion or the concave portion of the back surface portion. Since the light emitted radially from the circumferential direction is totally reflected or / and refracted by the inclined portion and emitted from the surface portion of the light guide, the emitted light from the semiconductor light emitting element is efficiently emitted from the surface portion of the light guide The light can be emitted, and flat light emission with high brightness and no spots can be obtained at any position. For this reason, it is possible to obtain free-colored outgoing light with high brightness and no spots as well as to obtain a thin and wide area, and an optimal shape for use in traffic signals, automobiles, displays, etc. are doing.
[0122]
  Furthermore, the claims9In the planar light emitting device according to the present invention, a rectangular semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, forms a quadrangular prism shape corresponding to the side surface of the semiconductor light emitting element, and faces the semiconductor light emitting element. Is cut into a square pyramid shape in the opposite direction, and a light source molded with a transparent resin or the like in the direction of light emission from the semiconductor light emitting element in a shape where the side surface of the quadrangular prism and the base of the square pyramid are connected, and the light from the light source The leading incident part is located at the center, and a quadrangular concave part is provided in the rectangular opening or back part for inserting the light source, and the front part or / and the back part is inclined parallel to the incident part in the direction of the incident part. The light source is provided with a concave shape having a concave portion, and the light source is inserted into the concave portion of the opening portion or the rear surface portion, and emitted from the light source in parallel to the concave portion of the opening portion or the rear surface portion (four directions within a range of 180 degrees). The reflected light is totally reflected on the inclined part or / And refracted and emitted from the surface portion of the light guide, so that the emitted light from the semiconductor light emitting element can be efficiently emitted from the four surface portions of the light guide, and can emit flat light with high brightness and no spots at any position. Obtainable. As a result, it is possible to obtain free-colored emitted light with high brightness and no spots, and to obtain a thin and wide area, which has an optimum shape for use in a large display screen or the like. Yes.
[0123]
  Furthermore, the claim10In the planar light emitting device according to the present invention, each light source that emits monochromatic light of red light emission, green light emission, or blue light emission is inserted into each of the openings of the three light guides or the recesses on the back surface, and from the surface part of each light guide. Since the three light guides that emit red light, green light, and blue light are superimposed, the emitted light can be displayed in full color by controlling the light source, and the red light, green light, and blue light can be simultaneously displayed. By emitting the light, white light can be obtained. For this reason, a flat light-emitting device that does not require a filter or the like and has a high response speed can be obtained.
[0124]
  And claims11The planar light emitting device according to the present invention is configured such that light emitted in the direction opposite to the mounting surface of the semiconductor light emitting element is made of a transparent resin or the like in the light emitting direction from the semiconductor light emitting element mounted on the lead frame or the substrate. A light source molded so as to be totally reflected on the surface provided at a position where it is emitted and radially emitted substantially parallel to the mounting surface, and an opening for inserting the light source, which is positioned around the incident part that guides light from the light source, or A concave portion is provided on the back surface, and the thickness increases as the distance from the incident portion increases.Is thickA light guide having a light deflection element on the front surface or / and the back surface, and a reflector that reflects light other than the incident surface and the output surface, and the light source is provided on the opening or the back surface. The light beam that is inserted into the recess and is emitted radially from the light source in the circumferential direction is totally reflected or / and refracted by the light deflecting element and is emitted from the surface portion of the light guide, thereby controlling the direction and viewing angle of the emitted light. be able to. Thereby, the disk-shaped high-intensity emitted light suitable for the purpose can be obtained.
[0125]
  Claims12The planar light emitting device according to the present invention has a rectangular pillar shape corresponding to the side surface of the semiconductor light emitting element with a transparent resin or the like in the light emission direction from the rectangular semiconductor light emitting element placed on the lead frame or the substrate, and emits semiconductor light The position facing the element is cut into a quadrangular pyramid shape in the opposite direction, the light source molded in a shape where the side of the quadrangular prism and the base of the quadrangular pyramid are connected, and the incident part that guides the light from the light source is located at the center, A concave portion is provided in the rectangular opening or back surface where the light source is inserted, and the thickness increases as the distance from the incident portion increases.Is thickA light guide having a light deflection element on the front surface or / and the back surface, and a reflector that reflects light other than the incident surface and the output surface, and the light source is provided on the opening or the back surface. The light beam inserted into the recess and emitted in parallel to the opening or the recess on the back surface from the light source is totally reflected or / and refracted by the light deflecting element and is emitted from the surface portion of the light guide. The corner can be controlled. Thereby, the square-shaped high-intensity emitted light suitable for the purpose can be obtained.
[0126]
  And claims13The planar light emitting device according to the present invention is configured such that light emitted in the direction opposite to the mounting surface of the semiconductor light emitting element is made of a transparent resin or the like in the light emitting direction from the semiconductor light emitting element mounted on the lead frame or the substrate. A light source molded so as to be totally reflected on the surface provided at a position where it is emitted and radially emitted substantially parallel to the mounting surface, and an opening for inserting the light source is positioned around the incident part that guides light from the light source. A light guide that is provided with a light deflection element on the front surface part and / or the back surface part, and whose thickness increases as the distance from the incident part increases, and a concave part in which the light source is inserted, centered on the incident part that guides light from the light source Is provided on the back surface portion, a light deflection element is provided on the front surface portion or / and the back surface portion, and a light guide body that increases in thickness as it approaches the incident portion, and a reflector that reflects light, and as the distance from the incident portion increases. Thick RushirubekotaiAboveLight guide that increases in thickness as it approaches the entranceBodyFace each other, face each other, insert the light source into the opening of each of the light guides and the concave part of the back part, cover the final back part and the side part other than the incident part with a reflector, and away from the incident part The light that has traveled into the light guide increases in thickness according to the incident direction of the light reflected by the reflector and is emitted by the light deflecting element or taper leak. Since light that travels through the light guide that becomes thicker is emitted by a light deflector or taper leak, it is possible to obtain light with a wide viewing angle by using light guides with different emission directions. Can be emitted. As a result, it is possible to obtain circular and wide-range high-intensity outgoing light.
[0127]
  Claims14The planar light emitting device according to the present invention has a rectangular pillar shape corresponding to the side surface of the semiconductor light emitting element with a transparent resin or the like in the light emission direction from the rectangular semiconductor light emitting element placed on the lead frame or the substrate, and emits semiconductor light The position facing the element is cut into a quadrangular pyramid shape in the opposite direction, the light source molded in a shape where the side of the quadrangular prism and the base of the quadrangular pyramid are connected, and the incident part that guides the light from the light source is located at the center, A rectangular opening for inserting a light source is provided, a light deflecting element is provided on the front surface part and / or the back surface part, and a light guide whose thickness increases as the distance from the incident part increases, and an incident part for guiding light from the light source A light guide that is located in the center and has a rectangular recess for inserting a light source on the back surface, a light deflection element on the front surface or / and the back surface, and the thickness increases as it approaches the incident portion; With reflective reflector For example, the light guide body thickness is increased as the distance from the entrance portionAboveLight guide that increases in thickness as it approaches the entranceBodyFace each other, face each other, insert the light source into the opening of each light guide and the concave portion of the back surface, cover the final back surface and the side surface other than the incident part with a reflector, and away from the incident part Increasing the thickness of light as it gets closer to the light guide and the incident part. The light that has traveled into the light guide is obtained by the light deflecting element or the taper leak, so that the light having a wide viewing angle can be obtained by using the light guides having different emission directions. The emitted light can be emitted. Thereby, it is possible to obtain a high-luminance emission light in a square shape in a wide range.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a schematic configuration of a flat light emitting device according to the present invention.
FIG. 2 is a perspective view showing an embodiment of a light source according to the present invention.
FIG. 3A is a perspective view showing an embodiment of a light source according to the present invention.
(B) Side view of (a)
FIG. 4 is a perspective view showing an embodiment of a light source according to the present invention.
5A is a perspective view showing an embodiment of a light source according to the present invention. FIG.
(B) Side view of (a)
FIG. 6A is a perspective view showing an embodiment of a light source according to the present invention.
(B) Side view of (a)
7A is a plan view of a light guide according to the present invention. FIG.
(B) Side sectional view of (a)
FIG. 8A is a plan view of a light guide according to the present invention.
(B) Side sectional view of (a)
9A to 9D are plan views showing other embodiments of the light guide according to the present invention.
FIG. 10 is a schematic diagram of the locus of light in the concave shape of the light guide according to the present invention.
FIG. 11 is a schematic view of a light locus of the flat light emitting device according to the present invention.
12A is a partially enlarged plan view of a conventional flat light emitting device. FIG.
(B) It is a sectional side view of (a), and is a schematic diagram of the locus of light.
FIG. 13 is a diagram showing a schematic configuration of a flat light emitting device according to the present invention.
14 is a schematic diagram of the locus of light in the right half of the flat light emitting device of FIG.
FIG. 15 is a diagram showing a schematic configuration of a flat light emitting device according to the present invention.
16 is a schematic diagram of the locus of light in the right half of the planar light emitting device of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Flat light-emitting device, 2 ... Semiconductor light-emitting element, 3 (3A, 3B) ... Light guide, 20, 20b ... Incident part, 21 ... Opening part, recessed part, 22 (22A-22E) ... Light source, 23 ... Lead frame , Substrate, 24 (24A-24E) ... mold, 25 ... conical shape, 25a ... surface, 25b ... curved surface, 26 ... lead terminal, 27 ... funnel shape, 27a ... curved surface, 27b ... tip, 28 ... square pyramid shape, 28a ... surface, 31, 31b ... front surface part, 32, 32b ... back surface part, 33 (33a, 33b) ... inclined part, 34 (34A, 34B) ... concave shape, 35, 36 ... anti-incident part, 60 ... reflector, L, L1, L2, Lr, LL ... rays.

Claims (14)

リードフレームや基板上の載置面に半導体発光素子が載置され、前記半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源において、
前記モールドは、下部が円柱形状を成し、前記半導体発光素子に対向する上部位置が前記円柱形状よりも外側に放射状の曲線を有した漏斗形状であるとともに上部位置が逆向きの円錐形状に切除した形状を有し、前記円錐形状の円錐面と前記放射状の曲線の曲面とで全反射を繰り返して前記漏斗形状の先端から水平に円周方向に放射状に出射することを特徴とする光源。
In a light source in which a semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, and is molded with a transparent resin or the like in an emission direction of light from the semiconductor light emitting element,
The mold has a cylindrical shape at the bottom, the upper position facing the semiconductor light emitting element is a funnel shape having a radial curve outside the cylindrical shape, and the upper position is cut into a conical shape in the opposite direction. The light source is characterized in that it emits radially in a circumferential direction horizontally from the tip of the funnel shape by repeating total reflection at the conical surface of the conical shape and the curved surface of the radial curve .
リードフレームや基板上の載置面に半導体発光素子が載置され、前記半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源において、
前記モールドは、全体が略円錐形状を成し、前記半導体発光素子に対向する位置が逆向きの円錐形状に切除した形状を有し、前記円錐形状の円錐面で全反射をし、やや下方向に傾きを有して放射状に出射することを特徴とする光源。
In a light source in which a semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, and is molded with a transparent resin or the like in an emission direction of light from the semiconductor light emitting element,
The mold has a substantially conical shape as a whole, the shape facing the semiconductor light emitting element is cut into a reverse conical shape , totally reflected by the conical conical surface, and slightly downward light source characterized in that radially emitted with a tilt to.
前記半導体発光素子は、赤色発光または緑色発光または青色発光の単色光あるいは赤色発光、緑色発光、青色発光を一体にしたことを特徴とする請求項1または請求項記載の光源。 3. The light source according to claim 1, wherein the semiconductor light emitting element is a single unit of red light emission, green light emission, or blue light emission, or red light emission, green light emission, and blue light emission. 光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部とを有する導光体において、
前記入射部は、前記導光体の中心に位置し、前記光源を挿入する開口部または前記裏面部に凹部を設けるとともに前記表面部および前記裏面部に前記入射部を中心として放射状に同心円上に前記入射部方向に向く傾斜部を有した凹形状を設けたことを特徴とする導光体。
In a light guide having an incident portion that guides light from a light source, a front surface portion that emits the light, and a back surface portion that is located on the opposite side of the front surface portion,
The incident portion is located in the center of the light guide, radially concentrically about said entrance portion to the back portion and contact the surface portion provided with a recess in the opening or the back surface for inserting the light source A light guide having a concave shape with an inclined portion facing the incident portion.
光源からの光を導く入射部と、該光を出射する表面部と、当該表面部の反対側に位置する裏面部とを有する導光体において、
前記入射部は、前記導光体の中心に位置し、前記光源を挿入する四角形状の開口部または前記裏面部に四角形状の凹部を設けるとともに前記表面部または/および前記裏面部に前記入射部を中心として平行に前記入射部方向に向く傾斜部を有した凹形状を設けたことを特徴とする導光体。
In a light guide having an incident portion that guides light from a light source, a front surface portion that emits the light, and a back surface portion that is located on the opposite side of the front surface portion,
The incident portion is located at the center of the light guide, and is provided with a quadrangular concave portion in the rectangular opening or the back surface portion into which the light source is inserted, and the incident portion on the front surface portion and / or the back surface portion. A light guide having a concave shape having an inclined portion facing in the direction of the incident portion in parallel with the center of the light guide.
前記入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であることを特徴とする請求項又は記載の導光体。The or thickness as the distance from the incident portion is thicker is characterized by a constant thickness claim 4 or 5 lightguide according. 前記表面部および前記裏面部に対して球および楕円球の一部ならびに三角錐、円錐、四角錐、三角柱、四角柱、円柱等から成る形状を垂直にまたは三角柱、四角柱、半円柱等から成る形状を水平にランダムおよび直線状や曲線状ならびに任意の分布で光偏向素子を設けることを特徴とする請求項4〜6の何れかに記載の導光体。A shape composed of a part of a sphere and an elliptic sphere and a triangular pyramid, a cone, a quadrangular pyramid, a triangular prism, a quadrangular prism, a cylinder, etc. perpendicular to the front surface portion and the back surface portion, or a triangular prism, a quadrangular prism, a semi-cylindrical member, The light guide according to any one of claims 4 to 6 , wherein the light deflecting elements are provided in a horizontal, random, linear, curved, or arbitrary distribution. リードフレームや基板上の載置面に半導体発光素子が載置され、前記半導体発光素子の前記載置面の対向方向に出射する光を前記半導体発光素子の対向する位置に設けた面で全反射を行い、前記載置面に略並行に放射状に出射するように前記半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、
前記光源からの光を導く入射部が中心に位置し、前記光源を挿入する開口部または裏面部に凹部を設けるとともに前記表面部および前記裏面部に前記入射部を中心として放射状に同心円上に前記入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、
前記光源を前記開口部または前記裏面部の凹部に挿入し、前記光源から円周方向な放射状に出射した光線を前記傾斜部で全反射または/および屈折して前記導光体の表面部から出射することを特徴とする平面発光装置。
A semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, and light emitted in a direction opposite to the mounting surface of the semiconductor light emitting element is totally reflected by a surface provided at a position facing the semiconductor light emitting element. And a light source molded with a transparent resin or the like in the light emitting direction from the semiconductor light emitting element so as to emit radially in parallel to the mounting surface,
Located in incidence portion mainly for guiding the light from the light source, radially concentrically about said entrance portion to the back portion and contact the surface portion provided with a recess in the opening or the rear surface portion for inserting the light source A light guide provided with a concave shape having an inclined portion facing the incident portion direction,
The light source is inserted into the opening or the concave portion of the back surface, and the light beam emitted radially from the light source is totally reflected or / and refracted by the inclined portion and emitted from the surface portion of the light guide. A planar light emitting device characterized by:
リードフレームや基板上の載置面に矩形状の半導体発光素子が載置され、前記半導体発光素子の側面に対応した四角柱形状を成し、前記半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、前記四角柱の側面と前記四角錐の底辺とが接続する形状に前記半導体発光素子からの光の出射方向に透明樹脂等でモールドした光源と、
前記光源からの光を導く入射部が中心に位置し、前記光源を挿入する四角形状の開口部または裏面部に四角形状の凹部を設けるとともに前記表面部または/および前記裏面部に前記入射部を中心として平行に前記入射部方向に向く傾斜部を有した凹形状を設けた導光体とを備え、
前記光源を前記開口部または前記裏面部の凹部に挿入し、前記光源から前記開口部または前記裏面部の凹部に平行に出射した光線を前記傾斜部で全反射または/および屈折して前記導光体の表面部から出射することを特徴とする平面発光装置。
A rectangular semiconductor light emitting element is mounted on a mounting surface on a lead frame or a substrate, has a quadrangular prism shape corresponding to a side surface of the semiconductor light emitting element, and a position facing the semiconductor light emitting element is four in the opposite direction. A light source that is cut into a pyramid shape and molded with a transparent resin or the like in the light emitting direction from the semiconductor light emitting element in a shape in which the side surface of the quadrangular column and the base of the quadrangular pyramid are connected;
An incident part that guides light from the light source is located at the center, and a rectangular recess is provided in a rectangular opening or a back part into which the light source is inserted, and the incident part is provided on the front surface part and / or the back part. A light guide provided with a concave shape having an inclined part parallel to the incident part direction as a center,
The light source is inserted into the concave portion of the opening or the back surface portion, and the light beam emitted from the light source in parallel to the concave portion of the opening portion or the back surface portion is totally reflected or / and refracted by the inclined portion to guide the light. A flat light-emitting device that emits light from a surface portion of a body.
赤色発光または緑色発光または青色発光の単色光を出射する前記各光源を3つの前記導光体の前記開口部または前記裏面部の凹部に各々挿入し、各前記導光体の前記表面部から赤色光、緑色光、青色光の各々を出射する3つの前記導光体を重ね合わせたことを特徴とする請求項または請求項記載の平面発光装置。The light sources that emit single-color light of red light emission, green light emission, or blue light emission are inserted into the openings of the three light guides or the recesses of the back surface, respectively, and red from the front surface part of the light guides. The planar light emitting device according to claim 8 or 9 , wherein the three light guides that emit light, green light, and blue light are superposed. リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で前記半導体発光素子の前記載置面の対向方向に出射する光を前記半導体発光素子の対向する位置に設けた面で全反射を行い前記載置面に略並行に放射状に出射するようにモールドした光源と、
前記光源からの光を導く入射部を中心に位置し、前記光源を挿入する開口部または裏面部に凹部を設けるとともに前記入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、前記表面部または/および前記裏面部に光偏向素子を設けた導光体と、
前記入射部と出射面部以外の光を反射する反射体とを備え、
前記光源を前記開口部または前記裏面部の凹部に挿入し、前記光源から円周方向で放射状に出射した光線を前記光偏向素子で全反射または/および屈折して前記導光体の表面部から出射することを特徴とする平面発光装置。
Light emitted in a direction opposite to the mounting surface of the semiconductor light emitting element is provided at a position facing the semiconductor light emitting element with a transparent resin or the like in a light emitting direction from the semiconductor light emitting element placed on the lead frame or the substrate. A light source molded so as to be totally reflected on the surface to be emitted radially in parallel to the mounting surface,
Wherein in the center of the entrance portion for guiding light from the light source, the or thickness as the distance from the incident portion provided with a recess in the opening or the rear surface portion for inserting the light source is increased is constant thickness, A light guide provided with a light deflection element on the front surface portion and / or the back surface portion;
A reflector that reflects light other than the incident portion and the exit surface portion;
The light source is inserted into the opening or the concave portion of the back surface portion, and the light beam emitted radially from the light source in the circumferential direction is totally reflected or / and refracted by the light deflecting element from the surface portion of the light guide. A flat light-emitting device that emits light.
リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で前記半導体発光素子の側面に対応した四角柱形状を成し、前記半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、前記四角柱の側面と前記四角錐の底辺とが接続する形状にモールドした光源と、
前記光源からの光を導く入射部を中心に位置し、前記光源を挿入する四角形状の開口部または裏面部に凹部を設けるとともに前記入射部から遠ざかるに従って厚さが厚くなるまたは厚さが一定であり、前記表面部または/および前記裏面部に前記光偏向素子を設けた導光体と、
前記入射部と出射面部以外の光を反射する反射体とを備え、
前記光源を前記開口部または前記裏面部の凹部に挿入し、前記光源から前記開口部または前記裏面部の凹部に平行に出射した光線を前記光偏向素子で全反射または/および屈折して前記導光体の表面部から出射することを特徴とする平面発光装置。
A rectangular column shape corresponding to the side surface of the semiconductor light emitting element made of a transparent resin or the like in the light emitting direction from a rectangular semiconductor light emitting element placed on a lead frame or a substrate, and facing the semiconductor light emitting element Is cut into a reverse quadrangular pyramid shape, and a light source molded into a shape in which the side surface of the quadrangular prism and the bottom of the quadrangular pyramid are connected,
Located around the entrance portion for guiding light from the light source, a square-shaped opening or the or thickness as the distance from the incident portion is thicker thickness provided with a recess in the rear surface portion for inserting the light source is constant A light guide body provided with the light deflection element on the front surface portion and / or the back surface portion, and
A reflector that reflects light other than the incident portion and the exit surface portion;
The light source is inserted into the concave portion of the opening or the back surface portion, and the light beam emitted from the light source in parallel to the concave portion of the opening portion or the back surface portion is totally reflected and / or refracted by the light deflecting element to guide the light. A flat light emitting device that emits light from a surface portion of a light body.
リードフレームや基板上に載置した半導体発光素子からの光の出射方向に透明樹脂等で前記半導体発光素子の前記載置面の対向方向に出射する光を前記半導体発光素子の対向する位置に設けた面で全反射を行い前記載置面に略並行に放射状に出射するようにモールドした光源と、
前記光源からの光を導く入射部を中心に位置し、前記光源を挿入する開口部を設け、前記表面部または/および前記裏面部に光偏向素子を設けるとともに前記入射部から遠ざかるに従って厚さが厚くなる導光体と、
前記光源からの光を導く入射部を中心に位置し、前記光源を挿入する凹部を裏面部に設け、前記表面部または/および前記裏面部に光偏向素子を設けるとともに前記入射部に近づくに従って厚さが厚くなる導光体と、
光を反射する反射体とを備え、
前記入射部から遠ざかるに従って厚さが厚くなる前記導光体の上方に前記入射部に近づくに従って厚さが厚くなる前記導光体を互いに傾斜する面を向かい合わせにし、前記光源を前記各々の導光体の前記開口部および前記裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを前記反射体で覆い、前記入射部から遠ざかるに従って厚さが厚くなる前記導光体内に進んだ光を前記反射体によって前記入射部方向に反射した光を前記光偏向素子やテーパーリークにより出射する出射光と、前記導光体と前記入射部に近づくに従って厚さが厚くなる前記導光体内に進んだ光を前記光偏向素子やテーパーリークにより出射する出射光を得ることを特徴とする平面発光装置。
Light emitted in a direction opposite to the mounting surface of the semiconductor light emitting element is provided at a position facing the semiconductor light emitting element with a transparent resin or the like in a light emitting direction from the semiconductor light emitting element placed on the lead frame or the substrate. A light source molded so as to be totally reflected on the surface to be emitted radially in parallel to the mounting surface,
Centered on the incident part that guides light from the light source, an opening for inserting the light source is provided, a light deflecting element is provided on the front surface part and / or the back surface part, and the thickness increases as the distance from the incident part increases. A light guide that thickens,
Centered on the incident part that guides light from the light source, a recess for inserting the light source is provided on the back surface part, and a light deflection element is provided on the front surface part or / and the back surface part, and the thickness increases as the incident part approaches. A light guide that becomes thicker,
A reflector that reflects light,
The facing surfaces inclined to each other the light guide thickness is increased as approaching the incident portion above the thickness is increased the light guide as the distance from the incident portion, guiding the light of the respective Inserted into the opening of the light body and the concave portion of the back surface portion, the final back surface portion and the side surface portion other than the incident portion are covered with the reflector, and the thickness increases as the distance from the incident portion increases. The light reflected by the reflector in the direction of the incident portion is emitted light that is emitted by the light deflector or a taper leak, and the light guide becomes thicker as it approaches the light guide and the incident portion. A flat light-emitting device characterized in that it obtains outgoing light that emits light that has traveled into the body through the light deflection element or taper leak.
リードフレームや基板上に載置した矩形状の半導体発光素子からの光の出射方向に透明樹脂等で前記半導体発光素子の側面に対応した四角柱形状を成し、前記半導体発光素子に対向する位置が逆向きの四角錐形状に切除し、前記四角柱の側面と前記四角錐の底辺とが接続する形状にモールドした光源と、
前記光源からの光を導く入射部を中心に位置し、前記光源を挿入する四角形状の開口部を設け、前記表面部または/および前記裏面部に光偏向素子を設けるとともに前記入射部から遠ざかるに従って厚さが厚くなる導光体と、
前記光源からの光を導く入射部を中心に位置し、前記光源を挿入する四角形状の凹部を裏面部に設け、前記表面部または/および前記裏面部に光偏向素子を設けるとともに前記入射部に近づくに従って厚さが厚くなる導光体と、
光を反射する反射体とを備え、
前記入射部から遠ざかるに従って厚さが厚くなる前記導光体の上方に前記入射部に近づくに従って厚さが厚くなる前記導光体を互いに傾斜する面を向かい合わせにし、前記光源を前記各々の導光体の前記開口部および前記裏面部の凹部に挿入し、最終裏面部と入射部以外の側面部とを前記反射体で覆い、前記入射部から遠ざかるに従って厚さが厚くなる前記導光体内に進んだ光を前記反射体によって前記入射部方向に反射した光を前記光偏向素子やテーパーリークにより出射する出射光と、前記導光体と前記入射部に近づくに従って厚さが厚くなる前記導光体内に進んだ光を前記光偏向素子やテーパーリークにより出射する出射光を得ることを特徴とする平面発光装置。
A rectangular column shape corresponding to the side surface of the semiconductor light emitting element made of a transparent resin or the like in the light emitting direction from a rectangular semiconductor light emitting element placed on a lead frame or a substrate, and facing the semiconductor light emitting element Is cut into a reverse quadrangular pyramid shape, and a light source molded into a shape in which the side surface of the quadrangular prism and the bottom of the quadrangular pyramid are connected,
As the incident portion that guides light from the light source is located at the center, a rectangular opening for inserting the light source is provided, and a light deflection element is provided on the front surface portion and / or the rear surface portion, and as the distance from the incident portion increases. A light guide that is thicker;
Centered on an incident part that guides light from the light source, a rectangular recess for inserting the light source is provided on the back surface part, and a light deflection element is provided on the front surface part or / and the back surface part, and on the incident part A light guide that increases in thickness as it approaches,
A reflector that reflects light,
The facing surfaces inclined to each other the light guide thickness is increased as approaching the incident portion above the thickness is increased the light guide as the distance from the incident portion, guiding the light of the respective Inserted into the opening of the light body and the concave portion of the back surface portion, the final back surface portion and the side surface portion other than the incident portion are covered with the reflector, and the thickness increases as the distance from the incident portion increases. The light reflected by the reflector in the direction of the incident portion is emitted light that is emitted by the light deflector or a taper leak, and the light guide becomes thicker as it approaches the light guide and the incident portion. A flat light-emitting device characterized in that it obtains outgoing light that emits light that has traveled into the body through the light deflection element or taper leak.
JP2003176685A 2002-08-21 2003-06-20 Light source, light guide and flat light emitting device Expired - Fee Related JP3715635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176685A JP3715635B2 (en) 2002-08-21 2003-06-20 Light source, light guide and flat light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002240912 2002-08-21
JP2003176685A JP3715635B2 (en) 2002-08-21 2003-06-20 Light source, light guide and flat light emitting device

Publications (2)

Publication Number Publication Date
JP2004140327A JP2004140327A (en) 2004-05-13
JP3715635B2 true JP3715635B2 (en) 2005-11-09

Family

ID=32472553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176685A Expired - Fee Related JP3715635B2 (en) 2002-08-21 2003-06-20 Light source, light guide and flat light emitting device

Country Status (1)

Country Link
JP (1) JP3715635B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119617A1 (en) 2009-04-14 2010-10-21 シャープ株式会社 Planar light source device and display device provided with the planar light source device

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7745832B2 (en) * 2004-09-24 2010-06-29 Epistar Corporation Semiconductor light-emitting element assembly with a composite substrate
US8541795B2 (en) 2004-10-12 2013-09-24 Cree, Inc. Side-emitting optical coupling device
KR100657281B1 (en) 2004-10-29 2006-12-14 삼성전자주식회사 Side emitting device, back light unit using the same as a light source and liquid display apparatus employing it
KR100649640B1 (en) * 2005-02-03 2006-11-27 삼성전기주식회사 Side emission type led package
JP2006293645A (en) * 2005-04-08 2006-10-26 Skg:Kk Signal
KR100691179B1 (en) * 2005-06-01 2007-03-09 삼성전기주식회사 Side Emitting LED Package and Method of Manufacturing The Same
KR100784057B1 (en) * 2005-06-24 2007-12-10 엘지이노텍 주식회사 Light emitting device package and mauufacture method of light emitting device package
JP4935004B2 (en) 2005-07-01 2012-05-23 ソニー株式会社 Display device
JP2007266583A (en) * 2006-02-20 2007-10-11 Nichia Chem Ind Ltd Light emitting device
US7775687B2 (en) 2006-02-20 2010-08-17 Nichia Corporation Light emitting device
JP5059444B2 (en) * 2007-02-20 2012-10-24 株式会社三共 Game machine
JP5080867B2 (en) * 2007-05-31 2012-11-21 株式会社三共 Game equipment
JP5324061B2 (en) * 2007-06-12 2013-10-23 株式会社三共 Slot machine
US9557033B2 (en) 2008-03-05 2017-01-31 Cree, Inc. Optical system for batwing distribution
JP2010141297A (en) * 2008-11-14 2010-06-24 Nippon Leiz Co Ltd Light guide, photoelectric converter, and flat surface photoelectric conversion device
WO2010095441A1 (en) * 2009-02-19 2010-08-26 シャープ株式会社 Light emitting device, planar light source, and display device
US10883702B2 (en) 2010-08-31 2021-01-05 Ideal Industries Lighting Llc Troffer-style fixture
US9494293B2 (en) 2010-12-06 2016-11-15 Cree, Inc. Troffer-style optical assembly
US9822951B2 (en) 2010-12-06 2017-11-21 Cree, Inc. LED retrofit lens for fluorescent tube
US9581312B2 (en) 2010-12-06 2017-02-28 Cree, Inc. LED light fixtures having elongated prismatic lenses
US10309627B2 (en) 2012-11-08 2019-06-04 Cree, Inc. Light fixture retrofit kit with integrated light bar
JP5764407B2 (en) * 2011-06-30 2015-08-19 株式会社エンプラス Luminous flux control member, light emitting device, and surface light source device
US10823347B2 (en) 2011-07-24 2020-11-03 Ideal Industries Lighting Llc Modular indirect suspended/ceiling mount fixture
US9423117B2 (en) 2011-12-30 2016-08-23 Cree, Inc. LED fixture with heat pipe
US10544925B2 (en) 2012-01-06 2020-01-28 Ideal Industries Lighting Llc Mounting system for retrofit light installation into existing light fixtures
US9777897B2 (en) 2012-02-07 2017-10-03 Cree, Inc. Multiple panel troffer-style fixture
US8905575B2 (en) 2012-02-09 2014-12-09 Cree, Inc. Troffer-style lighting fixture with specular reflector
US10054274B2 (en) 2012-03-23 2018-08-21 Cree, Inc. Direct attach ceiling-mounted solid state downlights
US9310038B2 (en) 2012-03-23 2016-04-12 Cree, Inc. LED fixture with integrated driver circuitry
US9494294B2 (en) 2012-03-23 2016-11-15 Cree, Inc. Modular indirect troffer
US9360185B2 (en) 2012-04-09 2016-06-07 Cree, Inc. Variable beam angle directional lighting fixture assembly
US9874322B2 (en) 2012-04-10 2018-01-23 Cree, Inc. Lensed troffer-style light fixture
US9285099B2 (en) 2012-04-23 2016-03-15 Cree, Inc. Parabolic troffer-style light fixture
US8931929B2 (en) 2012-07-09 2015-01-13 Cree, Inc. Light emitting diode primary optic for beam shaping
JP5772785B2 (en) * 2012-10-22 2015-09-02 株式会社三洋物産 Game machine
US9494304B2 (en) 2012-11-08 2016-11-15 Cree, Inc. Recessed light fixture retrofit kit
US9423104B2 (en) 2013-03-14 2016-08-23 Cree, Inc. Linear solid state lighting fixture with asymmetric light distribution
US10648643B2 (en) 2013-03-14 2020-05-12 Ideal Industries Lighting Llc Door frame troffer
US9052075B2 (en) 2013-03-15 2015-06-09 Cree, Inc. Standardized troffer fixture
USD786471S1 (en) 2013-09-06 2017-05-09 Cree, Inc. Troffer-style light fixture
KR101563643B1 (en) * 2013-12-09 2015-10-29 주식회사 루멘스 Backlight unit and lighting device
WO2015076592A1 (en) * 2013-11-22 2015-05-28 주식회사 루멘스 Backlight unit, double cone-shaped reflector, double cone-shaped reflector strip, lighting device, and method for manufacturing double cone-shaped reflector
USD807556S1 (en) 2014-02-02 2018-01-09 Cree Hong Kong Limited Troffer-style fixture
USD772465S1 (en) 2014-02-02 2016-11-22 Cree Hong Kong Limited Troffer-style fixture
JP5892183B2 (en) * 2014-03-10 2016-03-23 株式会社三洋物産 Game machine
KR101826511B1 (en) * 2016-01-21 2018-03-22 (주)제이에스테크 Control equipment of Air-conditioner
KR20160029770A (en) 2016-02-25 2016-03-15 주식회사 루멘스 Backlighting unit
JP2018207005A (en) * 2017-06-07 2018-12-27 シチズン電子株式会社 Light-emitting device, manufacturing method thereof and planar light unit
JP7164315B2 (en) * 2018-04-03 2022-11-01 シチズン電子株式会社 light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119617A1 (en) 2009-04-14 2010-10-21 シャープ株式会社 Planar light source device and display device provided with the planar light source device

Also Published As

Publication number Publication date
JP2004140327A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP3715635B2 (en) Light source, light guide and flat light emitting device
JP6339161B2 (en) Light emitting device package
KR100853240B1 (en) Light-emitting diode
US8961043B2 (en) Light emitting device package and backlight unit using the same
CN102130109B (en) Light emitting device and light unit using the same
US7049746B2 (en) Light-emitting unit and illuminator utilizing the same
EP2518395B1 (en) Light emitting device and illumination device using the same
JP3878579B2 (en) Optical semiconductor device
EP1729350A2 (en) Light emitting diode package
EP2757401A1 (en) Optical lens, light emitting device package using the optical lens, and backlight unit
TW202144823A (en) Light emitting module and planar light source
JP6703312B2 (en) Light emitting module and surface emitting light source
KR102340515B1 (en) Backlight unit and display apparatus comprising the same
JP2004191718A (en) Led light source device
JP2001167612A (en) Light emission apparatus
US11808966B2 (en) Light-emitting module
WO1989005524A1 (en) Planar led illuminant
JPH1126813A (en) Light emitting diode lamp
EP3982039A1 (en) Lighting module and lighting device provided with same
JP2020123752A (en) Light-emitting module and surface light source
JP4629426B2 (en) Light guide and flat illumination device
KR102087934B1 (en) Lamp unit and vehicle lamp apparatus for using the same
KR20160057919A (en) Backlight unit and display apparatus using the same
KR102389604B1 (en) Backlight unit and display apparatus using the same
JPH0962206A (en) Led display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees