JP5759856B2 - Ultrasonic treatment equipment - Google Patents

Ultrasonic treatment equipment Download PDF

Info

Publication number
JP5759856B2
JP5759856B2 JP2011221968A JP2011221968A JP5759856B2 JP 5759856 B2 JP5759856 B2 JP 5759856B2 JP 2011221968 A JP2011221968 A JP 2011221968A JP 2011221968 A JP2011221968 A JP 2011221968A JP 5759856 B2 JP5759856 B2 JP 5759856B2
Authority
JP
Japan
Prior art keywords
unit
phase
ultrasonic
value
processing liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011221968A
Other languages
Japanese (ja)
Other versions
JP2013084667A (en
Inventor
広毅 高橋
広毅 高橋
太田 勝啓
勝啓 太田
真樹 大川
真樹 大川
田原 明宏
明宏 田原
勝久 江川
勝久 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Denki Engineering Co Ltd
Original Assignee
Hitachi Kokusai Denki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Denki Engineering Co Ltd filed Critical Hitachi Kokusai Denki Engineering Co Ltd
Priority to JP2011221968A priority Critical patent/JP5759856B2/en
Publication of JP2013084667A publication Critical patent/JP2013084667A/en
Application granted granted Critical
Publication of JP5759856B2 publication Critical patent/JP5759856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、超音波処理装置および超音波処理方法に関し、例えば、超音波を用いた被処理物の洗浄装置や洗浄方法に関する。   The present invention relates to an ultrasonic processing apparatus and an ultrasonic processing method, and for example, relates to a cleaning apparatus and a cleaning method for an object to be processed using ultrasonic waves.

本技術分野の背景技術として、例えば特開平8−243516号公報(特許文献1)には、溶液中に被洗浄物を浸漬すると共に、この被洗浄物に対向して超音波振動ホーンの先端部を浸漬し、超音波洗浄を行う為の装置であって、超音波洗浄時における適用超音波の溶液中における波長λより超音波振動ホーンの先端部面の横断寸法2aを大きく構成した超音波振動ホーンが用いられてなる超音波洗浄装置が記載されている。   As background art of this technical field, for example, in Japanese Patent Laid-Open No. 8-243516 (Patent Document 1), an object to be cleaned is immersed in a solution, and a tip portion of an ultrasonic vibration horn is opposed to the object to be cleaned. Is a device for ultrasonic cleaning, in which the transverse dimension 2a of the tip surface of the ultrasonic vibration horn is larger than the wavelength λ in the solution of the applied ultrasonic wave during ultrasonic cleaning. An ultrasonic cleaning device using a horn is described.

また、特開平10−309548号公報(特許文献2)には、移動する被洗浄物に洗浄液を供給すると共に所定の入射角度で超音波を印加し、被洗浄物に漏洩弾性表面波或いは漏洩板波或いは弾性表面波或いは板波を励起し、被洗浄物の表面から汚染物を除去する超音波洗浄方法が記載されている。   Japanese Patent Application Laid-Open No. 10-309548 (Patent Document 2) supplies a cleaning liquid to a moving object to be cleaned and applies an ultrasonic wave at a predetermined incident angle so as to leak a surface acoustic wave or a leakage plate to the object to be cleaned. An ultrasonic cleaning method is described in which a contaminant is removed from the surface of an object to be cleaned by exciting a wave, a surface acoustic wave or a plate wave.

さらに、特開2008−085150号公報(特許文献3)には、被洗浄材(半導体基板)に洗浄液(薬液)を接触させて洗浄する前に、真空脱気、界面活性剤の接触、浸透性溶液の接触、超音波を利用した脱気などにより、被洗浄材表面を脱気処理し、被洗浄材の表面濡れ性を改善する処理を行う洗浄方法が記載されている。   Further, JP 2008-085150 A (Patent Document 3) discloses that vacuum deaeration, surfactant contact, and permeability before cleaning with a cleaning solution (chemical solution) in contact with a material to be cleaned (semiconductor substrate). A cleaning method is described in which a surface of a material to be cleaned is degassed by contact with a solution, deaeration using ultrasonic waves, or the like, and a process for improving surface wettability of the material to be cleaned is performed.

特開平8−243516号公報JP-A-8-243516 特開平10−309548号公報JP-A-10-309548 特開2008−085150号公報JP 2008-085150 A

前記特許文献1乃至3には、超音波振動を洗浄液に伝達させると、洗浄液中でミクロンサイズの気泡(キャビテーション気泡)が発生する原理を利用した洗浄装置あるいは洗浄方法が記載されている。   Patent Documents 1 to 3 describe a cleaning apparatus or a cleaning method using a principle that micron-sized bubbles (cavitation bubbles) are generated in the cleaning liquid when ultrasonic vibration is transmitted to the cleaning liquid.

特許文献1の超音波洗浄装置と特許文献2の超音波洗浄方法は、キャビテーション気泡の並進、膨張・収縮及び崩壊といった運動に伴って生じる洗浄液の強力な液流によって、被洗浄物の表面に付着した粒子状塵埃や膜状塵埃を剥離除去(洗浄)する。しかし、例えば被洗浄物の表面に、凹部の幅が1μm未満、かつ凹凸の高さが凹部の幅よりも大きい凹凸パターンが形成された場合、凹パターンの底部及び側壁部を十分に洗浄することは困難である。また、凸部の幅が1μm未満、凹凸の高さが凸部の幅よりも大きい凹凸パターンが形成された場合、凸パターンの破壊(ダメージ)を抑制することは困難である。   The ultrasonic cleaning apparatus of Patent Document 1 and the ultrasonic cleaning method of Patent Document 2 are attached to the surface of an object to be cleaned by a strong liquid flow of the cleaning liquid generated by the movement of the cavitation bubbles such as translation, expansion / contraction and collapse. The removed particulate dust and film dust are removed (washed). However, for example, when a concave / convex pattern having a concave portion width of less than 1 μm and a concave / convex height larger than the concave portion width is formed on the surface of the object to be cleaned, the bottom and side walls of the concave pattern are sufficiently cleaned. It is difficult. Moreover, when the uneven | corrugated pattern with the width | variety of a convex part is less than 1 micrometer, and the height of an unevenness | corrugation is larger than the width | variety of a convex part, it is difficult to suppress destruction (damage) of a convex pattern.

特許文献3の洗浄方法では、キャビテーション気泡を連続的に発生させ、洗浄液中の溶存気体濃度を低下させることによって、凹パターンの底部及び側壁部を十分に洗浄する。しかし、超音波による液の脱気は長時間を要するため、超音波の出力を上げて脱気を促進する必要があるが、上述のキャビテーション気泡の運動が強まるため、同様に凸パターンのダメージを抑制することは困難である。   In the cleaning method of Patent Document 3, cavitation bubbles are continuously generated, and the dissolved gas concentration in the cleaning liquid is reduced to sufficiently clean the bottom and side walls of the concave pattern. However, since deaeration of the liquid with ultrasonic waves takes a long time, it is necessary to increase the output of ultrasonic waves to promote deaeration.However, since the movement of the cavitation bubbles described above is strengthened, damage to the convex pattern is similarly caused. It is difficult to suppress.

そこで、本発明の目的は、被洗浄材に形成された凸パターンに対するダメージを抑え、かつ凹パターンの底部及び側壁部も十分に洗浄し得る超音波処理装置や超音波処理方法を提供することである。   Accordingly, an object of the present invention is to provide an ultrasonic processing apparatus and an ultrasonic processing method capable of suppressing damage to the convex pattern formed on the material to be cleaned and sufficiently cleaning the bottom and side walls of the concave pattern. is there.

上記課題を解決するための、本発明の代表的な構成は、次のとおりである。すなわち、
被処理物を超音波により洗浄処理する超音波処理装置であって、
超音波振動を放射する超音波振動部と、
前記超音波振動部に電力を印加する発振部と、
前記被処理物と該被処理物を処理する処理液とを収容する収容部を有し、該収容部内へ前記処理液を供給する処理液供給部と、を備え、
前記処理液供給部が、前記収容部内へ供給される前の前記処理液を脱気する脱気部を有することを特徴とする。
A typical configuration of the present invention for solving the above problems is as follows. That is,
An ultrasonic processing apparatus for cleaning an object to be processed with ultrasonic waves,
An ultrasonic vibration part that radiates ultrasonic vibrations;
An oscillating unit for applying electric power to the ultrasonic vibrating unit;
A storage unit that stores the processing object and a processing liquid that processes the processing object, and a processing liquid supply unit that supplies the processing liquid into the storage unit,
The processing liquid supply unit includes a deaeration unit that degass the processing liquid before being supplied into the storage unit.

本発明によれば、被処理物に励起された表面弾性波により、被処理物の表面における処理液の流動が促進され、被処理物の凹パターンの底部及び側壁部にも十分に処理液が浸透して、良好な洗浄結果が得られる。また、処理液中の溶存気体濃度の低下によって、さらに被処理物の凹パターンの底部及び側壁部に処理液が浸透するとともに、キャビテーション気泡の発生量が減少し、被処理物の凸パターンに対するダメージが抑制される。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   According to the present invention, the surface acoustic wave excited on the object to be processed promotes the flow of the process liquid on the surface of the object to be processed, and the treatment liquid is sufficiently applied to the bottom and side walls of the concave pattern of the object to be processed. Penetration and good cleaning results are obtained. In addition, due to a decrease in the concentration of dissolved gas in the treatment liquid, the treatment liquid further penetrates into the bottom and side walls of the concave pattern of the object to be processed, and the amount of cavitation bubbles generated is reduced, resulting in damage to the convex pattern of the object to be processed. Is suppressed. Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の実施形態における超音波処理装置の構成例である。It is an example of composition of an ultrasonic treatment device in an embodiment of the present invention. 本発明の実施形態における処理液供給部の構成例である。It is a structural example of the process liquid supply part in embodiment of this invention. 本発明の実施形態における超音波処理の一連の動作を説明するフロー図である。It is a flowchart explaining a series of operation | movement of the ultrasonic treatment in embodiment of this invention. 本発明の実施形態における検知部が計測する電圧波形と電流波形を示す図で、電圧波形の位相と電流波形の位相とが整合し、かつ電流波形の振幅が所定値以上となる状態を示すグラフである。The figure which shows the voltage waveform and current waveform which the detection part in embodiment of this invention measures, The graph which shows the state where the phase of a voltage waveform and the phase of a current waveform match, and the amplitude of a current waveform becomes more than predetermined value It is. 本発明の実施形態における検知部が計測する電圧波形と電流波形を示す図で、電圧波形の位相と電流波形の位相とが整合しない状態を示すグラフである。It is a figure which shows the voltage waveform and current waveform which the detection part in embodiment of this invention measures, and is a graph which shows the state where the phase of a voltage waveform and the phase of a current waveform do not match. 本発明の実施形態における検知部が計測する電圧波形と電流波形を示す図で、電流波形の振幅が所定値未満となる状態を示すグラフである。It is a figure which shows the voltage waveform and current waveform which the detection part in embodiment of this invention measures, and is a graph which shows the state from which the amplitude of a current waveform is less than predetermined value. 本発明の実施形態における振動板から被処理物の主面までの距離と、検知部が計測する電力値(電圧値×電流値)との関係を示すデータの例である。It is an example of the data which shows the relationship between the distance from the diaphragm in embodiment of this invention to the main surface of a to-be-processed object, and the electric power value (voltage value x electric current value) which a detection part measures. 本発明の実施形態において、振動板から被処理物の主面までの距離を変えた場合に、被処理物付近における超音波振動の強度(音圧)分布をシュリーレン法によって撮像した結果の例である。In the embodiment of the present invention, when the distance from the diaphragm to the main surface of the object to be processed is changed, the intensity (sound pressure) distribution of the ultrasonic vibration in the vicinity of the object to be processed is imaged by the Schlieren method. is there. 本発明の実施形態における周波数変調の発振波形の例である。It is an example of the oscillation waveform of the frequency modulation in the embodiment of the present invention. 本発明の実施形態における周波数の変調幅と、検知部が計測する電力値(電圧値×電流値)との関係を示すデータの例である。It is an example of the data which shows the relationship between the modulation width of the frequency in embodiment of this invention, and the electric power value (voltage value x electric current value) which a detection part measures. 本発明の実施形態において、周波数の変調幅を変えた場合に、被処理物付近における超音波振動の強度(音圧)分布をシュリーレン法によって撮像した結果の例である。In the embodiment of the present invention, when the frequency modulation width is changed, the ultrasonic vibration intensity (sound pressure) distribution in the vicinity of the object to be processed is imaged by the Schlieren method. 本発明の実施形態における処理液中の溶存気体濃度と、音圧と、凸パターンに対するダメージ発生頻度との関係を示すグラフの例である。It is an example of the graph which shows the relationship between the dissolved gas concentration in the process liquid in embodiment of this invention, sound pressure, and the damage occurrence frequency with respect to a convex pattern. 本発明の実施形態における処理液中の溶存気体濃度と、処理液が凹パターンの底部まで達するのに要する時間との関係を示すグラフの例である。It is an example of the graph which shows the relationship between the dissolved gas density | concentration in the process liquid in embodiment of this invention, and the time required for a process liquid to reach the bottom part of a concave pattern.

本実施形態の超音波処理装置は、被処理物に表面弾性波を励起させる励起部と、被処理物の表面に触れる前の段階で所定濃度未満まで溶存気体濃度を下げた処理液を供給する処理液供給部とを有する。上記励起部は、超音波振動を発生する超音波振動部と、超音波振動部に電力を印加する発振部と、超音波振動部における電圧および電流を検知する検知部とを備える。超音波振動を放射する超音波振動部の放射面は、被処理物の主面に対して平行或いは傾斜角10度以下になるように配置され、発振部は、検知部において電圧位相と電流位相とが整合し、かつ電流値が所定値以上で検知されるように発振周波数の変調幅を変更し調整する。   The ultrasonic processing apparatus according to the present embodiment supplies an excitation unit that excites surface acoustic waves to the object to be processed, and a processing liquid in which the dissolved gas concentration is lowered to a predetermined concentration before the surface of the object to be processed is touched. And a processing liquid supply unit. The excitation unit includes an ultrasonic vibration unit that generates ultrasonic vibration, an oscillation unit that applies power to the ultrasonic vibration unit, and a detection unit that detects voltage and current in the ultrasonic vibration unit. The radiation surface of the ultrasonic vibration unit that radiates ultrasonic vibration is arranged so as to be parallel to the main surface of the object to be processed or at an inclination angle of 10 degrees or less, and the oscillation unit has a voltage phase and a current phase in the detection unit. Are adjusted and the modulation width of the oscillation frequency is changed and adjusted so that the current value is detected at a predetermined value or more.

以下、図面を用いて本発明の実施形態を説明する。
図1は、本実施形態における超音波処理装置の構成例である。本実施形態では、被処理物の表面に処理液をかけ流しながら、被処理物を1個ずつ処理する枚葉式超音波処理装置の例を説明する。この例では、被処理物Wは、例えばIC(Integrated Circuit)をその表面に形成した基板である半導体ウエハであり、円盤形状である。被処理物Wは、超音波による洗浄処理、あるいは洗浄処理と乾燥処理を施される。
超音波処理装置100は、超音波振動部110と、発振部120と、検知部130と、後述する給液管144や収容部145等を含む処理液供給部140と、制御部160と、各種データ等を記憶する記憶部161と、オペレータからの指示を受け付ける操作部162と、各種データ等を表示する表示部163とを備える。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration example of an ultrasonic processing apparatus according to this embodiment. In the present embodiment, an example of a single-wafer ultrasonic processing apparatus that processes the objects to be processed one by one while pouring a processing liquid over the surface of the object to be processed will be described. In this example, the workpiece W is a semiconductor wafer which is a substrate on which an IC (Integrated Circuit) is formed, for example, and has a disk shape. The workpiece W is subjected to ultrasonic cleaning processing, or cleaning processing and drying processing.
The ultrasonic processing apparatus 100 includes an ultrasonic vibration unit 110, an oscillation unit 120, a detection unit 130, a processing liquid supply unit 140 including a liquid supply pipe 144 and a storage unit 145, which will be described later, a control unit 160, and various types. A storage unit 161 that stores data and the like, an operation unit 162 that receives instructions from an operator, and a display unit 163 that displays various data and the like are provided.

超音波振動部110は、圧電振動子111と、振動板112と、振動子ケース113と、給電ケーブル114とを備え、全体を上方から見た形状(上面視)が円形の円筒形状の外観を有する。圧電振動子111と振動板112は、いずれも上面視が円形の円盤状であり、それらの円形の主面は、被処理物Wの円形の主面Waに対してほぼ平行或いは傾斜角10度以下になるように配置されている。ここで、被処理物Wの主面Waとは、凹凸が形成されたおもて面であり、図1において上側の表面を指す。圧電振動子111の主面や振動板112の主面とは、図1において下側の表面を指す。振動板112の主面は、収容部145内へ超音波振動を放射する放射面112aである。超音波振動部110は、被洗浄物の主面Waに沿って、被洗浄物Wの中心−外周部間を平行移動し、回転する被洗浄物Wを洗浄処理する。   The ultrasonic vibration unit 110 includes a piezoelectric vibrator 111, a diaphragm 112, a vibrator case 113, and a power feeding cable 114, and has a circular cylindrical appearance when viewed from above as a whole (viewed from above). Have. Each of the piezoelectric vibrator 111 and the diaphragm 112 has a circular disk shape when viewed from above, and the circular main surface is substantially parallel to the circular main surface Wa of the workpiece W or has an inclination angle of 10 degrees. It is arranged to be as follows. Here, the main surface Wa of the workpiece W is a front surface on which irregularities are formed, and indicates the upper surface in FIG. The main surface of the piezoelectric vibrator 111 and the main surface of the diaphragm 112 refer to the lower surface in FIG. The main surface of the diaphragm 112 is a radiation surface 112 a that radiates ultrasonic vibrations into the housing portion 145. The ultrasonic vibration unit 110 translates between the center and the outer periphery of the object to be cleaned W along the main surface Wa of the object to be cleaned, and cleans the rotating object to be cleaned W.

圧電振動子111は、例えば円盤状のジルコン・チタン酸鉛(PZT)の焼結体であり、その主面は振動板112の裏面(放射面112aと反対側の面)に接着されている。圧電振動子111の主面の直径は、例えば14mmである。振動板112は、例えば円盤状の石英であり、その放射面112aの直径は、圧電振動子111の主面の直径とほぼ同等である。振動板112の放射面112aは、処理液L表面に接触し、処理液Lを介して、被処理物Wの主面Waより約3mmの距離で保たれ、被処理物Wの主面Waと対向している。   The piezoelectric vibrator 111 is, for example, a disc-shaped sintered body of zircon lead titanate (PZT), and the main surface thereof is bonded to the back surface of the vibration plate 112 (the surface opposite to the radiation surface 112a). The diameter of the main surface of the piezoelectric vibrator 111 is, for example, 14 mm. The diaphragm 112 is, for example, disk-shaped quartz, and the diameter of the radiation surface 112a is substantially equal to the diameter of the main surface of the piezoelectric vibrator 111. The radiation surface 112a of the vibration plate 112 is in contact with the surface of the processing liquid L and is maintained at a distance of about 3 mm from the main surface Wa of the workpiece W via the processing liquid L. Opposite.

振動子ケース113は、円筒形状のフッ素樹脂であり、圧電振動子111、振動板112及び給電ケーブル114を内包する。振動子ケース113の底部は開口している。振動子ケース113の底部には、振動子ケース113の鉛直方向に延びる側壁から90度内側に屈曲したフランジ部113aが設けられている。振動子ケース113底部の開口径、つまりフランジ部113aの開口径は振動板112の直径より小さい。
振動板112は、放射面112aにおける周縁部が、フランジ部113aの上部に載置され、接着剤やパッキン等により密着固定される。これにより、石英製の振動板112は処理液Lに接するが、金属成分を含有する圧電振動子111は処理液Lに接することがないので、圧電振動子111に起因する被処理物Wの金属汚染を抑制することができる。
振動板112の放射面112aにおける周縁部以外の部分は、振動子ケース113底部の開口部に露出している。給電ケーブル114は、その一端が圧電振動子111に接続され、他端が発振部120に接続されている。
The vibrator case 113 is a cylindrical fluororesin and includes the piezoelectric vibrator 111, the diaphragm 112, and the power supply cable 114. The bottom of the vibrator case 113 is open. At the bottom of the transducer case 113, a flange portion 113a bent inward by 90 degrees from a side wall extending in the vertical direction of the transducer case 113 is provided. The opening diameter of the bottom of the vibrator case 113, that is, the opening diameter of the flange portion 113 a is smaller than the diameter of the diaphragm 112.
The peripheral portion of the radiating surface 112a is placed on the upper portion of the flange portion 113a, and the diaphragm 112 is firmly fixed by an adhesive, packing, or the like. Thereby, the quartz diaphragm 112 is in contact with the processing liquid L, but the piezoelectric vibrator 111 containing a metal component is not in contact with the processing liquid L. Therefore, the metal of the workpiece W caused by the piezoelectric vibrator 111. Contamination can be suppressed.
A portion other than the peripheral edge portion on the radiation surface 112 a of the vibration plate 112 is exposed at the opening at the bottom of the vibrator case 113. The feeding cable 114 has one end connected to the piezoelectric vibrator 111 and the other end connected to the oscillation unit 120.

発振部120は、周波数250kHz以上で、かつ所定の電圧振幅の電気信号(高周波電力)を、給電ケーブル114を介して、圧電振動子111に印加する。ここで、周波数250kHz以上としたのは、処理液L中における半波長を3mm以下にすることで、被処理物Wの表面弾性波振動の強度を調整しやすくするためである。   The oscillating unit 120 applies an electrical signal (high frequency power) having a frequency of 250 kHz or more and a predetermined voltage amplitude to the piezoelectric vibrator 111 via the power supply cable 114. Here, the reason why the frequency is set to 250 kHz or more is to make it easy to adjust the intensity of surface acoustic wave vibration of the workpiece W by setting the half wavelength in the processing liquid L to 3 mm or less.

高周波電力を印加された圧電振動子111は、圧電振動子111の厚さ方向(上下方向)に、印加された高周波電力と同じ周波数で伸縮振動する。圧電振動子111の振動は振動板112に伝搬し、振動板112の放射面112aから処理液Lを介して、超音波振動として被処理物Wへ放射される。発振部120から出力される高周波電力の電力値を大きくすると、振動板112から放射される超音波振動の音圧振幅が大きくなる。   The piezoelectric vibrator 111 to which the high frequency power is applied vibrates and contracts in the thickness direction (vertical direction) of the piezoelectric vibrator 111 at the same frequency as the applied high frequency power. The vibration of the piezoelectric vibrator 111 propagates to the diaphragm 112 and is radiated from the radiation surface 112a of the diaphragm 112 through the treatment liquid L to the workpiece W as ultrasonic vibration. When the power value of the high-frequency power output from the oscillating unit 120 is increased, the sound pressure amplitude of the ultrasonic vibration radiated from the diaphragm 112 increases.

検知部130は、給電ケーブル114に分岐ケーブル114aを介して接続され、発振部120から圧電振動子111へ印加される電力の電圧値及び電流値の経時変化データを取得し計測する。被処理物Wに対してある最適な周波数で超音波振動を照射すると、超音波振動は、被処理物Wの主面Waに沿った方向(主面Waと平行な方向)への伝搬成分(表面弾性波)と、被処理物Wの主面Waと垂直な方向の、被処理物Wの裏面(主面Waと反対側の面)へ透過する透過成分とが強まる。このとき、被処理物Wの主面Waから振動板112へ反射する反射波成分が弱まり、圧電振動子111は、反射波による力学的負荷が減少して強く振動する。そのため、検知部130では、電圧位相と電流位相が整合するとともに電流値が増大する形で、電圧値及び電流値の経時変化が計測される。以上の原理を利用することで、被処理物Wの表面弾性波の強さを観測することが可能になる。   The detection unit 130 is connected to the power supply cable 114 via the branch cable 114 a, and acquires and measures time-dependent data of the voltage value and current value of the power applied from the oscillation unit 120 to the piezoelectric vibrator 111. When ultrasonic vibration is applied to the workpiece W at an optimal frequency, the ultrasonic vibration propagates in a direction along the main surface Wa of the workpiece W (a direction parallel to the main surface Wa) ( The surface acoustic wave) and the transmitted component that is transmitted to the back surface (surface opposite to the main surface Wa) of the workpiece W in the direction perpendicular to the main surface Wa of the workpiece W are strengthened. At this time, the reflected wave component reflected from the main surface Wa of the workpiece W to the diaphragm 112 is weakened, and the piezoelectric vibrator 111 vibrates strongly with a reduced mechanical load due to the reflected wave. Therefore, the detection unit 130 measures the temporal change of the voltage value and the current value so that the voltage value and the current phase are matched and the current value is increased. By using the above principle, it is possible to observe the strength of the surface acoustic wave of the workpiece W.

図2は、本実施形態における処理液供給部140の構成例である。処理液供給部140は、被処理物Wの主面Waと裏面に処理液Lを供給する。処理液供給部140は、処理液Lを一時的に貯留しつつ所定温度まで上昇させる温調(温度調整)タンク141と、減圧脱気部143と、被処理物Wと処理液Lを収容し、超音波処理が行われる収容部145と、温調タンク141から減圧脱気部143へ処理液Lを供給する給液管142と、減圧脱気部143から収容部145へ処理液Lを供給する給液管144とを備える。収容部145は、上面視が円形の円盤状である。   FIG. 2 is a configuration example of the processing liquid supply unit 140 in the present embodiment. The processing liquid supply unit 140 supplies the processing liquid L to the main surface Wa and the back surface of the workpiece W. The processing liquid supply unit 140 accommodates the temperature control (temperature adjustment) tank 141 that temporarily stores the processing liquid L and raises it to a predetermined temperature, a vacuum degassing unit 143, the workpiece W, and the processing liquid L. The container 145 where ultrasonic treatment is performed, the supply pipe 142 for supplying the processing liquid L from the temperature control tank 141 to the vacuum degassing part 143, and the processing liquid L from the vacuum degassing part 143 to the container 145 The liquid supply pipe 144 is provided. The accommodating portion 145 has a circular disk shape when viewed from above.

温調タンク141は、その天井が開放され、温調タンク141内の雰囲気は、温調タンク141外の雰囲気に通じている。温調タンク141は、温調タンク141外又は温調タンク141の壁内等に、例えば抵抗加熱ヒータ(不図示)を備えており、このヒータにより処理液Lを加熱して脱気する加熱脱気部である。また、温調タンク141は、温調タンク141内にある処理液Lの温度を検出する温度検出器(不図示)を備えており、温度検出器からの温度検出信号は、制御部160へ出力される。制御部160は、温度検出器からの温度検出信号に基づき、温調タンク141のヒータの加熱具合を制御し、温調タンク141内の処理液Lの温度を所定の温度に調節する。
処理液Lが加熱されると、処理液Lにおける気体の飽和溶解濃度が低下するため、処理液L中に含まれている気体の除去、すなわち処理液Lの脱気が促進される。
温調タンク141で加熱された処理液Lは、給液管142を介して、減圧脱気部143へ供給される。
The ceiling of the temperature control tank 141 is opened, and the atmosphere inside the temperature control tank 141 leads to the atmosphere outside the temperature control tank 141. The temperature adjustment tank 141 includes, for example, a resistance heater (not shown) outside the temperature adjustment tank 141 or inside the wall of the temperature adjustment tank 141, and is heated and degassed by heating the processing liquid L with this heater. It is the qi. The temperature adjustment tank 141 includes a temperature detector (not shown) that detects the temperature of the processing liquid L in the temperature adjustment tank 141, and a temperature detection signal from the temperature detector is output to the control unit 160. Is done. Based on the temperature detection signal from the temperature detector, the control unit 160 controls the heating condition of the heater of the temperature adjustment tank 141 and adjusts the temperature of the processing liquid L in the temperature adjustment tank 141 to a predetermined temperature.
When the processing liquid L is heated, the saturated dissolution concentration of the gas in the processing liquid L is reduced, so that removal of the gas contained in the processing liquid L, that is, degassing of the processing liquid L is promoted.
The processing liquid L heated in the temperature control tank 141 is supplied to the vacuum degassing unit 143 through the liquid supply pipe 142.

減圧脱気部143は、処理液Lに接する周囲の雰囲気を減圧状態にする。減圧脱気部143は、処理液Lに接する周囲の雰囲気を減圧状態にする真空ポンプ(不図示)や、処理液Lに接する周囲の雰囲気の圧力値を検出する圧力検出器(不図示)を備えており、圧力検出器からの圧力検出信号は、制御部160へ出力される。制御部160は、圧力検出器からの圧力検出信号に基づき、減圧脱気部143の減圧具合を制御し、処理液Lに接する雰囲気の圧力を所定の圧力に調節する。減圧脱気部143によっても、処理液Lにおける気体の飽和溶解濃度が低下するため、処理液Lの脱気が促進される。   The vacuum degassing unit 143 puts the ambient atmosphere in contact with the processing liquid L into a vacuum state. The vacuum degassing unit 143 includes a vacuum pump (not shown) that reduces the ambient atmosphere in contact with the processing liquid L and a pressure detector (not shown) that detects the pressure value of the ambient atmosphere in contact with the processing liquid L. The pressure detection signal from the pressure detector is output to the control unit 160. Based on the pressure detection signal from the pressure detector, the control unit 160 controls the pressure reduction state of the pressure reduction deaeration unit 143 and adjusts the pressure of the atmosphere in contact with the processing liquid L to a predetermined pressure. The vacuum degassing unit 143 also reduces the saturated dissolution concentration of the gas in the processing liquid L, so that the degassing of the processing liquid L is promoted.

なお、図2に示す温調タンク141と減圧脱気部143とを一体構成とする、例えば、温調タンク141内の処理液Lに接する雰囲気を減圧するような構成とすることもできる。
また、処理液供給部140において処理液Lを脱気する脱気部を、上述の加熱脱気部(温調タンク)141と減圧脱気部143に加え、超音波を用いて処理液Lを脱気する超音波脱気部とから構成することもできる。この場合、超音波脱気部は、加熱脱気部141や減圧脱気部143と、直列に配置される。
また、処理液供給部140における脱気部を、加熱脱気部141と減圧脱気部143と超音波脱気部のいずれか一つのみ、又は任意の組合せで構成することもできる。任意の2つ以上の組合せで脱気部を構成する、例えば、本実施形態のように、加熱脱気部141と減圧脱気部143とを組み合わせて脱気部を構成することで、処理液Lの脱気に要する時間を短くすることが可能になる。
Note that the temperature control tank 141 and the decompression deaeration unit 143 shown in FIG. 2 may be integrated, for example, the atmosphere in contact with the processing liquid L in the temperature control tank 141 may be reduced.
Further, a degassing unit for degassing the processing liquid L in the processing liquid supply unit 140 is added to the above-described heating degassing unit (temperature control tank) 141 and the vacuum degassing unit 143, and the processing liquid L is added using ultrasonic waves. It can also comprise from the ultrasonic deaeration part to deaerate. In this case, the ultrasonic deaeration unit is arranged in series with the heating deaeration unit 141 and the vacuum deaeration unit 143.
Moreover, the deaeration part in the process liquid supply part 140 can also be comprised only in any one of the heating deaeration part 141, the pressure reduction deaeration part 143, and an ultrasonic deaeration part, or arbitrary combinations. The degassing unit is configured by any two or more combinations. For example, as in the present embodiment, the degassing unit is configured by combining the heating degassing unit 141 and the vacuum degassing unit 143, thereby processing liquid. The time required for degassing L can be shortened.

温調タンク141と減圧脱気部143とによって所定濃度未満まで溶存気体濃度を下げられた処理液Lは、給液管144を介して、収容部145内の被処理物Wの主面Waと裏面に供給される。このとき、被処理物Wの主面Waと振動板112の放射面112aとの間隙には、処理液Lの液膜が形成される。また、被処理物Wにおいて凹凸パターンのない裏面へも処理液Lを供給しているので、被処理物Wにおける超音波振動の透過を促進し、被処理物Wの主面Waから振動板112へ反射する反射波成分を弱めることが可能になる。
なお、本実施形態では、処理液Lを収容部145内の被処理物Wの主面Waと裏面の両方に供給したが、処理液Lを収容部145内の被処理物Wの主面Waにのみ供給する構成とすることも可能である。
The processing liquid L whose dissolved gas concentration is lowered to a concentration lower than a predetermined concentration by the temperature control tank 141 and the vacuum degassing unit 143 is connected to the main surface Wa of the workpiece W in the storage unit 145 via the liquid supply pipe 144. Supplied on the back side. At this time, a liquid film of the processing liquid L is formed in the gap between the main surface Wa of the workpiece W and the radiation surface 112a of the diaphragm 112. Further, since the processing liquid L is also supplied to the back surface of the workpiece W having no uneven pattern, the transmission of ultrasonic vibrations in the workpiece W is promoted, and the vibration plate 112 extends from the main surface Wa of the workpiece W. It is possible to weaken the reflected wave component reflected to the surface.
In the present embodiment, the processing liquid L is supplied to both the main surface Wa and the back surface of the workpiece W in the container 145, but the processing liquid L is supplied to the main surface Wa of the workpiece W in the container 145. It is also possible to have a configuration that supplies only to

収容部145内において、被処理物Wは、例えば100rpm程度で、水平方向に回転している。したがって、給液管144から収容部145内に供給された処理液Lは、収容部145の水平方向端部に設けられた排液部145aから、収容部145外へ排出される。こうして、被処理物Wの主面Waに沿った方向に伝播する表面弾性波と、収容部145内に供給された処理液Lにより、被処理物Wの主面Waと裏面の全体が洗浄されると、該洗浄に使用され塵埃等を含む処理液Lは、排液部145aから排出される。   In the accommodating part 145, the to-be-processed object W is rotating in the horizontal direction at about 100 rpm, for example. Accordingly, the processing liquid L supplied from the liquid supply pipe 144 into the storage unit 145 is discharged out of the storage unit 145 from the drainage unit 145 a provided at the horizontal end of the storage unit 145. Thus, the main surface Wa and the entire back surface of the workpiece W are cleaned by the surface acoustic wave propagating in the direction along the main surface Wa of the workpiece W and the processing liquid L supplied into the container 145. Then, the processing liquid L containing dust or the like used for the cleaning is discharged from the drainage part 145a.

制御部160は、超音波処理装置100の各構成部、ずなわち、超音波振動部110、発振部120、検知部130、処理液供給部140等と信号接続されており、各構成部からの検出信号等を受信し、また、各構成部へ指示を行う。
制御部160は、操作部162がオペレータからの超音波処理開始指示を受け付けると、発振部120や処理液供給部140等へ、超音波処理開始指示を行う。
また、制御部160は、温調タンク141からの温度検出信号を受信し、該受信した温度検出信号に基づき、温調タンク141内の処理液Lの温度を所定の温度に制御する。
また、制御部160は、減圧脱気部143からの圧力検出信号を受信し、該受信した圧力検出信号に基づき、減圧脱気部143内の雰囲気の圧力を所定の圧力に制御する。
制御部160は、ハードウエア構成としては、CPU(Central Processing Unit)と制御部160の動作プログラム等を格納するメモリを備えており、CPUは、この動作プログラムに従って動作する。
The control unit 160 is signal-connected to each component of the ultrasonic processing apparatus 100, that is, the ultrasonic vibration unit 110, the oscillation unit 120, the detection unit 130, the processing liquid supply unit 140, and the like. The detection signal is received, and instructions are given to each component.
When the operation unit 162 receives an ultrasonic processing start instruction from the operator, the control unit 160 issues an ultrasonic processing start instruction to the oscillation unit 120, the processing liquid supply unit 140, and the like.
Further, the control unit 160 receives the temperature detection signal from the temperature control tank 141, and controls the temperature of the processing liquid L in the temperature control tank 141 to a predetermined temperature based on the received temperature detection signal.
In addition, the control unit 160 receives a pressure detection signal from the decompression deaeration unit 143, and controls the pressure of the atmosphere in the decompression deaeration unit 143 to a predetermined pressure based on the received pressure detection signal.
As a hardware configuration, the control unit 160 includes a CPU (Central Processing Unit) and a memory for storing an operation program of the control unit 160, and the CPU operates according to the operation program.

次に、超音波処理装置100における超音波処理を、図3を用いて説明する。図3は、超音波処理装置100における処理の一連の動作を説明するフロー図である。
先ず、オペレータからの処理開始指示を操作部162が受け付けると、制御部160が発振部120へ処理開始の指示を行う。発振部120は、制御部160から処理開始の指示を受け(S301)、所定の電圧振幅vと所定の周波数fで高周波電力の発生を開始する(S302)。電圧振幅vと周波数fは適切な値が実験等により確認されたもので、予めオペレータにより操作部162を介して記憶部161に記憶されている。制御部160は、記憶部161に記憶されている電圧振幅vと周波数fや、後述する電流振幅の所定値I´等の処理用データを読み出して、処理開始時に発振部120へ送信する。
Next, ultrasonic processing in the ultrasonic processing apparatus 100 will be described with reference to FIG. FIG. 3 is a flowchart for explaining a series of processing operations in the ultrasonic processing apparatus 100.
First, when the operation unit 162 receives a processing start instruction from the operator, the control unit 160 instructs the oscillation unit 120 to start processing. Oscillating unit 120 receives an instruction processing start from the control unit 160 (S301), it starts the generation of the high frequency power at a predetermined voltage amplitude v 0 and a predetermined frequency f 0 (S302). Appropriate values of the voltage amplitude v 0 and the frequency f 0 have been confirmed by experiments and the like, and are stored in advance in the storage unit 161 via the operation unit 162 by the operator. The control unit 160 reads out processing data such as a voltage amplitude v 0 and a frequency f 0 stored in the storage unit 161 and a predetermined value I 0 ′ of a current amplitude described later, and transmits the processing data to the oscillation unit 120 at the start of processing. To do.

次に、発振部120は、検知部130に対して計測を開始させる(S303)。検知部130は、圧電振動子111へ印加される電力の電圧値V及び電流値Iの経時変化データ(波形データ)を取得し(S304)、電圧波形の位相θと電流波形の位相θが整合するかを診断する(S305)。
位相θと位相θが整合する場合(S305でYes)、検知部130は、さらに電流波形の振幅Iが所定値I´以上であるかを診断する(S306)。振幅Iが所定値以上である場合(S306でYes)、後述のステップS308へ遷移する。上記所定値I´は、適切な値が実験等により確認されたもので、予めオペレータにより操作部162を介して記憶部161に記憶されている。検知部130は、処理開始時に発振部120から所定値I´を受信する。
Next, the oscillation unit 120 causes the detection unit 130 to start measurement (S303). The detection unit 130 acquires time-dependent data (waveform data) of the voltage value V and the current value I of the power applied to the piezoelectric vibrator 111 (S304), and the voltage waveform phase θ V and the current waveform phase θ I. Is matched (S305).
When the phase θ V and the phase θ I match (Yes in S305), the detection unit 130 further diagnoses whether the amplitude I 0 of the current waveform is equal to or greater than a predetermined value I 0 ′ (S306). When the amplitude I 0 is equal to or greater than the predetermined value (Yes in S306), the process proceeds to Step S308 described later. The predetermined value I 0 ′ has been confirmed by an experiment or the like as an appropriate value, and is stored in advance in the storage unit 161 via the operation unit 162 by the operator. The detection unit 130 receives the predetermined value I 0 ′ from the oscillation unit 120 at the start of processing.

一方、位相θと位相θが整合しない場合(S305でNo)、或いは振幅Iが所定値未満の場合(S306でNo)、検知部130は発振部120に対して、発振部120が出力する電力の周波数を変化させるように命令する(S307)。命令の内容は、具体的には、電圧振幅vは一定に維持した状態で、所定の周波数範囲f−Δf乃至f+Δfで周波数変調させることである。
Δfの変調幅において位相θと位相θが整合しないか又は振幅Iが所定値未満の場合は(S305又はS306でNo)、検知部130は発振部120に対して、位相θと位相θが整合し振幅Iが所定値以上となるまで、変調幅Δfを変更値に再設定して周波数変調させる(S307)。図3のフローでは、位相θと位相θが整合し振幅Iが所定値以上となるまで、S304〜S308を繰り返すが、S307からS304へ遷移して、S304〜S307を繰り返すように構成してもよい。
変調幅Δfの初期値や変更値は、適切な値が実験等により確認されたもので、予めオペレータにより操作部162を介して記憶部161に記憶されている。発振部120は、処理開始時に制御部160から変調幅Δfの初期値や変更値を受信する。
On the other hand, when the phase θ V and the phase θ I do not match (No in S305), or when the amplitude I 0 is less than a predetermined value (No in S306), the detection unit 130 is compared with the oscillation unit 120. A command is issued to change the frequency of the output power (S307). Specifically, the content of the command is to perform frequency modulation in a predetermined frequency range f 0 −Δf to f 0 + Δf with the voltage amplitude v 0 maintained constant.
When the phase θ V and the phase θ I do not match in the modulation width of Δf or the amplitude I 0 is less than a predetermined value (No in S305 or S306), the detection unit 130 sets the phase θ V to the oscillation unit 120. Until the phase θ I is matched and the amplitude I 0 becomes equal to or greater than a predetermined value, the modulation width Δf is reset to the change value and frequency modulation is performed (S307). In the flow of FIG. 3, S304 to S308 are repeated until the phase θ V and the phase θ I are matched and the amplitude I 0 becomes equal to or greater than a predetermined value, but the transition is made from S307 to S304, and S304 to S307 are repeated. May be.
Appropriate values for the initial value and change value of the modulation width Δf have been confirmed by experiments and the like, and are stored in advance in the storage unit 161 via the operation unit 162 by the operator. The oscillation unit 120 receives an initial value or a change value of the modulation width Δf from the control unit 160 at the start of processing.

例えば、位相θと位相θが整合しないか(S305でNo)又は振幅Iが所定値未満の場合(S306でNo)、最初はΔf=10kHz、つまり周波数範囲f−10kHz乃至f+10kHzで周波数変調させ(S307)、電圧値V及び電流値Iの経時変化データを取得し(S304)、位相θと位相θが整合し振幅Iが所定値以上である処理条件を満足するか否かを診断し(S305とS306)、該処理条件を満足する場合は(S305とS306でYes)、周波数範囲f−10kHz乃至f+10kHzでの周波数変調を継続する。上記処理条件を満足しない場合は(S305又はS306でNo)、Δf=20kHz、つまり周波数範囲f−20kHz乃至f+20kHzで周波数変調させ(S307)、電圧値V及び電流値Iの経時変化データを取得し(S304)、上記処理条件を満足するか否かを診断し(S305とS306)、上記処理条件を満足する場合は(S305とS306でYes)、周波数範囲f−20kHz乃至f+20kHzでの周波数変調を継続する。上記処理条件を満足しない場合は(S305又はS306でNo)、Δf=30kHz、つまり周波数範囲f−30kHz乃至f+30kHzで周波数変調させ(S307)、電圧値V及び電流値Iの経時変化データを取得し(S304)、上記処理条件を満足するか否かを診断し(S305とS306)、上記処理条件を満足する場合は(S305とS306でYes)、周波数範囲f−30kHz乃至f+30kHzでの周波数変調を継続する。 For example, when the phase θ V and the phase θ I do not match (No in S305) or the amplitude I 0 is less than a predetermined value (No in S306), Δf = 10 kHz at the beginning, that is, the frequency range f 0 −10 kHz to f 0. + 10 kHz in to frequency modulation (S307), acquires the time course data of the voltage V and current I (S304), satisfy the processing conditions amplitude I 0 phase theta V and the phase theta I are matched is not less than a predetermined value (S305 and S306) and if the processing condition is satisfied (Yes in S305 and S306), frequency modulation in the frequency range f 0 -10 kHz to f 0 +10 kHz is continued. If the above processing conditions are not satisfied (No in S305 or S306), Δf = 20 kHz, that is, frequency modulation is performed in the frequency range f 0 -20 kHz to f 0 +20 kHz (S307), and the temporal change data of the voltage value V and current value I Is obtained (S304), and whether or not the above processing conditions are satisfied is diagnosed (S305 and S306). If the above processing conditions are satisfied (Yes in S305 and S306), the frequency range f 0 -20 kHz to f 0 is obtained. Continue frequency modulation at +20 kHz. When the above processing conditions are not satisfied (No in S305 or S306), Δf = 30 kHz, that is, frequency modulation is performed in the frequency range f 0 -30 kHz to f 0 +30 kHz (S307), and the time-dependent change data of the voltage value V and current value I (S304), and whether or not the above processing conditions are satisfied is diagnosed (S305 and S306). If the above processing conditions are satisfied (Yes in S305 and S306), the frequency range f 0 -30 kHz to f 0 is obtained. Continue frequency modulation at +30 kHz.

このようにして、位相θと位相θが整合し、かつ振幅Iが所定値以上に達するまで、発振部120は、変調幅Δfを変化させる調整を自動的に繰り返しながら高周波電力の発生を継続し、検知部130は、電圧値V及び電流値Iの測定を継続する。
ある変調幅Δfにおいて、位相θと位相θが整合し、かつ振幅Iが所定値以上に達すると、発振部120は、位相θと位相θが整合しかつ振幅Iが所定値以上に達した変調幅Δfを用いて、周波数範囲f−Δf乃至f+Δfでの周波数変調を継続する。
In this manner, the oscillation unit 120 generates high-frequency power while automatically repeating the adjustment for changing the modulation width Δf until the phase θ V and the phase θ I are matched and the amplitude I 0 reaches a predetermined value or more. The detection unit 130 continues to measure the voltage value V and the current value I.
In a certain modulation width Δf, when the phase θ V and the phase θ I are matched and the amplitude I 0 reaches a predetermined value or more, the oscillation unit 120 matches the phase θ V and the phase θ I and the amplitude I 0 is predetermined. The frequency modulation in the frequency range f 0 −Δf to f 0 + Δf is continued using the modulation width Δf reaching the value or more.

なお、発振部120が出力する電力は、所定の周波数範囲f−Δf乃至f+Δfで連続して周波数変調されるので、位相θと位相θが整合しない状態又は振幅Iが所定値未満となる周波数の状態が間欠的に発生しうるが、全体として、位相θと位相θが整合しかつ振幅Iが所定値以上となる状態が維持される。このように、周波数範囲f−Δf乃至f+Δfで連続して周波数変調すると、被処理物Wの主面Waと振動板112の放射面112aとの間の距離が、被処理物Wの回転に伴って変動するような場合、上記距離の変動により、位相θと位相θが整合しない状態又は振幅Iが所定値未満となる状態が間欠的に発生したとしても、全体として、位相θと位相θが整合しかつ振幅Iが所定値以上となる状態を維持することが容易となる。全体として位相θと位相θが整合しかつ振幅Iが所定値以上となる状態とは、例えば、周波数変調の1周期中において、位相θと位相θが整合しかつ振幅Iが所定値以上となる状態の時間的比率が、位相θと位相θが整合しないか又は振幅Iが所定値未満となる状態の時間的比率よりも大きい状態である。上述したステップS305とS306の診断も、同様に、位相θと位相θが整合しかつ振幅Iが所定値以上となる状態が、周波数変調の1周期中において占める時間的比率に基づき行うものである。 The power output from the oscillation unit 120 is continuously frequency-modulated in a predetermined frequency range f 0 −Δf to f 0 + Δf, so that the phase θ V and the phase θ I do not match or the amplitude I 0 is predetermined. Although a state of a frequency that is less than the value may occur intermittently, as a whole, a state in which the phase θ V and the phase θ I are matched and the amplitude I 0 is a predetermined value or more is maintained. As described above, when frequency modulation is continuously performed in the frequency range f 0 −Δf to f 0 + Δf, the distance between the main surface Wa of the workpiece W and the radiation surface 112a of the vibration plate 112 is set to be equal to that of the workpiece W. Even if the state where the phase θ V and the phase θ I do not match or the state where the amplitude I 0 is less than the predetermined value due to the variation in the distance as described above varies with the rotation, It is easy to maintain a state where the phase θ V and the phase θ I are matched and the amplitude I 0 is equal to or greater than a predetermined value. The state in which the phase θ V and the phase θ I are matched as a whole and the amplitude I 0 is equal to or greater than a predetermined value is, for example, that the phase θ V and the phase θ I are matched and the amplitude I 0 in one period of frequency modulation. Is a state in which the phase ratio of the phase θ V and the phase θ I do not match or is larger than the time ratio of the state in which the amplitude I 0 is less than the predetermined value. Similarly, the diagnosis in steps S305 and S306 described above is also performed based on the time ratio that one phase of frequency modulation occupies when the phase θ V and the phase θ I are matched and the amplitude I 0 is equal to or greater than a predetermined value. Is.

次に、ステップS306でYesと診断された後、又はステップS307の実行後、発振部120は、制御部160から処理停止の指示があるか否かをチェックする(S308)。制御部160は、例えば、記憶部161に予め記憶された超音波処理時間を読み出し、該超音波処理時間に達したときに、処理停止の指示を行う。あるいは、制御部160は、操作部162から入力されたオペレータの停止指示に従って処理停止の指示を行う。チェックした結果、処理停止の指示がない場合には(S308でNo)、S304のステップに戻って、ステップS304〜S308の一連の処理を継続する。一方、処理停止の指示があった場合には(S308でYes)、発振部120は高周波電力の発生を停止し(S309)、検知部130に対して計測を停止させる(S310)。これにより、一連の超音波処理動作を終了する。   Next, after diagnosing Yes in step S306 or after executing step S307, the oscillation unit 120 checks whether or not there is an instruction to stop processing from the control unit 160 (S308). For example, the control unit 160 reads out the ultrasonic processing time stored in advance in the storage unit 161, and instructs to stop the processing when the ultrasonic processing time is reached. Alternatively, the control unit 160 issues a process stop instruction in accordance with an operator stop instruction input from the operation unit 162. As a result of checking, if there is no instruction to stop the process (No in S308), the process returns to the step of S304, and the series of processes of steps S304 to S308 is continued. On the other hand, when there is an instruction to stop processing (Yes in S308), the oscillation unit 120 stops the generation of high-frequency power (S309) and causes the detection unit 130 to stop measurement (S310). Thus, a series of ultrasonic processing operations is completed.

以上の説明では、発振部120が、圧電振動子111へ印加される電圧値V及び電流値Iのデータ取得を検知部130へ指示し、検知部130が、電圧波形の位相θと電流波形の位相θが整合するかと、電流波形の振幅Iが所定値以上であるかを診断するようにした。しかし、制御部160が、圧電振動子111へ印加される電圧値V及び電流値Iのデータ取得を検知部130へ指示し、検知部130で取得した圧電振動子111へ印加される電圧値V及び電流値Iのデータに基づき、制御部160で、電圧波形の位相θと電流波形の位相θが整合するかと、電流波形の振幅Iが所定値以上であるかを診断するようにしてもよい。 In the above description, the oscillation unit 120 instructs the detection unit 130 to acquire data of the voltage value V and the current value I applied to the piezoelectric vibrator 111, and the detection unit 130 detects the phase θ V of the voltage waveform and the current waveform. whether phase theta I are matched in amplitude I 0 of the current waveform was made to diagnose whether a predetermined value or more. However, the control unit 160 instructs the detection unit 130 to acquire data of the voltage value V and the current value I applied to the piezoelectric vibrator 111, and the voltage value V applied to the piezoelectric vibrator 111 acquired by the detection unit 130. Based on the data of the current value I and the current value I, the control unit 160 diagnoses whether the phase θ V of the voltage waveform matches the phase θ I of the current waveform and whether the amplitude I 0 of the current waveform is equal to or greater than a predetermined value. May be.

また、以上の説明では、ステップS307において、発振部120が出力する電力を、所定の周波数範囲f−Δf乃至f+Δfで連続して周波数変調させるようにし、位相θと位相θが整合しかつ振幅Iが所定値以上となった後も、上記周波数変調を継続するようにした。このようにすると、被処理物Wの主面Waと振動板112の放射面112aとの間の距離が、被処理物Wの回転に伴って変動するような場合においても、全体として、位相θと位相θが整合しかつ振幅Iが所定値以上となる状態を維持することが容易となる。 In the above description, in step S307, the power output from the oscillating unit 120 is continuously frequency-modulated in a predetermined frequency range f 0 −Δf to f 0 + Δf, and the phase θ V and the phase θ I are The frequency modulation is continued even after the matching and the amplitude I 0 becomes a predetermined value or more. In this way, even when the distance between the main surface Wa of the workpiece W and the radiation surface 112a of the diaphragm 112 varies as the workpiece W rotates, the phase θ as a whole is increased. It becomes easy to maintain a state where V and phase θ I are matched and amplitude I 0 is equal to or greater than a predetermined value.

しかし、上述のようにするのではなく、発振部120が出力する電力の周波数を単に変化させて、例えば、f−Δfからf+Δfまで単調に変化させて、位相θと位相θが整合しかつ振幅Iが所定値以上となると、そのときの周波数を継続するようにしてもよい。このようにすると、被処理物Wの主面Waと振動板112の放射面112aとの間の距離が、被処理物Wの回転中にあまり変動しないような場合は、位相θと位相θが整合しかつ振幅Iが所定値以上となる状態を連続して維持することができる。 However, instead of as described above, simply by changing the frequency of the power oscillation unit 120 outputs, for example, monotonically changing from f 0 -.DELTA.f to f 0 + Delta] f, the phase theta V and the phase theta I Are matched and the amplitude I 0 becomes a predetermined value or more, the frequency at that time may be continued. In this way, when the distance between the main surface Wa of the workpiece W and the radiation surface 112a of the diaphragm 112 does not vary much during the rotation of the workpiece W, the phase θ V and the phase θ It is possible to continuously maintain a state where I is matched and the amplitude I 0 is equal to or greater than a predetermined value.

図4は、検知部130が計測する電圧波形Vと電流波形Iを示すデータの例で、電圧値Vの位相θと電流値Iの位相θが整合し、かつ振幅Iが所定値I’以上の状態である。横軸は時間tである。図4では、例えば、位相θのπ/2と位相θのπ/2が時間軸上で一致しており、電圧と電流が整合しているのが分かる。この状態においては、発振部120は、処理停止の入力があるまで、S304〜S306とS308のステップを継続する。 FIG. 4 is an example of data indicating the voltage waveform V and the current waveform I measured by the detection unit 130. The phase θ V of the voltage value V matches the phase θ I of the current value I, and the amplitude I 0 is a predetermined value. It is in a state of I 0 'or higher. The horizontal axis is time t. In FIG. 4, for example, π / 2 of the phase θ V and π / 2 of the phase θ I coincide on the time axis, and it can be seen that the voltage and the current are matched. In this state, the oscillation unit 120 continues the steps S304 to S306 and S308 until there is an input to stop processing.

図5は、検知部130が計測する電圧波形Vと電流波形Iを示すデータの例で、電圧値Vの位相θと電流値Iの位相θが整合しない状態である。図5では、例えば、位相θのπ/2と位相θのπ/2が時間軸上でずれており、電圧と電流が整合していないのが分かる。この状態においては、発振部120は、S307のステップに基づき、周波数変調を開始する。 Figure 5 shows an example of data indicating a voltage waveform V and the current waveform I to the detection unit 130 is measured, the phase theta I phase theta V and the current value I of the voltage value V is a state of not matching. In Figure 5, for example, [pi / 2 phase theta V of [pi / 2 and the phase theta I are shifted on the time axis, it can be seen that the voltage and current do not match. In this state, the oscillation unit 120 starts frequency modulation based on the step of S307.

図6は、検知部130が計測する電圧波形Vと電流波形Iを示すデータの例で、電圧値Vの位相θと電流値Iの位相θは整合しているが、振幅Iが所定値I’未満の状態である。この状態においても、発振部120は、S307のステップに基づき、周波数変調を開始する。 FIG. 6 is an example of data indicating the voltage waveform V and the current waveform I measured by the detection unit 130. The phase θ V of the voltage value V and the phase θ I of the current value I are matched, but the amplitude I 0 is The state is less than the predetermined value I 0 ′. Even in this state, the oscillation unit 120 starts frequency modulation based on the step of S307.

図5或いは図6で示した状態が現れるのは、振動板112の放射面112aから被処理物Wの主面Waまでの距離に対し、処理液L中における超音波振動の入射波長λが適切でないためである。この場合、発振部120が、振動板112の放射面112aから被処理物Wの主面Waまでの距離に対して最適な波長λ’が得られるように、S307のステップに基づき、超音波振動の周波数、つまり高周波電力の周波数の変調幅Δfの調整を繰り返す。   The state shown in FIG. 5 or 6 appears when the incident wavelength λ of ultrasonic vibration in the processing liquid L is appropriate for the distance from the radiation surface 112a of the diaphragm 112 to the main surface Wa of the workpiece W. Because it is not. In this case, the ultrasonic vibration is performed based on the step of S307 so that the oscillation unit 120 can obtain the optimum wavelength λ ′ with respect to the distance from the radiation surface 112a of the vibration plate 112 to the main surface Wa of the workpiece W. The adjustment of the modulation width Δf of the frequency, that is, the frequency of the high frequency power is repeated.

図7は、振動板112の放射面112aから被処理物Wの主面Waまでの距離zと、検知部130が計測する電力値p(電圧値V×電流値I)との関係を示すデータの例である。処理液Lは水、被処理物Wは厚さ0.7mmかつ直径200mmのシリコンウェハ、周波数fは1232kHz固定である。また、周波数1232kHzにおける処理液L中の超音波振動の波長λは、λ≒1.2mmである。
図7において、距離zが(8/4)λと(10/4)λの場合に、電力値pが大きくなっていることが分かる。
FIG. 7 shows data indicating the relationship between the distance z from the radiation surface 112a of the diaphragm 112 to the main surface Wa of the workpiece W and the power value p (voltage value V × current value I) measured by the detection unit 130. It is an example. The treatment liquid L is water, the workpiece W is a silicon wafer having a thickness of 0.7 mm and a diameter of 200 mm, and the frequency f 0 is fixed at 1232 kHz. The wavelength λ of the ultrasonic vibration in the processing liquid L at a frequency of 1232 kHz is λ≈1.2 mm.
In FIG. 7, it can be seen that the power value p increases when the distance z is (8/4) λ and (10/4) λ.

図8は、超音波振動の波長λを一定とし、振動板112の放射面112aから被処理物Wの主面Waまでの距離zを変化させた場合に、超音波振動の強度(音圧)分布をシュリーレン法によって撮像した結果の例である。図1の構成と同様に、処理液L(水)を貯留した槽内に、超音波振動部110と被処理物Wを浸漬して観察したものである。点線で示した箇所は超音波振動部110の位置、矢印で示した箇所は被処理物Wの位置を示す。
図8(a)は、z=2.4mm=(8/4)λの場合、図8(b)は、z=2.7mm=(9/4)λの場合、図8(c)は、z=3.0mm=(10/4)λの場合、図8(d)は、z=3.3mm=(11/4)λの場合である。
図8(a)と図8(c)の場合、つまり、距離zが(8/4)λと(10/4)λの場合に、被処理物Wの主面Waに沿った方向の広い領域に渡って明るくなる状態が観察される。これは、超音波振動の音圧が増大している状態である。また、図8(b)と図8(d)の場合、つまり、距離zが(9/4)λと(11/4)λの場合に、被処理物Wの主面Waに沿った方向は暗くなる状態が観察される。これは、超音波振動の音圧が低下している状態である。
FIG. 8 shows the intensity (sound pressure) of ultrasonic vibration when the wavelength λ of the ultrasonic vibration is constant and the distance z from the radiation surface 112a of the diaphragm 112 to the main surface Wa of the workpiece W is changed. It is an example of the result of having imaged distribution by the schlieren method. Similar to the configuration of FIG. 1, the ultrasonic vibration unit 110 and the workpiece W are immersed and observed in a tank in which the processing liquid L (water) is stored. A location indicated by a dotted line indicates the position of the ultrasonic vibration unit 110, and a location indicated by an arrow indicates the position of the workpiece W.
8A shows a case where z = 2.4 mm = (8/4) λ, FIG. 8B shows a case where z = 2.7 mm = (9/4) λ, and FIG. , Z = 3.0 mm = (10/4) λ, FIG. 8D shows the case where z = 3.3 mm = (11/4) λ.
8 (a) and 8 (c), that is, when the distance z is (8/4) λ and (10/4) λ, the direction along the main surface Wa of the workpiece W is wide. A brightening state is observed across the area. This is a state where the sound pressure of the ultrasonic vibration is increasing. 8B and 8D, that is, when the distance z is (9/4) λ and (11/4) λ, the direction along the main surface Wa of the workpiece W A darkening state is observed. This is a state where the sound pressure of the ultrasonic vibration is lowered.

図7及び図8によると、距離zがλ/4の偶数倍となる場合において、電力値pが大きくなり、被処理物Wの主面Waに沿った方向の広い領域に渡って音圧が増大する。これは、被処理物Wの主面Waにおいて表面弾性波が強まる一方、圧電振動子111に対する反射波の力学的負荷が減少したことを意味する。一方、距離zがλ/4の奇数倍となる場合において、電力値pは小さくなり、被処理物Wの主面Waに沿った方向において音圧が低下する。これは、被処理物Wの主面Waにおいて表面弾性波が弱まる一方、圧電振動子111に対する反射波の力学的負荷が増大したことを意味する。
このように、超音波振動の波長λに対して、距離zを適切な値に設定することにより、表面弾性波を強め、超音波振動の音圧を増大させることができる。
According to FIGS. 7 and 8, when the distance z is an even multiple of λ / 4, the power value p increases, and the sound pressure is increased over a wide region in the direction along the main surface Wa of the workpiece W. Increase. This means that the surface acoustic wave is strengthened on the main surface Wa of the workpiece W, while the mechanical load of the reflected wave on the piezoelectric vibrator 111 is reduced. On the other hand, when the distance z is an odd multiple of λ / 4, the power value p decreases, and the sound pressure decreases in the direction along the main surface Wa of the workpiece W. This means that the surface acoustic wave is weakened on the main surface Wa of the workpiece W, while the mechanical load of the reflected wave on the piezoelectric vibrator 111 is increased.
Thus, by setting the distance z to an appropriate value with respect to the wavelength λ of the ultrasonic vibration, the surface acoustic wave can be strengthened and the sound pressure of the ultrasonic vibration can be increased.

図9は、図3のステップS307で実行される、発振部120による周波数変調の発振波形の例である。電圧振幅vは一定であるが、周波数は、f−Δf乃至f+Δfの範囲で、周期Tで、連続的に変化している。図9に示す周波数変調は、圧電振動子111へ印加される電圧波形の位相θと電流波形の位相θが整合しないか又は電流波形の振幅Iが所定値以上でない場合に、変調幅Δfの初期値を用いて図3のS307で開始され、Δfの初期値を用いても、圧電振動子111へ印加される電圧波形の位相θと電流波形の位相θが整合しないか又は電流波形の振幅Iが所定値以上でない場合は、Δfの値が、図3のS307で再設定される。周期Tは、適切な値が実験等により確認されたもので、予めオペレータにより操作部162を介して記憶部161に記憶されている。発振部120は、処理開始時に制御部160から周期Tの値を受信する。周期Tは、図9の例では一定であるが、変化させるようにしてもよい。 FIG. 9 is an example of an oscillation waveform of frequency modulation performed by the oscillation unit 120, which is executed in step S307 of FIG. The voltage amplitude v 0 is constant, but the frequency continuously changes with the period T in the range of f 0 −Δf to f 0 + Δf. The frequency modulation shown in FIG. 9 is performed when the phase θ V of the voltage waveform applied to the piezoelectric vibrator 111 does not match the phase θ I of the current waveform or the amplitude I 0 of the current waveform is not equal to or greater than a predetermined value. 3 is started using the initial value of Δf. Even if the initial value of Δf is used, the phase θ V of the voltage waveform applied to the piezoelectric vibrator 111 does not match the phase θ I of the current waveform, or If the amplitude I 0 of the current waveform is not greater than or equal to the predetermined value, the value of Δf is reset at S307 in FIG. An appropriate value of the period T has been confirmed by experiments or the like, and is stored in advance in the storage unit 161 via the operation unit 162 by the operator. The oscillation unit 120 receives the value of the period T from the control unit 160 at the start of processing. The period T is constant in the example of FIG. 9, but may be changed.

図10は、周波数の変調幅Δfと、検知部130が計測する電力値p(電圧値×電流値)との関係を示すデータの例である。図7と同様に、処理液Lは水、被処理物Wは厚さ0.7mmかつ直径200mmのシリコンウェハ、周波数fは1232kHz固定(波長λ≒1.2mm)である。また、距離zは2.7mmである。
図10から、Δf=30kHzの場合において、電力値pが最も大きくなることが分かる。
FIG. 10 is an example of data indicating the relationship between the frequency modulation width Δf and the power value p (voltage value × current value) measured by the detection unit 130. As in FIG. 7, the treatment liquid L is water, the workpiece W is a silicon wafer having a thickness of 0.7 mm and a diameter of 200 mm, and the frequency f 0 is fixed at 1232 kHz (wavelength λ≈1.2 mm). The distance z is 2.7 mm.
FIG. 10 shows that the power value p becomes the largest when Δf = 30 kHz.

図11は、図10と同じ条件で、超音波振動の周波数の変調幅Δfを変化させた場合に、超音波振動の強度(音圧)分布をシュリーレン法によって撮像した結果の例である。図8と同様に、処理液L(水)を貯留した槽内に、超音波振動部110と被処理物Wを浸漬して観察したものである。点線で示した箇所は超音波振動部110の位置、矢印で示した箇所は被処理物Wの位置を示す。
図11(a)はΔf=0kHzの場合、図11(b)はΔf=10kHzの場合、図11(c)はΔf=20kHzの場合、図11(d)はΔf=30kHzの場合である。図11(d)の場合、つまりΔf=30kHzの場合において、被処理物Wの主面Waに沿った方向の広い領域に渡って明るくなる状態が観察され、超音波振動の音圧が増大していることが分かる。
FIG. 11 shows an example of the result of imaging the ultrasonic vibration intensity (sound pressure) distribution by the Schlieren method when the modulation width Δf of the ultrasonic vibration frequency is changed under the same conditions as in FIG. Similar to FIG. 8, the ultrasonic vibration unit 110 and the workpiece W are immersed and observed in a tank in which the processing liquid L (water) is stored. A location indicated by a dotted line indicates the position of the ultrasonic vibration unit 110, and a location indicated by an arrow indicates the position of the workpiece W.
11A shows a case where Δf = 0 kHz, FIG. 11B shows a case where Δf = 10 kHz, FIG. 11C shows a case where Δf = 20 kHz, and FIG. 11D shows a case where Δf = 30 kHz. In the case of FIG. 11D, that is, in the case of Δf = 30 kHz, a bright state is observed over a wide area in the direction along the main surface Wa of the workpiece W, and the sound pressure of ultrasonic vibration increases. I understand that

処理液L中の超音波振動の波長λは、λ=c/fで算出される。cは、処理液L中の超音波振動の伝播速度で約1478m/sである。fは、処理液L中の超音波振動の周波数である。したがって、Δf=0kHzの場合はλ≒1.2mmとなり、Δf=30kHzの場合はλ≒1.17mmとなる。距離zは2.7mmであるので、Δf=0kHzの場合はz≒2、25λ≒(9/4)λとなり、Δf=30kHzの場合はz≒2.3λ≠(9/4)λとなり、λ/4の奇数倍(表面弾性波の最も弱まる状態)を回避することができる。   The wavelength λ of the ultrasonic vibration in the processing liquid L is calculated by λ = c / f. c is a propagation velocity of ultrasonic vibration in the processing liquid L, and is about 1478 m / s. f is the frequency of ultrasonic vibration in the processing liquid L. Therefore, when Δf = 0 kHz, λ≈1.2 mm, and when Δf = 30 kHz, λ≈1.17 mm. Since the distance z is 2.7 mm, when Δf = 0 kHz, z≈2, 25λ≈ (9/4) λ, and when Δf = 30 kHz, z≈2.3λ ≠ (9/4) λ, An odd multiple of λ / 4 (a state in which the surface acoustic wave is weakest) can be avoided.

図10及び図11によると、変調幅Δf=30kHzにおいて電力値pは大きくなり、被処理物Wの主面Waに沿った方向の広い領域に渡って音圧が増大する。これは、被処理物Wの主面Waにおいて表面弾性波が強まる一方、圧電振動子111に対する反射波の力学的負荷が減少したことを意味する。
このように、距離zが一定の場合において、超音波振動の周波数の変調幅Δfを適切な値に設定することにより、表面弾性波を強め、超音波振動の音圧を増大させることができる。
10 and 11, the power value p increases at the modulation width Δf = 30 kHz, and the sound pressure increases over a wide area in the direction along the main surface Wa of the workpiece W. This means that the surface acoustic wave is strengthened on the main surface Wa of the workpiece W, while the mechanical load of the reflected wave on the piezoelectric vibrator 111 is reduced.
Thus, when the distance z is constant, the surface acoustic wave can be strengthened and the sound pressure of the ultrasonic vibration can be increased by setting the modulation width Δf of the frequency of the ultrasonic vibration to an appropriate value.

図12は、処理液L中の溶存気体濃度Cと、超音波振動の音圧振幅Pと、例えば被処理物Wの主面Waに形成された凸パターンに対するダメージ発生頻度Fとの関係を示すデータの例である。処理液Lは25℃の水、溶存気体は窒素である。なお、25℃の水に対する窒素の飽和溶解濃度Cは約18ppmである。 Figure 12 is a dissolved gas concentration C 0 of the processing liquid L, and the sound pressure amplitude P a of the ultrasonic vibration, for example, the relationship between the damage occurrence frequency F for projecting the pattern formed on the main surface Wa of the workpiece W It is an example of the data which shows. The treatment liquid L is water at 25 ° C., and the dissolved gas is nitrogen. Incidentally, the saturated solubility concentration C S of nitrogen to 25 ° C. water is about 18 ppm.

溶存気体濃度Cの増大とともに、音圧振幅Pは低下する。これは、溶存気体濃度Cが増大すると、気泡の発生量が増え、それが音波の伝播を妨げるためと考えられる。溶存気体濃度Cが0乃至1ppm付近では、音圧振幅Pは最大であり、したがって、処理液Lの流動は最も活発な状態である。
一方、ダメージ発生頻度Fは、溶存気体濃度Cが8ppm付近で最も多く、これより低濃度の領域ではキャビテーション気泡の発生量の低下によって減少し、高濃度の領域では音圧振幅Pの低下に伴うキャビテーション気泡の運動の微弱化によって減少する。
したがって、溶存気体濃度Cを8ppmよりも低くするにつれて、ダメージ発生頻度Fが減少する一方、処理液Lの流動性が高くなることが分かる。さらに1ppm未満では、ダメージ発生頻度Fがない状態にできる。
With increasing the dissolved gas concentration C 0, the sound pressure amplitude P a is reduced. This is presumably because when the dissolved gas concentration C 0 increases, the amount of bubbles generated increases, which prevents the propagation of sound waves. The dissolved gas concentration C 0 is 0 to 1ppm vicinity, sound pressure amplitude P a is the maximum, therefore, the flow of the treatment liquid L is most active state.
Meanwhile, the damage occurrence frequency F, the dissolved gas concentration C 0 is most near 8 ppm, and decreased by the reduction in the generation amount of cavitation bubbles is lower than this concentration in the region, reduction of the sound pressure amplitude P a in a high concentration in the region It decreases by weakening the movement of the cavitation bubble.
Thus, as the dissolved gas concentration C 0 to less than 8 ppm, while the damage occurrence frequency F is decreased, it can be seen that the flow of the treatment liquid L becomes higher. Furthermore, if it is less than 1 ppm, the damage occurrence frequency F can be eliminated.

図13は、処理液L中の溶存気体濃度Cと、処理液Lが例えば被処理物Wの主面Waに形成された凹パターンの底部まで達するのに要する時間(液浸入時間τ)との関係を示すグラフの例である。図10と同様に、処理液Lは25℃の水、溶存気体は窒素である。
図13により、溶存気体濃度Cを低下させることで、処理液Lは短時間で凹パターンの底部まで到達することが分かる。したがって、溶存気体濃度Cを低くすると、凹パターンに対して、短時間で良好な洗浄結果が得られることが分かる。
FIG. 13 shows the dissolved gas concentration C 0 in the processing liquid L and the time required for the processing liquid L to reach the bottom of the concave pattern formed on the main surface Wa of the workpiece W (liquid intrusion time τ). It is an example of the graph which shows these relationships. Similar to FIG. 10, the treatment liquid L is water at 25 ° C., and the dissolved gas is nitrogen.
By 13, by reducing the dissolved gas concentration C 0, the processing liquid L is found to reach to the bottom of the concave pattern in a short time. Therefore, lowering the dissolved gas concentration C 0, with respect to the concave pattern, it can be seen that a short time with good cleaning results are obtained.

なお、凹パターンは円筒状の深孔であると仮定した場合、液浸入時間τは、以下の理論計算式で大まかに見積もられる。   When it is assumed that the concave pattern is a cylindrical deep hole, the liquid intrusion time τ can be roughly estimated by the following theoretical calculation formula.

Figure 0005759856
D:処理液L中における溶存気体の拡散係数
:処理液Lに対する気体の飽和溶解濃度
:処理液L中の溶存気体濃度
h:凹凸の高さ(凹パターンの深さ)
d:凹パターンの直径
θ:被処理物Wに対する処理液Lの接触角
σ:処理液Lの表面張力
:処理液Lの圧力
:処理液Lの蒸気圧
Figure 0005759856
D: Diffusion coefficient of dissolved gas in treatment liquid L C S : Saturated dissolved concentration of gas in treatment liquid L C 0 : Dissolved gas concentration in treatment liquid L h: Height of irregularities (depth of concave pattern)
d: Diameter of concave pattern θ: Contact angle of treatment liquid L to workpiece W σ: Surface tension of treatment liquid L P w : Pressure of treatment liquid L P v : Vapor pressure of treatment liquid L

以上の説明では、処理液Lは水であると仮定して、凸パターンに対するダメージを抑制し、かつ凹パターンの底部及び側壁部を十分に洗浄することが可能な実施形態について説明した。しかし、処理液Lは、エタノール、イソプロピルアルコール、ハイドロフルオロエーテルといった高揮発性の薬液を用いても良い。これらの薬液を用いる場合においても、溶存気体濃度Cを、例えば1ppm未満まで低下させた後に、被処理物Wの主面へ供給することによって、処理液Lが水である場合と同様に、凸パターンに対するダメージを抑制し、かつ凹パターンの底部及び側壁部を十分に洗浄することが可能になる。さらに、凹パターンが上述の高揮発性の薬液で満たされることで、洗浄後の乾燥時間が短縮されるとともに、凸パターンが処理液Lの表面張力で引っ張られて倒壊する現象も抑制することが可能になる。これは、高揮発性の薬液の表面張力が水よりも小さいからである。 In the above description, the processing liquid L is assumed to be water, and an embodiment has been described in which damage to the convex pattern is suppressed and the bottom and side walls of the concave pattern can be sufficiently cleaned. However, the treatment liquid L may be a highly volatile chemical liquid such as ethanol, isopropyl alcohol, or hydrofluoroether. Even when these chemical solutions are used, the dissolved gas concentration C 0 is reduced to, for example, less than 1 ppm, and then supplied to the main surface of the workpiece W, as in the case where the processing solution L is water. It is possible to suppress damage to the convex pattern and sufficiently clean the bottom and side walls of the concave pattern. Furthermore, filling the concave pattern with the above highly volatile chemical solution shortens the drying time after cleaning, and also suppresses the phenomenon that the convex pattern is pulled by the surface tension of the processing liquid L and collapses. It becomes possible. This is because the surface tension of the highly volatile chemical solution is smaller than that of water.

以上説明した実施形態によれば、少なくとも次の(1)〜(9)の効果を奏する。
(1)被処理物に励起された表面弾性波により、被処理物の表面における処理液の流動が促進され、被処理物の凹パターンの底部及び側壁部にも十分に処理液が浸透して、良好な洗浄結果が得られる。
(2)処理液中の溶存気体濃度の低下によって、さらに被処理物の凹パターンの底部及び側壁部に処理液が浸透するとともに、キャビテーション気泡の発生量が減少し、被処理物の凸パターンに対するダメージが抑制される。
(3)超音波振動部に印加する電力の電圧値の位相と電流値の位相とが互いに整合し、かつ電流値が所定値以上となるように、電力の周波数を変化させるので、効率よく被処理物を洗浄できる。
(4)超音波振動部に印加する電力の電圧値の位相と電流値の位相とが互いに整合し、かつ電流値が所定値以上となるように、電力の周波数を周期的に変化させるので、被処理物と振動板との間の距離が被処理物の回転に伴って変動するような場合においても、全体として、電圧値の位相と電流値の位相とが互いに整合し、かつ電流値が所定値以上となる状態を維持することが容易となる。
(5)上記(4)において、さらに、電圧値の位相と電流値の位相とが互いに整合し電流値が所定値以上となるまで、変化させる周波数の範囲(変調幅)を変えるので、電圧値の位相と電流値の位相とが互いに整合し電流値が所定値以上となる状態にすることが容易となる。
(6)超音波振動部の放射面が、被処理物の凹凸が形成された主面に対向するように配置され、前記放射面と前記主面の間が脱気された処理液で満たされるので、効率よく被処理物を洗浄できる。
(7)加熱脱気部と減圧脱気部とを組み合わせて脱気部を構成するので、処理液の脱気に要する時間を短くすることが可能になる。
(8)被処理物の裏面へも処理液を供給しているので、被処理物における超音波振動の透過を促進し、被処理物の主面からの反射波成分を弱めることが可能になる。
(9)処理液が、アルコール類、エーテル類、フッ素系溶剤の何れか一つ以上を含むように構成された場合は、洗浄後の乾燥処理に要する時間を短くすることが可能になる。
According to the embodiment described above, at least the following effects (1) to (9) are obtained.
(1) The surface acoustic wave excited by the object to be processed promotes the flow of the process liquid on the surface of the object to be processed, and the treatment liquid sufficiently penetrates into the bottom and side walls of the concave pattern of the object to be processed. Good cleaning results can be obtained.
(2) Due to the decrease in the concentration of dissolved gas in the processing liquid, the processing liquid further penetrates into the bottom and side walls of the concave pattern of the object to be processed, and the amount of cavitation bubbles generated is reduced. Damage is suppressed.
(3) The frequency of the power is changed so that the phase of the voltage value of the power applied to the ultrasonic vibration unit and the phase of the current value match each other and the current value is equal to or greater than a predetermined value. The treated product can be washed.
(4) Since the phase of the voltage value of the power applied to the ultrasonic vibration unit and the phase of the current value are matched with each other, and the frequency of the power is periodically changed so that the current value becomes a predetermined value or more, Even in the case where the distance between the workpiece and the diaphragm varies with the rotation of the workpiece, as a whole, the phase of the voltage value and the phase of the current value are matched with each other, and the current value is It becomes easy to maintain a state of a predetermined value or more.
(5) In the above (4), since the voltage value phase and the current value phase are matched with each other and the range of the frequency to be changed (modulation width) is changed until the current value becomes a predetermined value or more, the voltage value And the phase of the current value are matched with each other, and the current value can be easily set to a predetermined value or more.
(6) The radiation surface of the ultrasonic vibration unit is disposed so as to face the main surface on which the unevenness of the object to be processed is formed, and the space between the radiation surface and the main surface is filled with the degassed processing liquid. Therefore, the object to be processed can be cleaned efficiently.
(7) Since the degassing unit is configured by combining the heated degassing unit and the vacuum degassing unit, the time required for degassing the processing liquid can be shortened.
(8) Since the processing liquid is also supplied to the back surface of the object to be processed, it is possible to promote the transmission of ultrasonic vibrations in the object to be processed and weaken the reflected wave component from the main surface of the object to be processed. .
(9) When the treatment liquid is configured to contain any one or more of alcohols, ethers, and fluorinated solvents, the time required for the drying treatment after washing can be shortened.

なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。   In addition, this invention is not limited to above-described embodiment, Various modifications are included. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.

また、上記した実施形態の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、半導体メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、または、ICカード、SD(Secure Digital)カード、DVD(Digital Versatile Disk)等の記録媒体に置くことができる。   In addition, each configuration, function, processing unit, processing unit, and the like of the above-described embodiments may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files for realizing each function is stored in a recording device such as a semiconductor memory, a hard disk, an SSD (Solid State Drive), or an IC card, an SD (Secure Digital) card, a DVD (Digital Versatile Disk). Etc. can be placed on a recording medium.

また、上記した実施形態の図における制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。   In addition, the control lines and information lines in the drawings of the above-described embodiments are those that are considered necessary for explanation, and do not necessarily indicate all the control lines and information lines on the product. Actually, it may be considered that almost all the components are connected to each other.

100…超音波処理装置、110…超音波振動部、111…圧電振動子、112…振動板、112a…放射面、113…振動子ケース、113a…フランジ部、114…給電ケーブル、114a…分岐ケーブル、120…発振部、130…検知部、140…処理液供給部、141…温調タンク(加熱脱気部)、142…給液管、143…減圧脱気部、144…給液管、145…収容部、145a…排液部、160…制御部、161…記憶部、162…操作部、163…表示部、W…被処理物、Wa…被処理物主面、L…処理液。   DESCRIPTION OF SYMBOLS 100 ... Ultrasonic processing apparatus, 110 ... Ultrasonic vibration part, 111 ... Piezoelectric vibrator, 112 ... Diaphragm, 112a ... Radiation surface, 113 ... Vibrator case, 113a ... Flange part, 114 ... Feeding cable, 114a ... Branch cable , 120 oscillating unit, 130 detecting unit, 140 processing liquid supply unit, 141 temperature control tank (heat deaeration unit), 142 liquid supply pipe, 143 decompression deaeration unit, 144 liquid supply pipe, 145 DESCRIPTION OF SYMBOLS ... Storage part, 145a ... Drainage part, 160 ... Control part, 161 ... Memory | storage part, 162 ... Operation part, 163 ... Display part, W ... To-be-processed object, Wa ... To-be-processed object main surface, L ... Processing liquid.

Claims (1)

被処理物を超音波により洗浄処理する超音波処理装置であって、
超音波振動を放射する超音波振動部と、
前記超音波振動部に電力を印加する発振部と、
前記被処理物と該被処理物を処理する処理液とを収容する収容部を有し、該収容部内へ前記処理液を供給する処理液供給部と、
前記発振部から前記超音波振動部へ印加される電力の電圧値及び電流値を計測する検知部と、を備え、
前記超音波振動部において超音波振動を放射する放射面は、前記収容部内に収容された前記被処理物の凹凸が形成された主面に対向するように配置され、
前記処理液供給部が、前記収容部内へ供給される前の前記処理液を脱気する脱気部を有し、前記収容部内に収容された前記被処理物の前記主面と該主面の裏面へそれぞれ前記脱気部により脱気された処理液を供給し、
前記発振部は、前記検知部で計測される電圧値の位相と電流値の位相とが互いに整合し、かつ電流値が所定値以上となるように、前記発振部が出力する電力の周波数を周期的に変化させるとともに、該変化させる周波数の範囲を変え、第1の周波数範囲において、前記検知部で計測される電圧値の位相と電流値の位相とが互いに整合し、かつ電流値が前記所定値以上になると、前記発振部が出力する電力の周波数を、前記第1の周波数範囲内で周期的に変化させることを特徴とする超音波処理装置。
An ultrasonic processing apparatus for cleaning an object to be processed with ultrasonic waves,
An ultrasonic vibration part that radiates ultrasonic vibrations;
An oscillating unit for applying electric power to the ultrasonic vibrating unit;
A treatment liquid supply part for containing the treatment object and a treatment liquid for treating the treatment object, and supplying the treatment liquid into the accommodation part;
A detection unit that measures a voltage value and a current value of power applied from the oscillation unit to the ultrasonic vibration unit, and
A radiation surface for radiating ultrasonic vibrations in the ultrasonic vibration part is disposed so as to face a main surface on which irregularities of the object to be processed housed in the housing part are formed,
The processing liquid supply unit includes a deaeration unit that degass the processing liquid before being supplied into the storage unit, and the main surface of the object to be processed stored in the storage unit and the main surface Supply the processing liquid degassed by the degassing part to the back surface ,
The oscillation unit cycles the frequency of the power output by the oscillation unit so that the phase of the voltage value and the phase of the current value measured by the detection unit are matched with each other and the current value is equal to or greater than a predetermined value. The frequency range to be changed is changed, and in the first frequency range, the phase of the voltage value and the phase of the current value measured by the detection unit match each other, and the current value is the predetermined value The ultrasonic processing apparatus characterized by periodically changing the frequency of the electric power output from the oscillating unit within the first frequency range when the value exceeds a value .
JP2011221968A 2011-10-06 2011-10-06 Ultrasonic treatment equipment Active JP5759856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011221968A JP5759856B2 (en) 2011-10-06 2011-10-06 Ultrasonic treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011221968A JP5759856B2 (en) 2011-10-06 2011-10-06 Ultrasonic treatment equipment

Publications (2)

Publication Number Publication Date
JP2013084667A JP2013084667A (en) 2013-05-09
JP5759856B2 true JP5759856B2 (en) 2015-08-05

Family

ID=48529597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011221968A Active JP5759856B2 (en) 2011-10-06 2011-10-06 Ultrasonic treatment equipment

Country Status (1)

Country Link
JP (1) JP5759856B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016058665A (en) 2014-09-12 2016-04-21 株式会社Screenホールディングス Substrate cleaning method and substrate cleaning device
JP6592303B2 (en) 2015-08-14 2019-10-16 株式会社Screenホールディングス Substrate cleaning method and substrate cleaning apparatus
CN109075103B (en) * 2016-04-06 2022-06-10 盛美半导体设备(上海)股份有限公司 Method and apparatus for cleaning semiconductor substrate
CN109789450B (en) * 2016-09-19 2023-01-03 盛美半导体设备(上海)股份有限公司 Method and apparatus for cleaning substrate
WO2023145431A1 (en) * 2022-01-31 2023-08-03 Agc株式会社 Substrate cleaning method, glass substrate manufacturing method, euvl mask blank manufacturing method, and substrate cleaning apparatus
WO2023166961A1 (en) * 2022-03-03 2023-09-07 Agc株式会社 Ultrasonic cleaning head, substrate cleaning method, substrate cleaning device, method for manufacturing substrate, and method for manufacturing mask blank for euvl

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05301078A (en) * 1992-04-23 1993-11-16 Brother Ind Ltd Oscillating circuit for ultrasonic washer
US5990060A (en) * 1997-02-25 1999-11-23 Tadahiro Ohmi Cleaning liquid and cleaning method
JP2000077376A (en) * 1998-08-27 2000-03-14 Toshiba Corp Ultrasonic cleaning method and its device
JP2002102578A (en) * 2000-09-28 2002-04-09 Kao Corp Ultrasonic washing device
JP4023103B2 (en) * 2001-04-27 2007-12-19 凸版印刷株式会社 Ultrasonic fluid processing equipment
JP2003031535A (en) * 2001-07-11 2003-01-31 Mitsubishi Electric Corp Ultrasonic cleaning method of semiconductor manufacturing apparatus
JP2004335525A (en) * 2003-04-30 2004-11-25 Dainippon Screen Mfg Co Ltd Device and method for treating substrate
JP2007324509A (en) * 2006-06-05 2007-12-13 Sony Corp Substrate cleaning apparatus and substrate cleaning method
JP2008091364A (en) * 2006-09-29 2008-04-17 Dainippon Screen Mfg Co Ltd Method and equipment for processing substrate
JP2008126099A (en) * 2006-11-16 2008-06-05 Shimada Phys & Chem Ind Co Ltd Degassing apparatus and degassing method

Also Published As

Publication number Publication date
JP2013084667A (en) 2013-05-09

Similar Documents

Publication Publication Date Title
JP5759856B2 (en) Ultrasonic treatment equipment
JP4934739B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
KR101437301B1 (en) Ultrasonic cleaning device and ultrasonic cleaning method
US8156950B2 (en) Megasonic cleaning with controlled boundary layer thickness and associated systems and methods
KR100468737B1 (en) Wafer cleaning system, cleaning probe and method for cleaning wafer
TWI473668B (en) Improved ultrasonic cleaning method and apparatus
JPWO2018193569A1 (en) Apparatus and method for sound pressure analysis of high sound pressure field, ultrasonic cleaner, ultrasonic processor
JP2010153541A (en) Ultrasonic cleaning device, and ultrasonic cleaning method
JP5780890B2 (en) Ultrasonic cleaning method and apparatus
JP4800146B2 (en) Ultrasonic cleaning equipment
CN210690187U (en) Ultrasonic cleaning system and tissue processor
JP2003320328A (en) Ultrasonic cleaning apparatus
JP4533406B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
Fuchs et al. Ultrasonic cleaning
JP5592734B2 (en) Ultrasonic cleaning apparatus and ultrasonic cleaning method
JP4493675B2 (en) Ultrasonic cleaning equipment
KR102065067B1 (en) An ultrasonic cleaning device based on multi-ultrasonic vibrator that drive multiple frequencies simultaneously
Suzuki et al. Novel ultrasonic cleaning equipment using waveguide mode
JP2000354835A (en) Ultrasonic cleaning treatment method and apparatus
JPH08267029A (en) Method and device for ultrasonic washing
KR100986586B1 (en) The ultrasonic oscillator
KR100986587B1 (en) Ultrasonic cleaning apparatus for preventing erosion
JP2011155240A (en) Ultrasonic cleaning method and ultrasonic cleaning apparatus of semiconductor wafer
JP2002126668A (en) Ultrasonic cleaning apparatus
JP6043084B2 (en) Semiconductor substrate cleaning method and cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150608

R150 Certificate of patent or registration of utility model

Ref document number: 5759856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250