JP2008126099A - Degassing apparatus and degassing method - Google Patents

Degassing apparatus and degassing method Download PDF

Info

Publication number
JP2008126099A
JP2008126099A JP2006310481A JP2006310481A JP2008126099A JP 2008126099 A JP2008126099 A JP 2008126099A JP 2006310481 A JP2006310481 A JP 2006310481A JP 2006310481 A JP2006310481 A JP 2006310481A JP 2008126099 A JP2008126099 A JP 2008126099A
Authority
JP
Japan
Prior art keywords
signal
ultrasonic
drive
microcomputer
oscillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006310481A
Other languages
Japanese (ja)
Inventor
Hiroki Tsuji
寛樹 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP2006310481A priority Critical patent/JP2008126099A/en
Publication of JP2008126099A publication Critical patent/JP2008126099A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a degassing apparatus capable of accelerating efficient degassing by well floating air bubbles in one degassing time from the oscillation of an ultrasonic vibrator to the stop thereof, and a degassing method. <P>SOLUTION: In the degassing apparatus for irradiating the liquid 2 in a washing tank 1 with an ultrasonic wave by the ultrasonic oscillator 10 and the ultrasonic vibrator 4, the ultrasonic oscillator 10 is equipped with a microcomputer 11 for respectively outputting a 0/1 signal A, which forms frequency by modulating the oscillation frequency to the ultrasonic vibrator 4 and an ON/OFF signal B for repeating the oscillation/stop of the ultrasonic vibrator 4 to irradiate the liquid 2 a plurality of times to irradiate the liquid with an ultrasonic wave, DDS12 for inputting the 0/1 signal A of the microcomputer 11 to form a signal waveform C for driving the ultrasonic vibrator 4, a drive IC13 for outputting a drive signal D for processing the signal waveform C according to the ON/OFF signal B and an output means 14 for inputting the drive signal D of the drive IC13 to apply switching power E for repeating the stop and oscillation of the ultrasonic vibrator 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、脱気装置及び方法に係り、より詳細には、被洗浄物に対する洗浄力を向上させるために超音波振動子により超音波を照射して液体中に存在する気体を脱気する脱気装置及び方法に関する。   The present invention relates to a deaeration apparatus and method, and more particularly, a deaeration in which a gas existing in a liquid is deaerated by irradiating ultrasonic waves with an ultrasonic vibrator in order to improve the cleaning power for an object to be cleaned. The present invention relates to a gas apparatus and method.

従来、脱気装置は、一般に、脱気された液体を用いて超音波洗浄を行うと被洗浄物(半導体ウェハ基板やLCD用ガラス基板などの電子デバイス用基板)に対する洗浄力が向上するということが知られており、このような洗浄技術としてよく採用されていた。そして、従来の脱気装置としては、洗浄槽内の液体に超音波振動子から照射する超音波を、所定の周波数帯域幅に連続して変調させることで、液体に照射する超音波の音圧分布の周期を連続的に変化させ、超音波定在波を緩和、消滅させる構造がよく知られている(例えば、特許文献1参照。)。
特開平11−290611号公報 前述した構造による実施の形態を、図6および図7を参照して説明する。図6は、従来の脱気装置の一実施形態による液体2中の時間経過に伴う超音波の音圧分布2aと脱泡2b作用とをモデル的に示す図である。また、図7は、図6に示した液体2中で周期が連続的に変化する音圧分布2aを示す図である。
Conventionally, deaerators generally improve the cleaning power for objects to be cleaned (substrates for electronic devices such as semiconductor wafer substrates and LCD glass substrates) when ultrasonic cleaning is performed using the degassed liquid. Is known and has been often adopted as such a cleaning technique. And, as a conventional deaeration device, the sound pressure of the ultrasonic wave irradiated to the liquid is continuously modulated by modulating the ultrasonic wave irradiated from the ultrasonic vibrator to the liquid in the cleaning tank to a predetermined frequency bandwidth. A structure in which the period of distribution is continuously changed to relax and extinguish an ultrasonic standing wave is well known (see, for example, Patent Document 1).
JP, 11-290611, A Embodiment by the structure mentioned above is described with reference to FIG. 6 and FIG. FIG. 6 is a diagram schematically illustrating the ultrasonic sound pressure distribution 2a and the defoaming 2b action over time in the liquid 2 according to an embodiment of the conventional degassing apparatus. FIG. 7 is a diagram showing a sound pressure distribution 2a whose period continuously changes in the liquid 2 shown in FIG.

図6に示すように、従来の脱気装置は、洗浄槽1の底部に装着した超音波振動子4から内部の液体2に超音波を伝播するように形成されている。この超音波振動子4には、液体に照射する周波数を、所定の周波数帯域幅に連続的に変調させることのできる超音波発振器20が連結されている。そして、このような装置を用いた従来の脱気方法では、液体2中で周期的に変調された連続的な超音波の照射により疎密波が形成されて音圧分布2aが発生し、所定の時間経過と共に最大音圧帯点cと最小音圧帯点dとからなる音圧分布2aが、液体2中を小刻みに移動する。また、この時間経過と共に移動する音圧分布2aは、図7に示すように、液体2中に伝播する疎密波により波長λの基準周波数、波長λ1の高周波数帯、及び波長λ2の低周波数帯のように各波長λ、λ1、λ2...λnの間隔ごとに各々連続した音圧分布2aによる定在波が生じ、液体2が満遍なく気層と触れる全体的なキャビテーションを発生させる。従って、液体2中を満遍なく移動するように発生したキャビテーションにより、液体2中の気泡2b同士が頻繁に群集、融合し合い、一つの気泡に大きく成長し、速やかに浮上して分離でき、効率的な脱気を実現できる。   As shown in FIG. 6, the conventional deaeration device is formed so as to propagate ultrasonic waves from the ultrasonic transducer 4 attached to the bottom of the cleaning tank 1 to the internal liquid 2. An ultrasonic oscillator 20 capable of continuously modulating the frequency irradiated to the liquid to a predetermined frequency bandwidth is connected to the ultrasonic transducer 4. In the conventional degassing method using such an apparatus, a dense wave is formed by irradiation of continuous ultrasonic waves periodically modulated in the liquid 2 to generate a sound pressure distribution 2a. The sound pressure distribution 2a composed of the maximum sound pressure band point c and the minimum sound pressure band point d moves in the liquid 2 in small increments with time. Further, as shown in FIG. 7, the sound pressure distribution 2a that moves with the passage of time has a reference frequency of the wavelength λ, a high frequency band of the wavelength λ1, and a low frequency band of the wavelength λ2 due to the dense wave propagating in the liquid 2. As shown in the figure, the wavelengths λ, λ1, λ2,. . . A standing wave is generated by the continuous sound pressure distribution 2a at every interval of λn, and the entire cavitation in which the liquid 2 uniformly contacts the air layer is generated. Therefore, the bubbles 2b in the liquid 2 are frequently crowded and fused by the cavitation generated so as to move evenly in the liquid 2, and can grow into a single bubble, and can quickly float and separate. Deaeration can be realized.

このように、従来の脱気装置及び方法では、超音波振動子4から照射する超音波を変調して液体2中で音圧分布2aの周期を連続的に変化させることで、液体2中に満遍なく移動するキャビテーションが発生し、このキャビテーションによって気泡2bを押上げて頻繁に群集及び成長させながら速やかに浮上させて除去していた。   As described above, in the conventional degassing apparatus and method, the ultrasonic wave irradiated from the ultrasonic transducer 4 is modulated to continuously change the period of the sound pressure distribution 2 a in the liquid 2. Cavitation that moves evenly occurred, and the bubbles 2b were lifted up by this cavitation to be quickly lifted and removed while being frequently crowded and grown.

しかしながら、従来の脱気装置及び方法では、液体2を脱気する場合、図6に示したように、超音波振動子4の発振から停止までの1回の脱気時間内において、基準周波数、低周波数帯、及び高周波数帯を停止せずに連続して伝播させ、液体2中で常にキャビテーションを移動させるため、超音波振動子4の発振を停止しない限り、液体2中で細かい気泡2bが群集せず拡散してしまい全ての気泡2bを短時間で浮上させることは困難であった。この場合、液体2に基準周波数、低周波数帯、及び高周波数帯による連続した照射を完了した後、超音波振動子4の発振を停止して液体2中を安定させることで初めて細かい気泡2bが群集して浮上するため、浮上までの時間がかかり、例えば、浮上し切れない場合に再び発振を再開させて新たなキャビテーションを発生させるという発振及び停止を複数繰り返して脱気する必要があった。従って、従来の脱気装置及び方法では、気泡2bの除去状態に応じて超音波振動子4から連続的な超音波照射による長い脱気時間を複数回繰り返して脱気するため、脱気効率が悪く、洗浄工程に移行するまでの脱気工程に時間がかかり、全体的に生産が遅れるという不具合があった。   However, in the conventional degassing apparatus and method, when the liquid 2 is degassed, as shown in FIG. 6, within one degassing time from the oscillation to the stop of the ultrasonic vibrator 4, the reference frequency, Since the low frequency band and the high frequency band are continuously propagated without stopping and the cavitation is always moved in the liquid 2, the fine bubbles 2 b are formed in the liquid 2 unless the oscillation of the ultrasonic vibrator 4 is stopped. Diffusing without crowding, it was difficult to float all the bubbles 2b in a short time. In this case, after completing continuous irradiation of the liquid 2 with the reference frequency, the low frequency band, and the high frequency band, the fine bubbles 2b are not formed until the oscillation of the ultrasonic vibrator 4 is stopped and the liquid 2 is stabilized. Since the assemblage and ascend, it takes time to ascend, and for example, when it is not possible to ascend, it is necessary to deaerate repeatedly by repeating oscillation and stop of restarting oscillation and generating new cavitation. Therefore, in the conventional degassing apparatus and method, the degassing efficiency is improved because the long degassing time by continuous ultrasonic irradiation is repeatedly degassed from the ultrasonic transducer 4 a plurality of times according to the removal state of the bubbles 2b. Unfortunately, there was a problem that the deaeration process took a long time to shift to the cleaning process and production was delayed overall.

本発明は上記の点に鑑みなされたもので、その目的は、超音波振動子の発振から停止までの1回の脱気時間内で液体中の気泡を良好に浮上させて、効率良い脱気を促進できる脱気装置及び方法を提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to efficiently deaerate bubbles in a liquid by allowing the bubbles in the liquid to rise well within one deaeration time from the oscillation to the stop of the ultrasonic vibrator. It is an object of the present invention to provide a deaeration device and method capable of promoting the above.

本発明は上述した課題を解決するためになされたもので、洗浄槽内の液体に超音波発振器及び超音波振動子により超音波を照射して脱気する脱気装置であって、超音波発振器は、超音波振動子から照射する超音波の発振周波数に基づいてプログラムにより所定の周波数帯域幅に連続して変調をかけた周波数を形成できる0/1信号とともに超音波振動子から超音波の発振/停止を複数繰り返して照射させるON/OFF信号とを各々出力するマイコンと、このマイコンの0/1信号を入力して超音波振動子を駆動させる信号波形を生成するDDSと、マイコンのON/OFF信号及びDDSの信号波形を各々入力して当該信号波形をON/OFF信号に従って処理させる駆動信号を出力するドライブICと、ドライブICの駆動信号を入力して超音波振動子にスイッチング電力を印加してON/OFF信号に従った信号波形による信号ON時の停止と信号OFF時の発振とを1回の脱気時間内で複数繰り返すことで超音波を断続的に照射させる出力段とを備える。   The present invention has been made to solve the above-described problems, and is a deaeration device for degassing a liquid in a cleaning tank by irradiating ultrasonic waves with an ultrasonic oscillator and an ultrasonic vibrator. Oscillates ultrasonic waves from an ultrasonic transducer with a 0/1 signal that can form a frequency that is continuously modulated to a predetermined frequency bandwidth by a program based on the oscillation frequency of the ultrasonic waves emitted from the ultrasonic transducer A microcomputer that outputs ON / OFF signals that repeatedly irradiate a plurality of stops, a DDS that generates a signal waveform that drives an ultrasonic transducer by inputting a 0/1 signal of the microcomputer, and a microcomputer ON / OFF Input the OFF signal and the DDS signal waveform, and output the drive signal that processes the signal waveform according to the ON / OFF signal, and the drive IC drive signal Applying switching power to the ultrasonic transducer and repeating the ON / OFF signal with the signal waveform according to the signal ON and the oscillation when the signal is OFF repeats multiple times within one degassing time. And an output stage for irradiation.

また、本発明による脱気方法は、洗浄槽内の液体に超音波発振器及び超音波振動子により超音波を照射して脱気する脱気方法であって、超音波発振器のマイコンが超音波振動子から照射する超音波の発振周波数に基づいてプログラムにより所定の周波数帯域幅に連続して変調をかけた周波数を形成できる0/1信号とともに超音波振動子から超音波の発振/停止を複数繰り返して照射させるON/OFF信号とを各々出力する第1ステップと、超音波発振器のDDSがマイコンの0/1信号を入力して超音波振動子を駆動させる信号波形を生成する第2ステップと、超音波発振器のドライブICがマイコンのON/OFF信号及びDDSの信号波形を各々入力して当該信号波形をON/OFF信号に従って処理させる駆動信号を出力する第3ステップと、超音波発振器の出力段がドライブICの駆動信号を入力して超音波振動子にスイッチング電力を印加してON/OFF信号に従った信号波形による信号ON時の停止と信号OFF時の発振とを1回の脱気時間内で複数繰り返すことで超音波を断続的に照射させる第4ステップとを備える。   The degassing method according to the present invention is a degassing method in which a liquid in a cleaning tank is degassed by irradiating ultrasonic waves with an ultrasonic oscillator and an ultrasonic vibrator, and the ultrasonic oscillator microcomputer performs ultrasonic vibration. Repeatedly oscillate / stop ultrasonic waves from an ultrasonic transducer with 0/1 signal that can form a frequency that is continuously modulated to a predetermined frequency bandwidth by a program based on the oscillation frequency of the ultrasonic wave emitted from the child. A first step of outputting ON / OFF signals to be irradiated, and a second step of generating a signal waveform for driving the ultrasonic transducer by inputting the 0/1 signal of the microcomputer by the DDS of the ultrasonic oscillator, A drive IC of the ultrasonic oscillator inputs a microcomputer ON / OFF signal and a DDS signal waveform, and outputs a drive signal for processing the signal waveform according to the ON / OFF signal. The output stage of the ultrasonic oscillator inputs the drive signal of the drive IC, applies the switching power to the ultrasonic transducer, and stops when the signal is turned on by the signal waveform according to the ON / OFF signal and when the signal is turned off And a fourth step of intermittently irradiating the ultrasonic wave by repeating the oscillation a plurality of times within one deaeration time.

以上のように、本発明による脱気装置及び方法によれば、超音波振動子4から超音波を1回照射して脱気する時間内に、変調された信号波形CがON/OFF信号Bにより発振と停止とを複数繰り返して超音波を断続的に照射するため、この段階的に複数繰り返される停止時間毎に液体2中の浮上し切れない気泡2bを群集して容易に浮上及び消滅させることが可能となり、超音波振動子4による1回の脱気時間内で液体2を効率良く脱気できることで、洗浄工程に移行するまでの脱気時間を短縮し、全体的な生産性を向上することができる。   As described above, according to the deaeration apparatus and method of the present invention, the modulated signal waveform C is turned on / off signal B within the time for deaeration by irradiating the ultrasonic wave from the ultrasonic transducer 4 once. In order to irradiate ultrasonic waves intermittently by repeating the oscillation and stop a plurality of times, the bubbles 2b that cannot rise in the liquid 2 are gathered and easily floated and disappeared at each stop time that is repeated a plurality of times stepwise. This makes it possible to efficiently degas the liquid 2 within one degassing time by the ultrasonic transducer 4, thereby shortening the degassing time until the cleaning process is started and improving the overall productivity. can do.

次に、添付図面を参照して本発明による脱気装置及び方法の実施の形態を詳細に説明する。図1は、本発明による脱気装置の実施形態を示す構成図である。また、図2は、図1に示したマイコン11からドライブIC13に入力されるON/OFF信号Bを示す図である。また、図3は、図1に示したDDS12から出力される周波数変調のかかった信号波形Cを示す図である。また、図4は、図1に示した信号波形CとON/OFF信号Bとを入力してドライブIC13から出力される駆動信号Dを示す図である。また、図5は、図1に示した超音波振動子4の発振及び停止による液体2中の超音波音圧分布と脱泡作用とを示す図である。ここで、図1に示した洗浄槽1(液体2を含む)と超音波振動子4とは、図6に示した従来技術と同一の構成要素であり、同じ構成要素には同一符号を記載する。   Next, embodiments of a deaeration apparatus and method according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a configuration diagram showing an embodiment of a deaeration device according to the present invention. FIG. 2 is a diagram showing an ON / OFF signal B input from the microcomputer 11 shown in FIG. 1 to the drive IC 13. FIG. 3 is a diagram showing a frequency-modulated signal waveform C output from the DDS 12 shown in FIG. FIG. 4 is a diagram showing the drive signal D output from the drive IC 13 by inputting the signal waveform C and the ON / OFF signal B shown in FIG. FIG. 5 is a diagram showing the ultrasonic sound pressure distribution and the defoaming action in the liquid 2 due to the oscillation and stop of the ultrasonic transducer 4 shown in FIG. Here, the cleaning tank 1 (including the liquid 2) and the ultrasonic transducer 4 shown in FIG. 1 are the same constituent elements as those of the prior art shown in FIG. 6, and the same constituent elements are denoted by the same reference numerals. To do.

図1に示すように、本発明による脱気装置の実施形態は、図6に示した従来技術と同様に、洗浄槽1の底部に装着した超音波振動子4から内部の液体2に超音波を伝播するように形成されている。また、超音波振動子4には、液体2に照射する周波数を、所定の周波数帯域幅に連続的に変調できる超音波発振器10が連結されている。ここで、本発明による脱気装置の実施形態は、図6に示した従来技術とは異なり、超音波発振器10の変調した信号波形Cにより超音波振動子4を発振から停止まで連続的に動作させるのではなく、その変調した信号波形Cを、複数回オン・オフしながら繰り返し出力することで、超音波を断続的に照射して脱気できるように形成されている。   As shown in FIG. 1, the embodiment of the deaeration device according to the present invention is ultrasonically applied to the liquid 2 inside from the ultrasonic transducer 4 attached to the bottom of the cleaning tank 1, as in the prior art shown in FIG. 6. Is formed to propagate. The ultrasonic transducer 4 is connected to an ultrasonic oscillator 10 that can continuously modulate the frequency applied to the liquid 2 to a predetermined frequency bandwidth. Here, unlike the prior art shown in FIG. 6, the embodiment of the deaeration device according to the present invention continuously operates the ultrasonic transducer 4 from oscillation to stop by the signal waveform C modulated by the ultrasonic oscillator 10. Instead, the modulated signal waveform C is repeatedly output while being turned on and off a plurality of times so that it can be deaerated by intermittently irradiating ultrasonic waves.

ここで、超音波発振器10は、図1に示したように、超音波振動子4から照射する超音波の発振周波数に基づいてプログラムにより所定の周波数帯域幅に連続して変調をかけた周波数を形成できる0/1信号Aとともに超音波振動子4から超音波の発振/停止を複数繰り返して照射させるON/OFF信号Bとを各々出力するマイコン11と、このマイコン11の0/1信号Aを入力して超音波振動子4を駆動させる信号波形Cを生成するDDS12と、マイコン11のON/OFF信号B及びDDS12の信号波形Cを各々入力して当該信号波形CをON/OFF信号Bに従って処理させる駆動信号Dを出力するドライブIC13と、このドライブIC13の駆動信号Dを入力して超音波振動子4にスイッチング電力Eを印加してON/OFF信号Bに従った信号波形Cによる信号ON時の停止と信号OFF時の発振とを1回の脱気時間内で複数繰り返すことで超音波を断続的に照射させる出力段14とを備えている。
即ち、本実施の形態は、マイコン11からDDS12を介してドライブIC13に接続された信号波形ラインと、このマイコン11から直接ドライブIC13に接続されたON/OFF信号ラインとの2つの接続ラインを備えている点で、従来技術のように連続的に駆動させる信号波形ラインに加えて、その信号波形をON/OFFして断続的に出力させるON/OFF信号ラインを別途設けたことを特徴としている。
Here, as shown in FIG. 1, the ultrasonic oscillator 10 generates a frequency continuously modulated in a predetermined frequency bandwidth by a program based on the oscillation frequency of the ultrasonic wave irradiated from the ultrasonic transducer 4. A microcomputer 11 for outputting an ON / OFF signal B for irradiating a plurality of ultrasonic oscillations / stops from the ultrasonic transducer 4 together with a 0/1 signal A that can be formed, and a 0/1 signal A of the microcomputer 11 The DDS 12 that generates the signal waveform C that drives the ultrasonic transducer 4 and the ON / OFF signal B of the microcomputer 11 and the signal waveform C of the DDS 12 are input, and the signal waveform C is input according to the ON / OFF signal B. The drive IC 13 that outputs the drive signal D to be processed, and the drive signal D of the drive IC 13 is input and the switching power E is applied to the ultrasonic transducer 4 to turn on / off. An output stage 14 for intermittently irradiating ultrasonic waves by repeating the signal waveform C according to the F signal B when the signal is turned on and the oscillation when the signal is turned off a plurality of times within one deaeration time. Yes.
In other words, the present embodiment includes two connection lines: a signal waveform line connected from the microcomputer 11 to the drive IC 13 via the DDS 12 and an ON / OFF signal line directly connected from the microcomputer 11 to the drive IC 13. In this respect, in addition to the signal waveform line that is continuously driven as in the prior art, an ON / OFF signal line that is intermittently output by turning the signal waveform ON / OFF is provided separately. .

具体的に、マイコン11は、超音波振動子4から照射する超音波の発振周波数を、プログラムにより所定の周波数帯域幅に連続して変調をかけた周波数に形成できる0/1信号Aとして生成し、DDS12側に渡すように形成されている。ここで、超音波振動子4から照射する超音波の発振周波数は、超音波振動子4から液体2中に所定の周波数帯域幅に連続的に変調させながら照射する発振周波数の中心となる周波数であって、20KHz〜150KHzを用いている。そして、これに対して1%〜50%の範囲(例えば、±2KHz以内)でスイープ動作させて周波数変調する。また、マイコン11は、超音波振動子4の個々の特性、洗浄槽1の固有振動数、液体2特性、或いは気泡および溶存空気量等の情報を予め取り込めるように形成されている。そして、マイコン11は、所定のプログラムによって、上述した種々のデータに基づいて、変調した周波数の制御データとして数値で与えられる0/1信号Aを、DDS12側に出力するように形成されている。   Specifically, the microcomputer 11 generates the oscillation frequency of the ultrasonic wave irradiated from the ultrasonic transducer 4 as a 0/1 signal A that can be formed into a frequency that is continuously modulated in a predetermined frequency bandwidth by a program. , It is formed so as to be passed to the DDS 12 side. Here, the oscillation frequency of the ultrasonic wave irradiated from the ultrasonic transducer 4 is a frequency that is the center of the oscillation frequency irradiated from the ultrasonic transducer 4 into the liquid 2 while being continuously modulated to a predetermined frequency bandwidth. Thus, 20 KHz to 150 KHz is used. On the other hand, the frequency is modulated by performing a sweep operation within a range of 1% to 50% (for example, within ± 2 KHz). Further, the microcomputer 11 is formed so as to be able to capture in advance information such as individual characteristics of the ultrasonic transducer 4, the natural frequency of the cleaning tank 1, the liquid 2 characteristics, or the amount of bubbles and dissolved air. The microcomputer 11 is configured to output to the DDS 12 the 0/1 signal A given numerically as control data of the modulated frequency based on the various data described above according to a predetermined program.

また、マイコン11は、上述した0/1信号Aの出力とともに、超音波振動子4を発振/停止させて複数繰り返して超音波を照射させるON/OFF信号B(図2参照)を出力するように形成されている。このON/OFF信号Bは、図2に示すように、超音波振動子4が超音波を照射する1回の脱気時間内において、信号OFF時の発振と、信号ON時の停止とを、同一の間隔で複数繰り返す矩形波(Hi/Lo信号)として設定されてドライブIC13に出力される。また、ON/OFF信号Bは、超音波を発振させる信号OFF時に、後述するDDS12にて変調された0/1信号Aに基づき生成される信号波形Cを対応させ、超音波振動子4を断続的に発振及び停止させる信号として設定される。   Further, the microcomputer 11 outputs the ON / OFF signal B (see FIG. 2) for irradiating the ultrasonic wave repeatedly by oscillating / stopping the ultrasonic transducer 4 together with the output of the 0/1 signal A described above. Is formed. As shown in FIG. 2, the ON / OFF signal B includes an oscillation at the time of signal OFF and a stop at the time of signal ON within one deaeration time in which the ultrasonic transducer 4 emits ultrasonic waves. It is set as a rectangular wave (Hi / Lo signal) that repeats a plurality of times at the same interval and is output to the drive IC 13. The ON / OFF signal B corresponds to the signal waveform C generated based on the 0/1 signal A modulated by the DDS 12 described later when the signal for oscillating the ultrasonic wave is OFF, and the ultrasonic transducer 4 is intermittently connected. Is set as a signal to oscillate and stop automatically.

また、DDS(ダイレクト・デジタル・シンセサイザ)12は、前述した制御中枢となるマイコン11から変調して数値で与えられる0/1信号Aに基づいて、図3に示すように、超音波振動子4を発振させる波形としての信号波形Cを生成する。即ち、DDS12は、マイコン11からのクロック信号(図示せず)に応じて動作し、数値で与えられる0/1信号Aに従って変化する周波数の信号波形Cを出力する。従って、DDS12は、マイコン11の数値制御に応じ、精密且つ自在に信号波形Cの周波数を調整できる。   Further, the DDS (direct digital synthesizer) 12 is based on the 0/1 signal A which is modulated and given by the microcomputer 11 serving as the control center and is given as a numerical value, as shown in FIG. A signal waveform C is generated as a waveform for oscillating. That is, the DDS 12 operates in accordance with a clock signal (not shown) from the microcomputer 11 and outputs a signal waveform C having a frequency that varies according to a 0/1 signal A given as a numerical value. Therefore, the DDS 12 can adjust the frequency of the signal waveform C precisely and freely according to the numerical control of the microcomputer 11.

また、ドライブIC13は、図1に示したマイコン11からのON/OFF信号B及びDDS12の信号波形Cを各々入力して増幅し、当該信号波形CをON/OFF信号Bに従って処理して、図4に示すように、超音波振動子4を発振/停止を繰り返す駆動信号Dを出力するように形成されている。ここで、駆動信号Dは、ドライブIC13に信号波形C及びON/OFF信号Bを各々入力して、信号OFF時の発振と信号ON時の停止とを1回の脱気時間内で交互に複数繰り返す超音波振動子4の駆動信号として、出力段14に出力される。   Further, the drive IC 13 inputs and amplifies the ON / OFF signal B and the signal waveform C of the DDS 12 from the microcomputer 11 shown in FIG. 1, respectively, processes the signal waveform C according to the ON / OFF signal B, As shown in FIG. 4, the ultrasonic transducer 4 is formed so as to output a drive signal D that repeats oscillation / stop. Here, as for the drive signal D, the signal waveform C and the ON / OFF signal B are respectively input to the drive IC 13, and the oscillation when the signal is OFF and the stop when the signal is ON are alternately plural within one deaeration time. The output signal is output to the output stage 14 as a driving signal for the ultrasonic transducer 4 to be repeated.

また、出力段14は、図1に示したドライブIC13から出力された駆動信号Dに基づいて超音波振動子4にスイッチング電力Eを増幅して印加するとともに、この印加時にスイッチング用FETとして作用して、ON/OFF信号Bに従った信号波形Cによる信号OFF時の発振と信号ON時の停止とを交互にオン・オフして与えるように形成されている。即ち、出力段14は、スイッチング回路であり、後述する電源17及び整流回路18から供給される電力を増幅し、駆動信号Dに従ってオン・オフしながらスイッチング電力E(高周波電圧及び高周波電流)を超音波振動子4に印加するものであって、超音波振動子4が1回の脱気時間内に停止と発振とを複数繰り返して超音波を断続的に照射するように作用させる役割をする。   The output stage 14 amplifies and applies the switching power E to the ultrasonic transducer 4 based on the drive signal D output from the drive IC 13 shown in FIG. 1, and acts as a switching FET during this application. Thus, the signal waveform C according to the ON / OFF signal B is formed so as to alternately turn on and off the oscillation when the signal is OFF and the stop when the signal is ON. That is, the output stage 14 is a switching circuit, amplifies power supplied from a power source 17 and a rectifier circuit 18 to be described later, and exceeds switching power E (high frequency voltage and high frequency current) while being turned on / off according to the drive signal D. The ultrasonic transducer 4 is applied to the ultrasonic transducer 4 and functions to cause the ultrasonic transducer 4 to intermittently irradiate the ultrasonic wave by repeatedly stopping and oscillating a plurality of times within one deaeration time.

そして、超音波発振器10には、図1に示したように、出力段14に交流電圧を供給する電源17と、この電源17からの交流電圧を直流に整流する整流回路18と、出力段14から出力されるオン・オフするスイッチング電力E(高周波電圧及び高周波電流)の電圧を昇圧又は降圧する出力トランス15と、この出力トランス15を介したスイッチング電力を力率補正して超音波振動子4に印加する力率補正部16とを備えている。ここで、出力トランス15は、出力段14からのスイッチング電力Eを入力し、巻線比に応じてトランス1次側電圧を昇圧又は降圧して、トランス2次側電圧より力率補正部16を介すことで超音波振動子4に高周波電力を印加するように形成されている。また、洗浄槽1に使われている超音波振動子4は、圧電素子なので容量性負荷である。故に、共振周波数で駆動させた時に、高周波電圧と高周波電流との位相差が無くなるように力率補正部16を超音波振動子4に対して接続する必要がある。   As shown in FIG. 1, the ultrasonic oscillator 10 includes a power source 17 that supplies an AC voltage to the output stage 14, a rectifier circuit 18 that rectifies the AC voltage from the power source 17 into a DC, and an output stage 14. The output transformer 15 that boosts or lowers the voltage of the switching power E (high-frequency voltage and high-frequency current) that is turned on / off output from the power transformer, and the ultrasonic vibrator 4 by correcting the power of the switching power via the output transformer 15 by power factor correction. And a power factor correction unit 16 to be applied. Here, the output transformer 15 receives the switching power E from the output stage 14, boosts or lowers the transformer primary voltage according to the winding ratio, and causes the power factor correction unit 16 to operate based on the transformer secondary voltage. It is formed so that high-frequency power is applied to the ultrasonic transducer 4 by being interposed. Further, since the ultrasonic vibrator 4 used in the cleaning tank 1 is a piezoelectric element, it is a capacitive load. Therefore, it is necessary to connect the power factor correction unit 16 to the ultrasonic transducer 4 so that the phase difference between the high frequency voltage and the high frequency current is eliminated when driven at the resonance frequency.

このような構成からなる脱気装置を用いて脱気する本発明による脱気方法を、図1〜5を参照して詳細に説明する。本発明による脱気方法は、図1に示したように、まず、超音波発振器10のマイコン11により、超音波振動子4から照射する超音波の発振周波数に基づいてプログラムにより所定の周波数帯域幅に連続して変調をかけた周波数を形成できる0/1信号Aとともに、超音波振動子4から超音波を発振/停止を複数繰り返して照射させるON/OFF信号Bとを、各々出力する第1ステップを実行する。
この際、0/1信号Aを出力するマイコン11での周波数変調は、前述した従来技術の特許文献1にも記載されているように、一例として、40KHzの基準周波数に対して5%の周波数変調帯域幅を設定した場合に、39KHzの低周波数側と41KHzの高周波数側とが連続交互に変調され、所定の変調周期、例えば毎秒60回連続して変調させることによって、液体2中の音圧分布を連続的に小刻みに移動させて、脱気(脱泡)効率を高めることができる。また、変調させる周波数の帯域幅は、基準周波数値に対し0.1%から100%の範囲を用いることが好ましく、特に基準周波数値に対し1%から50%の範囲を用いることが好ましい。また、超音波照射の変調周期は、毎秒1回から2000回の範囲で用いることが好ましい。これらの周波数帯域幅と変調周期は、洗浄槽1の形状および大きさ、液体2の粘度および組成等の液体特性、液体2中に含有する気泡および溶存空気量等に応じて適宜決定することができる。
また、マイコン11では、ON/OFF信号Bを出力する場合、前述した0/1信号Aの変調データや、予め入力した超音波振動子4の個々の特性、洗浄槽1の固有振動数、液体2特性、或いは気泡および溶存空気量等の種々の情報に基づいて、ON/OFF信号Bを設定する。具体的に、マイコン11は、例えば、超音波振動子4から前述した変調された超音波で連続して照射する場合の1回の脱気時間(60秒〜600秒)を算出し、この時間内に超音波の発振と停止とを少なくとも2回以上(複数)繰り返すようにON/OFF信号Bを設定する。即ち、図6に示した従来技術の連続した発振から停止までの1回の脱気時間と、図1に示した発振及び停止を複数繰り返して完全に停止するまでの1回の脱気時間とは、ほぼ同一であり一致させる。
A deaeration method according to the present invention in which deaeration is performed using the deaeration device having such a configuration will be described in detail with reference to FIGS. In the deaeration method according to the present invention, as shown in FIG. 1, first, the microcomputer 11 of the ultrasonic oscillator 10 performs a predetermined frequency bandwidth by a program based on the oscillation frequency of the ultrasonic wave irradiated from the ultrasonic transducer 4. And a 0/1 signal A that can form a frequency that is continuously modulated, and an ON / OFF signal B that repeatedly irradiates / stops ultrasonic waves from the ultrasonic transducer 4. Perform steps.
At this time, the frequency modulation in the microcomputer 11 that outputs the 0/1 signal A is, for example, a frequency of 5% with respect to the reference frequency of 40 KHz as described in Patent Document 1 of the related art described above. When the modulation bandwidth is set, the low frequency side of 39 KHz and the high frequency side of 41 KHz are continuously and alternately modulated, and the sound in the liquid 2 is continuously modulated by a predetermined modulation period, for example, 60 times per second. The pressure distribution can be continuously moved in small increments to improve the deaeration (defoaming) efficiency. The frequency bandwidth to be modulated is preferably in the range of 0.1% to 100% with respect to the reference frequency value, and particularly preferably in the range of 1% to 50% with respect to the reference frequency value. The modulation period of ultrasonic irradiation is preferably used in the range of 1 to 2000 times per second. These frequency bandwidths and modulation periods may be appropriately determined according to the shape and size of the cleaning tank 1, the liquid properties such as the viscosity and composition of the liquid 2, the bubbles contained in the liquid 2, the amount of dissolved air, and the like. it can.
When the microcomputer 11 outputs the ON / OFF signal B, the modulation data of the 0/1 signal A described above, the individual characteristics of the ultrasonic transducer 4 input in advance, the natural frequency of the cleaning tank 1, the liquid The ON / OFF signal B is set based on two types of information or various information such as bubbles and dissolved air amount. Specifically, the microcomputer 11 calculates, for example, a single degassing time (60 seconds to 600 seconds) when the ultrasonic wave is continuously emitted from the ultrasonic transducer 4 with the modulated ultrasonic waves described above. The ON / OFF signal B is set so that the oscillation and stop of the ultrasonic wave are repeated at least twice (plural). That is, a single deaeration time from the continuous oscillation to the stop shown in FIG. 6 and a single deaeration time until the oscillation is completely stopped by repeating the oscillation and the stop shown in FIG. Are almost identical and matched.

次に、第1ステップによりマイコン11から0/1信号Aが出力されると、この0/1信号Aを超音波発振器10のDDS12に入力し、図2に示した超音波振動子4を駆動させる周波数変調がかかった信号波形Cを生成する第2ステップを実行する。このDDS12は、マイコン11のクロック信号(図示せず)により駆動し、数値で与えられた0/1信号Aに従って変化する変調した周波数の信号波形CをドライブIC13に出力する。ここで、信号波形Cは、例えば、図2に示したような矩形波、または図6に示した正弦波などの波形に生成される。   Next, when the 0/1 signal A is output from the microcomputer 11 in the first step, the 0/1 signal A is input to the DDS 12 of the ultrasonic oscillator 10 to drive the ultrasonic transducer 4 shown in FIG. The second step of generating the signal waveform C subjected to frequency modulation is executed. The DDS 12 is driven by a clock signal (not shown) of the microcomputer 11 and outputs a signal waveform C having a modulated frequency that changes in accordance with a numerically given 0/1 signal A to the drive IC 13. Here, the signal waveform C is generated into a waveform such as a rectangular wave as shown in FIG. 2 or a sine wave as shown in FIG.

次に、第1及び第2ステップによりマイコン11からのON/OFF信号BとDDS12からの信号波形Cとが各々出力されると、この両方の情報が超音波発振器10のドライブIC13に各々入力され、当該信号波形CをON/OFF信号Bに従って処理する駆動信号Dを出力する第3ステップを実行する。即ち、ドライブIC13を介して初めて変調した信号波形Cと、発振/停止させるON/OFF信号Bとの二つの周波数成分が一つに併合され、図4に示した停止/発振を複数繰り返す駆動信号Dとして出力される。   Next, when the ON / OFF signal B from the microcomputer 11 and the signal waveform C from the DDS 12 are respectively output in the first and second steps, both pieces of information are respectively input to the drive IC 13 of the ultrasonic oscillator 10. Then, the third step of outputting the drive signal D for processing the signal waveform C according to the ON / OFF signal B is executed. That is, the two frequency components of the signal waveform C modulated for the first time via the drive IC 13 and the ON / OFF signal B to be oscillated / stopped are merged into one, and the drive signal repeats a plurality of stop / oscillations shown in FIG. Output as D.

そして、第3ステップによるドライブIC13から駆動信号Dが出力されると、超音波発振器10のスイッチング用FETである出力段14に入力して、超音波振動子4にスイッチング電力(高周波電圧及び高周波電流)を印加するとともに、この印加時に前述したON/OFF信号Bに従った信号波形Cによる信号ON時の停止と信号OFF時の発振とを1回の脱気時間内で複数繰り返すスイッチング動作により、超音波振動子4が超音波を断続的に照射させる第4ステップを実行する。
ここで、第4ステップでは、出力段14から超音波振動子4にスイッチング電力を印加する場合、図1に示したように、まず電源17からの交流電圧を整流回路18に供給して直流に整流してやり、出力段14で増幅することで、出力トランス15にスイッチング電力Eとして伝送される。そして、出力トランス15では、伝送されたスイッチング電力Eの電圧を、巻線比に応じてトランス1次側電圧として昇圧又は降圧し、トランス2次側電圧を力率補正部16を介して、供給する。その後、このスイッチング電力を超音波振動子4に高周波電力として印加する。
Then, when the drive signal D is output from the drive IC 13 in the third step, the drive signal D is input to the output stage 14 which is a switching FET of the ultrasonic oscillator 10 and the switching power (high-frequency voltage and high-frequency current) is supplied to the ultrasonic transducer 4. ), And at the time of this application, a switching operation in which the signal waveform C according to the above-described ON / OFF signal B is repeatedly turned on and stopped when the signal is turned off within a single degassing time. A fourth step is performed in which the ultrasonic transducer 4 irradiates ultrasonic waves intermittently.
Here, in the fourth step, when switching power is applied from the output stage 14 to the ultrasonic transducer 4, as shown in FIG. 1, first, an AC voltage from the power source 17 is supplied to the rectifier circuit 18 to be converted to DC. By rectifying and amplifying the output stage 14, it is transmitted to the output transformer 15 as switching power E. In the output transformer 15, the transmitted voltage of the switching power E is stepped up or stepped down as a transformer primary side voltage according to the winding ratio, and the transformer secondary side voltage is supplied via the power factor correction unit 16. To do. Thereafter, the switching power is applied to the ultrasonic transducer 4 as high frequency power.

このように、ドライブIC13から出力段14に図4に示した駆動信号Dが入力され、最終的に超音波振動子4による1回の脱気時間内に発振及び停止を複数回繰り返して液体2中に超音波を断続的に照射することができるため、図5に示すように、1回の脱気時間内に発振及び停止を複数繰り返して、この停止時に洗浄槽1の液体2中から気泡2bを浮上させて効率よく段階的に除去することができる。   In this way, the drive signal D shown in FIG. 4 is input from the drive IC 13 to the output stage 14, and finally the liquid 2 is repeatedly oscillated and stopped a plurality of times within one deaeration time by the ultrasonic transducer 4. As shown in FIG. 5, the oscillation and the stop are repeated a plurality of times within one deaeration time, and bubbles are generated from the liquid 2 in the cleaning tank 1 at this stop. 2b can be levitated and efficiently removed step by step.

以上、本発明による脱気装置及び方法の実施の形態を詳細に説明したが、本発明は前述した実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、超音波振動子が変調した超音波を連続的して照射する場合の1回の脱気時間を算出して、この時間内に超音波の発振と停止とを少なくとも2回以上(複数)繰り返すようにON/OFF信号を設定した実施の形態を詳しく説明したが、これに限定されるものではなく、連続的して照射する1回の脱気時間を算出せず、変調した超音波の発振と停止とを自由な時間内で複数繰り返すようにON/OFF信号を設定することもできる。具体的には、マイコンで時間が設置できるのは、図2に示した発振時間(Lo時間)と、発振及び停止を対に実行する併合時間(Hi+Lo時間)とであり、故に、停止時間(Hi時間)は勝手に決まるように設定される。ここで通常、発振時間は0.3秒〜1秒に設定し、併合時間は1.3〜5秒に設定しており、この条件下で発振及び停止する併合時間を複数繰り返すことで、前述した1回の脱気時間60〜600秒や、その他任意の時間に自由に合わせて設定することができる。
As mentioned above, although embodiment of the deaeration apparatus and method by this invention was described in detail, this invention is not limited to embodiment mentioned above, It can change in the range which does not deviate from the summary.
For example, a single deaeration time in the case of continuously irradiating ultrasonic waves modulated by the ultrasonic vibrator is calculated, and at least two times (a plurality) of oscillation and stop of the ultrasonic waves within this time. The embodiment in which the ON / OFF signal is set to be repeated has been described in detail. However, the present invention is not limited to this, and the deaeration time for one continuous irradiation is not calculated. The ON / OFF signal can be set so that oscillation and stop are repeated a plurality of times within a free time. Specifically, the time that can be set by the microcomputer is the oscillation time (Lo time) shown in FIG. 2 and the merge time (Hi + Lo time) in which oscillation and stop are executed in pairs. (Hi time) is set to be determined arbitrarily. Here, the oscillation time is usually set to 0.3 seconds to 1 second, and the merge time is set to 1.3 to 5 seconds. By repeating the merge time for oscillating and stopping under these conditions, It is possible to freely set a single degassing time of 60 to 600 seconds or any other time.

本発明による脱気装置の実施形態を示す構成図。The block diagram which shows embodiment of the deaeration apparatus by this invention. 図1に示したマイコンからドライブICに入力されるON/OFF信号を示す図。The figure which shows the ON / OFF signal input into drive IC from the microcomputer shown in FIG. 図1に示したDDSから出力される周波数変調のかかった信号波形を示す図。The figure which shows the signal waveform to which the frequency modulation output from DDS shown in FIG. 1 was applied. 図1に示した信号波形CとON/OFF信号Bとを入力してドライブICから出力される駆動信号を示す図。The figure which shows the drive signal which inputs the signal waveform C shown in FIG. 1, and the ON / OFF signal B, and is output from drive IC. 図1に示した超音波振動子の発振及び停止による液体中の超音波音圧分布と脱泡作用とを示す図。The figure which shows the ultrasonic sound pressure distribution and defoaming effect | action in a liquid by the oscillation and a stop of the ultrasonic transducer | vibrator shown in FIG. 従来の脱気装置の一実施形態による液体中の時間経過に伴う超音波の音圧分布と脱泡作用とをモデル的に示す図。The figure which shows modeled the sound pressure distribution and defoaming effect | action of the ultrasonic wave with the time passage in the liquid by one Embodiment of the conventional deaeration apparatus. 図6に示した液体中で周期が連続的に変化する音圧分布を示す図。The figure which shows the sound pressure distribution from which the period changes continuously in the liquid shown in FIG.

符号の説明Explanation of symbols

1 洗浄槽
2 液体
4 超音波振動子
10 超音波発振器
11 マイコン
12 DDS
13 ドライブIC
14 出力段
15 出力トランス
16 力率補正部
17 電源
18 整流回路
DESCRIPTION OF SYMBOLS 1 Washing tank 2 Liquid 4 Ultrasonic vibrator 10 Ultrasonic oscillator 11 Microcomputer 12 DDS
13 Drive IC
14 Output Stage 15 Output Transformer 16 Power Factor Correction Unit 17 Power Supply 18 Rectifier Circuit

Claims (2)

洗浄槽(1)内の液体(2)に超音波発振器(10)及び超音波振動子(4)により超音波を照射して脱気する脱気装置において、
前記超音波発振器(10)は、
前記超音波振動子(4)から照射する超音波の発振周波数に基づいてプログラムにより所定の周波数帯域幅に連続して変調をかけた周波数を形成できる0/1信号(A)とともに、前記超音波振動子(4)から前記超音波の発振/停止を複数繰り返して照射させるON/OFF信号(B)とを各々出力するマイコン(11)と、
前記マイコン(11)の0/1信号(A)を入力して前記超音波振動子(4)を駆動させる信号波形(C)を生成するDDS(12:ダイレクト・デジタル・シンセサイザ)と、
前記マイコン(11)のON/OFF信号(B)及び前記DDS(12)の信号波形(C)を各々入力して当該信号波形(C)を前記ON/OFF信号(B)に従って処理させる駆動信号(D)を出力するドライブIC(13)と、
前記ドライブIC(13)の駆動信号(D)を入力して前記超音波振動子(4)にスイッチング電力(E)を印加して前記ON/OFF信号(B)に従った前記信号波形(C)による信号ON時の停止と信号OFF時の発振とを1回の脱気時間内で複数繰り返すことで超音波を断続的に照射させる出力段(14)と、
を備えたことを特徴とする脱気装置。
In the deaeration apparatus for deaeration by irradiating the liquid (2) in the cleaning tank (1) with ultrasonic waves by the ultrasonic oscillator (10) and the ultrasonic vibrator (4),
The ultrasonic oscillator (10)
Along with the 0/1 signal (A) that can form a frequency continuously modulated in a predetermined frequency bandwidth by a program based on the oscillation frequency of the ultrasonic wave irradiated from the ultrasonic transducer (4), the ultrasonic wave A microcomputer (11) for outputting an ON / OFF signal (B) for repeatedly irradiating a plurality of oscillations / stops of the ultrasonic waves from the vibrator (4);
A DDS (12: direct digital synthesizer) that inputs a 0/1 signal (A) of the microcomputer (11) and generates a signal waveform (C) for driving the ultrasonic transducer (4);
A drive signal for inputting the ON / OFF signal (B) of the microcomputer (11) and the signal waveform (C) of the DDS (12) and processing the signal waveform (C) according to the ON / OFF signal (B). A drive IC (13) for outputting (D);
The drive signal (D) of the drive IC (13) is input, the switching power (E) is applied to the ultrasonic transducer (4), and the signal waveform (C) according to the ON / OFF signal (B) is applied. The output stage (14) for intermittently irradiating the ultrasonic wave by repeating the stop at the time of signal ON and the oscillation at the time of signal OFF by a plurality of times within one deaeration time,
A deaeration device comprising:
洗浄槽(1)内の液体(2)に超音波発振器(10)及び超音波振動子(4)により超音波を照射して脱気する脱気方法において、
前記超音波発振器(10)のマイコン(11)が前記超音波振動子(4)から照射する超音波の発振周波数に基づいてプログラムにより所定の周波数帯域幅に連続して変調をかけた周波数を形成できる0/1信号(A)とともに、前記超音波振動子(4)から前記超音波を発振/停止を複数繰り返して照射させるON/OFF信号(B)とを各々出力する第1ステップと、
前記超音波発振器(10)のDDS(12)が前記マイコン(11)の前記0/1信号(A)を入力して前記超音波振動子(4)を駆動させる信号波形(C)を生成する第2ステップと、
前記超音波発振器(10)のドライブIC(13)が前記マイコン(11)のON/OFF信号(B)及び前記DDS(12)の信号波形(C)を各々入力して当該信号波形(C)を前記ON/OFF信号(B)に従って処理させる駆動信号(D)を出力する第3ステップと、
前記超音波発振器(10)の出力段(14)が前記ドライブIC(13)の駆動信号(D)を入力して前記超音波振動子(4)にスイッチング電力(E)を印加して前記ON/OFF信号(B)に従った前記信号波形(C)による信号ON時の停止と信号OFF時の発振とを1回の脱気時間内で複数繰り返すことで超音波を断続的に照射させる第4ステップと、
を備えたことを特徴とする脱気方法。
In the degassing method of degassing by irradiating the liquid (2) in the cleaning tank (1) with ultrasonic waves by the ultrasonic oscillator (10) and the ultrasonic vibrator (4),
The microcomputer (11) of the ultrasonic oscillator (10) forms a frequency continuously modulated in a predetermined frequency bandwidth by a program based on the oscillation frequency of the ultrasonic wave irradiated from the ultrasonic transducer (4). A first step of outputting each of an ON / OFF signal (B) for repeatedly oscillating / stopping the ultrasonic wave from the ultrasonic transducer (4) together with a 0/1 signal (A) that can be generated;
The DDS (12) of the ultrasonic oscillator (10) receives the 0/1 signal (A) of the microcomputer (11) and generates a signal waveform (C) for driving the ultrasonic transducer (4). The second step;
The drive IC (13) of the ultrasonic oscillator (10) inputs the ON / OFF signal (B) of the microcomputer (11) and the signal waveform (C) of the DDS (12), and the signal waveform (C). A third step of outputting a drive signal (D) for processing the signal according to the ON / OFF signal (B);
The output stage (14) of the ultrasonic oscillator (10) receives the drive signal (D) of the drive IC (13), applies switching power (E) to the ultrasonic transducer (4), and turns on. The ultrasonic wave is intermittently emitted by repeating a signal ON stop and a signal OFF oscillation by the signal waveform (C) according to the / OFF signal (B) multiple times within one deaeration time. 4 steps,
A deaeration method characterized by comprising:
JP2006310481A 2006-11-16 2006-11-16 Degassing apparatus and degassing method Pending JP2008126099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006310481A JP2008126099A (en) 2006-11-16 2006-11-16 Degassing apparatus and degassing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006310481A JP2008126099A (en) 2006-11-16 2006-11-16 Degassing apparatus and degassing method

Publications (1)

Publication Number Publication Date
JP2008126099A true JP2008126099A (en) 2008-06-05

Family

ID=39552476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006310481A Pending JP2008126099A (en) 2006-11-16 2006-11-16 Degassing apparatus and degassing method

Country Status (1)

Country Link
JP (1) JP2008126099A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223730A (en) * 2011-04-21 2012-11-15 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system
JP2013084667A (en) * 2011-10-06 2013-05-09 Hitachi Kokusai Denki Engineering:Kk Ultrasonic processing apparatus and ultrasonic treatment method
RU2556937C2 (en) * 2013-11-19 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Method of degassing fluid and device for its implementation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012223730A (en) * 2011-04-21 2012-11-15 Mitsubishi Heavy Ind Ltd Carbon dioxide recovery system
JP2013084667A (en) * 2011-10-06 2013-05-09 Hitachi Kokusai Denki Engineering:Kk Ultrasonic processing apparatus and ultrasonic treatment method
RU2556937C2 (en) * 2013-11-19 2015-07-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)" (СГАУ) Method of degassing fluid and device for its implementation

Similar Documents

Publication Publication Date Title
JP4776689B2 (en) Ultrasonic cleaning equipment
JP5150098B2 (en) Drive circuit for piezoelectric pump and cooling system using the same
KR101191549B1 (en) Method and apparatus for cleaning substrate, and program recording medium
CN109689230B (en) Ultrasonic vibrator driving device and mesh type sprayer
JP2008126099A (en) Degassing apparatus and degassing method
JP4890919B2 (en) Substrate cleaning method, substrate cleaning apparatus, program, and recording medium
JP4036287B2 (en) Ultrasonic cleaning equipment
JP2013086059A (en) Ultrasonic cleaning apparatus
JP2008513200A (en) Apparatus and method for moving a sonic energy source, and substrate processing using the same
CN108602093B (en) Method for driving a piezoelectric transducer and sound source device
JP2007311379A (en) Ultrasonic cleaning apparatus
JP7478430B2 (en) Ultrasonic Cleaning Equipment
JP2020000976A (en) Ultrasonic cleaning device and method, wave generation method
KR100972085B1 (en) Method for suppling maximum efficiency power of ultrasonic cleaner
JP4990439B2 (en) Ultrasonic oscillation device, ultrasonic oscillation method, cleaning device, and cleaning method
KR20040089162A (en) Ultrasonic generator
JP2012086135A (en) Ultrasonic oscillator and ultrasonic cleaning apparatus
JP2004290940A (en) Power unit for ultrasonic wave and ultrasonic cleaning apparatus
KR20100054458A (en) Supersonic nozzle and wafer cleaning apparatus compring the same
JPH08131978A (en) Ultrasonic washing apparatus
JP6019294B2 (en) Ultrasonic cleaning equipment
JP2008219420A (en) Ultrasonic oscillator
JP2004259983A (en) Device and method for ultrasonic cleaning
JP5685881B2 (en) Ultrasonic cleaning method
JP2001246319A (en) Ultrasonic oscillation device and ultrasonic oscillation method