WO2023166961A1 - Ultrasonic cleaning head, substrate cleaning method, substrate cleaning device, method for manufacturing substrate, and method for manufacturing mask blank for euvl - Google Patents

Ultrasonic cleaning head, substrate cleaning method, substrate cleaning device, method for manufacturing substrate, and method for manufacturing mask blank for euvl Download PDF

Info

Publication number
WO2023166961A1
WO2023166961A1 PCT/JP2023/004703 JP2023004703W WO2023166961A1 WO 2023166961 A1 WO2023166961 A1 WO 2023166961A1 JP 2023004703 W JP2023004703 W JP 2023004703W WO 2023166961 A1 WO2023166961 A1 WO 2023166961A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cleaning head
cleaning
ultrasonic cleaning
vibration
Prior art date
Application number
PCT/JP2023/004703
Other languages
French (fr)
Japanese (ja)
Inventor
尚明 宮本
大介 吉宗
圭輔 太田
定達 池田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023166961A1 publication Critical patent/WO2023166961A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • B08B3/10Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration
    • B08B3/12Cleaning involving contact with liquid with additional treatment of the liquid or of the object being cleaned, e.g. by heat, by electricity or by vibration by sonic or ultrasonic vibrations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/82Auxiliary processes, e.g. cleaning or inspecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to an ultrasonic cleaning head, a substrate cleaning method, a substrate cleaning apparatus, a substrate manufacturing method, and an EUVL mask blank manufacturing method.
  • EUVL Extreme Ultraviolet
  • EUV includes soft X-rays and vacuum ultraviolet rays, and specifically refers to light with a wavelength of approximately 0.2 nm to 100 nm. At present, EUV with a wavelength of about 13.5 nm is mainly considered.
  • a reflective mask is used in EUVL.
  • a reflective mask has, in this order, a substrate such as a glass substrate, a multilayer reflective film that reflects EUV, and an absorbing film that absorbs EUV.
  • An opening pattern is formed in the absorption film.
  • a pattern of openings in an absorbing film is transferred to a target substrate, such as a semiconductor substrate. Transferring includes reducing and transferring.
  • the glass substrate or the functional film formed on the glass substrate may be cleaned. Ultrasonic cleaning may be performed as one of the cleaning methods.
  • the cleaning method described in Patent Document 1 includes spraying a cleaning liquid to which ultrasonic waves have been applied in advance from a nozzle onto the upper surface of a rotating substrate.
  • a cleaning liquid is supplied between the upper surface of a rotating substrate and the lower surface of an ultrasonic cleaning head, and ultrasonic waves are applied to the cleaning liquid from the lower surface of the ultrasonic cleaning head. , cleaning the top surface of the substrate.
  • the number of particles adhering to the substrate could not be sufficiently reduced.
  • the inventor of the present application investigated particles adhering to the substrate after ultrasonic cleaning, and found that cerium oxide particles were one of the causes of the particles.
  • cerium oxide particles adhering to the ultrasonic cleaning head detached during cleaning and adhered to the substrate. Since cerium oxide particles are generally used for mechanical polishing, they are considered to have adhered during the manufacturing process of the ultrasonic cleaning head.
  • the manufacturing process of the ultrasonic cleaning head includes cutting and mechanical polishing, for example. Cutting processes the diaphragm into a desired shape. Mechanical polishing polishes the diaphragm with cerium oxide particles.
  • One aspect of the present disclosure provides a technique for reducing the number of particles adhering to a substrate by ultrasonic cleaning.
  • An ultrasonic cleaning head has a vibrating surface that faces an upper surface of a substrate with a gap therebetween and contacts a liquid film formed on the upper surface of the substrate.
  • the vibrating surface has a Ce element surface density of 30 ⁇ 10 10 atoms/cm 2 or less as detected by total reflection X-ray fluorescence analysis.
  • the surface density of Ce element on the vibration surface is 30 ⁇ 10 10 atoms/cm 2 or less, so the surface density of the cerium oxide particles adhering to the vibration surface is low. Therefore, the number of particles detached from the vibration surface of the ultrasonic cleaning head can be reduced, and the number of particles adhering to the substrate by ultrasonic cleaning can be reduced.
  • FIG. 1 is a side view showing a substrate cleaning apparatus according to one embodiment.
  • FIG. 2 is a cross-sectional view showing an example of the internal structure of the cleaning head.
  • FIG. 3 is a cross-sectional view showing another example of the internal structure of the cleaning head.
  • FIG. 4 is a plan view showing an example of the movement locus of the cleaning head.
  • FIG. 5 is a cross-sectional view showing an example of pretreatment of the cleaning head.
  • FIG. 6 is a cross-sectional view showing another example of pretreatment of the cleaning head.
  • FIG. 4 is a flow chart showing a method for manufacturing an EUVL mask blank according to one embodiment.
  • FIG. 9 is a cross-sectional view showing an example of a substrate.
  • 10 is a plan view of the substrate of FIG. 9.
  • FIG. 11 is a cross-sectional view showing an example of an EUVL mask blank.
  • FIG. 12 is a cross-sectional view showing an example of an EUVL mask.
  • a substrate cleaning apparatus 1 cleans the substrate W by applying ultrasonic vibrations to a liquid film F formed on the substrate W. As shown in FIG. Particles adhering to the substrate W can be removed.
  • the substrate cleaning apparatus 1 includes a holding section 10 , a nozzle 20 , a cleaning head 30 , a rotating section 40 , a first moving section 50 , a second moving section 60 and a control section 90 .
  • Cleaning head 30 is an example of an ultrasonic cleaning head.
  • the holding part 10 holds the substrate W horizontally.
  • the substrate W is rectangular (see FIG. 4), but may also be circular.
  • Substrate W includes a glass substrate, a silicon wafer, or a compound semiconductor wafer.
  • the substrate W may include a functional film formed on a glass substrate or the like.
  • a functional film is, for example, a light reflecting film, a light absorbing film, a conductive film, an insulating film, or the like.
  • the holding part 10 includes a plurality of pins 11 arranged at intervals along the periphery of the substrate W, as shown in FIG. 1, for example.
  • a plurality of pins 11 hold the peripheral edge of the substrate W.
  • a substrate W is placed on a plurality of pins 11 . Since there is a space under the substrate W, it is also possible to install the sensor on the bottom surface of the substrate W.
  • the holding unit 10 may hold the substrate W by suction.
  • the nozzle 20 forms a liquid film F by supplying cleaning liquid to the upper surface Wa of the substrate W held by the holding unit 10 .
  • the top surface Wa of the substrate W is also referred to as the substrate top surface Wa.
  • the nozzle 20 supplies the cleaning liquid, for example, near the center of the substrate upper surface Wa.
  • the substrate W is rotating, and the cleaning liquid on the substrate W is wetted and spread from the center of the substrate W toward the periphery by centrifugal force. As a result, a liquid film F is formed on the entire substrate upper surface Wa.
  • the nozzle 20 may be provided outside the cleaning head 30 as shown in FIG. 1, or may be provided inside the cleaning head 30 (not shown).
  • the nozzle 20 is connected to a cleaning liquid supply source 22 via a supply line 21 .
  • a valve 23 is provided in the middle of the supply line 21 .
  • the valve 23 opens and closes the channel of the supply line 21 .
  • the valve 23 opens the flow path of the supply line 21
  • the cleaning liquid is supplied from the supply source 22 to the nozzle 20, and the nozzle 20 discharges the cleaning liquid.
  • the valve 23 closes the flow path of the supply line 21, the nozzle 20 stops discharging the cleaning liquid.
  • the cleaning liquid is, for example, pure water (for example, deionized water), a mixture of pure water and X (at least one component selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, and acetic acid), pure water and Y (at least one component selected from the group consisting of ammonia, tetramethylammonium hydroxide, triethanolamine, choline, sodium hydroxide, potassium hydroxide, and cesium hydroxide) mixture, pure water and Z (hydrogen peroxide, at least one component selected from the group consisting of perchlorate ions and periodate ions), a mixture of pure water and X and Z, or a mixture of pure water and Y and Z.
  • pure water for example, deionized water
  • X at least one component selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, and acetic acid
  • the cleaning liquid may dissolve at least one gas selected from the group consisting of H2 gas, CO2 gas, N2 gas, O2 gas, O3 gas, and Ar gas.
  • the gas dissolved in the cleaning liquid is preferably H2 gas, CO2 gas or N2 gas, more preferably CO2 gas.
  • the cleaning head 30 includes, as shown in FIG. 2, a vibrating surface 31a that contacts the liquid film F, and an ultrasonic transducer 32 that vibrates the vibrating surface 31a.
  • Cleaning head 30 includes diaphragm 31 .
  • the vibration plate 31 has a downward vibration surface 31a that contacts the liquid film F, and an upward mounting surface 31b to which the ultrasonic transducer 32 is mounted.
  • the vibration surface 31a is installed parallel to the upper surface Wa of the substrate.
  • the size of the vibration surface 31a is smaller than, for example, the size of the substrate upper surface Wa.
  • the shape of the vibration surface 31a is, for example, circular.
  • the mounting surface 31b may be installed parallel to the vibration surface 31a as shown in FIG. 2, or may be installed obliquely to the vibration surface 31a as shown in FIG. In FIG. 3, ⁇ is the angle between the normal to the vibration surface 31a and the normal to the mounting surface 31b.
  • the normal direction of the mounting surface 31 b is the vibration direction of the ultrasonic transducer 32 .
  • the ultrasonic oscillator 32 applies ultrasonic vibration to the liquid film F and applies sound pressure to the substrate W by vibrating the vibration surface 31a. As a result, particles adhering to the upper surface Wa of the substrate can be peeled off.
  • the output of the ultrasonic transducer 32 is controlled by the controller 90 . When the distance D between the cleaning head 30 and the substrate W is constant, the sound pressure acting on the substrate W increases as the output of the ultrasonic transducer 32 increases.
  • the rotating section 40 rotates the substrate W together with the holding section 10 .
  • a rotation center line 10R of the holding part 10 is set vertically.
  • the holding part 10 holds the substrate W so that the rotation center line 10R passes through the center of the substrate W.
  • the rotating part 40 includes, for example, a servomotor 41 .
  • the rotational driving force of the servomotor 41 may be transmitted to the holding portion 10 via pulleys and belts, or gears (not shown).
  • the servomotor 41 transmits information about the rotational position of the holding section 10 to the control section 90 .
  • the rotational position of the holding portion 10 is represented by a rotational angle.
  • a stepping motor may be used instead of the servomotor 41 .
  • the first moving part 50 moves the cleaning head 30 in a horizontal direction orthogonal to the rotation center line 10R of the holding part 10.
  • the cleaning head 30 is moved between a position directly above the center of the substrate W and a position directly above the periphery of the substrate W, for example.
  • the 1st moving part 50 contains the servomotor 51, for example.
  • the servo motor 51 transmits information regarding the horizontal position of the cleaning head 30 to the control section 90 .
  • a stepping motor may be used instead of the servomotor 51 .
  • the first moving part 50 moves the cleaning head 30 in a horizontal direction orthogonal to the rotation center line 10R of the holding part 10 by rotating the pivot 52, for example.
  • the swivel shaft 52 is fixed to one end of the swivel arm 53
  • the cleaning head 30 is fixed to the other end of the swivel arm 53 .
  • a swivel centerline 30R of the cleaning head 30 is set vertically.
  • the first moving part 50 may move the cleaning head 30 in a horizontal direction orthogonal to the rotation center line 10R of the holding part 10 along a horizontal guide rail.
  • the second moving part 60 moves the cleaning head 30 in the vertical direction.
  • the second moving unit 60 moves the cleaning head 30 vertically by moving the turning shaft 52 vertically.
  • the second moving section 60 includes a servomotor 61 .
  • the second moving part 60 may include, for example, a ball screw that converts rotary motion of the servo motor 61 into linear motion.
  • the servomotor 61 transmits information about the vertical position of the cleaning head 30 to the controller 90 .
  • a stepping motor may be used instead of the servomotor 61 .
  • the second moving part 60 may move the cleaning head 30 in the vertical direction by using an air cylinder instead of the motor.
  • the second moving part 60 may move the holding part 10 in the vertical direction instead of moving the cleaning head 30 in the vertical direction. In any case, the distance D between the substrate W and the cleaning head 30 can be changed.
  • the control section 90 controls the valve 23 , the ultrasonic transducer 32 , the rotating section 40 , the first moving section 50 and the second moving section 60 .
  • the control unit 90 is, for example, a computer, and includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory.
  • the storage medium 92 stores programs for controlling various processes executed in the substrate cleaning apparatus 1 .
  • the control unit 90 controls the operation of the substrate cleaning apparatus 1 by causing the CPU 91 to execute programs stored in the storage medium 92 .
  • a transport robot enters the interior of the substrate cleaning apparatus 1 and delivers the substrate W held by the transport robot to the holding unit 10 .
  • the transfer robot leaves the substrate cleaning apparatus 1 .
  • the substrate W is carried in in this manner.
  • the rotating part 40 rotates the substrate W together with the holding part 10, and the nozzle 20 supplies the cleaning liquid to the vicinity of the center of the substrate W.
  • the cleaning liquid on the substrate W wets and spreads from the center of the substrate W toward the periphery due to centrifugal force. As a result, a liquid film F is formed on the entire substrate upper surface Wa.
  • the supply rate of the cleaning liquid is, for example, 0.1 L/min to 5.0 L/min, preferably 0.8 L/min to 1.6 L/min.
  • the first moving part 50 adjusts the horizontal position of the cleaning head 30 so that the vibration surface 31a of the cleaning head 30 contacts the liquid film F, and the second moving part 60 moves the cleaning head 30 vertically. Adjust position. A desired gap is formed between the cleaning head 30 and the substrate W.
  • the interval is, for example, 0.1 mm to 5.0 mm, preferably 1.0 mm to 4.0 mm.
  • the ultrasonic vibrator 32 vibrates the vibration surface 31a of the cleaning head 30 to apply ultrasonic vibration to the liquid film F and apply sound pressure to the upper surface Wa of the substrate.
  • the first moving part 50 moves the cleaning head 30 in the horizontal direction orthogonal to the rotation center line 10R of the holding part 10.
  • the cleaning head 30 is reciprocated between a position just above the center of the substrate W and a position just above the periphery of the substrate W. As shown in FIG.
  • the substrate W is rotating, and the entire substrate upper surface Wa is cleaned.
  • the first moving part 50 moves the horizontal position of the cleaning head 30 to the standby position.
  • the standby position is a position outside the periphery of the substrate W when viewed from above. Further, the ultrasonic vibrator 32 stops vibrating the vibrating surface 31a, and the nozzle 20 stops supplying the cleaning liquid.
  • the rotating section 40 rotates the substrate W together with the holding section 10, so that the cleaning liquid on the substrate W is shaken off from the periphery of the substrate W by centrifugal force.
  • the liquid film F is removed from the substrate W and the substrate W is dried.
  • a transport robot enters the interior of the substrate cleaning apparatus 1 and receives the substrate W from the holding section 10 . After the transport robot holds the substrate W, the transport robot leaves the substrate cleaning apparatus 1 . The substrate W is carried out in this manner.
  • FIG. 5 An example of pretreatment of the cleaning head 30 will be described with reference to FIGS. 5 and 6.
  • FIG. 5 The pretreatment of the cleaning head 30 is performed before the cleaning head 30 is incorporated into the substrate cleaning apparatus 1 .
  • the dummy substrate is cleaned by the substrate cleaning apparatus 1, and then the substrate W as a product is cleaned.
  • the pretreatment of the cleaning head 30 may be performed before cleaning the dummy substrate, and may be performed after the cleaning head 30 is installed in the substrate cleaning apparatus 1 .
  • the dummy substrate is configured in the same manner as the substrate W, which is a product, and is cleaned in the same manner as the substrate W. Specifically, although not shown, ultrasonic vibration is applied to the liquid film F from the vibrating surface 31a while the liquid film F is formed between the vibrating surface 31a of the cleaning head 30 and the upper surface of the dummy substrate, which face each other. and wash the dummy substrate.
  • cleaning of the dummy substrate is also referred to as dummy cleaning. Dummy cleaning is performed for the purpose of suppressing dust generation from the cleaning head 30 .
  • Dummy cleaning is repeated while replacing the dummy substrate.
  • the number of dummy substrates to be processed increases, that is, as the dummy cleaning time increases, dust generation from the cleaning head 30 is suppressed, and the number of particles P adhering to the dummy substrates due to ultrasonic cleaning decreases. decrease.
  • the number of particles P adhering to the dummy substrate settles down to a constant value. After that, the substrate W, which is a product, is washed. The number of particles P adhering to the substrate W is approximately the same as the number of particles P adhering to the last dummy substrate.
  • the smaller the number of particles P adhering to the vibration surface 31a of the cleaning head 30 before dummy cleaning the shorter the time required for the number of particles P adhering to the dummy substrate to settle down to a constant value.
  • the constant value becomes smaller. Therefore, the smaller the number of particles P adhering to the vibration surface 31a of the cleaning head 30 before the dummy cleaning, the fewer the particles P adhering to the substrate W.
  • the inventor of the present application has investigated the cause of particles P adhering to the vibration surface 31 a of the cleaning head 30 .
  • Particles P are considered to adhere during any one of the cleaning head 30 manufacturing process, packaging process, and transportation process.
  • the inventor of the present application paid attention to the cerium oxide particles used in the manufacturing process of the cleaning head 30 .
  • the vibration surface 31a of the cleaning head 30 is formed on the vibration plate 31, as shown in FIGS.
  • the material of the diaphragm 31 is quartz glass (SiO 2 ), for example.
  • the material of diaphragm 31 may be sapphire glass (Al 2 O 3 ). Further, the material of diaphragm 31 may be either crystalline or amorphous.
  • the manufacturing process of the cleaning head 30 includes cutting and mechanical polishing, for example. Cutting processes the diaphragm 31 into a desired shape. In the mechanical polishing, after cutting, the diaphragm 31 is polished with cerium oxide particles. It is believed that cerium oxide particles adhere to the diaphragm 31 during mechanical polishing.
  • the manufacturing process of the cleaning head 30 may include, for example, flame polishing between cutting and mechanical polishing.
  • cerium oxide particles adhering to the diaphragm 31 are removed by supplying at least one of a first chemical liquid L1 and a second chemical liquid L2, which will be described later, to the diaphragm 31 before dummy cleaning. investigated. By removing the cerium oxide particles, it is possible not only to shorten the time until the number of particles P adhering to the dummy substrate settles down to a constant value, but also to reduce the constant value.
  • the first chemical liquid L1 dissolves the cerium oxide particles adhering to the vibration plate 31, thereby removing the cerium oxide particles.
  • the first chemical liquid L1 is not particularly limited as long as it dissolves cerium oxide . is an aqueous solution containing The first chemical liquid L1 may be heated to promote dissolution of the cerium oxide.
  • the first chemical liquid L1 is stored in the first chemical liquid tank 101, for example, as shown in FIG.
  • first chemical liquid L ⁇ b>1 By immersing diaphragm 31 in first chemical liquid L ⁇ b>1 stored in first chemical liquid tank 101 , first chemical liquid L ⁇ b>1 can be supplied to diaphragm 31 .
  • a method of supplying the first chemical liquid L1 is not particularly limited.
  • the first chemical liquid L1 may be sprayed onto the diaphragm 31 using a spray.
  • the second chemical liquid L2 dissolves the surface of the diaphragm 31 to detach the cerium oxide particles from the diaphragm 31 .
  • the second chemical liquid L2 is appropriately selected according to the material of the diaphragm 31, and is, for example, an aqueous solution containing hydrofluoric acid (HF) or an aqueous solution containing an alkaline detergent.
  • An aqueous solution containing an alkaline detergent preferably has a pH of 9 or higher. If the pH is 9 or higher, Si—O bonds can be cut and SiO 2 can be etched.
  • Alkaline detergents include, for example, NaOH or KOH.
  • the second chemical liquid L2 may be heated to promote dissolution of the cleaning head 30 .
  • the second chemical liquid L2 is stored in the second chemical liquid tank 102 as shown in FIG. 6, for example.
  • the second chemical L2 can be supplied to the diaphragm 31.
  • the method of supplying the second chemical liquid L2 is not particularly limited.
  • the second chemical liquid L2 may be sprayed onto the vibration plate 31 using a spray.
  • the first chemical liquid L1 and the second chemical liquid L2 may be supplied not only to the vibration surface 31a of the diaphragm 31 but also to the side surface 31c. Moreover, although not shown, when the ejection port of the nozzle 20 is formed on the vibrating surface 31a of the diaphragm 31, it is preferable to supply the first chemical liquid L1 and the second chemical liquid L2 to the inside of the nozzle 20 as well. It is preferable to supply the first chemical liquid L1 and the second chemical liquid L2 to the portion of the vibration plate 31 that comes into contact with the cleaning liquid.
  • first chemical liquid L1 and the second chemical liquid L2 may be used, but it is preferable to use both.
  • first chemical solution L1 and the second chemical solution L2 it is preferable to supply the second chemical solution L2 to the diaphragm 31 after supplying the first chemical solution L1 to the diaphragm 31 .
  • the second chemical liquid L2 is supplied to the diaphragm 31 after the first chemical liquid L1 is supplied to the diaphragm 31, surface roughness of the diaphragm 31 can be suppressed compared to the case where the order is reversed. This is because the surface of the diaphragm 31 can be uniformly dissolved by dissolving the surface of the diaphragm 31 after the particles P adhering to the surface of the diaphragm 31 are dissolved.
  • the alkaline chemical solution can adjust the zeta potentials of both the cleaning head 30 and the particles P to the same polarity (for example, negative), and can suppress the redeposition of the particles P.
  • the alkaline chemical solution is, for example, an aqueous solution containing an alkaline detergent, or a mixed aqueous solution of ammonium hydroxide (NH 4 OH) and hydrogen peroxide (H 2 O 2 ) (so-called SC-1).
  • the rinse liquid After supplying the first chemical liquid L1 or the second chemical liquid L2 to the diaphragm 31, it is preferable to supply the rinse liquid to the diaphragm 31 to remove the residue of the chemical liquid. Pure water such as DIW (deionized water) is used as the rinse liquid.
  • DIW deionized water
  • Fluorine plasma for example, is used for the dry etching of the vibration plate 31 .
  • the number of cerium oxide particles adhering to the vibrating surface 31a of the cleaning head 30 is expressed by the surface density of the Ce element detected by total reflection X-ray fluorescence (TXRF) of the vibrating surface 31a. can be done.
  • TXRF total reflection X-ray fluorescence
  • the inventors of the present application used a chemical solution to reduce the surface density of the Ce element detected by the TXRF method on the vibration surface 31a of the cleaning head 30 to 30 ⁇ 10 10 atoms/cm 2 or less. It has been found that the number of particles P adhering to the substrate W can be reduced by ultrasonic cleaning.
  • the surface density of the Ce element on the vibrating surface 31a of the cleaning head 30 is 30 ⁇ 10 10 atoms/cm 2 or less, the surface density of the cerium oxide particles adhering to the vibrating surface 31a is low. Therefore, the number of particles P detached from the vibration surface 31a of the cleaning head 30 can be reduced, and the number of particles P adhering to the substrate W by ultrasonic cleaning can be reduced.
  • the method of making the surface density of Ce element on the vibration surface 31a of the cleaning head 30 to 30 ⁇ 10 10 atoms/cm 2 or less is to supply at least one of the first chemical liquid L1 and the second chemical liquid L2 to the vibration plate 31.
  • the method is not limited.
  • the density of the cerium oxide particles may be brought to a predetermined range by scrubbing with a brush or sponge.
  • the surface density of the Ce element on the vibration surface 31a of the cleaning head 30 is preferably 10 ⁇ 10 10 atoms/cm 2 or less, and more preferably. is 1 ⁇ 10 10 atoms/cm 2 or less.
  • the surface density of the Ce element on the vibrating surface 31a of the cleaning head 30 should be 0 atoms/cm 2 or more.
  • the vibration surface 31a of the cleaning head 30 is 100% for the surface density of the most abundant element among the elements with atomic numbers of 13 to 30 and 33 to 72 detected by the TXRF method. is preferably 1.0% or less.
  • the material of the vibrating surface 31a is SiO2
  • the most abundant element is Si.
  • the material of the vibrating surface 31a is Al 2 O 3
  • the most abundant element is Al.
  • the atomic number of Ce is 58.
  • the element with atomic number 13 is Al.
  • the element with atomic number 30 is Zn.
  • the element with atomic number 33 is As.
  • the element with atomic number 72 is Hf.
  • a W (tungsten) beam is used as an X-ray source for the TXRF method.
  • Ga with atomic number 31 and Ge with atomic number 32 are difficult to detect.
  • the sum of the surface densities of all the remaining elements excluding the most abundant element is 1.0% or less, the number of particles P adhering to the vibrating surface 31a is small. Therefore, the number of particles P detached from the vibration surface 31a of the cleaning head 30 can be reduced, and the number of particles P adhering to the substrate W by ultrasonic cleaning can be reduced.
  • the total surface density of all the remaining elements excluding the most abundant element is preferably 0.5% or less.
  • the total areal density of all the remaining elements excluding the most abundant element may be 0.0% or more, but is preferably 0.1% or more from the viewpoint of productivity.
  • the manufacturing method of the EUVL mask blank 200 has steps S101 to S107.
  • a substrate 210 shown in FIGS. 9 and 10 is prepared in advance. Steps S101 to S104 are included in the substrate manufacturing method.
  • the substrate 210 includes a first major surface 211 and a second major surface 212 opposite to the first major surface 211 .
  • the first major surface 211 is rectangular.
  • a rectangular shape includes a shape with chamfered corners. Rectangles also include squares.
  • the second major surface 212 is opposite to the first major surface 211 .
  • the second main surface 212 is also rectangular like the first main surface 211 .
  • the substrate 210 also includes four end surfaces 213 , four first chamfered surfaces 214 and four second chamfered surfaces 215 .
  • the end surface 213 is perpendicular to the first major surface 211 and the second major surface 212 .
  • a first chamfered surface 214 is formed at the boundary between the first major surface 211 and the end surface 213 .
  • a second chamfered surface 215 is formed at the boundary between the second main surface 212 and the end surface 213 .
  • the first chamfered surface 214 and the second chamfered surface 215 are so-called C-chamfered surfaces in this embodiment, but may be R-chamfered surfaces.
  • the substrate 210 is, for example, a glass substrate.
  • the glass of substrate 210 is preferably quartz glass containing TiO 2 .
  • Silica glass has a smaller coefficient of linear expansion than general soda-lime glass, and its dimensional change due to temperature change is small.
  • the quartz glass may contain 80% to 95% by weight of SiO 2 and 4% to 17% by weight of TiO 2 . When the TiO 2 content is 4% by mass to 17% by mass, the coefficient of linear expansion near room temperature is approximately zero, and dimensional change hardly occurs near room temperature. Quartz glass may contain third components or impurities other than SiO2 and TiO2 .
  • the size of the substrate 210 in plan view is, for example, 152 mm long and 152 mm wide.
  • the longitudinal and lateral dimensions may be 152 mm or greater.
  • the substrate 210 has a central region 211A and a peripheral region 211B on the first main surface 211.
  • the central region 211A is a square region excluding a rectangular frame-shaped peripheral region 211B surrounding the central region 211A, is processed to a desired flatness in steps S101 to S104, and is a quality assurance region.
  • the quality assurance area has a size of, for example, 142 mm long and 142 mm wide.
  • the four sides of the central region 211A are parallel to the four end faces 213. As shown in FIG.
  • the center of central region 211A coincides with the center of first main surface 211 .
  • the second principal surface 212 of the substrate 210 also has a central region and a peripheral region, similar to the first principal surface 211 .
  • the central region of the second principal surface 212 is a square region, similar to the central region of the first principal surface 211, which is processed to a desired flatness in steps S101 to S104 of FIG. Guaranteed area.
  • the quality assurance area has a size of, for example, 142 mm long and 142 mm wide.
  • Step S101 includes polishing the first main surface 211 and the second main surface 212 of the substrate 210 .
  • the first principal surface 211 and the second principal surface 212 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown).
  • step S ⁇ b>101 the substrate 210 is polished while supplying polishing slurry between the polishing pad and the substrate 210 .
  • the polishing pad for example, a urethane-based polishing pad, a non-woven fabric-based polishing pad, or a suede-based polishing pad is used.
  • the polishing slurry contains an abrasive and a dispersion medium.
  • the abrasive is, for example, cerium oxide particles.
  • the dispersion medium is, for example, water or an organic solvent.
  • the first main surface 211 and the second main surface 212 may be polished multiple times with abrasives of different materials or grain sizes.
  • the abrasive used in step S101 is not limited to cerium oxide particles, and may be, for example, silicon oxide particles, aluminum oxide particles, zirconium oxide particles, titanium oxide particles, diamond particles, or silicon carbide particles. good.
  • Step S102 includes measuring the surface shapes of the first main surface 211 and the second main surface 212 of the substrate 210 .
  • a non-contact type measuring instrument such as a laser interference type is used so as not to damage the surface.
  • the measuring machine measures the surface shape of the central region 211A of the first principal surface 211 and the central region of the second principal surface 212 .
  • Step S103 includes locally processing the first main surface 211 and the second main surface 212 of the substrate 210 with reference to the measurement result of step S102 in order to improve the flatness.
  • the first main surface 211 and the second main surface 212 are locally machined in order.
  • the order is not particularly limited and may be either one first.
  • At least one selected from, for example, a GCIB (Gas Cluster Ion Beam) method, a PCVM (Plasma Chemical Vaporization Machining) method, a magnetic fluid polishing method, and polishing with a rotary polishing tool is used.
  • Step S104 includes final polishing of the first main surface 211 and the second main surface 212 of the substrate 210 .
  • the first principal surface 211 and the second principal surface 212 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown).
  • the substrate 210 is polished while supplying polishing slurry between the polishing pad and the substrate 210 .
  • the polishing slurry contains an abrasive.
  • Abrasives are, for example, colloidal silica particles.
  • Step S105 includes forming the conductive film 240 shown in FIG.
  • the conductive film 240 is used to attract the EUVL mask to the electrostatic chuck of the exposure apparatus.
  • the conductive film 240 is made of, for example, chromium nitride (CrN).
  • CrN chromium nitride
  • a method for forming the conductive film 240 for example, a sputtering method is used.
  • Step S106 includes forming the multilayer reflective film 220 shown in FIG.
  • the multilayer reflective film 220 reflects EUV.
  • the multilayer reflective film 220 is formed by alternately laminating high refractive index layers and low refractive index layers, for example.
  • the high refractive index layer is made of silicon (Si), for example, and the low refractive index layer is made of molybdenum (Mo), for example.
  • a sputtering method such as an ion beam sputtering method or a magnetron sputtering method is used.
  • Step S107 includes forming the absorbing film 230 shown in FIG. 11 on the multilayer reflective film 220 formed in step S106.
  • the absorbing film 230 absorbs EUV.
  • the absorbing film 230 may be a phase shift film and may shift the phase of EUV.
  • the absorption film 230 is formed of a single metal, alloy, nitride, oxide, oxynitride, etc. containing at least one element selected from tantalum (Ta), chromium (Cr), and palladium (Pd), for example.
  • a sputtering method is used as a method for forming the absorption film 230.
  • steps S106 and S107 are performed after step S105 in this embodiment, they may be performed before step S105.
  • the EUVL mask blank 200 shown in FIG. 11 has a conductive film 240, a substrate 210, a multilayer reflective film 220, and an absorbing film 230 in this order.
  • the EUVL mask blank 200 may include another film in addition to the conductive film 240, the substrate 210, the multilayer reflective film 220, and the absorption film 230.
  • FIG. 11 illustrates a conductive film 240, a substrate 210, a multilayer reflective film 220, and an absorbing film 230 in this order.
  • the EUVL mask blank 200 may include another film in addition to the conductive film 240, the substrate 210, the multilayer reflective film 220, and the absorption film 230.
  • the EUVL mask blank 200 may further include a low-reflection film.
  • a low-reflection film is formed on the absorbing film 230 .
  • an opening pattern 231 is formed in both the low reflection film and the absorption film 230 .
  • the low-reflection film is used for inspection of the opening pattern 231 and has a lower reflection characteristic than the absorption film 230 with respect to inspection light.
  • the low reflection film is made of TaON or TaO, for example.
  • a sputtering method is used as a method for forming the low-reflection film.
  • the EUVL mask blank 200 may further include a protective film.
  • a protective film is formed between the multilayer reflective film 220 and the absorbing film 230 .
  • the protective film protects the multilayer reflective film 220 from being etched when the absorbing film 230 is etched to form the opening pattern 231 in the absorbing film 230 .
  • the protective film is made of, for example, Ru, Si, or TiO2 .
  • As a method for forming the protective film for example, a sputtering method is used.
  • the EUVL mask 201 is obtained by forming an opening pattern 231 in the absorbing film 230 of the EUVL mask blank 200 .
  • a photolithography method and an etching method are used to form the opening pattern 231 . Therefore, the resist film used for forming the opening pattern 231 may be included in the EUVL mask blank 200 .
  • the substrate 210 or various functional films formed on the substrate 210 may be cleaned. Cleaning using a chemical reaction with an acid or alkali, cleaning using a physical action, or a combination thereof is performed. Cleaning using physical action includes ultrasonic cleaning, scrub cleaning, or two-fluid cleaning. In the two-fluid cleaning, the cleaning liquid and the gas are mixed and sprayed.
  • Ultrasonic cleaning is performed using, for example, the substrate cleaning apparatus 1 shown in FIG. Ultrasonic cleaning is preferably performed at least one of between steps S104 and S105, between steps S105 and S106, between steps S106 and S107, and after step S107. In addition, although not shown, ultrasonic cleaning may be performed before and after the low-reflection film, hard mask film, or protective film.
  • Example 1 is a comparative example, and Examples 2 to 4 below are examples.
  • Table 1 shows the experimental conditions and evaluation results of Examples 1 to 4.
  • Example 1 the various cleaning solutions listed in Table 1 were supplied to the vibration plate of the cleaning head in the order of the numbers listed in Table 1 to perform pretreatment of the cleaning head, and then dummy cleaning was performed. After that, the substrate was washed.
  • the material of the vibration plate of the cleaning head was quartz glass.
  • the diaphragm was previously subjected to cutting and mechanical polishing in this order. In the mechanical polishing, cerium oxide particles were used to polish the diaphragm.
  • dummy cleaning time is the time until the number of particles adhering to the dummy substrate by ultrasonic cleaning settles down to a constant value.
  • the number of particles adhering to the dummy substrate due to ultrasonic cleaning was measured by measuring the number of particles on the dummy substrate before and after ultrasonic cleaning and calculating the difference.
  • the number of particles on the substrate is the average number of particles adhering to the substrate by ultrasonic cleaning after the dummy cleaning.
  • the number of particles adhering to the substrate due to ultrasonic cleaning was measured by measuring the number of particles on the substrate before and after ultrasonic cleaning and calculating the difference.
  • the number of particles was measured by Lasertec's MAGICS series.
  • the number of particles is the number of defects converted to SiO 2 particles 40 nm size.
  • Example 1 As shown in Table 1, in Example 1, both the first chemical solution (the chemical solution that dissolves cerium oxide) and the second chemical solution (the chemical solution that dissolves quartz glass) are supplied to the vibration plate of the cleaning head in the pretreatment of the cleaning head. Therefore, the "dummy cleaning time" was long and the "number of particles on the substrate” was large.
  • Example 2 since "HF” was supplied to the vibration plate of the cleaning head in the pretreatment of the cleaning head, the “dummy cleaning time” was short and the “number of particles on the substrate” was small. “HF” corresponds to the second chemical (chemical that dissolves quartz glass).
  • the surface of the quartz glass plate pretreated in the same manner as the cleaning head had a surface density of Ce of 30 ⁇ 10 10 atoms/cm 2 or less.
  • Example 3 "SPM” and “HF” were supplied in this order to the vibration plate of the cleaning head in the cleaning head pretreatment, so the "dummy cleaning time” was short and the “substrate particle count” was small. .
  • SPM corresponds to the first chemical solution (chemical solution that dissolves cerium oxide)
  • HF corresponds to the second chemical solution (chemical solution that dissolves quartz glass).
  • SPM and "alkaline detergent” were supplied in this order to the vibration plate of the cleaning head in the pretreatment of the cleaning head.
  • SPM corresponds to the first chemical solution (chemical solution that dissolves cerium oxide)
  • alkaline detergent corresponds to the second chemical solution (chemical solution that dissolves quartz glass).
  • Appendix 5 The ultrasonic cleaning head according to appendix 4, wherein the most abundant element is Si.
  • a substrate cleaning method comprising: [Appendix 8] The ultrasonic cleaning head according to any one of Appendices 1 to 6, a holding portion that horizontally holds the substrate, and a nozzle that forms the liquid film on the upper surface of the substrate held by the holding portion.
  • a substrate cleaning apparatus comprising: [Appendix 9] A method for manufacturing a substrate, comprising cleaning the substrate using the substrate cleaning apparatus according to appendix 8.

Abstract

This ultrasonic cleaning head has a vibration surface that faces the upper surface of a substrate with a gap therebetween, and contacts a liquid film formed on the upper surface of the substrate. The vibration surface has a surface density of Ce element of 30×1010atoms/cm2 as detected by a total reflection X-ray fluorescence analysis.

Description

超音波洗浄ヘッド、基板洗浄方法、基板洗浄装置、基板の製造方法、およびEUVL用マスクブランクの製造方法Ultrasonic cleaning head, substrate cleaning method, substrate cleaning apparatus, substrate manufacturing method, and EUVL mask blank manufacturing method
 本開示は、超音波洗浄ヘッド、基板洗浄方法、基板洗浄装置、基板の製造方法、およびEUVL用マスクブランクの製造方法に関する。 The present disclosure relates to an ultrasonic cleaning head, a substrate cleaning method, a substrate cleaning apparatus, a substrate manufacturing method, and an EUVL mask blank manufacturing method.
 近年、半導体デバイスの微細化に伴い、極端紫外線(Extreme Ultra-Violet:EUV)を用いた露光技術であるEUVリソグラフィー(EUVL)が開発されている。EUVとは、軟X線および真空紫外線を含み、具体的には波長が0.2nm~100nm程度の光のことである。現時点では、13.5nm程度の波長のEUVが主に検討されている。 In recent years, with the miniaturization of semiconductor devices, EUV lithography (EUVL), which is an exposure technology using Extreme Ultraviolet (EUV), has been developed. EUV includes soft X-rays and vacuum ultraviolet rays, and specifically refers to light with a wavelength of approximately 0.2 nm to 100 nm. At present, EUV with a wavelength of about 13.5 nm is mainly considered.
 EUVLでは、反射型マスクが用いられる。反射型マスクは、ガラス基板などの基板と、EUVを反射する多層反射膜と、EUVを吸収する吸収膜と、をこの順で有する。吸収膜には、開口パターンが形成される。EUVLでは、吸収膜の開口パターンを半導体基板などの対象基板に転写する。転写することは、縮小して転写することを含む。 A reflective mask is used in EUVL. A reflective mask has, in this order, a substrate such as a glass substrate, a multilayer reflective film that reflects EUV, and an absorbing film that absorbs EUV. An opening pattern is formed in the absorption film. In EUVL, a pattern of openings in an absorbing film is transferred to a target substrate, such as a semiconductor substrate. Transferring includes reducing and transferring.
 EUVL用マスクブランクの製造工程の途中で、ガラス基板またはガラス基板の上に形成された機能膜を洗浄することがある。その洗浄方法の一つとして、超音波洗浄が行われることがある。 In the middle of the EUVL mask blank manufacturing process, the glass substrate or the functional film formed on the glass substrate may be cleaned. Ultrasonic cleaning may be performed as one of the cleaning methods.
 特許文献1に記載の洗浄方法は、回転する基板の上面に対し、予め超音波を印可した洗浄液をノズルから噴射することを有する。特許文献2に記載の洗浄方法は、回転する基板の上面と超音波洗浄ヘッドの下面との間に洗浄液を供給し、この洗浄液に対して超音波洗浄ヘッドの下面から超音波を付与することで、基板の上面を洗浄する。 The cleaning method described in Patent Document 1 includes spraying a cleaning liquid to which ultrasonic waves have been applied in advance from a nozzle onto the upper surface of a rotating substrate. In the cleaning method described in Patent Document 2, a cleaning liquid is supplied between the upper surface of a rotating substrate and the lower surface of an ultrasonic cleaning head, and ultrasonic waves are applied to the cleaning liquid from the lower surface of the ultrasonic cleaning head. , cleaning the top surface of the substrate.
日本国特開2013-158664号公報Japanese Patent Application Laid-Open No. 2013-158664 日本国特開2001-87725号公報Japanese Patent Application Laid-Open No. 2001-87725
 特許文献1に記載の洗浄方法を用いた場合でも、なお基板に付着したパーティクルの数を十分に低減することができていなかった。本願発明者は、超音波洗浄後の基板に付着しているパーティクルを調査した結果、酸化セリウム粒子がパーティクルの一原因となっていることを突き止めた。また、酸化セリウム粒子の発生源として、超音波洗浄ヘッドに付着していた酸化セリウム粒子が洗浄中に脱離し、基板へ付着していることも突き止めた。酸化セリウム粒子は機械研磨に一般的に用いられるものであるため、超音波洗浄ヘッドの製造工程で付着したものと考えられる。超音波洗浄ヘッドの製造工程は、一例として切削加工と機械研磨を含む。切削加工は、振動板を所望の形状に加工する。機械研磨は、振動板を酸化セリウム粒子で研磨する。 Even when using the cleaning method described in Patent Document 1, the number of particles adhering to the substrate could not be sufficiently reduced. The inventor of the present application investigated particles adhering to the substrate after ultrasonic cleaning, and found that cerium oxide particles were one of the causes of the particles. In addition, as a source of cerium oxide particles, it was found that cerium oxide particles adhering to the ultrasonic cleaning head detached during cleaning and adhered to the substrate. Since cerium oxide particles are generally used for mechanical polishing, they are considered to have adhered during the manufacturing process of the ultrasonic cleaning head. The manufacturing process of the ultrasonic cleaning head includes cutting and mechanical polishing, for example. Cutting processes the diaphragm into a desired shape. Mechanical polishing polishes the diaphragm with cerium oxide particles.
 本開示の一態様は、超音波洗浄によって基板に付着するパーティクルの数を低減する、技術を提供する。 One aspect of the present disclosure provides a technique for reducing the number of particles adhering to a substrate by ultrasonic cleaning.
 本開示の一態様に係る超音波洗浄ヘッドは、基板の上面に間隔をおいて対向すると共に前記基板の上面に形成される液膜に接触する振動面を有する。前記振動面は、全反射蛍光X線分析法で検出されるCe元素の面密度が30×1010atoms/cm以下である。 An ultrasonic cleaning head according to an aspect of the present disclosure has a vibrating surface that faces an upper surface of a substrate with a gap therebetween and contacts a liquid film formed on the upper surface of the substrate. The vibrating surface has a Ce element surface density of 30×10 10 atoms/cm 2 or less as detected by total reflection X-ray fluorescence analysis.
 本開示の一態様の超音波洗浄ヘッドは、振動面のCe元素の面密度が30×1010atoms/cm以下であるので、振動面に付着している酸化セリウム粒子の面密度が低い。よって、超音波洗浄ヘッドの振動面から脱離するパーティクルの数を低減でき、超音波洗浄によって基板に付着するパーティクルの数を低減できる。 In the ultrasonic cleaning head of one aspect of the present disclosure, the surface density of Ce element on the vibration surface is 30×10 10 atoms/cm 2 or less, so the surface density of the cerium oxide particles adhering to the vibration surface is low. Therefore, the number of particles detached from the vibration surface of the ultrasonic cleaning head can be reduced, and the number of particles adhering to the substrate by ultrasonic cleaning can be reduced.
図1は、一実施形態に係る基板洗浄装置を示す側面図である。FIG. 1 is a side view showing a substrate cleaning apparatus according to one embodiment. 図2は、洗浄ヘッドの内部構造の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the internal structure of the cleaning head. 図3は、洗浄ヘッドの内部構造の別の一例を示す断面図である。FIG. 3 is a cross-sectional view showing another example of the internal structure of the cleaning head. 図4は、洗浄ヘッドの移動軌跡の一例を示す平面図である。FIG. 4 is a plan view showing an example of the movement locus of the cleaning head. 図5は、洗浄ヘッドの前処理の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of pretreatment of the cleaning head. 図6は、洗浄ヘッドの前処理の別の一例を示す断面図である。FIG. 6 is a cross-sectional view showing another example of pretreatment of the cleaning head. 図7は、ダミー基板の処理枚数と、パーティクル数との関係の一例を示す図である。FIG. 7 is a diagram showing an example of the relationship between the number of processed dummy substrates and the number of particles. 一実施形態に係るEUVL用マスクブランクの製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing an EUVL mask blank according to one embodiment. 図9は、基板の一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of a substrate. 図10は、図9の基板の平面図である。10 is a plan view of the substrate of FIG. 9. FIG. 図11は、EUVL用マスクブランクの一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of an EUVL mask blank. 図12は、EUVL用マスクの一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of an EUVL mask.
 以下、本開示を実施するための形態について図面を参照して説明する。各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments for carrying out the present disclosure will be described with reference to the drawings. In each drawing, the same reference numerals are given to the same or corresponding configurations, and descriptions thereof may be omitted. In the specification, "-" indicating a numerical range means that the numerical values described before and after it are included as lower and upper limits.
 図1~図4を参照して、一実施形態に係る基板洗浄装置1について説明する。基板洗浄装置1は、基板Wの上に形成された液膜Fに対して超音波振動を付与することで、基板Wを洗浄する。基板Wに付着したパーティクルを除去できる。基板洗浄装置1は、保持部10と、ノズル20と、洗浄ヘッド30と、回転部40と、第1移動部50と、第2移動部60と、制御部90と、を備える。洗浄ヘッド30は、超音波洗浄ヘッドの一例である。 A substrate cleaning apparatus 1 according to one embodiment will be described with reference to FIGS. The substrate cleaning apparatus 1 cleans the substrate W by applying ultrasonic vibrations to a liquid film F formed on the substrate W. As shown in FIG. Particles adhering to the substrate W can be removed. The substrate cleaning apparatus 1 includes a holding section 10 , a nozzle 20 , a cleaning head 30 , a rotating section 40 , a first moving section 50 , a second moving section 60 and a control section 90 . Cleaning head 30 is an example of an ultrasonic cleaning head.
 保持部10は、基板Wを水平に保持する。上方から見たときに、基板Wは、矩形であるが(図4参照)、円形であってもよい。基板Wは、ガラス基板、シリコンウエハ、又は化合物半導体ウエハを含む。基板Wは、ガラス基板などの上に形成される機能膜を含んでもよい。機能膜は、例えば光反射膜、光吸収膜、導電膜、または絶縁膜などである。 The holding part 10 holds the substrate W horizontally. When viewed from above, the substrate W is rectangular (see FIG. 4), but may also be circular. Substrate W includes a glass substrate, a silicon wafer, or a compound semiconductor wafer. The substrate W may include a functional film formed on a glass substrate or the like. A functional film is, for example, a light reflecting film, a light absorbing film, a conductive film, an insulating film, or the like.
 保持部10は、例えば図1に示すように、基板Wの周縁に沿って間隔をおいて配置される複数本のピン11を含む。複数本のピン11は、基板Wの周縁を保持する。基板Wは、複数本のピン11の上に載置される。基板Wの下には空間が存在するので、基板Wの下面にセンサを取りけることも可能である。なお、保持部10は、基板Wを吸着してもよい。 The holding part 10 includes a plurality of pins 11 arranged at intervals along the periphery of the substrate W, as shown in FIG. 1, for example. A plurality of pins 11 hold the peripheral edge of the substrate W. As shown in FIG. A substrate W is placed on a plurality of pins 11 . Since there is a space under the substrate W, it is also possible to install the sensor on the bottom surface of the substrate W. FIG. It should be noted that the holding unit 10 may hold the substrate W by suction.
 ノズル20は、保持部10で保持している基板Wの上面Waに洗浄液を供給することで液膜Fを形成する。基板Wの上面Waを、基板上面Waとも記載する。ノズル20は、例えば、基板上面Waの中心付近に洗浄液を供給する。基板Wは回転しており、基板W上の洗浄液は遠心力によって基板Wの中心から周縁に向けて濡れ広がる。その結果、基板上面Waの全体に液膜Fが形成される。ノズル20は、図1に示すように洗浄ヘッド30の外部に設けられてもよいし、図示しないが洗浄ヘッド30の内部に設けられてもよい。 The nozzle 20 forms a liquid film F by supplying cleaning liquid to the upper surface Wa of the substrate W held by the holding unit 10 . The top surface Wa of the substrate W is also referred to as the substrate top surface Wa. The nozzle 20 supplies the cleaning liquid, for example, near the center of the substrate upper surface Wa. The substrate W is rotating, and the cleaning liquid on the substrate W is wetted and spread from the center of the substrate W toward the periphery by centrifugal force. As a result, a liquid film F is formed on the entire substrate upper surface Wa. The nozzle 20 may be provided outside the cleaning head 30 as shown in FIG. 1, or may be provided inside the cleaning head 30 (not shown).
 ノズル20は、供給ライン21を介して洗浄液の供給源22と接続されている。供給ライン21の途中には、バルブ23が設けられている。バルブ23は、供給ライン21の流路を開閉する。バルブ23が供給ライン21の流路を開放すると、洗浄液が供給源22からノズル20に供給され、ノズル20が洗浄液を吐出する。バルブ23が供給ライン21の流路を閉塞すると、ノズル20が洗浄液の吐出を停止する。 The nozzle 20 is connected to a cleaning liquid supply source 22 via a supply line 21 . A valve 23 is provided in the middle of the supply line 21 . The valve 23 opens and closes the channel of the supply line 21 . When the valve 23 opens the flow path of the supply line 21, the cleaning liquid is supplied from the supply source 22 to the nozzle 20, and the nozzle 20 discharges the cleaning liquid. When the valve 23 closes the flow path of the supply line 21, the nozzle 20 stops discharging the cleaning liquid.
 洗浄液は、例えば、純水(例えば脱イオン水)、純水とX(塩酸、硫酸、硝酸、リン酸、ギ酸、酢酸からなる群から選択される少なくとも1つの成分)の混合物、純水とY(アンモニア、テトラメチルアンモニウムヒドロキシド、トリエタノールアミン、コリン、水酸化ナトリウム、水酸化カリウム、水酸化セシウムからなる群から選択される少なくとも1つの成分)の混合物、純水とZ(過酸化水素、過塩素酸イオン、過ヨウ素酸イオンからなる群から選択される少なくとも1つの成分)の混合物、純水とXとZの混合物、または純水とYとZの混合物である。 The cleaning liquid is, for example, pure water (for example, deionized water), a mixture of pure water and X (at least one component selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, and acetic acid), pure water and Y (at least one component selected from the group consisting of ammonia, tetramethylammonium hydroxide, triethanolamine, choline, sodium hydroxide, potassium hydroxide, and cesium hydroxide) mixture, pure water and Z (hydrogen peroxide, at least one component selected from the group consisting of perchlorate ions and periodate ions), a mixture of pure water and X and Z, or a mixture of pure water and Y and Z.
 洗浄液は、Hガス、COガス、Nガス、Oガス、Oガス、及びArガスからなる群から選択される少なくとも1つのガスを溶存してもよい。ガスの溶存量を制御することで、キャビテーションの発生効率を向上でき、パーティクルの除去効率を向上できる。洗浄液に溶存するガスは、好ましくはHガス、COガスまたはNガスであり、より好ましくはCOガスである。 The cleaning liquid may dissolve at least one gas selected from the group consisting of H2 gas, CO2 gas, N2 gas, O2 gas, O3 gas, and Ar gas. By controlling the amount of dissolved gas, the cavitation generation efficiency can be improved, and the particle removal efficiency can be improved. The gas dissolved in the cleaning liquid is preferably H2 gas, CO2 gas or N2 gas, more preferably CO2 gas.
 洗浄ヘッド30は、図2に示すように、液膜Fに接触する振動面31aと、振動面31aを振動させる超音波振動子32とを含む。洗浄ヘッド30は、振動板31を含む。振動板31は、液膜Fに接触する下向きの振動面31aと、超音波振動子32が取り付けられる上向きの取付面31bと、を有する。 The cleaning head 30 includes, as shown in FIG. 2, a vibrating surface 31a that contacts the liquid film F, and an ultrasonic transducer 32 that vibrates the vibrating surface 31a. Cleaning head 30 includes diaphragm 31 . The vibration plate 31 has a downward vibration surface 31a that contacts the liquid film F, and an upward mounting surface 31b to which the ultrasonic transducer 32 is mounted.
 振動面31aは、基板上面Waに対して平行に設置される。振動面31aの大きさは、例えば基板上面Waの大きさよりも小さい。振動面31aの形状は、例えば円形である。なお、ノズル20が洗浄ヘッド30の内部に設けられる場合、ノズル20の吐出口が振動面31aに形成される。 The vibration surface 31a is installed parallel to the upper surface Wa of the substrate. The size of the vibration surface 31a is smaller than, for example, the size of the substrate upper surface Wa. The shape of the vibration surface 31a is, for example, circular. When the nozzle 20 is provided inside the cleaning head 30, the ejection port of the nozzle 20 is formed on the vibrating surface 31a.
 取付面31bは、図2に示すように振動面31aに対して平行に設置されてもよいし、図3に示すように振動面31aに対して斜めに設置されてもよい。図3において、θは、振動面31aの法線と、取付面31bの法線とのなす角である。取付面31bの法線方向が、超音波振動子32の振動方向である。 The mounting surface 31b may be installed parallel to the vibration surface 31a as shown in FIG. 2, or may be installed obliquely to the vibration surface 31a as shown in FIG. In FIG. 3, θ is the angle between the normal to the vibration surface 31a and the normal to the mounting surface 31b. The normal direction of the mounting surface 31 b is the vibration direction of the ultrasonic transducer 32 .
 超音波振動子32は、振動面31aを振動させることで液膜Fに超音波振動を付与し、基板Wに音圧を付与する。これにより、基板上面Waに付着したパーティクルを剥離できる。超音波振動子32の出力は、制御部90によって制御する。洗浄ヘッド30と基板Wの距離Dが一定の場合、超音波振動子32の出力が大きくなるほど、基板Wに作用する音圧が大きくなる。 The ultrasonic oscillator 32 applies ultrasonic vibration to the liquid film F and applies sound pressure to the substrate W by vibrating the vibration surface 31a. As a result, particles adhering to the upper surface Wa of the substrate can be peeled off. The output of the ultrasonic transducer 32 is controlled by the controller 90 . When the distance D between the cleaning head 30 and the substrate W is constant, the sound pressure acting on the substrate W increases as the output of the ultrasonic transducer 32 increases.
 回転部40は、保持部10と共に基板Wを回転させる。保持部10の回転中心線10Rは、鉛直に設置される。保持部10は、その回転中心線10Rが基板Wの中心を通るように基板Wを保持する。回転部40は、例えばサーボモータ41を含む。サーボモータ41の回転駆動力は、図示しないプーリとベルト、またはギヤを介して保持部10に伝達されてもよい。サーボモータ41は、保持部10の回転位置に関する情報を制御部90に送信する。保持部10の回転位置は、回転角で表される。サーボモータ41の代わりに、ステッピングモータが用いられてもよい。 The rotating section 40 rotates the substrate W together with the holding section 10 . A rotation center line 10R of the holding part 10 is set vertically. The holding part 10 holds the substrate W so that the rotation center line 10R passes through the center of the substrate W. As shown in FIG. The rotating part 40 includes, for example, a servomotor 41 . The rotational driving force of the servomotor 41 may be transmitted to the holding portion 10 via pulleys and belts, or gears (not shown). The servomotor 41 transmits information about the rotational position of the holding section 10 to the control section 90 . The rotational position of the holding portion 10 is represented by a rotational angle. A stepping motor may be used instead of the servomotor 41 .
 第1移動部50は、保持部10の回転中心線10Rと直交する水平方向に洗浄ヘッド30を移動させる。洗浄ヘッド30は、例えば、基板Wの中心の真上の位置と、基板Wの周縁の真上の位置との間で移動させられる。第1移動部50は、例えばサーボモータ51を含む。サーボモータ51は、洗浄ヘッド30の水平方向位置に関する情報を制御部90に送信する。サーボモータ51の代わりに、ステッピングモータが用いられてもよい。 The first moving part 50 moves the cleaning head 30 in a horizontal direction orthogonal to the rotation center line 10R of the holding part 10. The cleaning head 30 is moved between a position directly above the center of the substrate W and a position directly above the periphery of the substrate W, for example. The 1st moving part 50 contains the servomotor 51, for example. The servo motor 51 transmits information regarding the horizontal position of the cleaning head 30 to the control section 90 . A stepping motor may be used instead of the servomotor 51 .
 第1移動部50は、例えば旋回軸52を回転させることで、保持部10の回転中心線10Rと直交する水平方向に洗浄ヘッド30を移動させる。旋回軸52は旋回アーム53の一端に固定されており、洗浄ヘッド30は旋回アーム53の他端に固定されている。洗浄ヘッド30の旋回中心線30Rは、鉛直に設置される。 The first moving part 50 moves the cleaning head 30 in a horizontal direction orthogonal to the rotation center line 10R of the holding part 10 by rotating the pivot 52, for example. The swivel shaft 52 is fixed to one end of the swivel arm 53 , and the cleaning head 30 is fixed to the other end of the swivel arm 53 . A swivel centerline 30R of the cleaning head 30 is set vertically.
 なお、図示しないが、第1移動部50は、水平なガイドレールに沿って、保持部10の回転中心線10Rと直交する水平方向に洗浄ヘッド30を移動させてもよい。 Although not shown, the first moving part 50 may move the cleaning head 30 in a horizontal direction orthogonal to the rotation center line 10R of the holding part 10 along a horizontal guide rail.
 第2移動部60は、洗浄ヘッド30を鉛直方向に移動させる。例えば、第2移動部60は、旋回軸52を鉛直方向に移動させることで、洗浄ヘッド30を鉛直方向に移動させる。第2移動部60は、サーボモータ61を含む。第2移動部60は、例えばサーボモータ61の回転運動を直線運動に変換するボールねじを含んでもよい。サーボモータ61は、洗浄ヘッド30の鉛直方向位置に関する情報を制御部90に送信する。サーボモータ61の代わりに、ステッピングモータが用いられてもよい。第2移動部60は、モータの代わりに、エアシリンダで洗浄ヘッド30を鉛直方向に移動させてもよい。 The second moving part 60 moves the cleaning head 30 in the vertical direction. For example, the second moving unit 60 moves the cleaning head 30 vertically by moving the turning shaft 52 vertically. The second moving section 60 includes a servomotor 61 . The second moving part 60 may include, for example, a ball screw that converts rotary motion of the servo motor 61 into linear motion. The servomotor 61 transmits information about the vertical position of the cleaning head 30 to the controller 90 . A stepping motor may be used instead of the servomotor 61 . The second moving part 60 may move the cleaning head 30 in the vertical direction by using an air cylinder instead of the motor.
 なお、図示しないが、第2移動部60は、洗浄ヘッド30を鉛直方向に移動させる代わりに、保持部10を鉛直方向に移動させてもよい。いずれにしろ、基板Wと洗浄ヘッド30の距離Dを変更できる。 Although not shown, the second moving part 60 may move the holding part 10 in the vertical direction instead of moving the cleaning head 30 in the vertical direction. In any case, the distance D between the substrate W and the cleaning head 30 can be changed.
 制御部90は、バルブ23と超音波振動子32と回転部40と第1移動部50と第2移動部60とを制御する。制御部90は、例えばコンピュータであり、CPU(Central Processing Unit)91と、メモリ等の記憶媒体92とを備える。記憶媒体92には、基板洗浄装置1において実行される各種の処理を制御するプログラムが格納される。制御部90は、記憶媒体92に記憶されたプログラムをCPU91に実行させることにより、基板洗浄装置1の動作を制御する。 The control section 90 controls the valve 23 , the ultrasonic transducer 32 , the rotating section 40 , the first moving section 50 and the second moving section 60 . The control unit 90 is, for example, a computer, and includes a CPU (Central Processing Unit) 91 and a storage medium 92 such as a memory. The storage medium 92 stores programs for controlling various processes executed in the substrate cleaning apparatus 1 . The control unit 90 controls the operation of the substrate cleaning apparatus 1 by causing the CPU 91 to execute programs stored in the storage medium 92 .
 次に、基板洗浄装置1の動作、つまり基板洗浄方法について説明する。まず、図示しない搬送ロボットが、基板洗浄装置1の内部に進入し、搬送ロボットが保持している基板Wを保持部10に渡す。保持部10が基板Wを水平に保持した後、搬送ロボットが基板洗浄装置1から退出する。このようにして基板Wの搬入が行われる。 Next, the operation of the substrate cleaning apparatus 1, that is, the substrate cleaning method will be described. First, a transport robot (not shown) enters the interior of the substrate cleaning apparatus 1 and delivers the substrate W held by the transport robot to the holding unit 10 . After the holding unit 10 holds the substrate W horizontally, the transfer robot leaves the substrate cleaning apparatus 1 . The substrate W is carried in in this manner.
 次に、回転部40が保持部10と共に基板Wを回転させると共に、ノズル20が基板Wの中心付近に洗浄液を供給する。基板W上の洗浄液は遠心力によって基板Wの中心から周縁に向けて濡れ広がる。その結果、基板上面Waの全体に液膜Fが形成される。洗浄液の供給量は、例えば0.1L/min~5.0L/min、好ましくは0.8L/min~1.6L/minである。 Next, the rotating part 40 rotates the substrate W together with the holding part 10, and the nozzle 20 supplies the cleaning liquid to the vicinity of the center of the substrate W. The cleaning liquid on the substrate W wets and spreads from the center of the substrate W toward the periphery due to centrifugal force. As a result, a liquid film F is formed on the entire substrate upper surface Wa. The supply rate of the cleaning liquid is, for example, 0.1 L/min to 5.0 L/min, preferably 0.8 L/min to 1.6 L/min.
 次に、洗浄ヘッド30の振動面31aが液膜Fに接触するように、第1移動部50が洗浄ヘッド30の水平方向位置を調整すると共に、第2移動部60が洗浄ヘッド30の鉛直方向位置を調整する。洗浄ヘッド30と基板Wの間には、所望の間隔が形成される。その間隔は、例えば0.1mm~5.0mm、好ましくは1.0mm~4.0mmである。 Next, the first moving part 50 adjusts the horizontal position of the cleaning head 30 so that the vibration surface 31a of the cleaning head 30 contacts the liquid film F, and the second moving part 60 moves the cleaning head 30 vertically. Adjust position. A desired gap is formed between the cleaning head 30 and the substrate W. FIG. The interval is, for example, 0.1 mm to 5.0 mm, preferably 1.0 mm to 4.0 mm.
 次に、超音波振動子32が洗浄ヘッド30の振動面31aを振動させることで液膜Fに超音波振動を付与し、基板上面Waに音圧を付与する。 Next, the ultrasonic vibrator 32 vibrates the vibration surface 31a of the cleaning head 30 to apply ultrasonic vibration to the liquid film F and apply sound pressure to the upper surface Wa of the substrate.
 次に、第1移動部50が洗浄ヘッド30を保持部10の回転中心線10Rと直交する水平方向に移動させる。洗浄ヘッド30は、基板Wの中心の真上の位置と、基板Wの周縁の真上の位置との間を往復移動させられる。基板Wは回転しており、基板上面Waの全体が洗浄される。 Next, the first moving part 50 moves the cleaning head 30 in the horizontal direction orthogonal to the rotation center line 10R of the holding part 10. The cleaning head 30 is reciprocated between a position just above the center of the substrate W and a position just above the periphery of the substrate W. As shown in FIG. The substrate W is rotating, and the entire substrate upper surface Wa is cleaned.
 次に、第2移動部60が洗浄ヘッド30を上昇させた後、第1移動部50が洗浄ヘッド30の水平方向位置を待機位置まで移動させる。上方から見たときに、待機位置は、基板Wの周縁よりも外側の位置である。また、超音波振動子32が振動面31aの振動を停止し、ノズル20が洗浄液の供給を停止する。 Next, after the second moving part 60 raises the cleaning head 30, the first moving part 50 moves the horizontal position of the cleaning head 30 to the standby position. The standby position is a position outside the periphery of the substrate W when viewed from above. Further, the ultrasonic vibrator 32 stops vibrating the vibrating surface 31a, and the nozzle 20 stops supplying the cleaning liquid.
 次に、ノズル20が洗浄液の供給を停止した状態で、回転部40が保持部10と共に基板Wを回転させることで、基板W上の洗浄液が遠心力によって基板Wの周縁から振り切られる。基板Wから液膜Fが除去され、基板Wが乾燥させられる。 Next, with the nozzle 20 stopping the supply of the cleaning liquid, the rotating section 40 rotates the substrate W together with the holding section 10, so that the cleaning liquid on the substrate W is shaken off from the periphery of the substrate W by centrifugal force. The liquid film F is removed from the substrate W and the substrate W is dried.
 次に、図示しない搬送ロボットが基板洗浄装置1の内部に進入し、保持部10から基板Wを受け取る。搬送ロボットが基板Wを保持した後、搬送ロボットが基板洗浄装置1から退出する。このようにして基板Wの搬出が行われる。 Next, a transport robot (not shown) enters the interior of the substrate cleaning apparatus 1 and receives the substrate W from the holding section 10 . After the transport robot holds the substrate W, the transport robot leaves the substrate cleaning apparatus 1 . The substrate W is carried out in this manner.
 次に、図5と図6を参照して、洗浄ヘッド30の前処理の一例について説明する。洗浄ヘッド30の前処理は、洗浄ヘッド30を基板洗浄装置1に組み込む前に行われる。洗浄ヘッド30が基板洗浄装置1に組み込まれた後、基板洗浄装置1によるダミー基板の洗浄が行われ、その後、製品である基板Wの洗浄が行われる。なお、洗浄ヘッド30の前処理は、ダミー基板の洗浄の前に行われればよく、洗浄ヘッド30を基板洗浄装置1に組み込んだ後に行うことも可能である。 Next, an example of pretreatment of the cleaning head 30 will be described with reference to FIGS. 5 and 6. FIG. The pretreatment of the cleaning head 30 is performed before the cleaning head 30 is incorporated into the substrate cleaning apparatus 1 . After the cleaning head 30 is installed in the substrate cleaning apparatus 1, the dummy substrate is cleaned by the substrate cleaning apparatus 1, and then the substrate W as a product is cleaned. The pretreatment of the cleaning head 30 may be performed before cleaning the dummy substrate, and may be performed after the cleaning head 30 is installed in the substrate cleaning apparatus 1 .
 ダミー基板は、製品である基板Wと同様に構成され、基板Wと同様に洗浄される。具体的には、図示しないが、互いに対向する洗浄ヘッド30の振動面31aとダミー基板の上面の間に液膜Fを形成しながら、振動面31aから液膜Fに超音波振動を付与することで、ダミー基板を洗浄する。以下、ダミー基板の洗浄を、ダミー洗浄とも呼ぶ。ダミー洗浄は、洗浄ヘッド30からの発塵を抑制する目的で行われる。 The dummy substrate is configured in the same manner as the substrate W, which is a product, and is cleaned in the same manner as the substrate W. Specifically, although not shown, ultrasonic vibration is applied to the liquid film F from the vibrating surface 31a while the liquid film F is formed between the vibrating surface 31a of the cleaning head 30 and the upper surface of the dummy substrate, which face each other. and wash the dummy substrate. Hereinafter, cleaning of the dummy substrate is also referred to as dummy cleaning. Dummy cleaning is performed for the purpose of suppressing dust generation from the cleaning head 30 .
 図5と図6に示すように、洗浄ヘッド30の振動面31aには、パーティクルPが付着している。洗浄ヘッド30の振動面31aとダミー基板の上面との距離が短く、洗浄ヘッド30の振動面31aから脱離したパーティクルPがダミー基板の上面に付着しやすい。なお、パーティクルPの付着数をゼロにすることは実質的に困難である。 As shown in FIGS. 5 and 6, particles P adhere to the vibration surface 31a of the cleaning head 30. As shown in FIGS. The distance between the vibration surface 31a of the cleaning head 30 and the upper surface of the dummy substrate is short, and the particles P separated from the vibration surface 31a of the cleaning head 30 easily adhere to the upper surface of the dummy substrate. It is practically difficult to reduce the number of attached particles P to zero.
 ダミー洗浄は、ダミー基板を取り替えながら繰り返し行われる。図7に示すように、ダミー基板の処理枚数が多くなるほど、つまり、ダミー洗浄時間が長くなるほど、洗浄ヘッド30からの発塵が抑制され、超音波洗浄によってダミー基板に付着するパーティクルPの数が減る。 Dummy cleaning is repeated while replacing the dummy substrate. As shown in FIG. 7, as the number of dummy substrates to be processed increases, that is, as the dummy cleaning time increases, dust generation from the cleaning head 30 is suppressed, and the number of particles P adhering to the dummy substrates due to ultrasonic cleaning decreases. decrease.
 図7に示すように、ダミー洗浄時間がある程度長くなると、ダミー基板に付着するパーティクルPの数が一定値に落ち着く。その後、製品である基板Wの洗浄が行われる。基板Wに付着するパーティクルPの数は、最後のダミー基板に付着するパーティクルPの数と同程度になる。 As shown in FIG. 7, when the dummy cleaning time is lengthened to some extent, the number of particles P adhering to the dummy substrate settles down to a constant value. After that, the substrate W, which is a product, is washed. The number of particles P adhering to the substrate W is approximately the same as the number of particles P adhering to the last dummy substrate.
 ところで、ダミー洗浄前に洗浄ヘッド30の振動面31aに付着しているパーティクルPの数が少ないほど、ダミー基板に付着するパーティクルPの数が一定値に落ち着くまでの時間が短くなるだけではなく、その一定値が少なくなる。よって、ダミー洗浄前に洗浄ヘッド30の振動面31aに付着しているパーティクルPの数が少ないほど、基板Wに付着するパーティクルPの数が少なくなる。 By the way, the smaller the number of particles P adhering to the vibration surface 31a of the cleaning head 30 before dummy cleaning, the shorter the time required for the number of particles P adhering to the dummy substrate to settle down to a constant value. The constant value becomes smaller. Therefore, the smaller the number of particles P adhering to the vibration surface 31a of the cleaning head 30 before the dummy cleaning, the fewer the particles P adhering to the substrate W.
 本願発明者は、洗浄ヘッド30の振動面31aにパーティクルPが付着する原因を検討した。パーティクルPは、洗浄ヘッド30の製造工程、梱包工程、および輸送工程のいずれかで付着すると考えられる。本願発明者は、洗浄ヘッド30の製造工程で使用される酸化セリウム粒子に着目した。 The inventor of the present application has investigated the cause of particles P adhering to the vibration surface 31 a of the cleaning head 30 . Particles P are considered to adhere during any one of the cleaning head 30 manufacturing process, packaging process, and transportation process. The inventor of the present application paid attention to the cerium oxide particles used in the manufacturing process of the cleaning head 30 .
 洗浄ヘッド30の振動面31aは、図2及び図3に示すように、振動板31に形成される。振動板31の材質は、例えば石英ガラス(SiO)である。なお、振動板31の材質は、サファイアガラス(Al)であってもよい。また、振動板31の材質は、結晶質と非結晶質のどちらでもよい。 The vibration surface 31a of the cleaning head 30 is formed on the vibration plate 31, as shown in FIGS. The material of the diaphragm 31 is quartz glass (SiO 2 ), for example. The material of diaphragm 31 may be sapphire glass (Al 2 O 3 ). Further, the material of diaphragm 31 may be either crystalline or amorphous.
 洗浄ヘッド30の製造工程は、一例として切削加工と機械研磨を含む。切削加工は、振動板31を所望の形状に加工する。機械研磨は、切削加工の後で、振動板31を酸化セリウム粒子で研磨する。機械研磨において、酸化セリウム粒子が振動板31に付着していると考えられる。なお、洗浄ヘッド30の製造工程は、一例として切削加工と機械研磨の間に、火炎研磨を含んでもよい。 The manufacturing process of the cleaning head 30 includes cutting and mechanical polishing, for example. Cutting processes the diaphragm 31 into a desired shape. In the mechanical polishing, after cutting, the diaphragm 31 is polished with cerium oxide particles. It is believed that cerium oxide particles adhere to the diaphragm 31 during mechanical polishing. The manufacturing process of the cleaning head 30 may include, for example, flame polishing between cutting and mechanical polishing.
 本願発明者は、ダミー洗浄前に、後述する第1薬液L1と第2薬液L2の少なくとも一方を振動板31に対して供給することで、振動板31に付着する酸化セリウム粒子を除去することを検討した。酸化セリウム粒子を除去すれば、ダミー基板に付着するパーティクルPの数が一定値に落ち着くまでの時間を短縮できるだけではなく、その一定値を低減できる。 The inventors of the present application have found that cerium oxide particles adhering to the diaphragm 31 are removed by supplying at least one of a first chemical liquid L1 and a second chemical liquid L2, which will be described later, to the diaphragm 31 before dummy cleaning. investigated. By removing the cerium oxide particles, it is possible not only to shorten the time until the number of particles P adhering to the dummy substrate settles down to a constant value, but also to reduce the constant value.
 第1薬液L1は、振動板31に付着した酸化セリウム粒子を溶解することで、酸化セリウム粒子を除去する。第1薬液L1は、酸化セリウムを溶解するものであれば、特に限定されないが、例えば、硫酸(HSO)と過酸化水素(H)の混合水溶液(いわゆるSPM)、または硫酸を含む水溶液である。第1薬液L1は、酸化セリウムの溶解を促進するため、加熱されてもよい。 The first chemical liquid L1 dissolves the cerium oxide particles adhering to the vibration plate 31, thereby removing the cerium oxide particles. The first chemical liquid L1 is not particularly limited as long as it dissolves cerium oxide . is an aqueous solution containing The first chemical liquid L1 may be heated to promote dissolution of the cerium oxide.
 第1薬液L1は、例えば図5に示すように、第1薬液槽101に貯留されている。第1薬液槽101に貯留されている第1薬液L1に振動板31を浸漬することで、振動板31に対して第1薬液L1を供給することができる。なお、第1薬液L1の供給方法は、特に限定されない。例えば、第1薬液L1は、スプレーを用いて振動板31に吹き付けてもよい。 The first chemical liquid L1 is stored in the first chemical liquid tank 101, for example, as shown in FIG. By immersing diaphragm 31 in first chemical liquid L<b>1 stored in first chemical liquid tank 101 , first chemical liquid L<b>1 can be supplied to diaphragm 31 . A method of supplying the first chemical liquid L1 is not particularly limited. For example, the first chemical liquid L1 may be sprayed onto the diaphragm 31 using a spray.
 第2薬液L2は、振動板31の表面を溶解することで、振動板31から酸化セリウム粒子を脱離させる。第2薬液L2は、振動板31の材質に応じて適宜選択されるが、例えば、フッ酸(HF)を含む水溶液、またはアルカリ洗剤を含む水溶液である。アルカリ洗剤を含む水溶液は、pHが9以上のものが好ましい。pHが9以上であれば、Si-O結合を切断でき、SiOをエッチングできる。アルカリ洗剤は、例えばNaOHまたはKOHを含む。第2薬液L2は、洗浄ヘッド30の溶解を促進するため、加熱されてもよい。 The second chemical liquid L2 dissolves the surface of the diaphragm 31 to detach the cerium oxide particles from the diaphragm 31 . The second chemical liquid L2 is appropriately selected according to the material of the diaphragm 31, and is, for example, an aqueous solution containing hydrofluoric acid (HF) or an aqueous solution containing an alkaline detergent. An aqueous solution containing an alkaline detergent preferably has a pH of 9 or higher. If the pH is 9 or higher, Si—O bonds can be cut and SiO 2 can be etched. Alkaline detergents include, for example, NaOH or KOH. The second chemical liquid L2 may be heated to promote dissolution of the cleaning head 30 .
 第2薬液L2は、例えば図6に示すように、第2薬液槽102に貯留されている。第2薬液槽102に貯留されている第2薬液L2に振動板31を浸漬することで、振動板31に対して第2薬液L2を供給することができる。なお、第2薬液L2の供給方法は、特に限定されない。例えば、第2薬液L2は、スプレーを用いて振動板31に吹き付けてもよい。 The second chemical liquid L2 is stored in the second chemical liquid tank 102 as shown in FIG. 6, for example. By immersing the diaphragm 31 in the second chemical L2 stored in the second chemical tank 102, the second chemical L2 can be supplied to the diaphragm 31. As shown in FIG. In addition, the method of supplying the second chemical liquid L2 is not particularly limited. For example, the second chemical liquid L2 may be sprayed onto the vibration plate 31 using a spray.
 第1薬液L1と第2薬液L2は、振動板31の振動面31aだけではなく、側面31cにも供給されてもよい。また、図示しないがノズル20の吐出口が振動板31の振動面31aに形成される場合、ノズル20の内部にも第1薬液L1と第2薬液L2を供給することが好ましい。振動板31の洗浄液に接触する部位に、第1薬液L1と第2薬液L2を供給することが好ましい。 The first chemical liquid L1 and the second chemical liquid L2 may be supplied not only to the vibration surface 31a of the diaphragm 31 but also to the side surface 31c. Moreover, although not shown, when the ejection port of the nozzle 20 is formed on the vibrating surface 31a of the diaphragm 31, it is preferable to supply the first chemical liquid L1 and the second chemical liquid L2 to the inside of the nozzle 20 as well. It is preferable to supply the first chemical liquid L1 and the second chemical liquid L2 to the portion of the vibration plate 31 that comes into contact with the cleaning liquid.
 第1薬液L1と第2薬液L2は、いずれか一方のみを使用してもよいが、両方を使用することが好ましい。第1薬液L1と第2薬液L2の両方を使用する場合、第1薬液L1を振動板31に対して供給した後で、第2薬液L2を振動板31に対して供給することが好ましい。 Only one of the first chemical liquid L1 and the second chemical liquid L2 may be used, but it is preferable to use both. When both the first chemical solution L1 and the second chemical solution L2 are used, it is preferable to supply the second chemical solution L2 to the diaphragm 31 after supplying the first chemical solution L1 to the diaphragm 31 .
 第1薬液L1を振動板31に対して供給した後で第2薬液L2を振動板31に対して供給すれば、順番が逆の場合に比べて、振動板31の表面荒れを抑制できる。振動板31の表面に付着するパーティクルPを溶解した後で、振動板31の表面を溶解すれば、振動板31の表面を均一に溶解できるからである。 If the second chemical liquid L2 is supplied to the diaphragm 31 after the first chemical liquid L1 is supplied to the diaphragm 31, surface roughness of the diaphragm 31 can be suppressed compared to the case where the order is reversed. This is because the surface of the diaphragm 31 can be uniformly dissolved by dissolving the surface of the diaphragm 31 after the particles P adhering to the surface of the diaphragm 31 are dissolved.
 第1薬液L1又は第2薬液L2として酸性の薬液を振動板31に対して供給した後は、アルカリ性の薬液を振動板31に供給することが好ましい。アルカリ性の薬液は、洗浄ヘッド30とパーティクルPの両方のゼータ電位を同じ極性(例えば負)に調整でき、パーティクルPの再付着を抑制できる。アルカリ性の薬液は、例えばアルカリ洗剤を含む水溶液、または水酸化アンモニウム(NHOH)と過酸化水素(H)の混合水溶液(いわゆるSC-1)である。 After supplying the acidic chemical liquid to the diaphragm 31 as the first chemical liquid L1 or the second chemical liquid L2, it is preferable to supply the alkaline chemical liquid to the diaphragm 31 . The alkaline chemical solution can adjust the zeta potentials of both the cleaning head 30 and the particles P to the same polarity (for example, negative), and can suppress the redeposition of the particles P. The alkaline chemical solution is, for example, an aqueous solution containing an alkaline detergent, or a mixed aqueous solution of ammonium hydroxide (NH 4 OH) and hydrogen peroxide (H 2 O 2 ) (so-called SC-1).
 第1薬液L1又は第2薬液L2を振動板31に対して供給した後は、リンス液を振動板31に対して供給し、薬液の残渣を除去することが好ましい。リンス液として、DIW(脱イオン水)などの純水が用いられる。 After supplying the first chemical liquid L1 or the second chemical liquid L2 to the diaphragm 31, it is preferable to supply the rinse liquid to the diaphragm 31 to remove the residue of the chemical liquid. Pure water such as DIW (deionized water) is used as the rinse liquid.
 なお、振動板31の表面をドライエッチングすることで、振動板31から酸化セリウム粒子を脱離させることも可能である。振動板31のドライエッチングには、例えばフッ素プラズマが用いられる。 It is also possible to detach the cerium oxide particles from the diaphragm 31 by dry etching the surface of the diaphragm 31 . Fluorine plasma, for example, is used for the dry etching of the vibration plate 31 .
 洗浄ヘッド30の振動面31aに付着する酸化セリウム粒子の数は、振動面31aの全反射蛍光X線分析(TXRF:Total Reflection X-ray Fluorescence)法で検出されるCe元素の面密度で表すことができる。Ce元素の面密度が低いほど、酸化セリウム粒子の数が少ない。 The number of cerium oxide particles adhering to the vibrating surface 31a of the cleaning head 30 is expressed by the surface density of the Ce element detected by total reflection X-ray fluorescence (TXRF) of the vibrating surface 31a. can be done. The lower the areal density of the Ce element, the smaller the number of cerium oxide particles.
 本願発明者は、詳しくは実施例の欄で説明するが、薬液を用いて洗浄ヘッド30の振動面31aのTXRF法で検出されるCe元素の面密度を30×1010atoms/cm以下にすれば、超音波洗浄によって基板Wに付着するパーティクルPの数を低減できることを見出した。 Although the details will be described in the section of Examples, the inventors of the present application used a chemical solution to reduce the surface density of the Ce element detected by the TXRF method on the vibration surface 31a of the cleaning head 30 to 30×10 10 atoms/cm 2 or less. It has been found that the number of particles P adhering to the substrate W can be reduced by ultrasonic cleaning.
 洗浄ヘッド30の振動面31aのCe元素の面密度が30×1010atoms/cm以下であれば、振動面31aに付着している酸化セリウム粒子の面密度が低い。よって、洗浄ヘッド30の振動面31aから脱離するパーティクルPの数を低減でき、超音波洗浄によって基板Wに付着するパーティクルPの数を低減できる。 If the surface density of the Ce element on the vibrating surface 31a of the cleaning head 30 is 30×10 10 atoms/cm 2 or less, the surface density of the cerium oxide particles adhering to the vibrating surface 31a is low. Therefore, the number of particles P detached from the vibration surface 31a of the cleaning head 30 can be reduced, and the number of particles P adhering to the substrate W by ultrasonic cleaning can be reduced.
 なお、洗浄ヘッド30の振動面31aのCe元素の面密度が30×1010atoms/cm以下にする方法は、第1薬液L1と第2薬液L2の少なくとも一方を振動板31に対して供給する方法には限定されない。例えば、ブラシまたはスポンジを用いたスクラブ洗浄によって、酸化セリウム粒子の密度を所定範囲にしてもよい。 Note that the method of making the surface density of Ce element on the vibration surface 31a of the cleaning head 30 to 30×10 10 atoms/cm 2 or less is to supply at least one of the first chemical liquid L1 and the second chemical liquid L2 to the vibration plate 31. The method is not limited. For example, the density of the cerium oxide particles may be brought to a predetermined range by scrubbing with a brush or sponge.
 洗浄ヘッド30の振動面31aのCe元素の面密度は、超音波洗浄によって基板Wに付着するパーティクルPの数を低減する観点から、好ましくは10×1010atoms/cm以下であり、より好ましくは1×1010atoms/cm以下である。洗浄ヘッド30の振動面31aのCe元素の面密度は、0atoms/cm以上であればよい。 From the viewpoint of reducing the number of particles P adhering to the substrate W due to ultrasonic cleaning, the surface density of the Ce element on the vibration surface 31a of the cleaning head 30 is preferably 10×10 10 atoms/cm 2 or less, and more preferably. is 1×10 10 atoms/cm 2 or less. The surface density of the Ce element on the vibrating surface 31a of the cleaning head 30 should be 0 atoms/cm 2 or more.
 洗浄ヘッド30の振動面31aは、TXRF法で検出される原子番号13~30および33~72の元素のうち、最も多い元素の面密度を100%とすると、最も多い元素を除く残り全ての元素の面密度の合計が1.0%以下であることが好ましい。振動面31aの材質がSiOである場合、前記最も多い元素はSiである。また、振動面31aの材質がAlである場合、前記最も多い元素はAlである。なお、Ceの原子番号は58である。 The vibration surface 31a of the cleaning head 30 is 100% for the surface density of the most abundant element among the elements with atomic numbers of 13 to 30 and 33 to 72 detected by the TXRF method. is preferably 1.0% or less. When the material of the vibrating surface 31a is SiO2 , the most abundant element is Si. Further, when the material of the vibrating surface 31a is Al 2 O 3 , the most abundant element is Al. The atomic number of Ce is 58.
 原子番号13の元素は、Alである。原子番号30の元素は、Znである。原子番号33の元素は、Asである。原子番号72の元素は、Hfである。ここでは、TXRF法のX線源として、W(タングステン)ビームを使用することを想定している。Wビームを使用する場合、原子番号31のGaと、原子番号32のGeは検出困難である。 The element with atomic number 13 is Al. The element with atomic number 30 is Zn. The element with atomic number 33 is As. The element with atomic number 72 is Hf. Here, it is assumed that a W (tungsten) beam is used as an X-ray source for the TXRF method. When using a W beam, Ga with atomic number 31 and Ge with atomic number 32 are difficult to detect.
 最も多い元素を除く残り全ての元素の面密度の合計が1.0%以下であれば、振動面31aに付着するパーティクルPの数が少ない。よって、洗浄ヘッド30の振動面31aから脱離するパーティクルPの数を低減でき、超音波洗浄によって基板Wに付着するパーティクルPの数を低減できる。 If the sum of the surface densities of all the remaining elements excluding the most abundant element is 1.0% or less, the number of particles P adhering to the vibrating surface 31a is small. Therefore, the number of particles P detached from the vibration surface 31a of the cleaning head 30 can be reduced, and the number of particles P adhering to the substrate W by ultrasonic cleaning can be reduced.
 最も多い元素を除く残り全ての元素の面密度の合計は、基板Wに付着するパーティクルPの数を低減する観点から、好ましくは0.5%以下である。最も多い元素を除く残り全ての元素の面密度の合計は、0.0%以上であればよいが、生産性の観点から、好ましくは0.1%以上である。 From the viewpoint of reducing the number of particles P adhering to the substrate W, the total surface density of all the remaining elements excluding the most abundant element is preferably 0.5% or less. The total areal density of all the remaining elements excluding the most abundant element may be 0.0% or more, but is preferably 0.1% or more from the viewpoint of productivity.
 次に、図8を参照して、図11に示すEUVL用マスクブランク200の製造方法について説明する。EUVL用マスクブランク200の製造方法は、ステップS101~S107を有する。例えば図9及び図10に示す基板210が予め準備される。ステップS101~S104は、基板の製造方法に含まれる。 Next, a method of manufacturing the EUVL mask blank 200 shown in FIG. 11 will be described with reference to FIG. The manufacturing method of the EUVL mask blank 200 has steps S101 to S107. For example, a substrate 210 shown in FIGS. 9 and 10 is prepared in advance. Steps S101 to S104 are included in the substrate manufacturing method.
 基板210は、第1主面211と、第1主面211とは反対向きの第2主面212とを含む。第1主面211は、矩形状である。本明細書において、矩形状とは、角に面取加工を施した形状を含む。また、矩形は、正方形を含む。第2主面212は、第1主面211とは反対向きである。第2主面212も、第1主面211と同様に、矩形状である。 The substrate 210 includes a first major surface 211 and a second major surface 212 opposite to the first major surface 211 . The first major surface 211 is rectangular. In this specification, a rectangular shape includes a shape with chamfered corners. Rectangles also include squares. The second major surface 212 is opposite to the first major surface 211 . The second main surface 212 is also rectangular like the first main surface 211 .
 また、基板210は、4つの端面213と、4つの第1面取面214と、4つの第2面取面215とを含む。端面213は、第1主面211及び第2主面212に対して垂直である。第1面取面214は、第1主面211と端面213の境界に形成される。第2面取面215は、第2主面212と端面213の境界に形成される。第1面取面214及び第2面取面215は、本実施形態では、いわゆるC面取面であるが、R面取面であってもよい。 The substrate 210 also includes four end surfaces 213 , four first chamfered surfaces 214 and four second chamfered surfaces 215 . The end surface 213 is perpendicular to the first major surface 211 and the second major surface 212 . A first chamfered surface 214 is formed at the boundary between the first major surface 211 and the end surface 213 . A second chamfered surface 215 is formed at the boundary between the second main surface 212 and the end surface 213 . The first chamfered surface 214 and the second chamfered surface 215 are so-called C-chamfered surfaces in this embodiment, but may be R-chamfered surfaces.
 基板210は、例えばガラス基板である。基板210のガラスは、TiOを含有する石英ガラスが好ましい。石英ガラスは、一般的なソーダライムガラスに比べて、線膨張係数が小さく、温度変化による寸法変化が小さい。石英ガラスは、SiOを80質量%~95質量%、TiOを4質量%~17質量%含んでよい。TiO含有量が4質量%~17質量%であると、室温付近での線膨張係数が略ゼロであり、室温付近での寸法変化がほとんど生じない。石英ガラスは、SiOおよびTiO以外の第三成分又は不純物を含んでもよい。 The substrate 210 is, for example, a glass substrate. The glass of substrate 210 is preferably quartz glass containing TiO 2 . Silica glass has a smaller coefficient of linear expansion than general soda-lime glass, and its dimensional change due to temperature change is small. The quartz glass may contain 80% to 95% by weight of SiO 2 and 4% to 17% by weight of TiO 2 . When the TiO 2 content is 4% by mass to 17% by mass, the coefficient of linear expansion near room temperature is approximately zero, and dimensional change hardly occurs near room temperature. Quartz glass may contain third components or impurities other than SiO2 and TiO2 .
 平面視にて基板210のサイズは、例えば縦152mm、横152mmである。縦寸法及び横寸法は、152mm以上であってもよい。 The size of the substrate 210 in plan view is, for example, 152 mm long and 152 mm wide. The longitudinal and lateral dimensions may be 152 mm or greater.
 基板210は、第1主面211に中央領域211Aと周縁領域211Bとを有する。中央領域211Aは、その中央領域211Aを取り囲む矩形枠状の周縁領域211Bを除く、正方形の領域であり、ステップS101~S104によって所望の平坦度に加工される領域であり、品質保証領域である。品質保証領域は、例えば縦142mm、横142mmのサイズを有する。中央領域211Aの4つの辺は、4つの端面213に平行である。中央領域211Aの中心は、第1主面211の中心に一致する。 The substrate 210 has a central region 211A and a peripheral region 211B on the first main surface 211. The central region 211A is a square region excluding a rectangular frame-shaped peripheral region 211B surrounding the central region 211A, is processed to a desired flatness in steps S101 to S104, and is a quality assurance region. The quality assurance area has a size of, for example, 142 mm long and 142 mm wide. The four sides of the central region 211A are parallel to the four end faces 213. As shown in FIG. The center of central region 211A coincides with the center of first main surface 211 .
 なお、図示しないが、基板210の第2主面212も、第1主面211と同様に、中央領域と、周縁領域とを有する。第2主面212の中央領域は、第1主面211の中央領域と同様に、正方形の領域であって、図8のステップS101~S104によって所望の平坦度に加工される領域であり、品質保証領域である。品質保証領域は、例えば縦142mm、横142mmのサイズを有する。 Although not shown, the second principal surface 212 of the substrate 210 also has a central region and a peripheral region, similar to the first principal surface 211 . The central region of the second principal surface 212 is a square region, similar to the central region of the first principal surface 211, which is processed to a desired flatness in steps S101 to S104 of FIG. Guaranteed area. The quality assurance area has a size of, for example, 142 mm long and 142 mm wide.
 ステップS101は、基板210の第1主面211及び第2主面212を研磨することを含む。第1主面211及び第2主面212は、本実施形態では不図示の両面研磨機で同時に研磨されるが、不図示の片面研磨機で順番に研磨されてもよい。ステップS101では、研磨パッドと基板210の間に研磨スラリーを供給しながら、基板210を研磨する。 Step S101 includes polishing the first main surface 211 and the second main surface 212 of the substrate 210 . The first principal surface 211 and the second principal surface 212 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown). In step S<b>101 , the substrate 210 is polished while supplying polishing slurry between the polishing pad and the substrate 210 .
 研磨パッドとしては、例えばウレタン系研磨パッド、不織布系研磨パッド、又はスウェード系研磨パッドなどが用いられる。研磨スラリーは、研磨剤と分散媒とを含む。研磨剤は、例えば酸化セリウム粒子である。分散媒は、例えば水又は有機溶剤である。第1主面211及び第2主面212は、異なる材質又は粒度の研磨剤で、複数回研磨されてもよい。 As the polishing pad, for example, a urethane-based polishing pad, a non-woven fabric-based polishing pad, or a suede-based polishing pad is used. The polishing slurry contains an abrasive and a dispersion medium. The abrasive is, for example, cerium oxide particles. The dispersion medium is, for example, water or an organic solvent. The first main surface 211 and the second main surface 212 may be polished multiple times with abrasives of different materials or grain sizes.
 なお、ステップS101で用いられる研磨剤は、酸化セリウム粒子には限定されず、例えば、酸化シリコン粒子、酸化アルミニウム粒子、酸化ジルコニウム粒子、酸化チタン粒子、ダイヤモンド粒子、又は炭化珪素粒子などであってもよい。 The abrasive used in step S101 is not limited to cerium oxide particles, and may be, for example, silicon oxide particles, aluminum oxide particles, zirconium oxide particles, titanium oxide particles, diamond particles, or silicon carbide particles. good.
 ステップS102は、基板210の第1主面211及び第2主面212の表面形状を測定することを含む。表面形状の測定には、例えば、表面が傷付かないように、レーザー干渉式などの非接触式の測定機が用いられる。測定機は、第1主面211の中央領域211A、及び第2主面212の中央領域の表面形状を測定する。 Step S102 includes measuring the surface shapes of the first main surface 211 and the second main surface 212 of the substrate 210 . For surface shape measurement, for example, a non-contact type measuring instrument such as a laser interference type is used so as not to damage the surface. The measuring machine measures the surface shape of the central region 211A of the first principal surface 211 and the central region of the second principal surface 212 .
 ステップS103は、ステップS102の測定結果を参照し、平坦度を向上すべく、基板210の第1主面211及び第2主面212を局所加工することを含む。第1主面211と第2主面212は、順番に局所加工される。その順番は、どちらが先でもよく、特に限定されない。 Step S103 includes locally processing the first main surface 211 and the second main surface 212 of the substrate 210 with reference to the measurement result of step S102 in order to improve the flatness. The first main surface 211 and the second main surface 212 are locally machined in order. The order is not particularly limited and may be either one first.
 局所加工には、例えば、GCIB(Gas Cluster Ion Beam)法、PCVM(Plasma Chemical Vaporization Machining)法、磁性流体による研磨法、及び回転研磨工具による研磨から選ばれる少なくとも1つが用いられる。 For local processing, at least one selected from, for example, a GCIB (Gas Cluster Ion Beam) method, a PCVM (Plasma Chemical Vaporization Machining) method, a magnetic fluid polishing method, and polishing with a rotary polishing tool is used.
 ステップS104は、基板210の第1主面211及び第2主面212の仕上げ研磨を行うことを含む。第1主面211及び第2主面212は、本実施形態では不図示の両面研磨機で同時に研磨されるが、不図示の片面研磨機で順番に研磨されてもよい。ステップS104では、研磨パッドと基板210の間に研磨スラリーを供給しながら、基板210を研磨する。研磨スラリーは、研磨剤を含む。研磨剤は、例えばコロイダルシリカ粒子である。 Step S104 includes final polishing of the first main surface 211 and the second main surface 212 of the substrate 210 . The first principal surface 211 and the second principal surface 212 are simultaneously polished by a double-sided polisher (not shown) in this embodiment, but may be polished sequentially by a single-sided polisher (not shown). In step S<b>104 , the substrate 210 is polished while supplying polishing slurry between the polishing pad and the substrate 210 . The polishing slurry contains an abrasive. Abrasives are, for example, colloidal silica particles.
 ステップS105は、基板210の第2主面212の中央領域に、図11に示す導電膜240を形成することを含む。導電膜240は、EUVL用マスクを露光装置の静電チャックに吸着するのに用いられる。導電膜240は、例えば窒化クロム(CrN)などで形成される。導電膜240の成膜方法としては、例えばスパッタリング法が用いられる。 Step S105 includes forming the conductive film 240 shown in FIG. The conductive film 240 is used to attract the EUVL mask to the electrostatic chuck of the exposure apparatus. The conductive film 240 is made of, for example, chromium nitride (CrN). As a method for forming the conductive film 240, for example, a sputtering method is used.
 ステップS106は、基板210の第1主面211の中央領域211Aに、図11に示す多層反射膜220を形成することを含む。多層反射膜220は、EUVを反射する。多層反射膜220は、例えば高屈折率層と低屈折率層とを交互に積層したものである。高屈折率層は例えばシリコン(Si)で形成され、低屈折率層は例えばモリブデン(Mo)で形成される。多層反射膜220の成膜方法としては、例えばイオンビームスパッタリング法、マグネトロンスパッタリング法などのスパッタリング法が用いられる。 Step S106 includes forming the multilayer reflective film 220 shown in FIG. The multilayer reflective film 220 reflects EUV. The multilayer reflective film 220 is formed by alternately laminating high refractive index layers and low refractive index layers, for example. The high refractive index layer is made of silicon (Si), for example, and the low refractive index layer is made of molybdenum (Mo), for example. As a method for forming the multilayer reflective film 220, for example, a sputtering method such as an ion beam sputtering method or a magnetron sputtering method is used.
 ステップS107は、ステップS106で形成された多層反射膜220の上に、図11に示す吸収膜230を形成することを含む。吸収膜230は、EUVを吸収する。吸収膜230は、位相シフト膜であってもよく、EUVの位相をシフトさせてもよい。吸収膜230は、例えばタンタル(Ta)、クロム(Cr)、パラジウム(Pd)から選ばれる少なくとも1つの元素を含む単金属、合金、窒化物、酸化物、酸窒化物などで形成される。吸収膜230の成膜方法としては、例えばスパッタリング法が用いられる。 Step S107 includes forming the absorbing film 230 shown in FIG. 11 on the multilayer reflective film 220 formed in step S106. The absorbing film 230 absorbs EUV. The absorbing film 230 may be a phase shift film and may shift the phase of EUV. The absorption film 230 is formed of a single metal, alloy, nitride, oxide, oxynitride, etc. containing at least one element selected from tantalum (Ta), chromium (Cr), and palladium (Pd), for example. As a method for forming the absorption film 230, for example, a sputtering method is used.
 なお、ステップS106~S107は、本実施形態ではステップS105の後に実施されるが、ステップS105の前に実施されてもよい。 Although steps S106 and S107 are performed after step S105 in this embodiment, they may be performed before step S105.
 上記ステップS101~S107により、図11に示すEUVL用マスクブランク200が得られる。EUVL用マスクブランク200は、導電膜240と、基板210と、多層反射膜220と、吸収膜230とをこの順番で有する。なお、EUVL用マスクブランク200は、導電膜240と、基板210と、多層反射膜220と、吸収膜230とに加えて、別の膜を含んでもよい。 Through steps S101 to S107, the EUVL mask blank 200 shown in FIG. 11 is obtained. The EUVL mask blank 200 has a conductive film 240, a substrate 210, a multilayer reflective film 220, and an absorbing film 230 in this order. The EUVL mask blank 200 may include another film in addition to the conductive film 240, the substrate 210, the multilayer reflective film 220, and the absorption film 230. FIG.
 例えば、EUVL用マスクブランク200は、更に、低反射膜を含んでもよい。低反射膜は、吸収膜230上に形成される。その後、低反射膜と吸収膜230の両方に、開口パターン231が形成される。低反射膜は、開口パターン231の検査に用いられ、検査光に対して吸収膜230よりも低反射特性を有する。低反射膜は、例えばTaONまたはTaOなどで形成される。低反射膜の成膜方法としては、例えばスパッタリング法が用いられる。 For example, the EUVL mask blank 200 may further include a low-reflection film. A low-reflection film is formed on the absorbing film 230 . After that, an opening pattern 231 is formed in both the low reflection film and the absorption film 230 . The low-reflection film is used for inspection of the opening pattern 231 and has a lower reflection characteristic than the absorption film 230 with respect to inspection light. The low reflection film is made of TaON or TaO, for example. As a method for forming the low-reflection film, for example, a sputtering method is used.
 また、EUVL用マスクブランク200は、更に、保護膜を含んでもよい。保護膜は、多層反射膜220と吸収膜230との間に形成される。保護膜は、吸収膜230に開口パターン231を形成すべく吸収膜230をエッチングする際に、多層反射膜220がエッチングされないように、多層反射膜220を保護する。保護膜は、例えばRu、Si、またはTiOなどで形成される。保護膜の成膜方法としては、例えばスパッタリング法が用いられる。 Moreover, the EUVL mask blank 200 may further include a protective film. A protective film is formed between the multilayer reflective film 220 and the absorbing film 230 . The protective film protects the multilayer reflective film 220 from being etched when the absorbing film 230 is etched to form the opening pattern 231 in the absorbing film 230 . The protective film is made of, for example, Ru, Si, or TiO2 . As a method for forming the protective film, for example, a sputtering method is used.
 図12に示すように、EUVL用マスク201は、EUVL用マスクブランク200の吸収膜230に開口パターン231を形成することで得られる。開口パターン231の形成には、フォトリソグラフィ法およびエッチング法が用いられる。従って、開口パターン231の形成に用いられるレジスト膜が、EUVL用マスクブランク200に含まれてもよい。 As shown in FIG. 12, the EUVL mask 201 is obtained by forming an opening pattern 231 in the absorbing film 230 of the EUVL mask blank 200 . A photolithography method and an etching method are used to form the opening pattern 231 . Therefore, the resist film used for forming the opening pattern 231 may be included in the EUVL mask blank 200 .
 ところで、EUVL用マスクブランク200の製造工程の途中で、基板210または基板210の上に形成された各種の機能膜を洗浄することがある。酸またはアルカリによる化学反応を利用する洗浄、物理作用を利用する洗浄、またはこれらの組み合せの洗浄などが行われる。物理作用を利用する洗浄は、超音波洗浄、スクラブ洗浄、または二流体洗浄などである。二流体洗浄は、洗浄液とガスを混合しながら噴射する。 By the way, during the manufacturing process of the EUVL mask blank 200, the substrate 210 or various functional films formed on the substrate 210 may be cleaned. Cleaning using a chemical reaction with an acid or alkali, cleaning using a physical action, or a combination thereof is performed. Cleaning using physical action includes ultrasonic cleaning, scrub cleaning, or two-fluid cleaning. In the two-fluid cleaning, the cleaning liquid and the gas are mixed and sprayed.
 超音波洗浄は、例えば図1に示す基板洗浄装置1を用いて行われる。超音波洗浄は、好ましくは、ステップS104とS105の間、ステップS105とS106の間、ステップS106とS107の間、ステップS107の後のうちの少なくとも1つで実施される。また、超音波洗浄は、図示しないが、低反射膜、ハードマスク膜または保護膜の前後で実施されてもよい。 Ultrasonic cleaning is performed using, for example, the substrate cleaning apparatus 1 shown in FIG. Ultrasonic cleaning is preferably performed at least one of between steps S104 and S105, between steps S105 and S106, between steps S106 and S107, and after step S107. In addition, although not shown, ultrasonic cleaning may be performed before and after the low-reflection film, hard mask film, or protective film.
 以下、実験データについて説明する。下記の例1が比較例であり、下記の例2~例4が実施例である。例1~例4の実験条件および評価結果を表1に示す。 The experimental data will be explained below. Example 1 below is a comparative example, and Examples 2 to 4 below are examples. Table 1 shows the experimental conditions and evaluation results of Examples 1 to 4.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例1~例4では、表1に記載の各種の洗浄液を表1に記載の番号の順番で洗浄ヘッドの振動板に対して供給することで洗浄ヘッドの前処理を実施した後、ダミー洗浄を実施し、その後、基板洗浄を行った。洗浄ヘッドの振動板の材質は、石英ガラスであった。振動板には、予め切削加工と機械研磨をこの順番で施した。機械研磨では、酸化セリウム粒子を用いて振動板を研磨した。 In Examples 1 to 4, the various cleaning solutions listed in Table 1 were supplied to the vibration plate of the cleaning head in the order of the numbers listed in Table 1 to perform pretreatment of the cleaning head, and then dummy cleaning was performed. After that, the substrate was washed. The material of the vibration plate of the cleaning head was quartz glass. The diaphragm was previously subjected to cutting and mechanical polishing in this order. In the mechanical polishing, cerium oxide particles were used to polish the diaphragm.
 表1において、「Ceの面密度」と「Siを除く残り全ての元素の面密度」は、洗浄ヘッドの前処理の後、ダミー洗浄の前に、TXRF法で測定した。TXRF法のX線源としてW(タングステン)ビームを使用し、原子番号13~30および33~72の元素の面密度を測定した。最も多い元素はSiであった。「Siを除く残り全ての元素の面密度」は、Siの面密度を100%としたときの、Siを除く残り全ての元素の面密度の合計である。各種元素の面密度をTXRF法で測定する測定装置の検出限界(検出下限)は、0.8×1010atoms/cmであった。 In Table 1, "Area density of Ce" and "Area density of all elements except Si" were measured by the TXRF method after pretreatment of the cleaning head and before dummy cleaning. A W (tungsten) beam was used as the X-ray source for the TXRF method, and areal densities of elements with atomic numbers 13-30 and 33-72 were measured. The most abundant element was Si. "Area density of all elements other than Si" is the sum of surface densities of all elements except Si when the areal density of Si is 100%. The detection limit (detection lower limit) of the measuring device for measuring the surface density of various elements by the TXRF method was 0.8×10 10 atoms/cm 2 .
 なお、TXRF法で洗浄ヘッドの振動面における各種元素の面密度を測定すると、洗浄ヘッドを破壊することになるので、洗浄ヘッドとは別に石英ガラス板を用意した。石英ガラス板は、洗浄ヘッドの振動板と同様に、予め切削加工と機械研磨をこの順番で施した。機械研磨では、酸化セリウム粒子を用いて石英ガラス板を研磨した。石英ガラス板に対して表1に記載の各種の洗浄液を表1に記載の番号の順番で供給した後、石英ガラス板の表面における各種元素の面密度をTXRF法で測定した。 Note that measuring the areal density of various elements on the vibration surface of the cleaning head by the TXRF method would destroy the cleaning head, so a quartz glass plate was prepared separately from the cleaning head. Similar to the vibration plate of the cleaning head, the quartz glass plate was previously subjected to cutting and mechanical polishing in this order. In the mechanical polishing, cerium oxide particles were used to polish the quartz glass plate. After supplying various cleaning liquids shown in Table 1 to the quartz glass plate in the order of the numbers shown in Table 1, surface densities of various elements on the surface of the quartz glass plate were measured by the TXRF method.
 表1において、「ダミー洗浄時間」は、超音波洗浄によってダミー基板に付着するパーティクルの数が一定値に落ち着くまでの時間である。超音波洗浄によってダミー基板に付着するパーティクルの数は、超音波洗浄の前後にダミー基板上のパーティクル数を測定し、その差分を計算することで測定した。 In Table 1, "dummy cleaning time" is the time until the number of particles adhering to the dummy substrate by ultrasonic cleaning settles down to a constant value. The number of particles adhering to the dummy substrate due to ultrasonic cleaning was measured by measuring the number of particles on the dummy substrate before and after ultrasonic cleaning and calculating the difference.
 表1において、「基板のパーティクル数」は、ダミー洗浄後に、超音波洗浄によって基板に付着するパーティクルの数の平均値である。超音波洗浄によって基板に付着するパーティクルの数は、超音波洗浄の前後に基板上のパーティクル数を測定し、その差分を計算することで測定した。 In Table 1, "the number of particles on the substrate" is the average number of particles adhering to the substrate by ultrasonic cleaning after the dummy cleaning. The number of particles adhering to the substrate due to ultrasonic cleaning was measured by measuring the number of particles on the substrate before and after ultrasonic cleaning and calculating the difference.
 パーティクル数は、Lasertec社のMAGICSシリーズで測定した。パーティクル数は、SiO粒子40nmサイズに換算した欠陥数である。 The number of particles was measured by Lasertec's MAGICS series. The number of particles is the number of defects converted to SiO 2 particles 40 nm size.
 表1に示すように、例1では、洗浄ヘッドの前処理において第1薬液(酸化セリウムを溶解する薬液)も第2薬液(石英ガラスを溶解する薬液)も洗浄ヘッドの振動板に対して供給しなかったので、「ダミー洗浄時間」が長く、「基板のパーティクル数」も多かった。洗浄ヘッドと同じ前処理を施した石英ガラス板の表面は、「Ceの面密度」が30×1010atoms/cmを超えており、「Siを除く残り全ての元素の面密度」が1.0%を超えていた。 As shown in Table 1, in Example 1, both the first chemical solution (the chemical solution that dissolves cerium oxide) and the second chemical solution (the chemical solution that dissolves quartz glass) are supplied to the vibration plate of the cleaning head in the pretreatment of the cleaning head. Therefore, the "dummy cleaning time" was long and the "number of particles on the substrate" was large. The surface of the quartz glass plate, which was pretreated in the same way as the cleaning head, had a surface density of Ce exceeding 30×10 10 atoms/cm 2 and a surface density of all elements other than Si of 1. .0% was exceeded.
 一方、例2では、洗浄ヘッドの前処理において「HF」を洗浄ヘッドの振動板に対して供給したので、「ダミー洗浄時間」が短く、「基板のパーティクル数」も少なかった。「HF」は、第2薬液(石英ガラスを溶解する薬液)に相当する。洗浄ヘッドと同じ前処理を施した石英ガラス板の表面は、「Ceの面密度」が30×1010atoms/cm以下であった。 On the other hand, in Example 2, since "HF" was supplied to the vibration plate of the cleaning head in the pretreatment of the cleaning head, the "dummy cleaning time" was short and the "number of particles on the substrate" was small. "HF" corresponds to the second chemical (chemical that dissolves quartz glass). The surface of the quartz glass plate pretreated in the same manner as the cleaning head had a surface density of Ce of 30×10 10 atoms/cm 2 or less.
 例3では、洗浄ヘッドの前処理において「SPM」と「HF」をこの順番で洗浄ヘッドの振動板に対して供給したので、「ダミー洗浄時間」が短く、「基板のパーティクル数」も少なかった。「SPM」が第1薬液(酸化セリウムを溶解する薬液)に相当し、「HF」が第2薬液(石英ガラスを溶解する薬液)に相当する。洗浄ヘッドと同じ前処理を施した石英ガラス板の表面は、「Ceの面密度」が1×1010atoms/cm以下であって、「Siを除く残り全ての元素の面密度」が1.0%以下であった。 In Example 3, "SPM" and "HF" were supplied in this order to the vibration plate of the cleaning head in the cleaning head pretreatment, so the "dummy cleaning time" was short and the "substrate particle count" was small. . "SPM" corresponds to the first chemical solution (chemical solution that dissolves cerium oxide), and "HF" corresponds to the second chemical solution (chemical solution that dissolves quartz glass). The surface of the quartz glass plate, which was pretreated in the same manner as the cleaning head, had a surface density of Ce of 1×10 10 atoms/cm 2 or less and a surface density of all elements other than Si of 1. 0% or less.
 例4では、洗浄ヘッドの前処理において「SPM」と「アルカリ洗剤」をこの順番で洗浄ヘッドの振動板に対して供給した。「SPM」が第1薬液(酸化セリウムを溶解する薬液)に相当し、「アルカリ洗剤」が第2薬液(石英ガラスを溶解する薬液)に相当する。洗浄ヘッドと同じ前処理を施した石英ガラス板の表面は、「Ceの面密度」が10×1010atoms/cm以下であって、「Siを除く残り全ての元素の面密度」が1.0%以下であった。 In Example 4, "SPM" and "alkaline detergent" were supplied in this order to the vibration plate of the cleaning head in the pretreatment of the cleaning head. "SPM" corresponds to the first chemical solution (chemical solution that dissolves cerium oxide), and "alkaline detergent" corresponds to the second chemical solution (chemical solution that dissolves quartz glass). The surface of the quartz glass plate, which was pretreated in the same manner as the cleaning head, had a surface density of Ce of 10×10 10 atoms/cm 2 or less and a surface density of all elements other than Si of 1. 0% or less.
 上記の実施形態に関し、下記の付記を開示する。
[付記1]
 基板の上面に間隔をおいて対向すると共に前記基板の上面に形成される液膜に接触する振動面を有する超音波洗浄ヘッドであって、
 前記振動面は、全反射蛍光X線分析法で検出されるCe元素の面密度が30×1010atoms/cm以下である、超音波洗浄ヘッド。
[付記2]
 前記振動面は、全反射蛍光X線分析法で検出されるCe元素の面密度が10×1010atoms/cm以下である、付記1に記載の超音波洗浄ヘッド。
[付記3]
 前記振動面は、全反射蛍光X線分析法で検出されるCe元素の面密度が1×1010atoms/cm以下である、付記2に記載の超音波洗浄ヘッド。
[付記4]
 前記振動面は、全反射蛍光X線分析法で検出される原子番号13~30および33~72の元素のうち、最も多い元素の面密度を100%とすると、最も多い元素を除く残り全ての元素の面密度の合計が1.0%以下である、付記1~3のいずれか1つに記載の超音波洗浄ヘッド。
[付記5]
 前記最も多い元素がSiである、付記4に記載の超音波洗浄ヘッド。
[付記6]
 前記振動面の材質がSiOである、付記4または5に記載の超音波洗浄ヘッド。
[付記7]
 超音波洗浄ヘッドの振動面に対して、酸化セリウムを溶解する第1薬液と前記振動面を溶解する第2薬液の少なくとも一方を供給することで、前記振動面の全反射蛍光X線分析法で検出されるCe元素の面密度を30×1010atoms/cm以下にすることと、
 前記振動面の全反射蛍光X線分析法で検出されるCe元素の面密度を30×1010atoms/cm以下にした後で、互いに対向する前記超音波洗浄ヘッドの前記振動面と基板の上面の間に液膜を形成しながら、前記振動面から前記液膜に振動を付与することと、
を有する、基板洗浄方法。
[付記8]
 付記1~6のいずれか1つに記載の超音波洗浄ヘッドと、前記基板を水平に保持する保持部と、前記保持部で保持している前記基板の上面に前記液膜を形成するノズルと、を備える、基板洗浄装置。
[付記9]
 付記8に記載の基板洗浄装置を用いて基板を洗浄することを有する、基板の製造方法。
[付記10]
 付記8に記載の基板洗浄装置を用いてガラス基板または前記ガラス基板の上に形成された機能膜を洗浄することを有する、EUVL用マスクブランクの製造方法。
The following remarks are disclosed with respect to the above embodiments.
[Appendix 1]
An ultrasonic cleaning head having a vibrating surface facing an upper surface of a substrate with a gap therebetween and in contact with a liquid film formed on the upper surface of the substrate,
The ultrasonic cleaning head, wherein the vibrating surface has a Ce element surface density of 30×10 10 atoms/cm 2 or less as detected by total reflection X-ray fluorescence analysis.
[Appendix 2]
The ultrasonic cleaning head according to appendix 1, wherein the vibrating surface has a surface density of Ce element detected by total reflection X-ray fluorescence spectrometry of 10×10 10 atoms/cm 2 or less.
[Appendix 3]
The ultrasonic cleaning head according to appendix 2, wherein the vibrating surface has a surface density of Ce element detected by total reflection X-ray fluorescence analysis of 1×10 10 atoms/cm 2 or less.
[Appendix 4]
Of the elements with atomic numbers of 13 to 30 and 33 to 72 detected by total reflection X-ray fluorescence spectroscopy, the vibration surface is defined as 100% of the surface density of the most abundant element, and all the remaining elements excluding the most abundant element. 4. The ultrasonic cleaning head according to any one of Appendices 1 to 3, wherein the total areal density of the elements is 1.0% or less.
[Appendix 5]
The ultrasonic cleaning head according to appendix 4, wherein the most abundant element is Si.
[Appendix 6]
6. The ultrasonic cleaning head according to appendix 4 or 5, wherein the material of the vibration surface is SiO2 .
[Appendix 7]
By supplying at least one of a first chemical solution for dissolving cerium oxide and a second chemical solution for dissolving the vibrating surface to the vibrating surface of the ultrasonic cleaning head, total reflection X-ray fluorescence analysis of the vibrating surface making the surface density of the detected Ce element 30×10 10 atoms/cm 2 or less;
After the surface density of the Ce element detected by total reflection X-ray fluorescence spectrometry on the vibration surface is set to 30×10 10 atoms/cm 2 or less, the vibration surface of the ultrasonic cleaning head and the substrate facing each other are separated. applying vibration from the vibrating surface to the liquid film while forming the liquid film between upper surfaces;
A substrate cleaning method comprising:
[Appendix 8]
The ultrasonic cleaning head according to any one of Appendices 1 to 6, a holding portion that horizontally holds the substrate, and a nozzle that forms the liquid film on the upper surface of the substrate held by the holding portion. A substrate cleaning apparatus comprising:
[Appendix 9]
A method for manufacturing a substrate, comprising cleaning the substrate using the substrate cleaning apparatus according to appendix 8.
[Appendix 10]
A method for manufacturing an EUVL mask blank, comprising cleaning a glass substrate or a functional film formed on the glass substrate using the substrate cleaning apparatus according to appendix 8.
 以上、本開示に係る超音波洗浄ヘッド、基板洗浄方法、基板洗浄装置、基板の製造方法、およびEUVL用マスクブランクの製造方法について説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 The ultrasonic cleaning head, substrate cleaning method, substrate cleaning apparatus, substrate manufacturing method, and EUVL mask blank manufacturing method according to the present disclosure have been described above, but the present disclosure is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.
 本出願は、2022年3月3日に日本国特許庁に出願した特願2022-032933号に基づく優先権を主張するものであり、特願2022-032933号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2022-032933 filed with the Japan Patent Office on March 3, 2022, and the entire contents of Japanese Patent Application No. 2022-032933 are incorporated into this application. .
30 洗浄ヘッド(超音波洗浄ヘッド)
31a 振動面
W  基板
Wa 基板上面
F  液膜
30 cleaning head (ultrasonic cleaning head)
31a Vibration surface W Substrate Wa Substrate upper surface F Liquid film

Claims (10)

  1.  基板の上面に間隔をおいて対向すると共に前記基板の上面に形成される液膜に接触する振動面を有する超音波洗浄ヘッドであって、
     前記振動面は、全反射蛍光X線分析法で検出されるCe元素の面密度が30×1010atoms/cm以下である、超音波洗浄ヘッド。
    An ultrasonic cleaning head having a vibrating surface facing an upper surface of a substrate with a gap therebetween and in contact with a liquid film formed on the upper surface of the substrate,
    The ultrasonic cleaning head, wherein the vibrating surface has a Ce element surface density of 30×10 10 atoms/cm 2 or less as detected by total reflection X-ray fluorescence analysis.
  2.  前記振動面は、全反射蛍光X線分析法で検出されるCe元素の面密度が10×1010atoms/cm以下である、請求項1に記載の超音波洗浄ヘッド。 2. The ultrasonic cleaning head according to claim 1, wherein the vibrating surface has a Ce element surface density of 10×10 10 atoms/cm 2 or less as detected by total reflection X-ray fluorescence analysis.
  3.  前記振動面は、全反射蛍光X線分析法で検出されるCe元素の面密度が1×1010atoms/cm以下である、請求項2に記載の超音波洗浄ヘッド。 3. The ultrasonic cleaning head according to claim 2, wherein the vibrating surface has a Ce element surface density of 1×10 10 atoms/cm 2 or less as detected by total reflection X-ray fluorescence analysis.
  4.  前記振動面は、全反射蛍光X線分析法で検出される原子番号13~30および33~72の元素のうち、最も多い元素の面密度を100%とすると、最も多い元素を除く残り全ての元素の面密度の合計が1.0%以下である、請求項1~3のいずれか1項に記載の超音波洗浄ヘッド。 Of the elements with atomic numbers of 13 to 30 and 33 to 72 detected by total reflection X-ray fluorescence spectroscopy, the vibration surface is defined as 100% of the surface density of the most abundant element, and all the remaining elements excluding the most abundant element. The ultrasonic cleaning head according to any one of claims 1 to 3, wherein the total areal density of the elements is 1.0% or less.
  5.  前記最も多い元素がSiである、請求項4に記載の超音波洗浄ヘッド。 The ultrasonic cleaning head according to claim 4, wherein the most abundant element is Si.
  6.  前記振動面の材質がSiOである、請求項4に記載の超音波洗浄ヘッド。 5. The ultrasonic cleaning head according to claim 4, wherein the material of said vibration surface is SiO2 .
  7.  超音波洗浄ヘッドの振動面に対して、酸化セリウムを溶解する第1薬液と前記振動面を溶解する第2薬液の少なくとも一方を供給することで、前記振動面の全反射蛍光X線分析法で検出されるCe元素の面密度を30×1010atoms/cm以下にすることと、
     前記振動面の全反射蛍光X線分析法で検出されるCe元素の面密度を30×1010atoms/cm以下にした後で、互いに対向する前記超音波洗浄ヘッドの前記振動面と基板の上面の間に液膜を形成しながら、前記振動面から前記液膜に振動を付与することと、
    を有する、基板洗浄方法。
    By supplying at least one of a first chemical solution for dissolving cerium oxide and a second chemical solution for dissolving the vibrating surface to the vibrating surface of the ultrasonic cleaning head, total reflection X-ray fluorescence analysis of the vibrating surface making the surface density of the detected Ce element 30×10 10 atoms/cm 2 or less;
    After the surface density of the Ce element detected by total reflection X-ray fluorescence spectrometry on the vibration surface is set to 30×10 10 atoms/cm 2 or less, the vibration surface of the ultrasonic cleaning head and the substrate facing each other are separated. applying vibration from the vibrating surface to the liquid film while forming the liquid film between upper surfaces;
    A substrate cleaning method comprising:
  8.  請求項1~3のいずれか1項に記載の超音波洗浄ヘッドと、前記基板を水平に保持する保持部と、前記保持部で保持している前記基板の上面に前記液膜を形成するノズルと、を備える、基板洗浄装置。 4. The ultrasonic cleaning head according to any one of claims 1 to 3, a holding portion for horizontally holding the substrate, and a nozzle for forming the liquid film on the upper surface of the substrate held by the holding portion. and a substrate cleaning apparatus.
  9.  請求項8に記載の基板洗浄装置を用いて基板を洗浄することを有する、基板の製造方法。 A method for manufacturing a substrate, comprising cleaning the substrate using the substrate cleaning apparatus according to claim 8.
  10.  請求項8に記載の基板洗浄装置を用いてガラス基板または前記ガラス基板の上に形成された機能膜を洗浄することを有する、EUVL用マスクブランクの製造方法。 A method for manufacturing an EUVL mask blank, comprising cleaning a glass substrate or a functional film formed on the glass substrate using the substrate cleaning apparatus according to claim 8.
PCT/JP2023/004703 2022-03-03 2023-02-13 Ultrasonic cleaning head, substrate cleaning method, substrate cleaning device, method for manufacturing substrate, and method for manufacturing mask blank for euvl WO2023166961A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032933 2022-03-03
JP2022-032933 2022-03-03

Publications (1)

Publication Number Publication Date
WO2023166961A1 true WO2023166961A1 (en) 2023-09-07

Family

ID=87883333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004703 WO2023166961A1 (en) 2022-03-03 2023-02-13 Ultrasonic cleaning head, substrate cleaning method, substrate cleaning device, method for manufacturing substrate, and method for manufacturing mask blank for euvl

Country Status (1)

Country Link
WO (1) WO2023166961A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181403A (en) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
JP2008004590A (en) * 2006-06-20 2008-01-10 Hitachi Displays Ltd Image display device and manufacturing method thereof
JP2008306108A (en) * 2007-06-11 2008-12-18 Dainippon Screen Mfg Co Ltd Substrate cleaning device, and substrate cleaning method
JP2011213964A (en) * 2010-04-02 2011-10-27 Yokohama Yushi Kogyo Kk Aqueous solution-type water-repellent having oil stain removing function
JP2013084667A (en) * 2011-10-06 2013-05-09 Hitachi Kokusai Denki Engineering:Kk Ultrasonic processing apparatus and ultrasonic treatment method
JP2016002510A (en) * 2014-06-16 2016-01-12 旭硝子株式会社 Rinse method of photomask glass substrate
JP2019109277A (en) * 2017-12-15 2019-07-04 Agc株式会社 Substrate for mask blank, and mask blank
JP2021077853A (en) * 2019-11-13 2021-05-20 花王株式会社 Cleaning agent composition used for semiconductor device substrate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11181403A (en) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
JP2008004590A (en) * 2006-06-20 2008-01-10 Hitachi Displays Ltd Image display device and manufacturing method thereof
JP2008306108A (en) * 2007-06-11 2008-12-18 Dainippon Screen Mfg Co Ltd Substrate cleaning device, and substrate cleaning method
JP2011213964A (en) * 2010-04-02 2011-10-27 Yokohama Yushi Kogyo Kk Aqueous solution-type water-repellent having oil stain removing function
JP2013084667A (en) * 2011-10-06 2013-05-09 Hitachi Kokusai Denki Engineering:Kk Ultrasonic processing apparatus and ultrasonic treatment method
JP2016002510A (en) * 2014-06-16 2016-01-12 旭硝子株式会社 Rinse method of photomask glass substrate
JP2019109277A (en) * 2017-12-15 2019-07-04 Agc株式会社 Substrate for mask blank, and mask blank
JP2021077853A (en) * 2019-11-13 2021-05-20 花王株式会社 Cleaning agent composition used for semiconductor device substrate

Similar Documents

Publication Publication Date Title
US10025176B2 (en) Mask blank substrate, substrate with multilayer reflective film, reflective mask blank, reflective mask, method of manufacturing mask blank substrate, method of manufacturing substrate with reflective film and method of manufacturing semiconductor device
JP6309579B2 (en) Method for manufacturing substrate for mask blank, method for manufacturing substrate with multilayer reflective film, method for manufacturing mask blank, and method for manufacturing transfer mask
US8748062B2 (en) Method of cleaning substrate
KR101004525B1 (en) Method of producing a glass substrate for a mask blank, method of producing a mask blank, method of producing a transfer mask, method of producing a semiconductor device, glass substrate for a mask blank, mask blank, and transfer mask
JP4761901B2 (en) Mask blank substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, reflective mask manufacturing method, and semiconductor device manufacturing method
JP3966840B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask
KR20160102496A (en) Glass ceramic for ultraviolet lithography and method of manufacturing thereof
US9507254B2 (en) Method of manufacturing substrate with a multilayer reflective film, method of manufacturing a reflective mask blank, substrate with a multilayer reflective film, reflective mask blank, reflective mask and method of manufacturing a semiconductor device
KR20150108354A (en) Method for manufacturing mask blank substrate, method for manufacturing mask blank and method for manufacturing transfer mask
KR20120074328A (en) Low-expansion glass substrate for a reflective mask and reflective mask
JP2016113356A (en) Method for finish-working the surface of pre-polished glass substrate surface
JP4526547B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, EUV reflective mask blank manufacturing method, transfer mask manufacturing method, EUV reflective mask manufacturing method, and semiconductor device manufacturing method
WO2023166961A1 (en) Ultrasonic cleaning head, substrate cleaning method, substrate cleaning device, method for manufacturing substrate, and method for manufacturing mask blank for euvl
WO2023145431A1 (en) Substrate cleaning method, glass substrate manufacturing method, euvl mask blank manufacturing method, and substrate cleaning apparatus
JP2023125886A (en) Cleaning tank, cleaning machine, cleaning method, manufacturing method of glass substrate, and manufacturing method of mask blank for extreme ultra-violet lithography
JP6297512B2 (en) Manufacturing method of mask blank substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, and manufacturing method of transfer mask
JP6133189B2 (en) Manufacturing method of substrate, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, manufacturing method of transfer mask, and substrate manufacturing apparatus
JP6297321B2 (en) Manufacturing method of substrate with functional film, manufacturing method of substrate with multilayer film, manufacturing method of mask blank, and manufacturing method of transfer mask
JP4283061B2 (en) Manufacturing method of glass substrate for electronic device, manufacturing method of mask blanks, and manufacturing method of transfer mask
JP2022100702A (en) Method for drying mask blank substrate, and method for manufacturing euvl mask blank
JP2022108719A (en) Cleaning method for mask blank substrate and manufacturing method for euvl mask blank
JP5687939B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, and semiconductor device manufacturing method
JP2008116571A (en) Method of manufacturing substrate for mask blank and method of manufacturing mask blank, and method of manufacturing transfer mask
JP4437501B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, transfer mask manufacturing method, semiconductor device manufacturing method, mask blank glass substrate, mask blank, transfer mask
JP4688084B2 (en) Manufacturing method of glass substrate for electronic device, manufacturing method of mask blanks, and manufacturing method of transfer mask

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763223

Country of ref document: EP

Kind code of ref document: A1