JP5758518B2 - Manufacturing method of semiconductor light emitting device - Google Patents

Manufacturing method of semiconductor light emitting device Download PDF

Info

Publication number
JP5758518B2
JP5758518B2 JP2014055147A JP2014055147A JP5758518B2 JP 5758518 B2 JP5758518 B2 JP 5758518B2 JP 2014055147 A JP2014055147 A JP 2014055147A JP 2014055147 A JP2014055147 A JP 2014055147A JP 5758518 B2 JP5758518 B2 JP 5758518B2
Authority
JP
Japan
Prior art keywords
substrate
light emitting
semiconductor light
nitride semiconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014055147A
Other languages
Japanese (ja)
Other versions
JP2014132685A (en
Inventor
康太郎 財満
康太郎 財満
徹 後藤田
徹 後藤田
俊行 岡
俊行 岡
布上 真也
真也 布上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2014055147A priority Critical patent/JP5758518B2/en
Publication of JP2014132685A publication Critical patent/JP2014132685A/en
Application granted granted Critical
Publication of JP5758518B2 publication Critical patent/JP5758518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)

Description

本発明は、半導体発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor light emitting device.

白色照明への応用に向けて窒化物半導体発光ダイオード(以下、LED(Light Emitting Device)ともいう)は、高効率化、高出力化をはかるために、結晶およびデバイス構造の検討による発光効率の向上、光取り出し効率の向上等が進められている。   Nitride semiconductor light-emitting diode (hereinafter also referred to as LED (Light Emitting Device)) for application to white illumination. Improvement of luminous efficiency by studying crystal and device structure in order to achieve high efficiency and high output. Improvements in light extraction efficiency are being promoted.

InGaN系結晶を結晶成長する場合、安価で高温で安定であり、低温バッファにより高い結晶性の結晶成長が可能であるサファイア基板が使われることが多い。サファイア基板は絶縁体で導電性がないことや熱伝導率が低い。このため、サファイア基板の裏面側に電極を作製できずに窒化物半導体側にp電極、n電極ともに形成する必要があり、直列抵抗が増加しやすいことおよび高出力動作させる場合の放熱性が、さらなる高効率化、高出力化を考えた場合に、課題となる。   When growing an InGaN-based crystal, a sapphire substrate that is inexpensive, stable at high temperature, and capable of high crystal growth with a low-temperature buffer is often used. The sapphire substrate is an insulator and has no electrical conductivity and low thermal conductivity. For this reason, it is necessary to form both the p-electrode and the n-electrode on the nitride semiconductor side without producing an electrode on the back surface side of the sapphire substrate, the series resistance is likely to increase, and the heat dissipation when operating at high output is This is a problem when considering higher efficiency and higher output.

この課題を解決して発光効率、出力を向上させたLED構造のひとつとして薄膜(Thin Film)型のInGaN系LEDが知られている(例えば、特許文献1参照)。この薄膜型のInGaN系LEDはサファイア基板上に成長したLED構造結晶をSi基板、銅、金等の他の支持基板に転写する。導電性があり、熱伝導が大きい支持基板に転写後にデバイス化することで、上下通電により電流の広がりが大きくなり電気伝導特性が改善し、さらに放熱性が向上する。   A thin film type InGaN-based LED is known as one of LED structures that solve this problem and improve luminous efficiency and output (see, for example, Patent Document 1). In this thin-film type InGaN-based LED, an LED structure crystal grown on a sapphire substrate is transferred to another support substrate such as a Si substrate, copper, or gold. By forming a device after transfer onto a support substrate having electrical conductivity and high thermal conductivity, the spread of current increases due to vertical energization, the electrical conductivity characteristics are improved, and the heat dissipation is further improved.

また、転写でn層を上面としてn層側から光を取り出す構造とすると、p層に比べて抵抗の小さいn層では電流を拡散させるための透明電極が不要となり、透明電極の吸収がなくなることで光取り出し効率が向上する。この転写プロセスには、エピタキシャル成長によって形成した結晶(エピタキシャル結晶)を支持基板に接着させるプロセス、エピタキシャル結晶と、サファイア基板とを剥離するリフトオフプロセスが含まれている。接着プロセスにはめっき技術や加重および熱を用いた接合技術、リフトプロセスにはレーザによる界面の加熱分解を用いたレーザリフトオフや化学的リフトオフが挙げられる。   Also, if the structure is such that light is extracted from the n-layer side with the n-layer as the upper surface during transfer, the n-layer, which has a smaller resistance than the p-layer, eliminates the need for a transparent electrode for diffusing current, and the transparent electrode does not absorb. This improves the light extraction efficiency. This transfer process includes a process of bonding a crystal (epitaxial crystal) formed by epitaxial growth to a support substrate, and a lift-off process of peeling the epitaxial crystal and the sapphire substrate. The bonding process includes a plating technique and a joining technique using weight and heat, and the lift process includes laser lift-off and chemical lift-off using thermal decomposition of the interface by a laser.

こうした薄膜型のLED構造では、レーザリフトオフしたままの状態ではGaN基板の表面と外部空気との屈折率差は2.5倍程度と大きく、この境界面における光の反射が取り出し効率を下げている。   In such a thin film LED structure, the difference in refractive index between the surface of the GaN substrate and the external air is as large as about 2.5 times when the laser is lifted off, and the reflection of light at this boundary surface reduces the extraction efficiency. .

そこで、チップの表面に凹凸を作製する技術が提案されている(例えば、特許文献2参照)。凹凸はn型窒化物半導体層の再成長、研磨、およびエッチングによって形成されている。簡易に形成することができる方法として支持基板上のGaN基板の上面のn層をアルカリエッチングによって表面の粗面加工することにより凹凸を形成し、光取り出し効率を向上させている。   Therefore, a technique for producing irregularities on the surface of the chip has been proposed (see, for example, Patent Document 2). The irregularities are formed by regrowth, polishing, and etching of the n-type nitride semiconductor layer. As a method that can be easily formed, irregularities are formed by roughening the surface of the n layer on the upper surface of the GaN substrate on the support substrate by alkali etching, thereby improving the light extraction efficiency.

しかし、従来のアルカリエッチングの方法ではエッチング時間を長くすることで全体的に膜厚が薄くなっても、凹凸形状の大きさが大きくならない場合も多い。GaN層の表面において光取り出し効率がより大きくなるような凹凸形状を得ることのできるエッチング制御方法が求められている。   However, in the conventional alkali etching method, the size of the concavo-convex shape often does not increase even when the film thickness is reduced overall by increasing the etching time. There is a need for an etching control method capable of obtaining a concavo-convex shape that increases the light extraction efficiency on the surface of the GaN layer.

特開2008−235362号公報JP 2008-235362 A 特開2007−300069号公報JP 2007-300069 A

本発明は、上記事情を考慮してなされたものであって、光取り出し効率を向上させることのできる半導体発光素子の製造方法を提供する。   The present invention has been made in view of the above circumstances, and provides a method for manufacturing a semiconductor light emitting device capable of improving light extraction efficiency.

本発明の一態様による半導体発光素子の製造方法は、第1基板上に、n型窒化物半導体層、窒化物半導体の多重量井戸構造を有する活性層、およびp型窒化物半導体層を、この順序で積層された第1積層膜を設ける工程と、前記p型窒化物半導体層の上面に、コンタクト電極を形成する工程と、前記第1基板と第2基板とを張り合わせる工程と、前記第1基板を除去することにより前記第2基板上に前記第1積層膜を移し、前記第2基板上に、前記第1積層膜と逆の順序で積層された第2積層膜を設ける工程と、前記n型窒化物半導体層をアルカリ液を用いてウェットエッチングすることにより、前記n型窒化物半導体層に凹凸領域を形成する工程と、n電極を形成する工程と、前記第2積層膜を、上面から下面に向かうにつれて膜面の面積が増大する、断面がテーパー形状となるようにパターニングする工程と、を備えている。   According to an aspect of the present invention, there is provided a method for manufacturing a semiconductor light emitting device, comprising: forming an n-type nitride semiconductor layer, an active layer having a multi-quantum well structure of a nitride semiconductor, and a p-type nitride semiconductor layer on a first substrate; Providing a first laminated film laminated in order, forming a contact electrode on an upper surface of the p-type nitride semiconductor layer, attaching the first substrate and the second substrate, and Removing the first substrate, transferring the first laminated film onto the second substrate, and providing a second laminated film laminated on the second substrate in the reverse order of the first laminated film; Forming a concavo-convex region in the n-type nitride semiconductor layer by wet-etching the n-type nitride semiconductor layer using an alkaline solution, forming an n-electrode, and the second stacked film, The area of the film surface from the upper surface to the lower surface Increasing cross section includes a step of patterning so as tapered, the.

本発明によれば、光取り出し効率を向上させることの可能な半導体発光素子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the semiconductor light-emitting device which can improve light extraction efficiency can be provided.

図1(a)乃至図1(c)は、一実施形態による半導体発光素子の製造工程を示す断面図。FIG. 1A to FIG. 1C are cross-sectional views showing a manufacturing process of a semiconductor light emitting device according to one embodiment. 図2(a)乃至図2(b)は、一実施形態による半導体発光素子の製造工程を示す断面図。2A to 2B are cross-sectional views illustrating a manufacturing process of a semiconductor light emitting device according to an embodiment. 図3(a)乃至図3(c)は、一実施形態による半導体発光素子の製造工程を示す断面図。FIG. 3A to FIG. 3C are cross-sectional views illustrating a manufacturing process of a semiconductor light emitting device according to one embodiment. 図4(a)、4(b)はそれぞれ、一実施形態および比較例による半導体発光素子の凹凸が形成された表面付近の断面の電子顕微鏡写真。FIGS. 4A and 4B are electron micrographs of cross sections near the surface on which irregularities of the semiconductor light emitting device according to the embodiment and the comparative example are formed, respectively. 図5(a)、5(b)はそれぞれ一実施形態による半導体発光素子のエッチング時間を変えたときの表面の電子顕微鏡写真。5A and 5B are electron micrographs of the surface when the etching time of the semiconductor light emitting device according to the embodiment is changed. 個別の素子に分離される前の支持基板の平面図。The top view of the support substrate before isolate | separating into an individual element. 一実施形態による半導体発光素子を示す断面図。Sectional drawing which shows the semiconductor light-emitting device by one Embodiment. 一実施形態および比較例による半導体発光素子の発光強度のエッチング時間依存性を示す図。The figure which shows the etching time dependence of the emitted light intensity of the semiconductor light-emitting device by one Embodiment and a comparative example.

本発明の製造方法は、光半導体素子を形成するに当たり、素子毎に、n型窒化物半導体層の上面にn電極を形成し、その後、n型窒化物半導体層の上面をアルカリ液を用いてウェットエッチングすることにより、凹凸を形成することを特徴とする。   In the manufacturing method of the present invention, when forming an optical semiconductor element, an n-electrode is formed on the upper surface of the n-type nitride semiconductor layer for each element, and then the upper surface of the n-type nitride semiconductor layer is formed using an alkaline solution. Unevenness is formed by wet etching.

また本発明の半導体発光素子は、n型窒化物半導体層のn電極が設けられた領域以外の領域の表面に凹凸領域が形成され、を備え、前記凹凸領域は、高低差が1μm〜3μmの第1の凹凸と、高低差が300nm以下の前記第1の凹凸より小さな第2の凹凸が混在していることを特徴とする。   The semiconductor light emitting device of the present invention comprises an uneven region formed on the surface of a region other than the region where the n electrode of the n-type nitride semiconductor layer is provided, and the uneven region has a height difference of 1 μm to 3 μm. 1st unevenness | corrugation and 2nd unevenness | corrugation smaller than the said 1st unevenness | corrugation whose height difference is 300 nm or less are mixed.

以下、本発明の実施形態を、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の一実施形態による半導体発光素子の製造方法を図1(a)乃至図4を参照して説明する。この第1実施形態による半導体発光素子の製造工程を図1(a)乃至図3(a)に示す。   A method for manufacturing a semiconductor light emitting device according to an embodiment of the present invention will be described with reference to FIGS. The manufacturing process of the semiconductor light emitting device according to the first embodiment is shown in FIGS.

まず、窒化物半導体結晶を成長させる基板(ウェハ)、例えばサファイア基板10上に、例えば有機金属気層成長(MOCVD)法を用いて窒化物半導体層を順次成長させる。
すなわち、サファイア基板10上に、バッファ層となるGaN層12、n型GaN層14、InGaNからなる多重量子井戸構造の活性層16、およびp型GaN層18を、この順序で順次成長させる(図1(a))。
First, a nitride semiconductor layer is sequentially grown on a substrate (wafer) on which a nitride semiconductor crystal is grown, for example, a sapphire substrate 10 by using, for example, a metal organic chemical vapor deposition (MOCVD) method.
That is, a GaN layer 12 serving as a buffer layer, an n-type GaN layer 14, an active layer 16 having a multiple quantum well structure made of InGaN, and a p-type GaN layer 18 are sequentially grown in this order on the sapphire substrate 10 (FIG. 1 (a)).

続いて、p型GaN層18上にNiとAgの積層膜からp電極(反射コンタクト電極)20を形成する(図1(b))。このp電極20は、各半導体発光素子に対応して形成する。その後、p電極20を覆うように、上記窒化物半導体結晶膜12、14、16、18上に接着メタルとなるTi、Pt、およびAuがこの順序で積層された接着メタル22を形成する(図1(b))。これにより、p電極20が形成された領域における接着メタル22の部分が凸部となり、p電極20が形成されていない領域における接着メタル22の部分が凹部となる(図1(b))。続いて、公知のリソグラフィー技術を用いて、接着メタル22をパターニングする。その後、更に、p型GaN層18、活性層16、n型GaN層14、およびGaN層12を有する積層膜(窒化物半導体結晶膜)をパターニングする(図1(c))。   Subsequently, a p-electrode (reflective contact electrode) 20 is formed on the p-type GaN layer 18 from a laminated film of Ni and Ag (FIG. 1B). The p electrode 20 is formed corresponding to each semiconductor light emitting element. Thereafter, an adhesive metal 22 in which Ti, Pt, and Au serving as adhesive metals are laminated in this order on the nitride semiconductor crystal films 12, 14, 16, and 18 so as to cover the p-electrode 20 (FIG. 1 (b)). Thereby, the portion of the adhesive metal 22 in the region where the p-electrode 20 is formed becomes a convex portion, and the portion of the adhesive metal 22 in the region where the p-electrode 20 is not formed becomes a concave portion (FIG. 1B). Subsequently, the bonding metal 22 is patterned using a known lithography technique. Thereafter, a laminated film (nitride semiconductor crystal film) having the p-type GaN layer 18, the active layer 16, the n-type GaN layer 14, and the GaN layer 12 is further patterned (FIG. 1C).

このパターニングによって、ウェハ上の窒化物半導体結晶膜は、p型GaN層18からGaN層12に向かうにつれて膜面の面積が増大する、断面がテーパー形状のメサとなる。ここで、「膜面」とは、各層の上面を意味する。なお、積層膜をパターニングする際には、パターニングされた接着メタルをマスクとして用いてもよい。また、接着メタル22を形成する前に、積層膜をパターニングし、その後に、接着メタル22を形成してもよい。   By this patterning, the nitride semiconductor crystal film on the wafer becomes a mesa having a tapered cross section in which the area of the film surface increases from the p-type GaN layer 18 toward the GaN layer 12. Here, the “film surface” means the upper surface of each layer. When patterning the laminated film, the patterned adhesive metal may be used as a mask. Alternatively, the laminated film may be patterned before forming the adhesive metal 22, and then the adhesive metal 22 may be formed.

一方、支持基板となるSi基板30上に接着メタルとなるAu−Sn層32を形成する(図2(a))。そして、サファイア基板上の接着メタル22と、Si基板30上の接着メタル32が向かい合うように配置し、250℃以上の高温下において、一定時間圧力を印加し、サファイア基板10上の接着メタル22と、Si基板30上の接着メタル32とを張り合わせる。この張り合わせにおいて、コンタクト電極20の融点温度が接着メタル32の融点温度に比べてかなり高いので、接着メタル32に食い込んだ状態で張り合わせが行われる(図2(a))。   On the other hand, an Au—Sn layer 32 serving as an adhesive metal is formed on the Si substrate 30 serving as a support substrate (FIG. 2A). Then, the adhesive metal 22 on the sapphire substrate and the adhesive metal 32 on the Si substrate 30 are arranged so as to face each other, and a pressure is applied for a predetermined time at a high temperature of 250 ° C. or higher. Then, the adhesive metal 32 on the Si substrate 30 is bonded together. In this bonding, since the melting point temperature of the contact electrode 20 is considerably higher than the melting point temperature of the adhesive metal 32, the bonding is performed in a state of being bitten into the adhesive metal 32 (FIG. 2A).

次に、図2(b)に示すように、サファイア基板10側からUV(Ultra-Violet)レーザ、例えば、KrFの波長248nmのレーザをパルス照射し、窒化物半導体結晶膜12、14、16、18からサファイア基板10を剥離する。このとき、露出したGaN層12の表面がウェットエッチングされる面となる。
続いて、公知のリソグラフィー技術を用いて、窒化物半導体結晶膜12、14、16、18をパターニングし、半導体発光素子毎に分離する。このとき、接着メタル22はパターニングされず、半導体発光素子毎に分離された窒化物半導体結晶膜間には、接着メタル22が露出した状態となる。また、パターニングされた窒化物半導体結晶膜は、GaN層12からp型GaN層18に向かうにつれて膜面の面積が連続的に増大する、断面がテーパー形状のメサとなる。
Next, as shown in FIG. 2B, a UV (Ultra-Violet) laser, for example, a laser with a wavelength of 248 nm of KrF is pulsed from the sapphire substrate 10 side, and nitride semiconductor crystal films 12, 14, 16, The sapphire substrate 10 is peeled from 18. At this time, the exposed surface of the GaN layer 12 is a surface to be wet etched.
Subsequently, the nitride semiconductor crystal films 12, 14, 16, and 18 are patterned using a known lithography technique and separated for each semiconductor light emitting element. At this time, the adhesive metal 22 is not patterned, and the adhesive metal 22 is exposed between the nitride semiconductor crystal films separated for each semiconductor light emitting element. Further, the patterned nitride semiconductor crystal film becomes a mesa having a tapered cross section in which the area of the film surface continuously increases from the GaN layer 12 toward the p-type GaN layer 18.

次に、テーパー形状の窒化物半導体結晶膜および露出した接着メタル22、32の表面を覆うように、保護層として、例えばSiO膜40を形成する(図3(b))。窒化物半導体結晶膜がメサ形状であること、窒化物半導体結晶膜の、接着メタル22と接する下面の最小直径が、接着メタル22の上面の最小直径よりも小さいこと、および接着メタル22の接着メタル32と接する下面の最小直径が、接着メタル32の上面の最小直径よりも小さいことにより、接着メタル22と、メサ形状の窒化物半導体結晶膜の下部の周辺端領域とが密着した構造となり、保護層40と、接着メタル22、32との間が中空とならずに段切れのない保護層40を形成することができる。 Next, for example, a SiO 2 film 40 is formed as a protective layer so as to cover the tapered nitride semiconductor crystal film and the exposed surfaces of the adhesive metals 22 and 32 (FIG. 3B). The nitride semiconductor crystal film has a mesa shape, the minimum diameter of the lower surface of the nitride semiconductor crystal film in contact with the adhesive metal 22 is smaller than the minimum diameter of the upper surface of the adhesive metal 22, and the adhesive metal of the adhesive metal 22 Since the minimum diameter of the lower surface in contact with 32 is smaller than the minimum diameter of the upper surface of the adhesive metal 32, the adhesive metal 22 and the lower peripheral edge region of the mesa-shaped nitride semiconductor crystal film are in close contact with each other, and the protection It is possible to form the protective layer 40 without step breakage without being hollow between the layer 40 and the adhesive metals 22 and 32.

次に、各半導体発光素子の上面を覆っている保護層40を除去する。ただし、各半導体発光素子の上面(GaN層12の上面)における外周領域の保護層40を残置する。これにより、各半導体発光素子の上面の外周領域を除いて上面が露出する(図3(c))。このとき、GaN層12の上面の表面粗さは100nm〜3000nm程度となる。 Next, the protective layer 40 covering the upper surface of each semiconductor light emitting element is removed. However, the protective layer 40 in the outer peripheral region on the upper surface of each semiconductor light emitting element (the upper surface of the GaN layer 12) is left. Thereby, the upper surface is exposed except for the outer peripheral region of the upper surface of each semiconductor light emitting element (FIG. 3C). At this time, the surface roughness of the upper surface of the GaN layer 12 is about 100 nm to 3000 nm.

続いて、露出したGaN層12の上面の中央部にn電極44を形成する(図3(c))。なお、n電極44は、中央部に限らず、露出したGaN層12の上面の何処にでも形成してもよい。また、n電極の材料としては、アルカリ耐性の電極材料を用いることが好ましい。特にPt、Au、Ni、Tiのうちのいずれかの金属を含む材料を用いることが好ましく、この材料を用いることにより、後述のアルカリエッチングによりGaN層12の上面に形成される凹凸のサイズ(高低差)を大きなものとすることができる。平坦なGaN層12上にn電極44が形成されるため、密着性良く形成することができる。   Subsequently, an n-electrode 44 is formed at the central portion of the upper surface of the exposed GaN layer 12 (FIG. 3C). The n-electrode 44 is not limited to the central portion, and may be formed anywhere on the exposed upper surface of the GaN layer 12. Moreover, it is preferable to use an alkali-resistant electrode material as the material for the n-electrode. In particular, it is preferable to use a material containing any one metal of Pt, Au, Ni, and Ti. By using this material, the size of unevenness (high and low) formed on the upper surface of the GaN layer 12 by alkali etching described later. Difference) can be made large. Since the n-electrode 44 is formed on the flat GaN layer 12, it can be formed with good adhesion.

n電極44が形成された後に、アルカリ溶液を供給し、露出したGaN層12の上面をウェットエッチングすることにより、露出したGaN層12の上面を粗面化する、すなわち、GaN層12は、露出した上面に凹凸が形成されたGaN層12aとなる(図3(c))。n電極44が形成された後にウェットエッチングすることにより、エッチング効果が高くなり、より凹凸が深くなる。これは、電子またはホールがGaN層12の表面とn電極44との間で移動して、それぞれの表面で電気化学反応が生じてエッチングが進行するためと考えられる。n電極44は光半導体素子1個につきそれぞれに形成される。したがって、ウェハ1枚につき電極を1箇所設けた場合に比べて凹凸が大きくなり、且つまた、ウェハ面内の各素子においてエッチング状態が均一となる。   After the n-electrode 44 is formed, an alkaline solution is supplied, and the upper surface of the exposed GaN layer 12 is wet-etched to roughen the upper surface of the exposed GaN layer 12, that is, the GaN layer 12 is exposed. Thus, the GaN layer 12a having irregularities formed on the upper surface is obtained (FIG. 3C). By performing wet etching after the n-electrode 44 is formed, the etching effect is enhanced and the unevenness is deepened. This is presumably because electrons or holes move between the surface of the GaN layer 12 and the n-electrode 44, and an electrochemical reaction occurs on each surface and etching proceeds. An n-electrode 44 is formed for each optical semiconductor element. Accordingly, the unevenness is increased as compared with the case where one electrode is provided per wafer, and the etching state is uniform in each element in the wafer surface.

本実施形態においては、アルカリ溶液として、濃度が1mol/lで温度が70℃の水酸化カリウムを用い、エッチングを15分間行った。十分なエッチングが進むと表面が白濁した状態となる。なお、水酸化カリウムに液漬した状態でUV照射することで凹凸を更に大きくすることができる。凹凸の大きさは数百nm〜数μm程度である。また、n電極44とGaN層12との間に断続的な電圧3V〜10Vを印加しながらエッチングを行うことによっても、凹凸を大きくすることができる。   In this embodiment, potassium hydroxide having a concentration of 1 mol / l and a temperature of 70 ° C. was used as the alkaline solution, and etching was performed for 15 minutes. When sufficient etching proceeds, the surface becomes clouded. The unevenness can be further increased by irradiating with UV in a state immersed in potassium hydroxide. The size of the unevenness is about several hundred nm to several μm. The unevenness can also be increased by performing etching while applying an intermittent voltage of 3 V to 10 V between the n electrode 44 and the GaN layer 12.

このようにして凹凸が形成されたGaN層12の表面の断面の電子顕微鏡写真を図4(a)に示す。図4(a)からわかるように、大小様々な凹凸が形成されている。本実施形態によってGaN層12に形成された凹凸の高さ(高低差)を電子顕微鏡像により表面と断面像を観察すると、数μm(1μm〜3μm)の大きな凹凸と、数百nm(300nm以下)のオーダの小さな凹凸が混在していた。これにより、GaN層12と空気との境界面での反射が小さくなり、光取り出し効率を大きくすることができる。   FIG. 4A shows an electron micrograph of the cross section of the surface of the GaN layer 12 with the irregularities formed in this way. As can be seen from FIG. 4A, various irregularities are formed. When the surface and cross-sectional image of the height (difference in height) of the unevenness formed on the GaN layer 12 according to this embodiment are observed with an electron microscope image, large unevenness of several μm (1 μm to 3 μm) and several hundred nm (300 nm or less) ) Of small irregularities of the order. Thereby, reflection at the interface between the GaN layer 12 and air is reduced, and the light extraction efficiency can be increased.

これに対して、本実施形態の比較例としての半導体発光素子を、n電極44を形成しないでGaN層12の上面をエッチングする以外は本実施形態と同様にして形成する。この比較例の半導体発光素子における凹凸が形成されたGaN層12の表面の断面の電子顕微鏡写真を図4(b)に示す。図4(a)、4(b)からわかるように、本実施形態の半導体発光素子に形成される凹凸は、比較例の半導体発光素子に形成される凹凸に比べて大きくなっている。この比較例によってGaN層12に形成された凹凸の高さを計測すると、200nm程度の小さな凹凸のみが存在し、本実施形態と異なり、1μmのオーダの大きな凹凸は存在していなかった。   On the other hand, a semiconductor light emitting device as a comparative example of the present embodiment is formed in the same manner as the present embodiment except that the upper surface of the GaN layer 12 is etched without forming the n electrode 44. FIG. 4B shows an electron micrograph of a cross section of the surface of the GaN layer 12 where the irregularities are formed in the semiconductor light emitting device of this comparative example. As can be seen from FIGS. 4A and 4B, the unevenness formed in the semiconductor light emitting device of this embodiment is larger than the unevenness formed in the semiconductor light emitting device of the comparative example. When the height of the unevenness formed on the GaN layer 12 was measured according to this comparative example, only a small unevenness of about 200 nm was present, and unlike the present embodiment, there was no large unevenness on the order of 1 μm.

また、本実施形態の製造方法において、エッチング時間を5分間行った場合と、15分間行った場合における、凹凸が形成されたGaN層12の表面の電子顕微鏡写真を図5(a)、5(b)にそれぞれ示す。図5(a)、5(b)からわかるように、本実施形態のように、エッチングを15分間行うと、大きな凹凸と、小さな凹凸とが混在するが、5分間程度であれば、小さな凹凸しか形成されない。
次に、このような凹凸が形成された後のn電極44側からみた平面図を図6に示す。図6からわかるように、分離されていない素子が複数個、Si基板30上に配置されている。その後、図3(c)に示すように、シリコン基板30の、n電極44が形成された側と反対側の面にp電極46を形成する。
Moreover, in the manufacturing method of this embodiment, the electron micrograph of the surface of the GaN layer 12 in which the unevenness | corrugation was formed when etching time is performed for 5 minutes and when performing for 15 minutes is shown in FIGS. Each is shown in b). As can be seen from FIGS. 5 (a) and 5 (b), when etching is performed for 15 minutes as in this embodiment, large unevenness and small unevenness are mixed. Only formed.
Next, FIG. 6 shows a plan view seen from the n-electrode 44 side after such irregularities are formed. As can be seen from FIG. 6, a plurality of non-isolated elements are arranged on the Si substrate 30. Thereafter, as shown in FIG. 3C, a p-electrode 46 is formed on the surface of the silicon substrate 30 opposite to the side on which the n-electrode 44 is formed.

次に、図3(c)に示す工程の終了後、保護層40、接着メタル22、32、およびSi基板30のダイシングを行い、各半導体発光素子に分離することにより、図7に示す半導体発光素子を完成する。上記比較例の半導体発光素子もダイシングにより各半導体発光素子に分離する。   Next, after the process shown in FIG. 3C is completed, the protective layer 40, the adhesive metals 22, 32, and the Si substrate 30 are diced and separated into the respective semiconductor light emitting elements, whereby the semiconductor light emitting shown in FIG. Complete the device. The semiconductor light emitting device of the comparative example is also separated into each semiconductor light emitting device by dicing.

このようにして得られた本実施形態の半導体発光素子は、図8に示すように、比較例の半導体発光素子に比べて光取出し効率が1.2倍大きくなった。なお、図8は、エッチング時間を変えた場合における、本実施形態と比較例の半導体発光素子の発光強度の変化を示す図である。   As shown in FIG. 8, the semiconductor light emitting device of the present embodiment thus obtained has a light extraction efficiency 1.2 times greater than that of the semiconductor light emitting device of the comparative example. FIG. 8 is a diagram showing a change in light emission intensity of the semiconductor light emitting devices of the present embodiment and the comparative example when the etching time is changed.

以上説明したように、本実施形態によれば、光取り出し効率の高い半導体発光素子の製造方法を提供することができる。   As described above, according to the present embodiment, it is possible to provide a method for manufacturing a semiconductor light emitting device with high light extraction efficiency.

なお、本実施形態においては、窒化物半導体結晶膜の上面の一部および側面、ならびにこの側面と接着メタルとの接合部が段切れのない保護層40によって覆われているので、アルカリ溶液を用いて窒化物半導体結晶膜の上面を粗面化しても、活性層および反射コンタクト電極20を十分に保護することが可能となる。これにより、大きい面積の反射コンタクト電極20を形成することができ、反射率を向上させることができる。さらに、大きいコンタクト電極を形成することが可能となるので、動作電圧の低下も望める。また、段切れのない保護層40が形成されるので、製造工程中に金属の付着等によるデバイスのリークやショートを防止することができる。さらに、段切れのない保護層40が形成されるので、接合、レーザリフトオフ等の大きな衝撃を有する、薄膜型の半導体発光素子の製造プロセスにも耐えることができ、保護層に割れ等が発生しない。   In the present embodiment, a part of the upper surface and the side surface of the nitride semiconductor crystal film, and the junction between the side surface and the adhesive metal are covered with the protective layer 40 that is not cut off, so an alkaline solution is used. Even when the upper surface of the nitride semiconductor crystal film is roughened, the active layer and the reflective contact electrode 20 can be sufficiently protected. Thereby, the reflective contact electrode 20 having a large area can be formed, and the reflectance can be improved. Furthermore, since a large contact electrode can be formed, a reduction in operating voltage can be expected. In addition, since the protective layer 40 without any step is formed, it is possible to prevent device leakage or short circuit due to metal adhesion during the manufacturing process. Further, since the protective layer 40 without any step is formed, it can withstand the manufacturing process of the thin film type semiconductor light emitting device having a large impact such as bonding and laser lift-off, and the protective layer is not cracked. .

なお、支持基板としてはシリコン基板、シリコンカーバイド基板、シリコン基板にゲルマニウムを接合した基板、シリコン基板に銅等の金属をメッキした基板を用いることができる。また、シリコン基板としては(111)、(110)、(100)のいずかの面方位を持つ基板を用いてもよく、更にオフ角を合わせもつ基板を用いることができる。   As the support substrate, a silicon substrate, a silicon carbide substrate, a substrate in which germanium is bonded to the silicon substrate, or a substrate in which a metal such as copper is plated on the silicon substrate can be used. Further, as the silicon substrate, a substrate having any one of the (111), (110), and (100) orientations may be used, and a substrate having an off angle may be used.

また、保護層としては、二酸化ケイ素、窒化ケイ素、酸化ジルコニウム、酸化ニオブ、および酸化アルミニウムのいずれか含む材料を用いることが好ましい。   The protective layer is preferably made of a material containing any of silicon dioxide, silicon nitride, zirconium oxide, niobium oxide, and aluminum oxide.

また、アルカリエッチングにおける薬液には水酸化カリウムの他に水酸化テトラメチルアンモニウムを用いることができる。望ましい濃度としては0.1mol/l〜10mol/lである。 In addition to potassium hydroxide, tetramethylammonium hydroxide can be used as a chemical solution in alkaline etching. A desirable concentration is 0.1 mol / l to 10 mol / l.

また、コンタクト電極20としては、銀の他にアルミニウムまたはを用いることが望ましい。   Further, as the contact electrode 20, it is desirable to use aluminum or aluminum in addition to silver.

また、接着メタル22としては、チタン、白金、金、およびタングステンのいずれかを含むことが好ましい。   The adhesive metal 22 preferably contains any of titanium, platinum, gold, and tungsten.

また、接着メタル32としては、Au−Snの他に、Au−Si、Ag−Sn−Cu、Sn−Biなどの金属共晶である低融点金属、またはAu、Sn、Cu等の非はんだ材料を用いることができる。   Further, as the adhesive metal 32, in addition to Au—Sn, a low melting point metal that is a metal eutectic such as Au—Si, Ag—Sn—Cu, or Sn—Bi, or a non-solder material such as Au, Sn, or Cu. Can be used.

10 窒化物半導体結晶成長基板(サファイア基板)
12 GaN層(バッファ層)
14 n型GaN層
16 多重量子井戸構造の活性層(InGaN層)
18 p型GaN層
20 p電極(反射コンタクト電極)
22 接着メタル
30 支持基板
32 接着メタル
40 保護層
44 n電極
46 p電極
10 Nitride semiconductor crystal growth substrate (sapphire substrate)
12 GaN layer (buffer layer)
14 n-type GaN layer 16 active layer (InGaN layer) with multiple quantum well structure
18 p-type GaN layer 20 p-electrode (reflective contact electrode)
22 Adhesive metal 30 Support substrate 32 Adhesive metal 40 Protective layer 44 n-electrode 46 p-electrode

Claims (5)

第1基板上に、n型窒化物半導体層、窒化物半導体の多重量井戸構造を有する活性層、およびp型窒化物半導体層を、この順序で積層された第1積層膜を設ける工程と、
前記p型窒化物半導体層の上面に、コンタクト電極を形成する工程と、
前記第1基板と第2基板とを張り合わせる工程と、
前記第1基板を除去することにより前記第2基板上に前記第1積層膜を移し、前記第2基板上に、前記第1積層膜と逆の順序で積層された第2積層膜を設ける工程と、
n電極を形成する工程と、
前記n電極を形成後に、前記n型窒化物半導体層をアルカリ液を用いてウェットエッチングすることにより、前記n型窒化物半導体層に凹凸領域を形成する工程と、
記第2積層膜を、上面から下面に向かうにつれて膜面の面積が増大する、断面がテーパー形状となるようにパターニングする工程と、
を備えている半導体発光素子の製造方法。
Providing a first stacked film in which an n-type nitride semiconductor layer, an active layer having a multi-quantum well structure of nitride semiconductor, and a p-type nitride semiconductor layer are stacked in this order on a first substrate;
Forming a contact electrode on the upper surface of the p-type nitride semiconductor layer;
Bonding the first substrate and the second substrate;
Removing the first substrate, transferring the first laminated film onto the second substrate, and providing a second laminated film laminated on the second substrate in a reverse order to the first laminated film; When,
forming an n-electrode;
Forming an uneven region in the n-type nitride semiconductor layer by wet-etching the n-type nitride semiconductor layer with an alkaline solution after forming the n-electrode ;
The pre-Symbol second multilayer film, the area of the film surface increases toward the lower surface from the upper surface, a step of patterning so that the cross section is tapered,
A method for manufacturing a semiconductor light emitting device comprising:
前記凹凸領域は、高低差が1μm〜3μmの第1の凹凸と、高低差が300nm以下の第1の凹凸より小さい第2の凹凸が混在する請求項1記載の半導体発光素子の製造方法。   2. The method of manufacturing a semiconductor light emitting element according to claim 1, wherein the uneven region includes a first unevenness having a height difference of 1 μm to 3 μm and a second unevenness smaller than the first unevenness having a height difference of 300 nm or less. 前記アルカリ液は、水酸化カリウムまたは水酸化テトラメチルアンモニウムを含む請求項1または2に記載の半導体発光素子の製造方法。   The method for manufacturing a semiconductor light-emitting element according to claim 1, wherein the alkaline solution contains potassium hydroxide or tetramethylammonium hydroxide. 前記第1基板の除去は、前記第1基板側からレーザを照射し前記第1基板を前記第2積層膜から剥離する請求項1乃至3のいずれかに記載の半導体発光素子の製造方法。   4. The method of manufacturing a semiconductor light emitting element according to claim 1, wherein the removal of the first substrate is performed by irradiating a laser from the first substrate side to peel the first substrate from the second laminated film. 5. 前記レーザは、UVレーザである請求項4記載の半導体発光素子の製造方法。   The method of manufacturing a semiconductor light emitting element according to claim 4, wherein the laser is a UV laser.
JP2014055147A 2014-03-18 2014-03-18 Manufacturing method of semiconductor light emitting device Active JP5758518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055147A JP5758518B2 (en) 2014-03-18 2014-03-18 Manufacturing method of semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055147A JP5758518B2 (en) 2014-03-18 2014-03-18 Manufacturing method of semiconductor light emitting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012004083A Division JP5592904B2 (en) 2012-01-12 2012-01-12 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2014132685A JP2014132685A (en) 2014-07-17
JP5758518B2 true JP5758518B2 (en) 2015-08-05

Family

ID=51411587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055147A Active JP5758518B2 (en) 2014-03-18 2014-03-18 Manufacturing method of semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5758518B2 (en)

Also Published As

Publication number Publication date
JP2014132685A (en) 2014-07-17

Similar Documents

Publication Publication Date Title
JP4996706B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP4886869B2 (en) Semiconductor light emitting device and manufacturing method thereof
US7439091B2 (en) Light-emitting diode and method for manufacturing the same
JP5174064B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP5912442B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2008244425A (en) GaN BASED LED ELEMENT AND LIGHT EMITTING DEVICE
JP2008091862A (en) Nitride semiconductor light emitting device, and manufacturing method of nitride semiconductor light emitting device
JP2009059969A (en) Semiconductor light-emitting element, light-emitting device, luminaire, display unit, and method for fabricating semiconductor light-emitting element
JP5185344B2 (en) Semiconductor light emitting device manufacturing method and semiconductor light emitting device
JP2010232625A (en) Method of manufacturing laminated substrate
GB2547123A (en) LED vertical chip structure with special coarsening morphology and preparation method therefor
JP2012174902A (en) Method of manufacturing nitride semiconductor light-emitting element
US9159871B2 (en) Light-emitting device having a reflective structure and a metal mesa and the manufacturing method thereof
JP5592904B2 (en) Semiconductor light emitting device
JP4882611B2 (en) Manufacturing method of nitride semiconductor light emitting diode device
JP2009283762A (en) Method for manufacturing nitride compound semiconductor led
JP5758518B2 (en) Manufacturing method of semiconductor light emitting device
JP2009094108A (en) MANUFACTURING METHOD OF GaN-BASED LED DEVICE
KR100832301B1 (en) Semiconductor Light Emitting Device Having Surface Roughness Of Homogeneous Substrates And Method For Manufacturing Thereof
KR101210391B1 (en) LED package, Substrate for LED package and method for manufacturing the substrate
KR20040067397A (en) Method for manufacturing semiconductor light emitting diode

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150603

R151 Written notification of patent or utility model registration

Ref document number: 5758518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250