JP5757595B2 - Other moving body position detecting device and other moving body position detecting method - Google Patents

Other moving body position detecting device and other moving body position detecting method Download PDF

Info

Publication number
JP5757595B2
JP5757595B2 JP2013544215A JP2013544215A JP5757595B2 JP 5757595 B2 JP5757595 B2 JP 5757595B2 JP 2013544215 A JP2013544215 A JP 2013544215A JP 2013544215 A JP2013544215 A JP 2013544215A JP 5757595 B2 JP5757595 B2 JP 5757595B2
Authority
JP
Japan
Prior art keywords
moving body
parameter
sound
sound wave
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013544215A
Other languages
Japanese (ja)
Other versions
JPWO2013073399A1 (en
Inventor
充伸 神沼
充伸 神沼
小野 順貴
順貴 小野
安藤 繁
繁 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
University of Tokyo NUC
Original Assignee
Nissan Motor Co Ltd
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, University of Tokyo NUC filed Critical Nissan Motor Co Ltd
Priority to JP2013544215A priority Critical patent/JP5757595B2/en
Publication of JPWO2013073399A1 publication Critical patent/JPWO2013073399A1/en
Application granted granted Critical
Publication of JP5757595B2 publication Critical patent/JP5757595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/86Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves with means for eliminating undesired waves, e.g. disturbing noises
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、雑音の影響を低減して自移動体に対する他移動体の位置を検出する他移動体位置検出装置及び他移動体位置検出方法に関する。   The present invention relates to an other moving body position detecting device and an other moving body position detecting method for detecting the position of another moving body with respect to the own moving body by reducing the influence of noise.

1つの波源から到来する波に対して、観測点における波面を表現した数式を用いて、観測点における波面から波源の方向等を検出する手法として、時空間勾配法と呼ばれる手法が提案されている(非特許文献1参照)。時空間勾配法では、点音源から放射された音波を観測したとき、その観測点の任意の時間における音圧(振幅)、音圧の時間微分、音圧の空間微分を用いて、観測点から波源への方向及び観測点と波源との間の距離を算出するものである。   A method called the spatio-temporal gradient method has been proposed as a method for detecting the direction of the wave source from the wavefront at the observation point using a mathematical expression expressing the wavefront at the observation point for a wave coming from one wave source. (Refer nonpatent literature 1). In the spatiotemporal gradient method, when a sound wave radiated from a point sound source is observed, the sound pressure (amplitude) of the observation point at an arbitrary time, the temporal differentiation of the sound pressure, and the spatial differentiation of the sound pressure are used. The direction to the wave source and the distance between the observation point and the wave source are calculated.

安藤他,「時空間勾配法に基づく3次元音源定位センサシステム」 計測自動制御学会 Vol.29 No.5Ando et al., “3D sound source localization sensor system based on spatiotemporal gradient method” Society of Instrument and Control Engineers Vol. 29 No. 5

音波は外乱の影響に弱く、外乱がある場合、任意の時間周波数区間に含まれる所望の波源の位置情報の多くが算出困難である。このような外乱として、波源の方向を検出する装置を搭載した移動体が発する波動や、他の物体において反射した波動に代表される加法性の雑音が挙げられる。例えば、非特許文献1に記載されるように、雑音が含まれる周波数帯域における波源の位置検出結果は、所望の方向に定位せず、波源の方向の検出精度が低下する。   A sound wave is weak in the influence of disturbance, and when there is disturbance, it is difficult to calculate much position information of a desired wave source included in an arbitrary time frequency section. Examples of such disturbances include additive noise typified by waves generated by a moving body equipped with a device for detecting the direction of the wave source and waves reflected by other objects. For example, as described in Non-Patent Document 1, the position detection result of the wave source in a frequency band including noise is not localized in a desired direction, and the detection accuracy of the direction of the wave source is lowered.

本発明は、上記問題点を鑑み、雑音の影響を低減して自移動体に対する他移動体の位置を検出できる他移動体位置検出装置及び他移動体位置検出方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide an other moving body position detecting device and an other moving body position detecting method capable of detecting the position of another moving body with respect to the own moving body by reducing the influence of noise. .

本発明の第1の態様に係る移動体位置検出装置は、自移動体に搭載された他移動体位置検出装置であって、走行状態検出部と、音波入力部と、定常判定部と、共分散処理部と、対象パラメータ算出部と、方向検出部とを備えることを要旨とする。走行状態検出部は、自移動体の走行状態を検出する。音波入力部は、定常的な雑音及び周囲に存在する他移動体の走行により発生する他移動体発生音を含む音波を入力する。定常判定部は、音波入力部が入力した音波が定常状態であるか否かを判定する。共分散処理部は、音波の音圧、音圧の時間微分、音圧の空間微分に基づく共分散行列の要素を、定常判定部が定常状態でないと判定した音波について第1パラメータ、定常判定部が定常状態であると判定した音波について第2パラメータとして計算する。対象パラメータ算出部は、第1パラメータから走行状態検出部が検出した走行状態に応じた第2パラメータを減算することで、他移動体発生音の音圧、音圧の時間微分、音圧の空間微分に基づく共分散行列の要素を第3パラメータとして計算する。方向検出部は、第3パラメータから他移動体の自移動体に対する方向を検出する。   A mobile body position detection device according to a first aspect of the present invention is another mobile body position detection device mounted on a mobile body, and includes a traveling state detection unit, a sound wave input unit, a steady state determination unit, The gist is to include a distributed processing unit, a target parameter calculation unit, and a direction detection unit. The traveling state detection unit detects the traveling state of the mobile body. The sound wave input unit inputs a sound wave including stationary noise and other moving body generated sound generated by the traveling of another moving body existing around. The steady state determination unit determines whether or not the sound wave input by the sound wave input unit is in a steady state. The covariance processing unit uses the sound pressure of the sound wave, the temporal differentiation of the sound pressure, and the element of the covariance matrix based on the spatial differentiation of the sound pressure as the first parameter for the sound wave that the steady state determination unit has determined to be not in the steady state. Is calculated as the second parameter for the sound wave determined to be in the steady state. The target parameter calculation unit subtracts the second parameter corresponding to the traveling state detected by the traveling state detection unit from the first parameter, so that the sound pressure of the other moving body generated sound, the time differentiation of the sound pressure, the space of the sound pressure The element of the covariance matrix based on the differentiation is calculated as the third parameter. The direction detection unit detects the direction of the other moving body relative to the own moving body from the third parameter.

本発明の第2の態様に係る他移動体位置検出方法は、自移動体に対する他移動体の位置を検出する他移動体位置検出方法であって、自移動体の走行状態を検出する検出し、定常的な雑音及び周囲に存在する前記他移動体の走行により発生する他移動体発生音を含む音波を入力し、入力された音波が定常状態であるか否かを判定し、前記音波の音圧、音圧の時間微分、音圧の空間微分に基づく共分散行列の要素を、定常状態でないと判定した前記音波について第1パラメータ、定常状態であると判定した前記音波について第2パラメータとして計算し、前記第1パラメータから前記走行状態に応じた前記第2パラメータを減算することで、前記他移動体発生音の音圧、音圧の時間微分、音圧の空間微分に基づく共分散行列の要素を第3パラメータとして計算し、前記第3パラメータから前記他移動体の前記自移動体に対する方向を検出することを要旨とする。   The other moving body position detecting method according to the second aspect of the present invention is an other moving body position detecting method for detecting the position of the other moving body with respect to the own moving body, and detects the traveling state of the own moving body. , Inputting sound waves including stationary noise and other moving body generated sound generated by the traveling of the other moving objects existing in the surroundings, determining whether or not the input sound waves are in a steady state, The elements of the covariance matrix based on the sound pressure, the temporal differentiation of the sound pressure, and the spatial differentiation of the sound pressure are the first parameter for the sound wave determined not to be in the steady state and the second parameter for the sound wave determined to be in the steady state. The covariance matrix based on the sound pressure of the other mobile body generated sound, the temporal differentiation of the sound pressure, and the spatial differentiation of the sound pressure by calculating and subtracting the second parameter corresponding to the running state from the first parameter The third parameter Calculated as, and summarized in that to detect the direction with respect to the own mobile body of said other mobile from said third parameter.

図1は、本発明の第1の実施の形態に係る他移動体位置検出装置の基本的な構成を説明するブロック図である。FIG. 1 is a block diagram illustrating a basic configuration of another mobile body position detection apparatus according to the first embodiment of the present invention. 図2は、本発明の第1の実施の形態に係る他移動体位置検出装置が備える音波入力部を説明するブロック図である。FIG. 2 is a block diagram for explaining a sound wave input unit provided in the other moving body position detection apparatus according to the first embodiment of the present invention. 図3は、本発明の第1の実施の形態に係る他移動体位置検出装置が音波を入力する様子を説明する模式的な図である。FIG. 3 is a schematic diagram for explaining how the other moving body position detection device according to the first embodiment of the present invention inputs sound waves. 図4は、本発明の第1の実施の形態に係る他移動体位置検出方法を説明するフローチャートである。FIG. 4 is a flowchart for explaining the other moving body position detection method according to the first embodiment of the present invention. 図5は、本発明の第1の実施の形態に係る他移動体位置検出装置の処理工程を図示した一例である。FIG. 5 is an example illustrating the processing steps of the other moving body position detection apparatus according to the first embodiment of the present invention. 図6は、周波数2kHzの場合について、時空間勾配法による他移動体方向検出結果である。FIG. 6 shows the result of detecting the direction of the other moving body by the spatiotemporal gradient method when the frequency is 2 kHz. 図7は、周波数3kHzの場合について、時空間勾配法による他移動体方向検出結果である。FIG. 7 shows the result of detecting the direction of the other moving body by the spatiotemporal gradient method when the frequency is 3 kHz. 図8は、周波数4kHzの場合、時空間勾配法による他移動体方向検出結果である。FIG. 8 shows the result of detecting the direction of the other moving body by the spatiotemporal gradient method when the frequency is 4 kHz. 図9は、周波数5kHzの場合について、時空間勾配法による他移動体方向検出結果である。FIG. 9 shows the result of detecting the direction of the other moving body by the spatiotemporal gradient method when the frequency is 5 kHz. 図10は、周波数6kHzの場合について、時空間勾配法による他移動体方向検出結果である。FIG. 10 shows the result of detecting the direction of the other moving body by the spatiotemporal gradient method when the frequency is 6 kHz. 図11は、周波数7kHzの場合について、時空間勾配法による他移動体方向検出結果である。FIG. 11 shows the result of detecting the direction of the other moving body by the spatiotemporal gradient method when the frequency is 7 kHz. 図12は、周波数2kHzの場合について、本発明の第1の実施の形態に係る他移動体位置検出方法を適用した場合の対象方向検出結果である。FIG. 12 shows a target direction detection result when the other moving body position detection method according to the first embodiment of the present invention is applied in the case of a frequency of 2 kHz. 図13は、周波数3kHzの場合について、本発明の第1の実施の形態に係る他移動体位置検出方法を適用した場合の対象方向検出結果である。FIG. 13 shows a target direction detection result when the other moving body position detection method according to the first embodiment of the present invention is applied to a frequency of 3 kHz. 図14は、周波数4kHzの場合について、本発明の第1の実施の形態に係る他移動体位置検出方法を適用した場合の対象方向検出結果である。FIG. 14 shows a target direction detection result when the other moving body position detection method according to the first embodiment of the present invention is applied to a frequency of 4 kHz. 図15は、周波数5kHzの場合について、本発明の第1の実施の形態に係る他移動体位置検出方法を適用した場合の対象方向検出結果である。FIG. 15 shows a target direction detection result when the other moving body position detection method according to the first embodiment of the present invention is applied to a frequency of 5 kHz. 図16は、周波数6kHzの場合について、本発明の第1の実施の形態に係る他移動体位置検出方法を適用した場合の対象方向検出結果である。FIG. 16 shows a target direction detection result when the other moving body position detection method according to the first embodiment of the present invention is applied to a frequency of 6 kHz. 図17は、周波数7kHzの場合について、本発明の第1の実施の形態に係る他移動体位置検出方法を適用した場合の対象方向検出結果である。FIG. 17 shows a target direction detection result when the other moving body position detection method according to the first embodiment of the present invention is applied to a frequency of 7 kHz. 図18は、本発明の第2の実施の形態に係る他移動体位置検出装置の基本的な構成を説明するブロック図である。FIG. 18 is a block diagram illustrating a basic configuration of the other moving body position detection apparatus according to the second embodiment of the present invention. 図19は、本発明の第2の実施の形態に係る他移動体位置検出方法を説明するフローチャートである。FIG. 19 is a flowchart for explaining the other moving body position detection method according to the second embodiment of the present invention.

次に、図面を参照して、本発明の第1及び第2の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、以下に示す実施の形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、下記の実施の形態に例示した装置や方法に特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された技術的範囲内において、種々の変更を加えることができる。   Next, first and second embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the embodiment described below exemplifies an apparatus and a method for embodying the technical idea of the present invention, and the technical idea of the present invention is an apparatus exemplified in the following embodiment. It is not specific to the method. The technical idea of the present invention can be variously modified within the technical scope described in the claims.

(第1の実施の形態)
本発明の第1の実施の形態に係る他移動体位置検出装置は、例えば、車両等の移動体(自移動体)に搭載され、移動体の周囲に存在する対象から発生する対象(他移動体)発生音に基づいて、対象の相対位置を検出する。検出される対象は移動体であり、例えば、移動体に接近する車両等である。
(First embodiment)
The other moving body position detection apparatus according to the first embodiment of the present invention is mounted on a moving body (self-moving body) such as a vehicle, and is generated from a target existing around the moving body (other movement). Body) Based on the generated sound, the relative position of the object is detected. The object to be detected is a moving body, for example, a vehicle approaching the moving body.

第1の実施の形態に係る他移動体位置検出装置は、図1に示すように、周囲の音波を入力し、入力した音波を離散信号に変換して出力する音波入力部10と、第1の実施の形態に係る他移動体位置検出装置が行う種々の演算を処理する処理部20と、プログラムファイル等を含む種々のデータを記憶する記憶部30と、第1の実施の形態に係る他移動体位置検出装置が搭載される移動体の状態(走行状態)を検出する走行状態検出部40とを備える。   As shown in FIG. 1, the other moving body position detection device according to the first exemplary embodiment inputs a surrounding sound wave, converts the input sound wave into a discrete signal, and outputs the sound wave input unit 10. The processing unit 20 for processing various calculations performed by the other mobile object position detection apparatus according to the embodiment, the storage unit 30 for storing various data including program files, and the like according to the first embodiment And a traveling state detection unit 40 that detects a state (running state) of the moving body on which the moving body position detection device is mounted.

音波入力部10は、図2に示すように、音波を検出するセンサ部11-1,11-n(n:正の整数)と、センサ部11-1,11-nが検出した音波を示す信号を増幅する増幅器12と、増幅器12が増幅した信号をA/D変換して離散化するAD変換器13とを備える。センサ部11-1,11-nは、例えば、マイクロフォン、ハイドロフォン等の音響デバイスから構成される。センサ部11-1,11-nは、図3に示すように、検出する音波の音圧の勾配(音圧の空間微分)を得るため、複数設けられる。図3に示すように音源の方向を示す方位角θを考えると、方位角θは、θ=sin−1(n)と表すことができる。信号処理により音圧の勾配を得ることができれば、センサ部11-1,11-nの数は、複数である必要はなく、単数であって構わない。As shown in FIG. 2, the sound wave input unit 10 indicates the sound wave detected by the sensor units 11-1 and 11-n (n: positive integer) that detects the sound wave and the sensor units 11-1 and 11-n. An amplifier 12 for amplifying the signal and an AD converter 13 for A / D converting and discretizing the signal amplified by the amplifier 12 are provided. The sensor units 11-1 and 11-n are composed of acoustic devices such as a microphone and a hydrophone, for example. As shown in FIG. 3, a plurality of sensor units 11-1 and 11-n are provided in order to obtain a gradient of sound pressure of sound waves to be detected (spatial differential of sound pressure). Considering the azimuth angle θ indicating the direction of the sound source as shown in FIG. 3, the azimuth angle θ can be expressed as θ = sin −1 (n x ). As long as the gradient of sound pressure can be obtained by signal processing, the number of sensor units 11-1 and 11-n need not be plural, and may be single.

音波入力部10が入力する音波は、定常的な雑音及び周囲に存在する対象から発生する対象発生音を含む。音波入力部10は、入力した音波を示す電気信号である音波信号を処理部20に出力する。   The sound wave input by the sound wave input unit 10 includes stationary noise and target generated sound generated from a target existing around. The sound wave input unit 10 outputs a sound wave signal, which is an electric signal indicating the input sound wave, to the processing unit 20.

処理部20は、音波入力部10から出力された音波信号を処理する音波信号処理部21と、音波信号処理部21により処理された音波信号に基づいて、音波入力部10が入力した音波が定常状態であるか否かを判定する定常判定部22と、音波入力部10が入力した音波の音圧、音圧の時間微分、音圧の空間微分に基づく共分散行列の要素を、定常判定部22が定常状態でないと判定した音波について第1パラメータ、定常判定部22が定常状態であると判定した音波について第2パラメータとして計算する共分散処理部23と、第1パラメータから第2パラメータを減算することで、対象発生音の音圧、音圧の時間微分、音圧の空間微分に基づく共分散行列の要素を第3パラメータとして計算する対象パラメータ算出部24と、第3パラメータから対象の方向を検出する方向検出部25と、記憶処理部26と、読出処理部27を備える。処理部20は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)等の演算処理装置からなる。   The processing unit 20 includes a sound wave signal processing unit 21 that processes a sound wave signal output from the sound wave input unit 10 and a sound wave input by the sound wave input unit 10 based on the sound wave signal processed by the sound wave signal processing unit 21. A steady state determination unit 22 that determines whether or not a state is present, and a sound pressure of a sound wave input by the sound wave input unit 10, a time derivative of the sound pressure, and an element of a covariance matrix based on a spatial differential of the sound pressure, A covariance processing unit 23 that calculates a first parameter for a sound wave that is determined not to be in a steady state and a second parameter for a sound wave that is determined to be in a steady state, and subtracts the second parameter from the first parameter Thus, the target parameter calculation unit 24 that calculates, as the third parameter, the element of the covariance matrix based on the sound pressure of the target generated sound, the temporal differentiation of the sound pressure, and the spatial differentiation of the sound pressure, and the third parameter It includes a direction detection unit 25 to detect the direction of the target from the data, a storage processing unit 26, a reading processing unit 27. The processing unit 20 includes an arithmetic processing device such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).

共分散処理部23が算出する第1パラメータは、移動体自身から発生する音等の定常的な雑音と、非定常的な対象発生音とを含む音波に基づくパラメータとなる。第2パラメータは、移動体自身から発生する音等の定常的な雑音に基づくパラメータとなる。   The first parameter calculated by the covariance processing unit 23 is a parameter based on a sound wave including stationary noise such as sound generated from the moving body itself and unsteady target generated sound. The second parameter is a parameter based on stationary noise such as sound generated from the moving body itself.

記憶部30は、共分散処理部23が計算した第2パラメータを記憶する共分散行列記憶部31と、移動体が車両の場合におけるタイヤの情報等、移動体に関する情報を記憶する移動体情報記憶部32と、地図上の現在位置に応じた環境を記憶する地図情報記憶部33とを備える。記憶部30は、例えば、半導体メモリ、ハードディスク装置等の記憶装置から構成される。   The storage unit 30 is a covariance matrix storage unit 31 that stores the second parameter calculated by the covariance processing unit 23, and a mobile unit information storage that stores information about the mobile unit such as tire information when the mobile unit is a vehicle. Unit 32 and a map information storage unit 33 that stores an environment corresponding to the current position on the map. The storage unit 30 includes a storage device such as a semiconductor memory or a hard disk device, for example.

走行状態検出部40は、移動体の移動状態を検出する移動状態検出部41と、移動体の周囲の環境を検出する移動環境検出部42と、移動体の位置を検出する位置検出部43とを備える。移動状態検出部41は、例えば、CAN(Controller Area Network)等に接続され、例えば移動体が自動車の場合、速度、エンジンの回転数、ギヤ比等、移動体の移動状態を示す情報を検出する。移動環境検出部42は、移動体の周囲にある壁、高架等、環境を示す情報を検出する。位置検出部43は、例えば全地球測位システム(GPS)受信器等から構成される。移動環境検出部42は、例えば、位置検出部32が検出した移動体の現在位置情報を用いて、地図情報記憶部33を参照することにより、移動体の周囲の環境に関する情報を検出する。   The traveling state detector 40 includes a moving state detector 41 that detects the moving state of the moving body, a moving environment detector 42 that detects the environment around the moving body, and a position detector 43 that detects the position of the moving body. Is provided. The moving state detection unit 41 is connected to, for example, a CAN (Controller Area Network) or the like, and detects information indicating the moving state of the moving body, such as speed, engine speed, and gear ratio, when the moving body is an automobile, for example. . The moving environment detection unit 42 detects information indicating the environment, such as a wall and an overhead around the moving body. The position detection unit 43 includes, for example, a global positioning system (GPS) receiver. For example, the moving environment detection unit 42 detects information related to the environment around the moving body by referring to the map information storage unit 33 using the current position information of the moving body detected by the position detection unit 32.

処理部20の記憶処理部26は、共分散処理部23が計算した第2パラメータを共分散行列記憶部31に記憶させる。共分散記憶部31が記憶する第2パラメータは、移動体の移動中に随時計算、記憶されるようにしても良く、予め、移動体の状態に応じた複数の種類の第2パラメータを記憶するようにしても良い。読出処理部27は、共分散行列記憶部31に記憶された第2パラメータを読み出す。対象パラメータ算出部24は、読出処理部27が共分散行列記憶部31から読み出した第2パラメータを用いて第3パラメータを計算する。   The storage processing unit 26 of the processing unit 20 stores the second parameter calculated by the covariance processing unit 23 in the covariance matrix storage unit 31. The second parameter stored in the covariance storage unit 31 may be calculated and stored at any time during the movement of the moving body, and a plurality of types of second parameters corresponding to the state of the moving body are stored in advance. You may do it. The read processing unit 27 reads the second parameter stored in the covariance matrix storage unit 31. The target parameter calculation unit 24 calculates the third parameter using the second parameter read from the covariance matrix storage unit 31 by the read processing unit 27.

図1に示す処理部20、記憶部30、走行状態検出部40は、それぞれ論理構造としての表示であり、処理部20、記憶部30、走行状態検出部40それぞれを構成する各部は、同一のハードウェアである演算処理装置により構成されて良く、別個のハードウェアにより構成されても構わない。   The processing unit 20, the storage unit 30, and the traveling state detection unit 40 shown in FIG. 1 are each displayed as a logical structure. It may be configured by an arithmetic processing unit that is hardware, or may be configured by separate hardware.

<時空間勾配法の原理>
音圧をf(t)、音圧の時間微分をf(t)とすると、音圧の空間微分f(t),f(t),f(t)は、以下の式(1)〜(3)のように表される。
<The principle of the spatiotemporal gradient method>
Assuming that the sound pressure is f (t) and the time derivative of the sound pressure is f t (t), the spatial differentials f x (t), f y (t), and f z (t) of the sound pressure are expressed by the following equations ( It is expressed as 1) to (3).

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595

,n,nは、観測点となるセンサ部11の中心から音源となる対象方向の単位ベクトルの要素である。Rは観測点から音源までの距離、Cは温度の関数である音速を示す。式(1)〜式(3)は、音源が1つの点音源であれば、音圧と、音圧の時間微分及び音圧の空間微分とは、従属関係にある。以下、式(1)〜式(3)を「波源拘束偏微分方程式」という。n x , n y , and n z are elements of a unit vector in the target direction that becomes a sound source from the center of the sensor unit 11 that becomes an observation point. R represents the distance from the observation point to the sound source, and C represents the speed of sound as a function of temperature. In the equations (1) to (3), if the sound source is one point sound source, the sound pressure and the temporal differentiation of the sound pressure and the spatial differentiation of the sound pressure are in a dependency relationship. Hereinafter, Expressions (1) to (3) are referred to as “wave source constrained partial differential equations”.

観測点の任意の時間における音圧、音圧の時間微分、音圧の空間微分を取得し、波源拘束偏微分方程式を適用することで、音源となる対象の位置を算出することができる。例えば、入力された時間領域の音波信号を、適当な時間間隔の窓関数を適用してフレームに分解する。その後、短時間フーリエ変換によって、周波数領域に変換した音波信号を用いて、音源の方向を推定する。   By acquiring the sound pressure at the observation point at an arbitrary time, the time differential of the sound pressure, and the spatial differential of the sound pressure, and applying the wave source constrained partial differential equation, the position of the target as the sound source can be calculated. For example, an input time-domain sound wave signal is decomposed into frames by applying a window function with an appropriate time interval. Thereafter, the direction of the sound source is estimated using a sound wave signal converted into the frequency domain by short-time Fourier transform.

任意の周波数における音圧をF(ω)、音圧の時間微分をF(ω)とすると、音圧の空間微分F(ω),F(ω),F(ω)は、以下の式(4)〜式(6)のように表される。If the sound pressure at an arbitrary frequency is F (ω) and the time derivative of sound pressure is F t (ω), the spatial differentials of sound pressure F x (ω), F y (ω), and F z (ω) are It is expressed as the following formulas (4) to (6).

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595

式(4)〜式(6)について、方向毎に独立して最小二乗法を適用することで、ベクトルの3軸方向の要素を得ることができる。ここで、対象の水平面の位置を除外すれば、ベクトルnの要素であるn,n,nのいずれか1つが求まればよい。
以下、nの解法を例として説明する。式(4)を変形して、式(7)の二乗誤差が最小となるようなn及び距離Rを求める。
About Formula (4)-Formula (6), the element of the three-axis direction of a vector can be obtained by applying the least squares method independently for every direction. Here, if excluding the position of the horizontal plane of the target, it may be n x is an element of the vector n, n y, any one of the n x Motomare.
Hereinafter will be described a solution of n x as an example. Equation (4) is modified to obtain nx and distance R that minimize the square error of equation (7).

Figure 0005757595
式(8)〜式(13)のようにS,Stt,Sxx,S,S,Sxtを定める。
Figure 0005757595
S, S tt , S xx , S t , S x , and S xt are determined as shown in equations (8) to (13).

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
このとき、ベクトルnの要素、及び距離Rは、式(14)、式(15)から求めることができる。
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
At this time, the elements of the vector n and the distance R can be obtained from the equations (14) and (15).

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595

なお、式(8)〜式(13)は、短時間フーリエ変換によって、得られたすべての周波数帯域について総和を計算しており、任意の時間区間に対し唯一の方向推定結果を計算している。式(14)、式(15)の結果は、式(8)〜式(13)を総和でなく周波数毎に計算することで、周波数毎に方位推定結果を得ることも可能である。   In Expressions (8) to (13), the sum is calculated for all the obtained frequency bands by the short-time Fourier transform, and the only direction estimation result is calculated for an arbitrary time interval. . As for the results of Expression (14) and Expression (15), it is possible to obtain the direction estimation result for each frequency by calculating Expression (8) to Expression (13) for each frequency instead of the sum.

<他移動体位置検出装置の基本原理>
以下、第1の実施の形態に係る他移動体位置検出装置の基本原理を説明する。第1の実施の形態に係る他移動体位置検出装置は、短時間フレームについて時空間勾配法の処理を行う過程で、加法性の雑音を取り除くアルゴリズムを用いる。
式(7)について、窓関数を用いた短時間フーリエ変換の時間周波数フレームについて計算した結果は、式(16)のように表すことができる。
<Basic principle of other moving body position detection device>
Hereinafter, the basic principle of the other moving body position detection apparatus according to the first embodiment will be described. The other mobile object position detection apparatus according to the first embodiment uses an algorithm for removing additive noise in the process of performing the spatiotemporal gradient method for a short time frame.
With respect to Expression (7), the result calculated for the time-frequency frame of the short-time Fourier transform using the window function can be expressed as Expression (16).

Figure 0005757595
Figure 0005757595

式(16)は、周波数ωの関数であるだけでなく積分を行う時間区間にも依存する。すなわち、波源拘束偏微分方程式の時間周波数領域での表現と見ることができる。同様に、式(8)〜式(13)によって計算されるパラメータS,Stt,Sxx,S,S,Sxtは、任意の区間に設定されたフレームτについて、式(17)〜式(22)のように表すことができる。Expression (16) is not only a function of the frequency ω but also depends on the time interval in which the integration is performed. That is, it can be regarded as an expression in the time-frequency domain of the wave source-constrained partial differential equation. Similarly, the parameters S, S tt , S xx , S t , S x , S xt calculated by the equations (8) to (13) are expressed by the equation (17) for the frame τ set in an arbitrary section. -It can represent like Formula (22).

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595

このとき、和は近接した局所的な時間周波数領域内でとられるものとする。パラメータS,Stt,Sxx,S,S,Sxtは、周波数毎(即ちフーリエ変換に用いるFFT長の半分の周波数ビン毎)に求めることができる。また、パラメータS,Stt,Sxx,S,S,Sxtは、更に短く分割した時間を設定し、短時間フレーム毎に求めても良く、また、短時間フレームの時間周波数全体に対して1つの値を平均値として計算しても良い。
ここで、音圧、音圧の時間微分、音圧の空間微分は、以下のようなベクトルで表現することができる。
At this time, it is assumed that the sum is taken within a close local time frequency region. The parameters S, S tt , S xx , S t , S x , and S xt can be obtained for each frequency (that is, for each frequency bin that is half the FFT length used for Fourier transform). The parameter S, S tt, S xx, S t, S x, S xt sets further shortened divided time may be short time obtained for each frame and, in the overall time-frequency short time frame On the other hand, one value may be calculated as an average value.
Here, the sound pressure, the temporal differentiation of the sound pressure, and the spatial differentiation of the sound pressure can be expressed by the following vectors.

Figure 0005757595
Figure 0005757595

式(23)を用いると、時空間勾配に関するパラメータS,Stt,Sxx,S,S,Sxtは、式(24)のように、共分散行列の各要素として表すことができる。Using Expression (23), the parameters S, S tt , S xx , S t , S x , and S xt related to the spatiotemporal gradient can be expressed as elements of the covariance matrix as shown in Expression (24). .

Figure 0005757595
Figure 0005757595

なお、文字右上の添え字に関して、hはエルミート転置、*は共役転置であることを示している。パラメータの上に「〜」が付いているものは複素数、付いていないものはパラメータ中の複素共役積の実数部だけを用いる。   Regarding the subscript on the upper right of the character, h indicates Hermitian transposition and * indicates conjugate transposition. Those with "~" above the parameter are complex numbers, and those without are used only the real part of the complex conjugate product in the parameters.

移動体に接近する対象から発生する波動(音波)を検出するとき、対象から輻射される音波と、自移動体等から発生する定常的な音波とが加算された信号として検出される。このとき検出される信号は、対象から到来する音圧成分F(τ,ω)と雑音成分U(τ,ω)とが加算された信号となっている。このときの短時間相関は、式(25)のように表すことができる。   When detecting a wave (sound wave) generated from a target approaching the moving body, the detection is performed as a signal obtained by adding a sound wave radiated from the target and a steady sound wave generated from the own moving body or the like. The signal detected at this time is a signal obtained by adding the sound pressure component F (τ, ω) coming from the target and the noise component U (τ, ω). The short-time correlation at this time can be expressed as shown in Equation (25).

Figure 0005757595
ここで、音圧成分と雑音成分が無相関であれば、十分な時間周波数局所領域を選んで和をとることにより、式(26)のように見なすことができる。
Figure 0005757595
Here, if the sound pressure component and the noise component are uncorrelated, it can be regarded as shown in Expression (26) by selecting a sufficient time frequency local region and taking the sum.

Figure 0005757595
よって、式(25)は、式(27)の用に表すことができる。
Figure 0005757595
Thus, equation (25) can be expressed for equation (27).

Figure 0005757595
Figure 0005757595

同様に他の時空間勾配に関するパラメータの結果を示すと、対象からの信号と雑音信号との相関項は、すべて近似的に0に見なせることから、式(28)〜式(32)を得る。   Similarly, when the results of parameters relating to other spatiotemporal gradients are shown, since all the correlation terms of the signal from the object and the noise signal can be regarded as approximately 0, Expressions (28) to (32) are obtained.

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595

第1の実施の形態に係る他移動体位置検出装置は、式(27)〜式(32)に示すパラメータを第1パラメータS,Stt,Sxx,S,S,Sxtとして用いる。第1パラメータS,Stt,Sxx,S,S,Sxtは、時空間勾配共分散領域において、対象から発生する音波に基づく信号と定常的な雑音に基づく信号とが加法的に重畳していることを意味する。The other moving body position detection apparatus according to the first embodiment uses the parameters shown in the equations (27) to (32) as the first parameters S, S tt , S xx , S t , S x , S xt. . The first parameters S, S tt , S xx , S t , S x , and S xt are additively obtained by a signal based on sound waves generated from the object and a signal based on stationary noise in the spatiotemporal gradient covariance region. It means that they are superimposed.

定常的な雑音の第2パラメータを既知と仮定すると、第2パラメータN,Ntt,Nxx,N,N,Nxtは、式(33)〜式(38)のように表すことができる。Assuming that the second parameter of stationary noise is known, the second parameters N, N tt , N xx , N t , N x , and N xt can be expressed as in Expression (33) to Expression (38). it can.

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
このとき、共分散領域での演算操作は、式(39)〜式(44)のように表すことができる。
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
At this time, the arithmetic operation in the covariance region can be expressed as in Expression (39) to Expression (44).

Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
式(39)〜式(44)は、雑音を除外した第3パラメータが推定できることを意味している。
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Figure 0005757595
Expressions (39) to (44) mean that the third parameter excluding noise can be estimated.

雑音が定常的であれば、雑音信号に基づく第2パラメータは、ほぼ一定の値をとると考えられるので、予め移動状態毎に雑音信号を推定しておくことにより、位置が時間により変化する音源に対して、時間区間毎に得られる共分散行列から、音源の方向、距離を検出することができる。或いは、第1パラメータを計算するフレームτより1つ前のフレームτ−1で、かつ、主として雑音だけが観測できる時間において計算された第2パラメータを用いて第3パラメータを算出するようにしても良い。   If the noise is stationary, the second parameter based on the noise signal is considered to have a substantially constant value. Therefore, by estimating the noise signal for each moving state in advance, the sound source whose position changes with time. On the other hand, the direction and distance of the sound source can be detected from the covariance matrix obtained for each time interval. Alternatively, the third parameter may be calculated by using the second parameter calculated in the frame τ−1 immediately before the frame τ in which the first parameter is calculated and in which only noise can be observed. good.

第1の実施の形態に係る他移動体位置検出方法の基本原理となるこれら一連の雑音成分除去のアルゴリズムを共分散サブトラクション法と呼ぶ。この手法においては、雑音信号は定常的でさえあれば良く、必ずしも波源拘束偏微分方程式を満たす必要はない。即ち、拡散雑音や大面積領域から生じるような点音源でない雑音に対しても有効な場合がある。   A series of these noise component removal algorithms as the basic principle of the other mobile object position detection method according to the first embodiment is called a covariance subtraction method. In this method, the noise signal only needs to be stationary and does not necessarily satisfy the source-constrained partial differential equation. In other words, it may be effective against diffuse noise or noise that is not a point source such as that generated from a large area.

<他移動体位置検出方法>
図4のフローチャートを用いて、本発明の第1の実施の形態に係る他移動体位置検出方法の一例について説明する。
<Other moving body position detection method>
With reference to the flowchart of FIG. 4, an example of the other moving body position detection method according to the first embodiment of the present invention will be described.

先ず、ステップS10において、第1の実施の形態に係る他移動体位置検出装置は初期化され、ステップS20において、音波信号処理部21は、音波入力部10が入力した音波を離散的な音波信号として音波入力部10から入力し、信号処理する。   First, in step S10, the other moving body position detection apparatus according to the first embodiment is initialized, and in step S20, the sound wave signal processing unit 21 converts the sound wave input by the sound wave input unit 10 into a discrete sound wave signal. Are input from the sound wave input unit 10 and processed.

ステップS20における信号処理として、音波信号処理部21は、例えば、図5のステップS110-1,S110-nに示すように、音波入力部10が備えるセンサ部11-1,11-nにおいてそれぞれ検出された音波について信号処理を行う。音波信号処理部21は、例えば、音波信号にハン窓等の窓関数を適用することにより短時間毎に分解したフレームに対し、短時間フーリエ変換を行い、フレーム毎に周波数領域の信号(全体として時間周波数領域の信号)に変換する。   As the signal processing in step S20, the sound wave signal processing unit 21 detects, for example, in the sensor units 11-1 and 11-n included in the sound wave input unit 10, as shown in steps S110-1 and S110-n in FIG. The signal processing is performed on the sound wave. For example, the sound wave signal processing unit 21 performs a short-time Fourier transform on a frame decomposed every short time by applying a window function such as a Hann window to the sound wave signal, and performs frequency domain signals (as a whole) for each frame. To time frequency domain signal).

次に、図4のステップS311において、定常判定部22は、音波入力部10が入力した音波が定常状態か否かを判定する。定常判定部22は、例えば、音波入力部10が入力する音波の音圧、音圧の勾配、周波数毎の音圧、周波数勾配等を取得し、それらの分散に対して所定の閾値を設定することにより定常性を測定し、定常状態か否かを判定するようにすればよい。   Next, in step S <b> 311 of FIG. 4, the steady state determination unit 22 determines whether the sound wave input by the sound wave input unit 10 is in a steady state. The steady state determination unit 22 acquires, for example, the sound pressure of the sound wave input by the sound wave input unit 10, the gradient of the sound pressure, the sound pressure for each frequency, the frequency gradient, and the like, and sets a predetermined threshold for these variances. Thus, the continuity may be measured to determine whether or not the steady state is reached.

また、定常判定部22は、方向検出部25による方向検出結果の分散の大きさに対して所定の閾値を設定することで接近車の有無を推定し、定常状態か否かを判定するようにしても良い。或いは、方向検出結果の加算平均に対して閾値を設定し、定常状態か否かを判定するようにしても良い。  In addition, the steady state determination unit 22 estimates the presence or absence of an approaching vehicle by setting a predetermined threshold with respect to the magnitude of the variance of the direction detection result by the direction detection unit 25, and determines whether or not the vehicle is in a steady state. May be. Alternatively, a threshold may be set for the addition average of the direction detection results to determine whether or not the steady state is reached.

ステップS311において定常判定部22が定常状態であると判定する場合、ステップS312において、共分散処理部23は、式(33)〜式(38)に示すように、定常的な雑音に基づく第2パラメータN,Ntt,Nxx,N,N,Nxtを計算する。When it is determined in step S311 that the stationary determination unit 22 is in the steady state, in step S312, the covariance processing unit 23 performs the second processing based on stationary noise as shown in the equations (33) to (38). parameter N, N tt, N xx, N t, N x, to compute the N xt.

ステップS313において、記憶処理部26は、共分散処理部23が計算した第2パラメータを共分散行列記憶部31に記憶させる。記憶処理部26は、例えば、演算する1つ前のフレームから計算した第2パラメータを保存する。   In step S <b> 313, the storage processing unit 26 stores the second parameter calculated by the covariance processing unit 23 in the covariance matrix storage unit 31. For example, the storage processing unit 26 stores the second parameter calculated from the immediately preceding frame to be calculated.

また、記憶処理部26は、信号が定常的な雑音である(周囲に接近する対象がない)時間フレームτを用いて計算した第2パラメータを保存するようにしても良い。その他、記憶処理部26は、速度、ギヤ比、タイヤ情報、移動環境等の移動体の状態に対応する雑音のパターンすべてに対応して第2パラメータを保存しておくようにしても良い。或いは、地図情報として、予め壁、高架等の位置を地図情報記憶部33に記憶しておき、記憶された壁にあった環境で測定した自車走行雑音及び反射音を含む雑音信号を元に計算された第2パラメータを保存しておくようにしても良い。このとき、ラベルとしてGPS等により一意に定まる地図位置を用いることが有効である。   Further, the storage processing unit 26 may store the second parameter calculated using the time frame τ in which the signal is stationary noise (there is no target approaching the surroundings). In addition, the storage processing unit 26 may store the second parameter corresponding to all noise patterns corresponding to the state of the moving body such as speed, gear ratio, tire information, and moving environment. Alternatively, the map information is stored in advance in the map information storage unit 33 as the position of the wall, the elevated, etc., and based on the noise signal including the own vehicle running noise and the reflected sound measured in the environment corresponding to the stored wall. The calculated second parameter may be stored. At this time, it is effective to use a map position uniquely determined by GPS or the like as a label.

ステップS311において定常判定部22が定常状態でないと判定する場合、ステップS314において、共分散処理部23は、式(27)〜式(32)に示すように、定常的な雑音と、非定常的な対象発生音とからなる音波に基づく第1パラメータS,Stt,Sxx,S,S,Sxtを計算する。When the stationary determination unit 22 determines that the steady state is not in the steady state in step S311, in step S314, the covariance processing unit 23 determines that the stationary noise and the unsteady state as shown in the equations (27) to (32). First parameters S, S tt , S xx , S t , S x , S xt are calculated based on the sound wave composed of the target generated sound.

共分散処理部23による第1パラメータ及び第2パラメータの算出は、図5のステップS120に示すように、音波信号処理部21により処理された音波信号から、音圧(ステップS121)、音圧の時間微分(ステップS122)、音圧の空間微分(ステップS123)を算出してから行われる。   The calculation of the first parameter and the second parameter by the covariance processing unit 23 is performed based on the sound pressure (step S121) and the sound pressure from the sound wave signal processed by the sound wave signal processing unit 21, as shown in step S120 of FIG. This is performed after calculating time differentiation (step S122) and spatial differentiation of sound pressure (step S123).

次に、図4のステップS315において、読出処理部27は、共分散行列記憶部31から、第2パラメータを読み出す。   Next, in step S <b> 315 of FIG. 4, the read processing unit 27 reads the second parameter from the covariance matrix storage unit 31.

また、読出処理部27は、走行状態検出部40が検出した移動体の状態に応じて共分散行列記憶部31に記憶された第2パラメータを読み出すようにしても良い。   The read processing unit 27 may read the second parameter stored in the covariance matrix storage unit 31 according to the state of the moving body detected by the traveling state detection unit 40.

次に、ステップS40において、対象パラメータ算出部24は、共分散処理部23が計算した第1及び第2パラメータから、式(39)〜式(44)に示すように、対象発生音に基づく第3パラメータS,S tt,S xx,S ,S ,S xtを計算する。Next, in step S40, the target parameter calculation unit 24 uses the first and second parameters calculated by the covariance processing unit 23 to calculate the first parameter based on the target generated sound, as shown in Expressions (39) to (44). Three parameters S C , S C tt , S C xx , S C t , S C x , S C xt are calculated.

次に、ステップS50において、方向検出部25は、対象パラメータ算出部24が算出した第3パラメータを、式(14)、式(15)に代入して算出ことにより、対象の方向と対象までの距離が検出される。   Next, in step S50, the direction detection unit 25 substitutes the third parameter calculated by the target parameter calculation unit 24 into the formulas (14) and (15) to calculate the target direction and the target. The distance is detected.

<方向検出結果検証>
他移動体位置検出装置が搭載されたデモンストレーション車の公道走行中に測定したデータに対して、上述の共分散サブトラクション法を適用した。センサ部となるマイクロフォンの間隔は2cmである。サンプリング周波数は、44.1kHz、フーリエ変換のフレーム長は48点、フレームシフトは24点とし、共分散行列に関するパラメータ(第1パラメータ及び第3パラメータ)は、隣接する50フレームについて平均して求めた。また、車内から同時にビデオカメラで周囲を撮影することにより、収録時の他の走行車の環境を確認した。
<Verification of direction detection results>
The above-mentioned covariance subtraction method was applied to data measured while driving on a public road of a demonstration vehicle equipped with another moving body position detection device. The distance between the microphones serving as the sensor units is 2 cm. The sampling frequency is 44.1 kHz, the frame length of the Fourier transform is 48 points, the frame shift is 24 points, and the parameters related to the covariance matrix (the first parameter and the third parameter) are obtained by averaging over 50 adjacent frames. . In addition, the surrounding environment of other vehicles during recording was confirmed by photographing the surroundings with a video camera at the same time.

図6〜図11は、それぞれ、2〜7kHz周波数毎の、通常の時空間勾配法を適用した場合の方向検出結果を示す。図12〜図17は、共分散サブトラクション法による処理を追加した場合の方向検出結果を示す。縦軸のnは、音源方向の単位ベクトルのx成分を示し、1が後方、−1が前方を示す。横軸はデータを測定した時間を示す。プロットの後方から前方への推移は、隣接車線を他の車が追い越していったことを表している。6 to 11 show direction detection results when a normal spatiotemporal gradient method is applied for each frequency of 2 to 7 kHz. 12 to 17 show direction detection results when processing by the covariance subtraction method is added. N x the vertical axis represents the x component of the unit vector in the sound source direction, showing 1 backward, -1 forward. The horizontal axis indicates the time when data was measured. The transition from the rear to the front of the plot indicates that another vehicle overtakes the adjacent lane.

図6〜図11と、図12〜図17とを比較すると、時空間勾配法を用いた測定結果によれば、25−28秒付近に、n=0のあたりにプロットが集中している。これらの表示は、周囲に車両が存在しなかったことから自車の雑音の影響と考えられる。一方、共分散サブトラクション法を用いた推定結果によれば、同じ時間帯の方位推定結果の分散が大きく雑音の影響が除去されていることが分かる。このことから、共分散サブトラクション法により自車ノイズのような加法性の定常的な雑音の影響が低減されていることが明らかになった。Comparing FIGS. 6 to 11 with FIGS. 12 to 17, according to the measurement results using the spatiotemporal gradient method, the plots are concentrated around n x = 0 in the vicinity of 25 to 28 seconds. . These displays are considered to be the influence of the noise of the own vehicle because there is no vehicle around. On the other hand, according to the estimation result using the covariance subtraction method, it can be seen that the azimuth estimation result in the same time zone has a large variance and the influence of noise is removed. From this, it became clear that the influence of stationary additive noise such as own vehicle noise is reduced by the covariance subtraction method.

このように、第1の実施の形態に係る他移動体位置検出方法位置検出方法は、方向検出結果の分散の大きさを観測し、分散が所定の閾値より大きければ周囲に車両が存在しないと見なす、周囲の接近する対象の存在判定に利用できる。よって、定常判定部22による定常状態か否かの判定に方向検出部25による方向検出結果を用いても良い。   As described above, the position detection method according to the first embodiment observes the magnitude of the variance of the direction detection result, and if the variance is larger than the predetermined threshold, there is no vehicle around. It can be used to determine the existence of nearby objects that are considered. Therefore, the direction detection result by the direction detection unit 25 may be used to determine whether or not the steady state determination unit 22 is in a steady state.

また、方向検出可能な角度(単位ベクトルの要素)の範囲についても、時空間勾配法のみを用いた検出結果より、共分散サブトラクション法を用いた検出結果の方が広い範囲であることが分かる。よって、共分散サブトラクション法を用いることにより、加法性雑音の影響が低減され、検出のダイナミックレンジが向上し、結果として方向検出可能な角度が増大することが分かる。   In addition, regarding the range of angles (element vector elements) that can be detected, the detection result using the covariance subtraction method is wider than the detection result using only the spatiotemporal gradient method. Therefore, it can be seen that by using the covariance subtraction method, the influence of additive noise is reduced, the dynamic range of detection is improved, and as a result, the angle at which direction detection is possible increases.

第1の実施の形態に係る他移動体位置検出装置は、加法性雑音を共分散行列の領域において減算することにより、雑音の影響を低減して対象の位置を高精度に検出できる。   The other mobile object position detection apparatus according to the first embodiment can detect the position of the target with high accuracy by reducing the influence of noise by subtracting additive noise in the region of the covariance matrix.

また、第1の実施の形態に係る他移動体位置検出装置によれば、走行状態検出部40を備えることにより、移動体の状態に応じて適切に雑音の影響を低減できる。   Moreover, according to the other moving body position detection apparatus which concerns on 1st Embodiment, the influence of noise can be reduced appropriately according to the state of a moving body by providing the driving state detection part 40. FIG.

また、第1の実施の形態に係る他移動体位置検出装置によれば、移動状態検出部41を備えることにより、移動体の移動有情体に応じて適切に雑音の影響を低減できる。   Moreover, according to the other moving body position detection apparatus which concerns on 1st Embodiment, the influence of noise can be reduced appropriately according to the moving affective body of a moving body by providing the moving state detection part 41. FIG.

また、第1の実施の形態に係る他移動体位置検出装置によれば、移動環境検出部42を備えることにより、移動体の周囲の環境に応じて適切に雑音の影響を低減できる。   Moreover, according to the other mobile body position detection apparatus which concerns on 1st Embodiment, the influence of noise can be reduced appropriately according to the environment around a mobile body by providing the mobile environment detection part 42. FIG.

また、第1の実施の形態に係る他移動体位置検出装置によれば、位置検出部43を備えることにより、移動体の位置に応じて適切に雑音の影響を低減できる。   Moreover, according to the other moving body position detection apparatus which concerns on 1st Embodiment, by providing the position detection part 43, the influence of noise can be reduced appropriately according to the position of a moving body.

また、第1の実施の形態に係る他移動体位置検出装置によれば、音波信号処理部21が音波信号を周波数領域に変換することにより、音波信号の信号処理の方法を変更することができる。   Moreover, according to the other moving body position detection apparatus which concerns on 1st Embodiment, the sound wave signal processing part 21 can change the signal processing method of a sound wave signal by converting a sound wave signal into a frequency domain. .

また、第1の実施の形態に係る他移動体位置検出装置によれば、第1パラメータの算出に用いられた音波信号より前の時間に入力された音波信号により算出された第2パラメータを用いて第3パラメータを算出することにより、予め記憶された第2パラメータを用いて第3パラメータを算出することができる。   Further, according to the other moving body position detecting apparatus according to the first embodiment, the second parameter calculated by the sound wave signal input at a time before the sound wave signal used for calculating the first parameter is used. By calculating the third parameter, the third parameter can be calculated using the second parameter stored in advance.

(第2の実施の形態)
本発明の第2の実施の形態に係る他移動体位置検出装置は、図18に示すように、記憶部30が音波信号記憶部34を備え、記憶処理部26及び読出処理部27が、音波信号記憶部34に対する動作を行う点で、第1の実施の形態と異なる。第2の実施の形態において説明しない他の構成は、第1の実施の形態と実質的に同様であるので重複する説明を省略する。
(Second Embodiment)
As shown in FIG. 18, in the other moving body position detection device according to the second exemplary embodiment of the present invention, the storage unit 30 includes a sonic wave signal storage unit 34, and the storage processing unit 26 and the read processing unit 27 include sonic waves. The second embodiment differs from the first embodiment in that an operation is performed on the signal storage unit 34. Other configurations that are not described in the second embodiment are substantially the same as those in the first embodiment, and thus redundant description is omitted.

第1の実施の形態では、共分散処理部23により計算された第2パラメータを記憶処理部26が共分散行列記憶部31に記憶させ、第3パラメータ算出の為、読出処理部27が共分散行列記憶部31から第2パラメータを読み出す場合について説明した。以下、図19のフローチャートを用いて、第2の実施の形態に係る他移動体位置検出方法として、記憶処理部26が、定常的な雑音に基づく音波信号を音波信号記憶部34に対して記憶させ、読出処理部27が音波信号記憶部34から音波信号を読み出した後、共分散処理部23が第1及び第2パラメータを計算する場合について説明する。図19に示すステップS32以外の処理は、図4に示すステップS31以外の処理と実質的に同様であるので、重複する説明を省略する。   In the first embodiment, the storage processing unit 26 stores the second parameter calculated by the covariance processing unit 23 in the covariance matrix storage unit 31, and the readout processing unit 27 performs covariance for the third parameter calculation. The case where the second parameter is read from the matrix storage unit 31 has been described. Hereinafter, as the other moving body position detection method according to the second embodiment, the storage processing unit 26 stores a sound wave signal based on stationary noise in the sound wave signal storage unit 34 using the flowchart of FIG. A case where the covariance processing unit 23 calculates the first and second parameters after the reading processing unit 27 reads out the sound wave signal from the sound wave signal storage unit 34 will be described. The processes other than step S32 shown in FIG. 19 are substantially the same as the processes other than step S31 shown in FIG.

ステップS321において、定常判定部22は、音波入力部10が入力した音波が定常状態か否かを判定する。定常判定部22は、例えば、音波入力部10が入力する音波の音圧、音圧の勾配、周波数毎の音圧、周波数勾配等を取得し、それらの分散に対して所定の閾値を設定することにより定常性を測定し、定常状態か否かを判定するようにすればよい。   In step S321, the steady state determination unit 22 determines whether the sound wave input by the sound wave input unit 10 is in a steady state. The steady state determination unit 22 acquires, for example, the sound pressure of the sound wave input by the sound wave input unit 10, the gradient of the sound pressure, the sound pressure for each frequency, the frequency gradient, and the like, and sets a predetermined threshold for these variances. Thus, the continuity may be measured to determine whether or not the steady state is reached.

また、方向検出部25による方向検出結果の分散の大きさに対して所定の閾値を設定することで接近車の有無を推定するようにしても良い。或いは、方向検出結果の加算平均を取るようにしても良い。  In addition, the presence or absence of an approaching vehicle may be estimated by setting a predetermined threshold for the magnitude of the variance of the direction detection result by the direction detection unit 25. Or you may make it take the addition average of a direction detection result.

ステップS321において定常判定部22が定常状態であると判定する場合、ステップS322において、記憶処理部26は、定常状態であると判定されたフレームの音波信号を音波信号記憶部34に記憶させる。   When it is determined in step S321 that the steady state determination unit 22 is in the steady state, in step S322, the storage processing unit 26 stores the sound wave signal of the frame determined to be in the steady state in the sound wave signal storage unit 34.

また、記憶処理部26は、定常状態であると判定されたフレームの1つ前のフレームの音波信号を記憶させるようにしても良い。その他、記憶処理部26は、速度、ギヤ比、タイヤ情報、移動環境等の移動体の状態に対応する雑音のパターンすべてに対応した種類の音波信号を保存しておくようにしても良い。或いは、地図情報として、予め壁、高架等の位置を地図情報記憶部33に記憶しておき、記憶された壁にあった環境で測定した自車走行雑音及び反射音を示す音波信号を記憶しておくようにしても良い。このとき、ラベルとしてGPS等により一意に定まる地図位置を用いることが有効である。   The storage processing unit 26 may store the sound wave signal of the frame immediately before the frame determined to be in the steady state. In addition, the storage processing unit 26 may store types of sound wave signals corresponding to all noise patterns corresponding to the state of the moving body such as speed, gear ratio, tire information, and moving environment. Alternatively, as the map information, the position of a wall, an overpass or the like is stored in advance in the map information storage unit 33, and a sound wave signal indicating own vehicle running noise and reflected sound measured in an environment suitable for the stored wall is stored. You may make it leave. At this time, it is effective to use a map position uniquely determined by GPS or the like as a label.

ステップS321において定常判定部22が定常状態でないと判定する場合、ステップS323において、読出処理部27は、音波信号記憶部34から音波信号を読み出す。読出処理部27は、走行状態検出部40が検出した移動体の状態に応じて音波信号記憶部34に記憶された音波信号を読み出すようにしても良い。   When it is determined in step S321 that the steady state determination unit 22 is not in a steady state, the read processing unit 27 reads the sound wave signal from the sound wave signal storage unit 34 in step S323. The read processing unit 27 may read the sound wave signal stored in the sound wave signal storage unit 34 in accordance with the state of the moving body detected by the traveling state detection unit 40.

ステップS324において、共分散処理部23は、定常的な雑音と、非定常的な対象発生音とからなる音波に基づく第1パラメータS,Stt,Sxx,S,S,Sxtと計算する。また、共分散処理部23は、ステップS323において読出処理部27が読み出した音波信号に基づいて、第2パラメータN,Ntt,Nxx,N,N,Nxtを計算する。In step S324, the covariance processing unit 23 includes a stationary noise, the first parameter S based on sound waves comprising a non-stationary object generated sound, S tt, S xx, S t, S x, and S xt calculate. Further, the covariance processing unit 23 calculates the second parameters N, N tt , N xx , N t , N x , N xt based on the sound wave signal read by the reading processing unit 27 in step S323.

第2の実施の形態に係る他移動体位置検出装置は、加法性雑音を共分散行列の領域において減算することにより、雑音の影響を低減して対象の位置を高精度に検出できる。   The other mobile object position detection apparatus according to the second embodiment can detect the target position with high accuracy by reducing the influence of noise by subtracting additive noise in the region of the covariance matrix.

また、第2の実施の形態に係る他移動体位置検出装置によれば、走行状態検出部40を備えることにより、移動体の状態に応じて適切に雑音の影響を低減できる。   Moreover, according to the other moving body position detection apparatus which concerns on 2nd Embodiment, the influence of noise can be appropriately reduced according to the state of a moving body by providing the traveling state detection part 40. FIG.

また、第2の実施の形態に係る他移動体位置検出装置によれば、移動状態検出部41を備えることにより、移動体の移動有情体に応じて適切に雑音の影響を低減できる。   Moreover, according to the other moving body position detection apparatus which concerns on 2nd Embodiment, the influence of noise can be reduced appropriately according to the moving affective body of a moving body by providing the moving state detection part 41. FIG.

また、第2の実施の形態に係る他移動体位置検出装置によれば、移動環境検出部42を備えることにより、移動体の周囲の環境に応じて適切に雑音の影響を低減できる。   Moreover, according to the other mobile body position detection apparatus which concerns on 2nd Embodiment, the influence of noise can be reduced appropriately according to the environment around a mobile body by providing the mobile environment detection part 42. FIG.

また、第2の実施の形態に係る他移動体位置検出装置によれば、位置検出部43を備えることにより、移動体の位置に応じて適切に雑音の影響を低減できる。   Moreover, according to the other moving body position detection apparatus which concerns on 2nd Embodiment, by providing the position detection part 43, the influence of noise can be reduced appropriately according to the position of a moving body.

また、第2の実施の形態に係る他移動体位置検出装置によれば、音波信号処理部21が音波信号を周波数領域に変換することにより、音波信号の信号処理の方法を変更することができる。   Moreover, according to the other moving body position detection apparatus which concerns on 2nd Embodiment, the sound wave signal processing part 21 can change the signal processing method of a sound wave signal by converting a sound wave signal into a frequency domain. .

また、第2の実施の形態に係る他移動体位置検出装置によれば、第1パラメータの算出に用いられた音波信号より前の時間に入力された音波信号により算出された第2パラメータを用いて第3パラメータを算出することにより、予め記憶された第2パラメータを用いて第3パラメータを算出することができる。   Further, according to the other moving body position detection apparatus according to the second embodiment, the second parameter calculated by the sound wave signal input at a time before the sound wave signal used for the calculation of the first parameter is used. By calculating the third parameter, the third parameter can be calculated using the second parameter stored in advance.

特願2011−248370号(出願日:2011年11月14日)の全内容は、ここに援用される。   The entire contents of Japanese Patent Application No. 2011-248370 (application date: November 14, 2011) are incorporated herein by reference.

(その他の実施の形態)
上記のように、第1及び第2の実施の形態を記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As described above, the first and second embodiments have been described. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

既に述べた第1及び第2の実施の形態においては、他移動体位置検出装置が搭載される移動体は、車両に限るものでなく、ヘリコプター、船、潜水艦等にも適用可能である。   In the first and second embodiments already described, the moving body on which the other moving body position detecting device is mounted is not limited to the vehicle, but can be applied to a helicopter, a ship, a submarine, and the like.

また、既に述べた第1及び第2の実施の形態においては、共分散行列のパラメータを用いて対称の位置を検出する手法について説明したが、パラメータは、必ずしも行列式を用いて計算される必要はなく、方向検出結果が実質的に等価と見なせる程度に計算の省略等がされて良い。   In the first and second embodiments already described, the method of detecting a symmetric position using the parameters of the covariance matrix has been described. However, the parameters need not necessarily be calculated using a determinant. However, the calculation may be omitted to the extent that the direction detection result can be regarded as substantially equivalent.

また、既に述べた第1及び第2の実施の形態においては、移動環境検出部42は、方向検出部25の検出結果により、移動体の周囲にある壁、高架等、環境を示す情報を検出するようにしても良い。例えば、移動体の移動方向に平行に壁がある場合、方向検出部25による方向検出結果は、所定の範囲の方向(角度)に定位する。これらのデータを予め移動環境検出部42に設定することにより、方向検出部25による方向検出結果から、移動体の周囲の環境を示す情報を検出することができる。   In the first and second embodiments already described, the moving environment detection unit 42 detects information indicating the environment, such as walls and overheads around the moving body, based on the detection result of the direction detection unit 25. You may make it do. For example, when there is a wall parallel to the moving direction of the moving body, the direction detection result by the direction detecting unit 25 is localized in a direction (angle) within a predetermined range. By setting these data in the moving environment detection unit 42 in advance, information indicating the environment around the moving body can be detected from the direction detection result by the direction detection unit 25.

このように、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention naturally includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明によれば、加法性雑音を共分散行列の領域において減算することにより、雑音の影響を低減して対象の位置を検出できる他移動体位置検出装置を提供することができる。よって、本発明は産業上の利用可能性を有する。   ADVANTAGE OF THE INVENTION According to this invention, the other mobile body position detection apparatus which can reduce the influence of noise and can detect a target position by subtracting additive noise in the area | region of a covariance matrix can be provided. Therefore, the present invention has industrial applicability.

10…音波入力部
11…センサ部
12…増幅器
13…AD変換器
20…処理部
21…音波信号処理部
22…定常判定部
23…共分散処理部
24…対象パラメータ算出部
25…方向検出部
26…記憶処理部
27…読出処理部
30…記憶部
31…共分散行列記憶部
32…位置検出部
32…音波信号記憶部
33…移動体情報記憶部
34…地図情報記憶部
40…走行状態検出部
41…移動状態検出部
42…移動環境検出部
43…位置検出部
DESCRIPTION OF SYMBOLS 10 ... Sound wave input part 11 ... Sensor part 12 ... Amplifier 13 ... AD converter 20 ... Processing part 21 ... Sound wave signal processing part 22 ... Steady state determination part 23 ... Covariance processing part 24 ... Target parameter calculation part 25 ... Direction detection part 26 ... Storage processing unit 27 ... Read processing unit 30 ... Storage unit 31 ... Covariance matrix storage unit 32 ... Position detection unit 32 ... Sound wave signal storage unit 33 ... Mobile body information storage unit 34 ... Map information storage unit 40 ... Running state detection unit 41 ... Movement state detection unit 42 ... Movement environment detection unit 43 ... Position detection unit

Claims (7)

自移動体に搭載された他移動体位置検出装置であって、
雑音及び周囲に存在する他移動体の走行により発生する他移動体発生音を含む音波を入力する音波入力部と、
前記音波入力部が入力した音波が定常状態であるか否かを判定する定常判定部と、
前記音波の音圧及び前記音圧の時間微分及び前記音圧の空間微分に基づく共分散行列の要素を、前記定常判定部が定常状態でないと判定した前記音波について第1パラメータ、前記定常判定部が定常状態であると判定した前記音波について第2パラメータとして計算する共分散処理部と、
前記第1パラメータから前記第2パラメータを減算することで、前記他移動体発生音の音圧及び前記音圧の時間微分及び前記音圧の空間微分に基づく共分散行列の要素を第3パラメータとして計算する対象パラメータ算出部と、
前記第3パラメータから前記他移動体の前記自移動体の方向を検出する方向検出部と
を備えることを特徴とする他移動体位置検出装置。
Another mobile body position detection device mounted on the mobile body,
A sound wave input unit for inputting sound waves including noise and other moving body generated sound generated by running of other moving objects existing in the surroundings;
A steady state determination unit that determines whether or not the sound wave input by the sound wave input unit is in a steady state;
The sound pressure of the sound wave, the time differential of the sound pressure, and the element of the covariance matrix based on the spatial differential of the sound pressure are the first parameter and the steady state determination unit for the sound wave determined that the steady state determination unit is not in a steady state. A covariance processing unit that calculates a second parameter for the sound wave determined to be in a steady state;
By subtracting the second parameter from the first parameter, an element of a covariance matrix based on the sound pressure of the other moving body generated sound, the time derivative of the sound pressure, and the spatial derivative of the sound pressure is used as a third parameter. A target parameter calculation unit to calculate,
A direction detecting unit that detects a direction of the self-moving body of the other moving body from the third parameter.
前記自移動体の走行状態を検出する走行状態検出部と、  A traveling state detector for detecting a traveling state of the mobile body;
前記定常判定部が定常状態であると判定した前記音波を、前記自移動体の走行状態に応じて記憶する記憶部と  A storage unit that stores the sound wave determined by the steady state determination unit as being in a steady state according to a traveling state of the mobile body;
を更に備え、  Further comprising
前記共分散処理部は、前記走行状態検出部が検出した走行状態に応じて前記記憶部から読み出された前記音波について、前記共分散行列の要素を前記第2パラメータとして計算することを特徴とする請求項1に記載の他移動体位置検出装置。  The covariance processing unit calculates, as the second parameter, an element of the covariance matrix for the sound wave read from the storage unit according to the running state detected by the running state detection unit. The other moving body position detection apparatus of Claim 1 which does.
前記走行状態検出部は、前記自移動体の状態として、前記自移動体の周囲の環境を検出することを特徴とする請求項に記載の他移動体位置検出装置。 The other traveling body position detection device according to claim 2 , wherein the traveling state detection unit detects an environment around the traveling body as a state of the traveling body. 前記自移動体は自車であり、前記他移動体は他車であり、
前記走行状態検出部は、前記自移動体の走行状態として、前記移動体の速度、エンジンの回転数、ギヤ比のいずれかを検出することを特徴とする請求項に記載の他移動体位置検出装置。
The mobile body is a vehicle, and the other mobile body is a vehicle.
The other moving body position according to claim 3 , wherein the traveling state detection unit detects any one of a speed of the moving body, an engine speed, and a gear ratio as the traveling state of the own moving body. Detection device.
前記音波入力部が入力した音波を示す時間領域の信号を周波数領域に変換して、前記音波の周波数毎の音圧及び前記音圧の時間微分及び前記音圧の空間微分を取得する音波信号処理部を更に備え、
前記共分散処理部は、前記周波数毎の音圧及び前記音圧の時間微分及び前記音圧の空間微分に基づいて、前記第1パラメータ及び前記第2パラメータを計算することを特徴とする請求項1〜のいずれか1項に記載の他移動体位置検出装置。
Sound wave signal processing for converting a time domain signal indicating a sound wave input by the sound wave input unit into a frequency domain, and obtaining a sound pressure for each frequency of the sound wave, a time derivative of the sound pressure, and a spatial derivative of the sound pressure Further comprising
The covariance processing unit calculates the first parameter and the second parameter based on a sound pressure for each frequency, a time derivative of the sound pressure, and a spatial derivative of the sound pressure. The other moving body position detection apparatus of any one of 1-4 .
前記対象パラメータ算出部は、前記第1パラメータを算出する前記音波より前の時間に入力された前記音波により算出された第2パラメータを用いて前記第3パラメータを算出することを特徴とする請求項1〜のいずれか1項に記載の他移動体位置検出装置。 The target parameter calculation unit calculates the third parameter using a second parameter calculated by the sound wave input at a time before the sound wave for calculating the first parameter. The other moving body position detection apparatus of any one of 1-5 . 自移動体に対する他移動体の位置を検出する他移動体位置検出方法であって、
雑音及び周囲に存在する前記他移動体の走行により発生する他移動体発生音を含む音波を入力し、
入力された音波が定常状態であるか否かを判定し、
前記音波の音圧及び前記音圧の時間微分及び前記音圧の空間微分に基づく共分散行列の要素を、定常状態でないと判定した前記音波について第1パラメータ、定常状態であると判定した前記音波について第2パラメータとして計算し、
前記第1パラメータから前記第2パラメータを減算することで、前記他移動体発生音の音圧及び前記音圧の時間微分及び前記音圧の空間微分に基づく共分散行列の要素を第3パラメータとして計算し、
前記第3パラメータから前記他移動体の前記自移動体に対する方向を検出する
ことを特徴とする他移動体位置検出方法。
An other moving body position detection method for detecting the position of another moving body with respect to the own moving body,
Input a sound wave including noise and other moving body generated sound generated by running of the other moving body existing in the surroundings,
Determine whether the input sound wave is in a steady state,
The sound pressure of the sound wave, the time differential of the sound pressure, and the element of the covariance matrix based on the spatial differential of the sound pressure are the first parameter for the sound wave determined to be not in the steady state, the sound wave determined to be in the steady state As a second parameter for
By subtracting the second parameter from the first parameter, an element of a covariance matrix based on the sound pressure of the other moving body generated sound, the time derivative of the sound pressure, and the spatial derivative of the sound pressure is used as a third parameter. Calculate
A method of detecting the position of another moving body, wherein a direction of the other moving body relative to the own moving body is detected from the third parameter.
JP2013544215A 2011-11-14 2012-11-05 Other moving body position detecting device and other moving body position detecting method Active JP5757595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013544215A JP5757595B2 (en) 2011-11-14 2012-11-05 Other moving body position detecting device and other moving body position detecting method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011248370 2011-11-14
JP2011248370 2011-11-14
PCT/JP2012/078623 WO2013073399A1 (en) 2011-11-14 2012-11-05 Moving object position detection device and moving object position detection method
JP2013544215A JP5757595B2 (en) 2011-11-14 2012-11-05 Other moving body position detecting device and other moving body position detecting method

Publications (2)

Publication Number Publication Date
JPWO2013073399A1 JPWO2013073399A1 (en) 2015-04-02
JP5757595B2 true JP5757595B2 (en) 2015-07-29

Family

ID=48429465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013544215A Active JP5757595B2 (en) 2011-11-14 2012-11-05 Other moving body position detecting device and other moving body position detecting method

Country Status (2)

Country Link
JP (1) JP5757595B2 (en)
WO (1) WO2013073399A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6488245B2 (en) * 2016-02-23 2019-03-20 日本電信電話株式会社 Sound source localization apparatus, method, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0592767U (en) * 1992-05-18 1993-12-17 株式会社豊田中央研究所 Approaching vehicle recognition device
JP4952950B2 (en) * 2008-06-24 2012-06-13 独立行政法人産業技術総合研究所 Unusual sound detection system
JP4703788B2 (en) * 2009-07-02 2011-06-15 パナソニック株式会社 Vehicle position detection device and vehicle position detection method
JP5446559B2 (en) * 2009-08-04 2014-03-19 日産自動車株式会社 Vehicle position calculation device and vehicle position calculation method

Also Published As

Publication number Publication date
JPWO2013073399A1 (en) 2015-04-02
WO2013073399A1 (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP6363209B2 (en) Interferometric vibration observation apparatus, vibration observation program, recording medium, vibration observation method, and vibration observation system
EP3508871B1 (en) Estimation method, estimation device, and program
EP3227703B1 (en) Methods and systems for spectral analysis of sonar data
JP2016510106A5 (en)
EP3825719A1 (en) Method and apparatus with measuring of three-dimensional position using radar sensor
JP2013068434A (en) Sound source detection device
EP3378706B1 (en) Vehicular notification device and vehicular notification method
KR102374304B1 (en) Method and system for estimating a location of an unidentified submarine signal
JP2006119149A (en) Angle measurement device for underwater moving body, and angle measurement method for the underwater moving body
US9820043B2 (en) Sound source detection apparatus, method for detecting sound source, and program
JP2013201525A (en) Beam forming processing unit
KR101086304B1 (en) Signal processing apparatus and method for removing reflected wave generated by robot platform
JP5593547B2 (en) Wave source position calculation method and wave source position calculation apparatus
JP5526643B2 (en) Vehicle position calculation device, driving support device, and vehicle position calculation method
JP5757595B2 (en) Other moving body position detecting device and other moving body position detecting method
JP2007333616A (en) Radar measurement system
KR101837845B1 (en) System and method for obtaining information of underwater target
US11782150B2 (en) Method and apparatus for processing CFAR of sensor data
KR101783822B1 (en) Method for estimating location of noise source within watercraft
JP5561424B1 (en) Display control apparatus, display control method, and program
JP6610224B2 (en) Bistatic active sonar device and its receiver
JP2013104767A (en) Object position detector and object position detection method
JP3030332B2 (en) Normal mode eigenvalue estimation method
KR101547605B1 (en) Apparatus and method of detecting a underwater moving object
JP2020067381A (en) On-vehicle sound source direction detection system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150528

R150 Certificate of patent or registration of utility model

Ref document number: 5757595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150