JP5757466B2 - Filler material and overlay metal member using the same - Google Patents

Filler material and overlay metal member using the same Download PDF

Info

Publication number
JP5757466B2
JP5757466B2 JP2011177244A JP2011177244A JP5757466B2 JP 5757466 B2 JP5757466 B2 JP 5757466B2 JP 2011177244 A JP2011177244 A JP 2011177244A JP 2011177244 A JP2011177244 A JP 2011177244A JP 5757466 B2 JP5757466 B2 JP 5757466B2
Authority
JP
Japan
Prior art keywords
welding
metal
build
temperature hardness
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011177244A
Other languages
Japanese (ja)
Other versions
JP2013039589A (en
Inventor
堀尾 浩次
浩次 堀尾
加藤 徹
徹 加藤
知巳 山本
知巳 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2011177244A priority Critical patent/JP5757466B2/en
Publication of JP2013039589A publication Critical patent/JP2013039589A/en
Application granted granted Critical
Publication of JP5757466B2 publication Critical patent/JP5757466B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

本発明は、溶加材及びこれを用いた肉盛金属部材に関し、特に、連続鋳造用ロールの胴部の如きに肉盛溶接するためのマルテンサイト系ステンレス鋼からなる溶加材及びこの肉盛金属部材に関する。   The present invention relates to a filler material and a built-up metal member using the same, and in particular, a filler material made of martensitic stainless steel for overlay welding such as a body portion of a continuous casting roll, and the overlay. The present invention relates to a metal member.

鉄鋼製品の製造工程の1つである連続鋳造では、タンディッシュから鋳型を介して連続供給される鋼を複数の対向する連続鋳造用ロールの間に挟み込んで搬送しながら冷却水を吹き付けて冷却を行っている。かかる工程で使用される連続鋳造用ロールは、高温の鋼との接触や、冷却水又はその蒸気に曝される過酷な環境下で使用されるため、耐熱性、耐食性、耐摩耗性などが求められる。そこで、一般的には、このような化学的及び機械的性質に優れる13Cr−4〜8Ni系のマルテンサイト系ステンレス鋼からなる肉盛金属部を胴部に肉盛溶接によって与えた複合ロールが用いられている。   In continuous casting, which is one of the manufacturing processes of steel products, cooling is performed by spraying cooling water while sandwiching and transporting steel that is continuously supplied from a tundish via a casting mold between multiple opposing continuous casting rolls. Is going. Rolls for continuous casting used in such processes are used in harsh environments where they are exposed to high-temperature steel or exposed to cooling water or its vapor, so heat resistance, corrosion resistance, wear resistance, etc. are required. It is done. Therefore, in general, a composite roll in which a build-up metal part made of 13Cr-4-8Ni martensitic stainless steel having excellent chemical and mechanical properties is given to the body part by overlay welding is used. It has been.

例えば、特許文献1では、このような肉盛金属部を与える肉盛溶接用の溶加材を開示している。溶加材は、質量%で、C:0.10〜0.33%、Si:0.2〜0.5%、Mn:0.5〜2.0%、Ni:0.5%以下、Co:0.5〜4.0%、Cr:11.5〜14.0%、Mo:0.5〜1.0%、Nb:0.05〜0.50%、V:0.10〜0.30%、W:0.3〜1.0%、Cu:0.5〜2.0%、残部Fe及び不可避的不純物からなる成分組成を有している。つまり、上記した13Cr−4〜8Ni系合金に対してNiの添加量を減じている。かかる溶加材は、連続鋳造用ロールの胴部に肉盛溶接されて肉盛溶接部を形成し、580〜700℃の温度範囲で熱処理を施すことで、高い耐熱性と耐摩耗性をロールに付与できるとしている。この主因として、Niの添加量を減じたことでAc1点が上昇し、高かった自己変態応力が減じられて、熱疲労亀裂による表層の防食皮膜の破壊を抑制できることを述べている。 For example, Patent Document 1 discloses a filler material for overlay welding that gives such an overlay metal part. The filler material is mass%, C: 0.10 to 0.33%, Si: 0.2 to 0.5%, Mn: 0.5 to 2.0%, Ni: 0.5% or less, Co: 0.5 to 4.0%, Cr: 11.5 to 14.0%, Mo: 0.5 to 1.0%, Nb: 0.05 to 0.50%, V: 0.10 It has a component composition consisting of 0.30%, W: 0.3-1.0%, Cu: 0.5-2.0%, the balance Fe and inevitable impurities. That is, the amount of Ni added is reduced with respect to the 13Cr-4-8Ni alloy described above. Such a filler material is welded to the body of a continuous casting roll to form a weld overlay, and heat treatment is performed at a temperature range of 580 to 700 ° C., whereby high heat resistance and wear resistance are rolled. It can be granted to. As the main cause, it is stated that by reducing the amount of Ni added, the Ac 1 point is raised, the high self-transformation stress is reduced, and the destruction of the anticorrosive film on the surface layer due to thermal fatigue cracks can be suppressed.

また、特許文献2では、13Cr−4〜8Ni系合金に対して、Crの添加量を増やすとともにNiの添加量を減じた成分組成を有する溶加材を開示している。すなわち、溶加材は、質量%で、C:0.15〜0.25%、Si:0.2〜1.0%、Mn:0.5〜2.0%、Ni:0.5%以下、Co:0.5〜3.0%、Cr:15.0〜18.0%、Mo:0.5〜1.0%、Nb:0.05〜0.5%、V:0.1〜0.5%、W:0.3〜1.0%、Cu:0.5〜2.0%、残部Fe及び不可避的不純物からなる成分組成を有している。かかる溶加材においても、連続鋳造用ロールの胴部に肉盛溶接されて肉盛溶接部を形成し、580〜700℃の温度範囲で熱処理を施すことでロールに高い耐熱性や耐食性などを与え得るとしている。その主因として、Crを炭化物形成に必要な量よりも過剰に添加して固溶させ、ロールの使用中に酸化による不動態を形成させること、また、Niの添加量を減じたことで、特許文献1と同様に自己変態応力を抑制することに加え、オーステナイト領域を縮小し伸長型のγ粒の形成を抑制しながらマルテンサイト相を微細化できることについて述べている。   Patent Document 2 discloses a filler material having a component composition in which the addition amount of Cr is increased and the addition amount of Ni is reduced with respect to the 13Cr-4 to 8Ni alloy. That is, the filler material is mass%, C: 0.15-0.25%, Si: 0.2-1.0%, Mn: 0.5-2.0%, Ni: 0.5% Hereinafter, Co: 0.5 to 3.0%, Cr: 15.0 to 18.0%, Mo: 0.5 to 1.0%, Nb: 0.05 to 0.5%, V: 0.00. It has a component composition consisting of 1 to 0.5%, W: 0.3 to 1.0%, Cu: 0.5 to 2.0%, the balance Fe and inevitable impurities. Even in such a filler metal, overlay welding is performed on the body of the continuous casting roll to form an overlay weld, and heat treatment is performed in a temperature range of 580 to 700 ° C., so that the roll has high heat resistance and corrosion resistance. Trying to give. The main reason for this is that Cr is added in excess of the amount required for carbide formation to form a solid solution, forming a passive state due to oxidation during use of the roll, and reducing the amount of Ni added. In addition to suppressing self-transformation stress as in Reference 1, it describes that the martensite phase can be refined while reducing the austenite region and suppressing the formation of elongated γ grains.

いずれにしても、特許文献1及び2に開示された溶加材では、肉盛溶接後、硬く靭性に乏しいマルテンサイト相を主たる組織とする肉盛形成部を与えるが、溶接後に熱処理を施して焼き戻すことで、連続鋳造用ロールとして必要とされる硬さと靭性とを確保しているのである。   In any case, in the filler metal disclosed in Patent Documents 1 and 2, after the overlay welding, a build-up forming portion having a hard and poor tough martensite phase as a main structure is provided. By tempering, the hardness and toughness required as a continuous casting roll are secured.

特開平7−173578号公報JP-A-7-173578 特開2010−196108号公報JP 2010-196108 A

ところで、上記したようなマルテンサイト相を主たる組織とする肉盛形成部を与えた肉盛部材では、溶接後にあっても比較的高い靭性と硬さを併せ持つようにすることで、溶接後の熱処理を省略できて、その生産性を向上させ得る。   By the way, in the build-up member provided with the build-up forming portion mainly composed of the martensite phase as described above, heat treatment after welding is achieved by having both relatively high toughness and hardness even after welding. Can be omitted and the productivity can be improved.

本発明は、かかる事情に鑑みてなされたものであって、その目的とするところは、溶接後に熱処理を施さずとも比較的高い靭性と硬さとを具備する肉盛金属部を与えられた肉盛金属部材、及び、この肉盛金属部を与え得る溶加材を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to build up a built-up metal part having relatively high toughness and hardness without performing heat treatment after welding. It is providing the metal member and the filler material which can give this build-up metal part.

本発明による肉盛金属部材は、溶加材を肉盛溶接して与えられた肉盛金属部を含む肉盛金属部材であって、前記肉盛金属部は、質量%で、C:0.03〜0.10%、Si:0.1〜1.6%、Mn:0.1〜1.6%、Ni:3.0〜6.0%、Cr:11.0〜18.0%、及び、W:2.0〜5.0%を含み、更に、O:0.05%以下を含み得て、残部Feと不可避的不純物からなる成分組成を有するマルテンサイト系ステンレス鋼からなることを特徴とする。   The build-up metal member according to the present invention is a build-up metal member including a build-up metal part provided by build-up welding of a filler material, and the build-up metal part is in mass%, and C: 0. 03 to 0.10%, Si: 0.1 to 1.6%, Mn: 0.1 to 1.6%, Ni: 3.0 to 6.0%, Cr: 11.0 to 18.0% And W: 2.0 to 5.0%, and further O: 0.05% or less, and made of martensitic stainless steel having a composition composed of the balance Fe and inevitable impurities. It is characterized by.

かかる発明によれば、肉盛金属部材は、溶接後に熱処理を施さずとも比較的高い靭性と硬さとを併せ持つ肉盛金属部を含むから、その生産性に高く安価ながら耐久性にも優れるのである。   According to this invention, since the built-up metal member includes the built-up metal portion having both relatively high toughness and hardness without being subjected to heat treatment after welding, the productivity is high and the durability is excellent while being inexpensive. .

上記した発明において、更に、前記肉盛金属部は、Nb:0.1〜1.0%の範囲内で含み得ることを特徴としてもよい。かかる発明によれば、肉盛金属部材は、溶接後に熱処理を施さずともさらに高い靭性を持つ肉盛金属部を含むから、その生産性に高く安価ながらより耐久性にも優れるのである。   In the above-described invention, the build-up metal part may further include Nb: within a range of 0.1 to 1.0%. According to this invention, since the built-up metal member includes the built-up metal portion having higher toughness without being subjected to heat treatment after welding, the productivity is high and the durability is excellent while being inexpensive.

上記した発明において、更に、前記肉盛金属部は、Mo:0.1〜3.0%、V:0.1〜0.5%のそれぞれの範囲内で少なくとも1つを含み得ることを特徴としてもよい。かかる発明によれば、肉盛金属部材は、溶接後に熱処理を施さずとも高い高温硬さを有する肉盛金属部を含むから、故に生産性に高く安価ながらより耐久性にも優れるのである。   In the above-described invention, the build-up metal part may further include at least one of Mo: 0.1 to 3.0% and V: 0.1 to 0.5%. It is good. According to this invention, since the built-up metal member includes the built-up metal part having high high-temperature hardness without being subjected to heat treatment after welding, it is therefore excellent in durability while being high in productivity and inexpensive.

上記した発明において、前記肉盛金属部は、複数の層からなることを特徴としてもよい。かかる発明によれば、肉盛金属部材は、溶接後に熱処理を施さずともより高い靭性と硬さを併せ持つ肉盛金属部を含み、特に肉盛金属部の表層部において高い靭性と硬さを併せ持つから、故に生産性に高く安価ながら耐久性に優れるのである。   In the above-described invention, the build-up metal part may be composed of a plurality of layers. According to this invention, the built-up metal member includes the built-up metal portion having both higher toughness and hardness without being subjected to heat treatment after welding, and particularly has high toughness and hardness in the surface layer portion of the built-up metal portion. Therefore, it is excellent in durability while being high in productivity and inexpensive.

上記した発明において、前記肉盛金属部材は連続鋳造用ロールであることを特徴とする。かかる発明によれば、肉盛金属部材は、過酷な環境下で使用される連続鋳造用ロールでありながら、故に生産性に高く安価ながら耐久性に優れるのである。   In the above-described invention, the build-up metal member is a continuous casting roll. According to this invention, the built-up metal member is a continuous casting roll used in a harsh environment, and therefore has high productivity and low cost but excellent durability.

本発明による溶加材は、マルテンサイト系ステンレス鋼からなる粉体の肉盛溶接用溶加材であって、必須添加元素として、質量%で、C:0.06〜0.15%、Si:0.1〜1.7%、Mn:0.1〜1.7%、Ni:3.0〜6.0%、Cr:11.0〜18.0%、及び、W:2.0〜5.0%を含み、更に任意添加元素として、O:0.08%以下を含み得て、残部Feと不可避的不純物からなる金属粉であることを特徴とする。   The filler material according to the present invention is a filler material for overlay welding of powder made of martensitic stainless steel, and as an essential additive element in mass%, C: 0.06 to 0.15%, Si : 0.1-1.7%, Mn: 0.1-1.7%, Ni: 3.0-6.0%, Cr: 11.0-18.0%, and W: 2.0 It is characterized by being a metal powder comprising -5.0% and further containing O: 0.08% or less as an optional additive element, the balance being Fe and inevitable impurities.

かかる発明によれば、脱炭を伴って肉盛溶接される金属粉でありながら、溶接後に熱処理を施さずとも比較的高い靭性と硬さを併せ持った肉盛金属部を与え、故に生産性に高く安価ながら耐久性に優れる肉盛金属部材を与え得るのである。   According to this invention, although it is a metal powder that is overlay welded with decarburization, it provides a built-up metal portion having both relatively high toughness and hardness without performing heat treatment after welding, and thus in productivity. It is possible to provide a built-up metal member that is high in cost and excellent in durability.

本発明による溶加材は、マルテンサイト系ステンレス鋼からなる線状体の肉盛溶接用溶加材であって、必須添加元素として、質量%で、C:0.03〜0.10%、Si:0.1〜1.7%、Mn:0.1〜1.7%、Ni:3.0〜6.0%、Cr:11.0〜18.0%、及び、W:2.0〜5.0%を含み、更に任意添加元素として、O:0.02%以下を含み得て、残部Feと不可避的不純物からなる金属線状体であることを特徴とする。   The filler material according to the present invention is a filler material for overlay welding of a linear body made of martensitic stainless steel, and as an essential additive element in mass%, C: 0.03 to 0.10%, Si: 0.1 to 1.7%, Mn: 0.1 to 1.7%, Ni: 3.0 to 6.0%, Cr: 11.0 to 18.0%, and W: 2. It is characterized by being a metal linear body comprising 0 to 5.0%, further containing O: 0.02% or less as an optional additive element, and the balance being Fe and inevitable impurities.

かかる発明によれば、取り扱いの容易な線状体であり、且つ、溶接後に熱処理を施さずとも比較的高い靭性と硬さを併せ持った肉盛金属部を与え、故に生産性に高く安価ながら耐久性に優れる肉盛金属部材を与え得るのである。   According to this invention, it is a linear body that is easy to handle, and gives a built-up metal part that has both relatively high toughness and hardness without being subjected to heat treatment after welding, and thus is highly productive and inexpensive but durable. Therefore, it is possible to provide a built-up metal member having excellent properties.

上記した発明において、更に、前記肉盛金属部は、Nb:0.1〜1.0%の範囲内で含み得ることを特徴としてもよい。かかる発明によれば、溶接後に熱処理を施さずとも、更に高い靭性を有する肉盛金属部を与え、生産性に高く故に安価ながら耐久性に優れる肉盛金属部材を与え得るのである。   In the above-described invention, the build-up metal part may further include Nb: within a range of 0.1 to 1.0%. According to this invention, even if it does not heat-process after welding, the build-up metal part which has still higher toughness can be given, and since it is high in productivity, it can give the build-up metal member excellent in durability though it is cheap.

上記した発明において、前記任意添加元素として、Mo:0.1〜3.0%、V:0.1〜0.5%の範囲内で含み得ることを特徴としてもよい。かかる発明によれば、溶接後に熱処理を施さずとも高い高温硬さを有する肉盛金属部を与え、故に生産性に高く安価ながらより耐久性に優れる肉盛金属部材を与え得るのである。   In the above-described invention, the optional additive element may include Mo: 0.1 to 3.0% and V: 0.1 to 0.5%. According to this invention, it is possible to provide a built-up metal part having high high-temperature hardness without being subjected to heat treatment after welding, and therefore, it is possible to provide a built-up metal member that is highly productive and inexpensive but more durable.

本発明による肉盛金属部材である連続鋳造用ロールの(a)斜視図、及び、(b)要部の断面図である。It is the (a) perspective view and (b) sectional drawing of the principal part of the roll for continuous casting which is the build-up metal member by this invention. 試験片の斜視図である。It is a perspective view of a test piece. 溶接用溶加材(金属粉)の実施例及び比較例の成分組成を示す図である。It is a figure which shows the component composition of the Example of a filler material for welding (metal powder) and a comparative example. 溶接用溶加材(金属ワイヤ)の実施例及び比較例の成分組成を示す図である。It is a figure which shows the component composition of the Example of a filler material for welding (metal wire) and a comparative example. 実施例及び比較例の肉盛溶接部の成分組成と試験結果を示す図である。It is a figure which shows the component composition and test result of the overlay welding part of an Example and a comparative example. 実施例及び比較例の肉盛溶接部の成分組成と試験結果を示す図である。It is a figure which shows the component composition and test result of the overlay welding part of an Example and a comparative example.

本発明による肉盛金属部材の1つの実施例として、鉄鋼製品の製造工程における連続鋳造で使用される連続鋳造用ロールについて説明する。   As one embodiment of the built-up metal member according to the present invention, a continuous casting roll used in continuous casting in a manufacturing process of steel products will be described.

図1(a)に示すように、連続鋳造用ロール1は、略円柱状のロール本体2と、その両側部から長手方向外方へ向けて突出する軸部3とからなる。同図(b)に示すように、ロール本体2の芯部20の外表面には、複数に層状に肉盛られた肉盛層21、すなわち、第1肉盛層21a、第2肉盛層21b及び第3肉盛層21cを与えられている。肉盛層21を与える溶接用溶加材及び施工の詳細については後述される。   As shown to Fig.1 (a), the roll 1 for continuous casting consists of the substantially cylindrical roll main body 2, and the axial part 3 which protrudes toward a longitudinal direction outward from the both sides. As shown in FIG. 2B, on the outer surface of the core portion 20 of the roll body 2, a plurality of built-up layers 21, that is, a first built-up layer 21a and a second built-up layer are formed. 21b and a third built-up layer 21c are provided. The details of the welding filler material and construction for providing the overlay layer 21 will be described later.

次に、図2に示すような、連続鋳造用ロール1のロール本体2(図1参照)を模した試験片4を作製し、各種試験を行った。すなわち、図3に示す成分組成を有する金属粉体からなる溶接用溶加材、及び、図4に示す成分組成を有する金属ワイヤからなる溶接用溶加材を用いて、被溶接試験片40の上に多層に肉盛溶接し肉盛溶接部41を形成した試験片4を得て、各種試験に供している。   Next, a test piece 4 imitating the roll body 2 (see FIG. 1) of the continuous casting roll 1 as shown in FIG. 2 was prepared, and various tests were performed. That is, using the welding filler material made of metal powder having the component composition shown in FIG. 3 and the welding filler material made of metal wire having the component composition shown in FIG. A test piece 4 in which a build-up weld 41 is formed by overlay welding on multiple layers is provided for various tests.

詳細には、JIS SUS410からなる厚さ9mm、幅100mm、長さ200mmの略直方体の被溶接試験片40を用意する。この被溶接試験片40の上に、金属粉体からなる溶接用溶加材及び金属ワイヤ(線状体)からなる溶接用溶加材を用いて、以下の溶接条件で肉盛溶接し、肉盛溶接部41を与える。   Specifically, a substantially rectangular parallelepiped welded specimen 40 having a thickness of 9 mm, a width of 100 mm, and a length of 200 mm made of JIS SUS410 is prepared. Using this welding test piece 40, welding welding material made of metal powder and welding filler material made of metal wire (linear body) were subjected to overlay welding under the following welding conditions, A prime weld 41 is provided.

まず、ガスアトマイズ法で製造された図3に示す成分組成を有する金属粉体からなる溶接用溶加材を使用して、被溶接試験片40の一方の表面上にPTA(Plasma Transferred Arc)溶接で3層の肉盛溶接を行う。   First, using a welding filler material made of a metal powder having the composition shown in FIG. 3 manufactured by the gas atomization method, PTA (Plasma Transferred Arc) welding is performed on one surface of the test piece 40 to be welded. Three-layer overlay welding is performed.

PTA溶接では、粉末キャリアガス、プラズマガス及びシールドガスにArを用い、これらの供給量をそれぞれ3.0、1.2及び14.0L/minとし、溶接電流を150A、アーク電圧を27V、粉末供給量を12g/minに設定し、チップ−母材間距離を10mm、溶接速度40mm/minでウィービングを幅8mm、回数2Hzで溶接する。ここで、パス間温度を150℃以下、1層目のパス数を22、2層目のパス数を21、3層目のパス数を20とした。なお、肉盛溶接部への母材の溶け込みを防止するため、1層目の肉盛溶接をする前に溶接に用いる溶接用溶加材で2層のバタリングを行う。   In PTA welding, Ar is used for the powder carrier gas, plasma gas and shield gas, the supply amounts thereof are 3.0, 1.2 and 14.0 L / min, the welding current is 150 A, the arc voltage is 27 V, the powder The supply amount is set to 12 g / min, the tip-base metal distance is 10 mm, the welding speed is 40 mm / min, the weaving is 8 mm in width, and the number of times is 2 Hz. Here, the temperature between passes was 150 ° C. or less, the number of passes in the first layer was 22, the number of passes in the second layer was 21, and the number of passes in the third layer was 20. In order to prevent the base metal from being melted into the build-up weld, two layers of buttering are performed with a welding filler material used for welding before the first build-up welding.

一方、図4に示す成分組成を有する金属ワイヤからなる溶接用溶加材を使用して、被溶接試験片40の一方の表面上にMAG(Metal Arc Gass)溶接で3層の肉盛溶接を行う。   On the other hand, using a welding filler metal made of a metal wire having the composition shown in FIG. 4, MAG (Metal Arc Gas) welding is performed on one surface of the welded test piece 40 by three-layer overlay welding. Do.

金属ワイヤからなる溶接用溶加材は、真空高周波溶解炉を用いて得た50kgの鋼塊に熱間鍛造、圧延、伸線加工を施して、図4に示す成分組成を有する直径1.2mmの金属ワイヤに仕上げた。   The welding filler metal made of metal wire is hot forged, rolled and drawn on a 50 kg steel ingot obtained using a vacuum high-frequency melting furnace, and has a diameter of 1.2 mm having the component composition shown in FIG. Finished with metal wire.

MAG溶接は、シールドガスにAr80%+CO20%の混合ガスを用い、供給量を15.0L/minとし、溶接電流を150A、アーク電圧を21Vに設定し、チップ−母材間距離を15mm、溶接速度を300mm/minで溶接する。ここで、1層目のパス数を13、2層目のパス数を12、3層目のパス数を11とした。なお、上記したPTA溶接と同様に、肉盛溶接部への母材の溶け込みを防止するため、1層目の肉盛溶接をする前に溶接に用いる溶加材で2層のバタリングを行う。 MAG welding uses a mixed gas of Ar 80% + CO 2 20% as the shielding gas, the supply amount is set to 15.0 L / min, the welding current is set to 150 A, the arc voltage is set to 21 V, and the tip-base metal distance is 15 mm. The welding speed is 300 mm / min. Here, the number of passes in the first layer was 13, the number of passes in the second layer was 12, and the number of passes in the third layer was 11. Similarly to the above-described PTA welding, two layers of buttering are performed with a filler material used for welding before the first overlay welding in order to prevent the base metal from being melted into the overlay welding portion.

上記した溶接後の各試験片4の肉盛溶接部41からは、ビッカース硬さ試験及び組成分析試験に使用する試験片1つと、シャルピー衝撃試験に用いる試験片3とをそれぞれ切り出した。切り出し位置は、肉盛溶接部41のなるべく表層部分とした。   One test piece used for the Vickers hardness test and composition analysis test and one test piece 3 used for the Charpy impact test were cut out from the build-up welded portion 41 of each test piece 4 after welding. The cutout position was set as a surface layer portion of the build-up welded portion 41 as much as possible.

ビッカース硬さ試験は、市販のビッカース硬度計を用い、室温及び600℃でそれぞれ3点の計測をし、その平均値を計測値とした。成分組成試験は、ビッカース硬さ試験後の試験片を化学分析して成分組成を同定した。また、シャルピー衝撃試験は、市販のシャルピー衝撃試験装置を用い、室温で3回の計測をし、その平均値を計測値とした。得られた各試験結果を図5及び6にまとめた。   In the Vickers hardness test, a commercially available Vickers hardness tester was used, and three points were measured at room temperature and 600 ° C., and the average value was taken as the measured value. In the component composition test, the test piece after the Vickers hardness test was chemically analyzed to identify the component composition. Moreover, the Charpy impact test measured 3 times at room temperature using the commercially available Charpy impact test apparatus, and made the average value the measured value. The obtained test results are summarized in FIGS.

まず、金属粉体からなる溶接用溶加材を用いて得られた実施例1乃至6、及び、比較例1乃至15の試験結果について、図5を用いて説明する。   First, the test results of Examples 1 to 6 and Comparative Examples 1 to 15 obtained using a welding filler material made of metal powder will be described with reference to FIG.

実施例1乃至6では、衝撃値48〜78J/cm、室温硬さ335〜384Hv、高温(600℃)硬さ190〜242Hvであった。すなわち、肉盛溶接部41は、溶接後に熱処理を施してはいないが、従来の熱処理を施して供される13Cr−4〜8Ni系のマルテンサイト系ステンレス鋼からなる肉盛金属部程度の比較的高い靭性及び硬さを併せ持っている。 In Examples 1 to 6, the impact value was 48 to 78 J / cm 2 , the room temperature hardness was 335 to 384 Hv, and the high temperature (600 ° C.) hardness was 190 to 242 Hv. That is, the build-up weld portion 41 is not subjected to heat treatment after welding, but is relatively as large as a build-up metal portion made of 13Cr-4-8Ni martensitic stainless steel provided by performing a conventional heat treatment. It has both high toughness and hardness.

詳細には、実施例1に対し、Cの含有量の少ない比較例1では、衝撃値はほとんど変わらないものの、室温硬さが221Hvと低下した。一方、実施例1に対し、Cの含有量の多い比較例2では、室温硬さ及び高温硬さはほとんど変わらなかったものの、衝撃値は25J/cmと低下した。比較例1では、マルテンサイト相の生成が十分でなく、比較例2では、炭化物が粒界に偏析し靭性を低下させたものと考える。 In detail, compared with Example 1, in Comparative Example 1 with a small C content, the impact value hardly changed, but the room temperature hardness decreased to 221 Hv. On the other hand, compared with Example 1, in Comparative Example 2 having a large C content, the room temperature hardness and the high temperature hardness were hardly changed, but the impact value was reduced to 25 J / cm 2 . In Comparative Example 1, the martensite phase is not sufficiently generated, and in Comparative Example 2, it is considered that the carbide segregates at the grain boundaries and lowers the toughness.

実施例1に対し、Siの含有量の少ない比較例3では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は22J/cmと低下した。一方、実施例1に対し、Siの含有量の多い比較例4では、同様に、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は32J/cmと低下した。比較例3では、Siによる脱酸が不十分であり酸化物を生成したものと考える。 Compared to Example 1, in Comparative Example 3 having a low Si content, the room temperature hardness and the high temperature hardness remained almost the same, but the impact value decreased to 22 J / cm 2 . On the other hand, compared with Example 1, in Comparative Example 4 having a large Si content, similarly, although the room temperature hardness and the high temperature hardness remained almost the same, the impact value decreased to 32 J / cm 2 . In Comparative Example 3, it is considered that deoxidation by Si was insufficient and an oxide was generated.

実施例1に対し、Mnの含有量の少ない比較例5では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は13J/cmと低下した。一方、実施例1に対し、Mnの含有量の多い比較例6でも、同様に、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は38J/cmと低下した。比較例5では、Mnによる脱酸が不十分で酸化物を精製したものと考える。 Compared to Example 1, in Comparative Example 5 having a low Mn content, the room temperature hardness and the high temperature hardness remained almost unchanged, but the impact value decreased to 13 J / cm 2 . On the other hand, compared with Example 1, also in Comparative Example 6 having a large Mn content, the impact value decreased to 38 J / cm 2 although the room temperature hardness and the high temperature hardness were hardly changed. In Comparative Example 5, it is considered that deoxidation by Mn was insufficient and the oxide was purified.

実施例1に対し、Niの含有量の少ない比較例7では、衝撃値、室温硬さ、及び、高温硬さのそれぞれは15J/cm、274Hv及び121Hvであり、いずれも低下している。一方、実施例1に対し、Niの含有量の多い比較例8では、衝撃値はほとんど変わらないものの、室温硬さ及び高温硬さはそれぞれ288Hv及び156Hvと低下した。比較例7では、フェライト相が多くなりマルテンサイト相の生成が十分でなかったと考える。一方、比較例8では、残留オーステナイト相が過剰であったと考える。 Compared to Example 1, in Comparative Example 7 with a low Ni content, the impact value, room temperature hardness, and high temperature hardness were 15 J / cm 2 , 274 Hv, and 121 Hv, respectively, which are all reduced. On the other hand, compared with Example 1, in Comparative Example 8 having a large Ni content, although the impact value hardly changed, the room temperature hardness and the high temperature hardness decreased to 288 Hv and 156 Hv, respectively. In Comparative Example 7, it is considered that the ferrite phase increased and the martensite phase was not sufficiently generated. On the other hand, in Comparative Example 8, it is considered that the retained austenite phase was excessive.

実施例1に対し、Crの含有量の多い比較例9では、衝撃値はほとんど変わらないものの、室温硬さ及び高温硬さはそれぞれ270Hv及び165Hvと低下している。比較例9では、安定したフェライト相により焼き入れが不十分となり、マルテンサイト相の生成が十分でなかったと考える。   Compared to Example 1, in Comparative Example 9 where the Cr content is large, the impact value hardly changes, but the room temperature hardness and the high temperature hardness are reduced to 270 Hv and 165 Hv, respectively. In Comparative Example 9, it is considered that quenching was insufficient due to the stable ferrite phase, and the martensite phase was not sufficiently generated.

実施例1に対し、Wの含有量の少ない比較例10では、室温硬さ及び高温硬さはほとんどり変わらないものの、衝撃値は28J/cmと低下している。一方、実施例1に対し、Wの含有量の多い比較例11では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は35J/cmと低下した。比較例10では、凝固時にWの炭化物を十分に生成できず、これを結晶核として微細化するはずの肉盛溶接部の結晶組織が粗大化してしまったと考える。一方、比較例11では、Wの炭化物を過剰生成させてしまったものと考える。 Compared to Example 1, in Comparative Example 10 having a small W content, the room temperature hardness and the high temperature hardness hardly change, but the impact value is reduced to 28 J / cm 2 . On the other hand, compared with Example 1, in Comparative Example 11 having a large W content, the room temperature hardness and the high temperature hardness remained almost the same, but the impact value decreased to 35 J / cm 2 . In Comparative Example 10, it is considered that the carbide of W cannot be sufficiently generated during solidification, and the crystal structure of the built-up weld that should be refined as a crystal nucleus is coarsened. On the other hand, in Comparative Example 11, it is considered that W carbide was excessively generated.

実施例1に対し、Oの含有量の多い比較例12では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は27J/cmと低下している、比較例12では、酸化物が過剰生成したものと考える。 Compared to Example 1, in Comparative Example 12 with a large content of O, the room temperature hardness and the high temperature hardness hardly change, but the impact value is reduced to 27 J / cm 2. In Comparative Example 12, the oxide is oxide. Is considered to be overgenerated.

実施例1に対し、Nbの含有量の多い比較例13では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は20J/cmと低下している。比較例13では、Nbの炭化物が粒界析出し衝撃値を低下させたと考える。 Compared to Example 1, in Comparative Example 13 where the Nb content is large, the room temperature hardness and the high temperature hardness are almost the same, but the impact value is reduced to 20 J / cm 2 . In Comparative Example 13, it is considered that the carbide of Nb was precipitated at the grain boundaries to reduce the impact value.

実施例1に対し、Moの含有量の多い比較例14では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は21J/cmと低下している。比較例14では、Moの炭化物が粒界析出し衝撃値を低下させたと考える。 Compared to Example 1, in Comparative Example 14 having a large Mo content, the room temperature hardness and the high temperature hardness remained almost the same, but the impact value decreased to 21 J / cm 2 . In Comparative Example 14, it is considered that Mo carbides precipitated at the grain boundaries and lowered the impact value.

実施例1に対し、Vの含有量の多い比較例15では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は25J/cmと低下している。比較例15では、Vの炭化物が粒界析出し衝撃値を低下させたと考える。 Compared to Example 1, in Comparative Example 15 having a large V content, the room temperature hardness and the high temperature hardness hardly change, but the impact value is reduced to 25 J / cm 2 . In Comparative Example 15, it is considered that the carbide of V was precipitated at the grain boundary and lowered the impact value.

次に、実施例2は、衝撃値49J/cm、室温硬さ335Hv、高温硬さ190Hvであった。この実施例2に対し、Nbを添加した実施例3では、室温硬さは347Hv、高温硬さは201Hvと高く、特に衝撃値は78J/cmと高い。NbはCと結合して微細な炭化物を生成し、これを凝固核として肉盛溶接部の結晶組織を微細化させ、衝撃値を高めたものと考える。 Next, in Example 2, the impact value was 49 J / cm 2 , the room temperature hardness was 335 Hv, and the high temperature hardness was 190 Hv. Compared to Example 2, in Example 3 in which Nb was added, the room temperature hardness was as high as 347 Hv, the high temperature hardness was as high as 201 Hv, and the impact value was particularly high as 78 J / cm 2 . Nb combines with C to produce fine carbides, which are used as solidification nuclei to refine the crystal structure of the weld overlay and increase the impact value.

実施例2に対し、MoやVを添加した実施例4乃至6では、衝撃値は48〜53J/cmとほとんど変わらないものの、室温硬さは350〜371Hv、高温硬さは218〜238Hvと高い。Mo及びVはCと結合して炭化物を生成し、室温硬さ及び高温硬さを向上させたものと考えられる。 Compared to Example 2, in Examples 4 to 6 to which Mo or V was added, although the impact value was almost the same as 48 to 53 J / cm 2 , the room temperature hardness was 350 to 371 Hv, and the high temperature hardness was 218 to 238 Hv. high. It is considered that Mo and V combine with C to generate carbides, and improve room temperature hardness and high temperature hardness.

なお、実施例に対し、Nb、Mo及びVを添加した実施例1では、衝撃値は75J/cm、室温硬さは384Hv、高温硬さは242Hvといずれも高くなっている。このことからも、上記と同様に、Nbは衝撃値を向上させ、Mo及びVは室温硬さ及び高温硬さを向上させるものと考える。
Incidentally, with respect to Example 2, Nb, in Example 1 were added Mo and V, impact value 75 J / cm 2, room temperature hardness 384Hv, high-temperature hardness is higher both with 242Hv. From this, it is considered that Nb improves the impact value, and Mo and V improve the room temperature hardness and the high temperature hardness, as described above.

すなわち、実施例1乃至6では比較例1乃至15と比較して、肉盛溶接部において高い靭性と硬さを両立している。このような図5に示す成分組成の肉盛溶接部を与える金属粉からなる溶接用溶加材は、一方で、図3に示す成分組成を有している。   That is, in Examples 1 to 6, compared to Comparative Examples 1 to 15, both high toughness and hardness are achieved in the overlay weld. On the other hand, the filler metal for welding which consists of metal powder which gives the overlay welding part of the component composition shown in FIG. 5 has the component composition shown in FIG.

図3及び5を参照すると、実施例1乃至6においてSi及びMnの含有量はそれぞれ、溶接用溶加材では0.93〜0.97%、及び、0.98〜1.02%であるのに対し、肉盛溶接部では0.83〜0.86%、及び、0.89〜0.92%といずれも溶接後において低下している。Si及びMnにより溶接時に肉盛溶接部が脱酸され、これに伴い低下したと考える。   Referring to FIGS. 3 and 5, in Examples 1 to 6, the contents of Si and Mn are 0.93 to 0.97% and 0.98 to 1.02%, respectively, for the filler metal for welding. On the other hand, in the build-up weld zone, both 0.83 to 0.86% and 0.89 to 0.92% are lowered after welding. It is considered that the build-up weld was deoxidized during welding by Si and Mn, and decreased with this.

一方、実施例1乃至6において、C及びOの成分組成はそれぞれ溶接用溶加材では0.07〜0.09%、及び、0.054〜0.058%であるのに対し、肉盛溶接部では0.05〜0.07%、及び、0.029〜0.038%と、いずれも溶接後において低下した。溶接時に肉盛溶接部で脱炭が生じ、これに伴いC量が低下したと考える。さらに、この脱炭に加えて、上記したSi及びMnによる脱酸も併せて生じ、肉盛溶接部のOの含有量が低下したと考える。   On the other hand, in Examples 1 to 6, the component compositions of C and O were 0.07 to 0.09% and 0.054 to 0.058% for the filler metal for welding, respectively, but overlaying In the welded portion, both 0.05 to 0.07% and 0.029 to 0.038% decreased after welding. It is considered that decarburization occurred in the overlay weld during welding, and the C content was reduced accordingly. Furthermore, in addition to this decarburization, the above-described deoxidation by Si and Mn also occurs, and it is considered that the content of O in the build-up weld has decreased.

上記したように、実施例1乃至6の肉盛溶接部は、溶接後に熱処理を施さずとも比較的高い靭性及び硬さを併せ持っている。これは、Cの含有量を低減したこと(比較例2参照)でマルテンサイト相の生成を適度に抑制し、さらにWの含有量を増加させたこと(比較例10参照)で凝固核となる炭化物を多く生成し肉盛溶接部の組織の結晶粒を微細化させ得たと考える。   As described above, the built-up welds of Examples 1 to 6 have both relatively high toughness and hardness without performing heat treatment after welding. This is because the content of C is reduced (see Comparative Example 2) to moderately suppress the formation of the martensite phase and further the content of W is increased (see Comparative Example 10) to become solidification nuclei. It is considered that a large amount of carbide was generated and the crystal grains of the structure of the overlay weld were refined.

次に、金属ワイヤからなる溶接用溶加材を用いて得られた実施例7乃至12、及び、比較例16乃至30の試験結果について、図6を用いて説明する。   Next, the test results of Examples 7 to 12 and Comparative Examples 16 to 30 obtained using the welding filler material made of metal wire will be described with reference to FIG.

実施例7乃至12の肉盛溶接部においては、衝撃値48〜70J/cm、室温硬さ331〜370Hv、高温硬さ191〜240Hvであった。すなわち、肉盛溶接部41は、溶接後に熱処理を施してはいないが、従来の熱処理を施して供される13Cr−4〜8Ni系のマルテンサイト系ステンレス鋼からなる肉盛金属部程度の比較的高い靭性及び硬さを併せ持っている。 In the build-up welds of Examples 7 to 12, the impact value was 48 to 70 J / cm 2 , the room temperature hardness was 331 to 370 Hv, and the high temperature hardness was 191 to 240 Hv. That is, the build-up weld portion 41 is not subjected to heat treatment after welding, but is relatively as large as a build-up metal portion made of 13Cr-4-8Ni martensitic stainless steel provided by performing a conventional heat treatment. It has both high toughness and hardness.

詳細には、実施例7に対し、Cの含有量の少ない比較例16では、衝撃値はほとんど変わらないものの、室温硬さは211Hvと低下している。一方、実施例7に対しCの含有量の多い比較例17では、室温硬さ及び高温硬さはほとんど変わらなかったものの、衝撃値は25J/cmと低下している。比較例16では、マルテンサイト相を十分に生成せず、比較例17では、炭化物が粒界析出し靭性を低下させたと考える。 In detail, compared with Example 7, in Comparative Example 16 with a small C content, the impact value hardly changed, but the room temperature hardness decreased to 211 Hv. On the other hand, in Comparative Example 17 in which the C content was higher than that in Example 7, the room temperature hardness and the high temperature hardness were hardly changed, but the impact value was reduced to 25 J / cm 2 . In Comparative Example 16, the martensite phase is not sufficiently generated, and in Comparative Example 17, it is considered that carbides are precipitated at the grain boundaries to reduce toughness.

実施例7に対し、Siの含有量の少ない比較例18では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は20J/cmと低下している。一方、実施例7に対し、Siの含有量の多い比較例19でも、同様に、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は28J/cmと低下している。比較例18ではSiによる脱酸が不十分となって、酸化物が過剰生成したと考える。 Compared to Example 7, in Comparative Example 18 having a small Si content, the room temperature hardness and the high temperature hardness hardly change, but the impact value is reduced to 20 J / cm 2 . On the other hand, compared with Example 7, also in Comparative Example 19 having a large Si content, the room temperature hardness and the high temperature hardness hardly changed, but the impact value decreased to 28 J / cm 2 . In Comparative Example 18, it is considered that deoxidation by Si was insufficient and oxide was excessively generated.

実施例7に対し、Mnの含有量の少ない比較例20では、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は15J/cmと低下している。一方、実施例7に対し、Mnの含有量の多い比較例21では、同様に、室温硬さ及び高温硬さはほとんど変わらないものの、衝撃値は35J/cmと低下している。比較例20ではMnによる脱酸が不十分となり、酸化物が過剰生成したと考える。 Compared to Example 7, in Comparative Example 20 with a low Mn content, the room temperature hardness and the high temperature hardness are almost the same, but the impact value is reduced to 15 J / cm 2 . On the other hand, compared with Example 7, in Comparative Example 21 having a high Mn content, the impact value is reduced to 35 J / cm 2 although the room temperature hardness and the high temperature hardness are hardly changed. In Comparative Example 20, it is considered that deoxidation by Mn was insufficient and oxide was excessively generated.

実施例7に対し、Niの含有量の少ない比較例22では、衝撃値、室温硬さ、及び、高温硬さは、それぞれ18J/cm、268Hv、及び、131Hvと低下している。一方、実施例7に対し、Niの含有量の多い比較例23では、衝撃値はあまり変わらないものの、室温硬さ及び高温硬さはそれぞれ291Hv、及び、166Hvと低下している。比較例22では、フェライト相が多くなりマルテンサイト相の生成が十分でなかったと考える。一方、比較例23では、残留オーステナイト相が過剰であったと考える。 Compared to Example 7, in Comparative Example 22 with a low Ni content, the impact value, room temperature hardness, and high temperature hardness were reduced to 18 J / cm 2 , 268 Hv, and 131 Hv, respectively. On the other hand, compared with Example 7, in Comparative Example 23 with a large Ni content, although the impact value is not significantly changed, the room temperature hardness and the high temperature hardness are reduced to 291 Hv and 166 Hv, respectively. In Comparative Example 22, it is considered that the ferrite phase increased and the martensite phase was not sufficiently generated. On the other hand, in Comparative Example 23, it is considered that the retained austenite phase was excessive.

実施例7に対し、Crの含有量の多い比較例24では、衝撃値はあまり変わらないものの、室温硬さ及び高温硬さはそれぞれ255Hv、及び、135Hvと低下している。比較例24では、安定したフェライト相により焼き入れが不十分となり、マルテンサイト相の生成が十分でなかったと考える。   In contrast to Example 7, in Comparative Example 24 where the Cr content is large, the impact value is not much changed, but the room temperature hardness and the high temperature hardness are reduced to 255 Hv and 135 Hv, respectively. In Comparative Example 24, it is considered that the stable ferrite phase caused insufficient quenching, and the martensite phase was not sufficiently generated.

実施例7に対し、Wの含有量の少ない比較例25では、室温硬さ及び高温硬さはあまり変わらないものの、衝撃値は25J/cmと低下している。一方、実施例7に対し、Wの含有量の多い比較例26では、室温硬さ及び高温硬さはあまり変わらないものの、衝撃値は32J/cmと低下している。比較例25では、凝固時にWの炭化物を十分に生成できず、これを結晶核として微細化するはずの肉盛溶接部の結晶組織が粗大化してしまったと考える。一方、比較例26では、Wの炭化物を過剰生成させてしまったものと考える。 Compared to Example 7, in Comparative Example 25, in which the W content is small, the room temperature hardness and the high temperature hardness are not significantly changed, but the impact value is reduced to 25 J / cm 2 . On the other hand, compared with Example 7, in Comparative Example 26 having a large W content, the room temperature hardness and the high temperature hardness are not significantly changed, but the impact value is reduced to 32 J / cm 2 . In Comparative Example 25, it is considered that the carbide of W cannot be sufficiently generated during solidification, and the crystal structure of the overlay weld that should be refined as a crystal nucleus has been coarsened. On the other hand, in Comparative Example 26, it is considered that W carbide was excessively generated.

実施例7に対し、Oの含有量の多い比較例27では、室温硬さ及び高温硬さはあまり変わらないものの、衝撃値は25J/cmと低下した。比較例27では、酸化物が過剰生成したものと考える。 In contrast to Example 7, in Comparative Example 27 with a large O content, the room temperature hardness and the high temperature hardness were not significantly changed, but the impact value was reduced to 25 J / cm 2 . In Comparative Example 27, it is considered that an oxide was excessively generated.

実施例7に対し、Nbの含有量の多い比較例28では、室温硬さ及び高温硬さはあまり変わらないものの、衝撃値は15J/cmと低下している。比較例28では、Nbの炭化物が粒界析出し衝撃値を低下させたと考える。 Compared to Example 7, in Comparative Example 28 with a high Nb content, the room temperature hardness and the high temperature hardness were not significantly changed, but the impact value was reduced to 15 J / cm 2 . In Comparative Example 28, it is considered that carbides of Nb were precipitated at the grain boundaries to reduce the impact value.

実施例7に対し、Moの含有量の多い比較例29では、室温硬さ及び高温硬さはあまり変わらないものの、衝撃値は20J/cmと低下した。比較例29では、Moの炭化物が粒界析出し衝撃値を低下させたと考える。 In contrast to Example 7, in Comparative Example 29 with a large Mo content, the room temperature hardness and the high temperature hardness did not change much, but the impact value decreased to 20 J / cm 2 . In Comparative Example 29, it is considered that Mo carbides precipitated at the grain boundaries and lowered the impact value.

実施例7に対し、Vの含有量の少ない比較例30では、室温硬さ及び高温硬さはあまり変わらないものの、衝撃値は20J/cmと低下した。比較例30では、Vの炭化物が粒界析出し衝撃値を低下させたと考える。 Compared to Example 7, in Comparative Example 30 with a low V content, the room temperature hardness and the high temperature hardness were not significantly changed, but the impact value was reduced to 20 J / cm 2 . In Comparative Example 30, it is considered that V carbides precipitated at the grain boundaries and lowered the impact value.

次に、実施例8は、衝撃値50J/cm、室温硬さ331Hv、高温硬さ191Hvであった。この実施例8に対し、Nbを添加した実施例9では、室温硬さは342Hv、高温硬さは198Hvと高く、特に衝撃値は70J/cmと高い。NbはCと結合して微細な炭化物を生成し、これを凝固核として肉盛溶接部の結晶組織を微細化させ、衝撃値を高めたものと考える。 Next, in Example 8, the impact value was 50 J / cm 2 , the room temperature hardness was 331 Hv, and the high temperature hardness was 191 Hv. In contrast to Example 8, Nb-added Example 9 has a room temperature hardness of 342 Hv and a high temperature hardness of 198 Hv, and particularly an impact value of 70 J / cm 2 . Nb combines with C to produce fine carbides, which are used as solidification nuclei to refine the crystal structure of the weld overlay and increase the impact value.

実施例8に対し、MoやVを添加した実施例10乃至12では、衝撃値は48〜50J/cmとあまり変わらないものの、室温硬さは339〜367Hv、高温硬さは211〜240Hvと高い。Mo及びVはCと結合して炭化物を生成し、室温硬さ及び高温硬さを向上させたものと考えられる。 Compared to Example 8, in Examples 10 to 12 to which Mo or V was added, although the impact value was not much different from 48 to 50 J / cm 2 , the room temperature hardness was 339 to 367 Hv, and the high temperature hardness was 211 to 240 Hv. high. It is considered that Mo and V combine with C to generate carbides, and improve room temperature hardness and high temperature hardness.

実施例8に対し、Nb、Mo及びVを添加した実施例7では、衝撃値は65J/cm、室温硬さは370Hv、高温硬さは232Hvといずれも高い。上記と同様に、Nbは衝撃値を向上させ、Mo及びVは室温硬さ及び高温硬さを向上させたものと考えられる。 In Example 7, in which Nb, Mo, and V are added to Example 8, the impact value is 65 J / cm 2 , the room temperature hardness is 370 Hv, and the high temperature hardness is 232 Hv. Similarly to the above, it is considered that Nb improved the impact value, and Mo and V improved room temperature hardness and high temperature hardness.

すなわち、実施例7乃至12では比較例16乃至30と比較して、肉盛溶接部において高い靭性と硬さを両立して有していると言える。このような図6に示す成分組成の肉盛溶接部を与える金属ワイヤからなる溶接用溶加材は、一方で、図4に示す成分組成を有している。   In other words, it can be said that Examples 7 to 12 have both high toughness and hardness in the overlay welded part as compared with Comparative Examples 16 to 30. On the other hand, the filler metal for welding which consists of the metal wire which gives the overlay welding part of such a component composition shown in FIG. 6 has the component composition shown in FIG.

図4及び6を参照すると、実施例7乃至12においてSi、及び、Mnの含有量はそれぞれ、溶接用溶加材では0.94〜1.04%、及び、0.92〜1.08%であるのに対し、肉盛溶接部では0.85〜0.93%、及び、0.85〜1.00%といずれも溶接後において低下している。Si及びMnにより溶接時に肉盛溶接部が脱酸され、これに伴い低下したものと考えられる。   4 and 6, in Examples 7 to 12, the contents of Si and Mn are 0.94 to 1.04% and 0.92 to 1.08% in the filler metal for welding, respectively. On the other hand, in the overlay welded portion, both 0.85 to 0.93% and 0.85 to 1.00% are lowered after welding. It is considered that the build-up weld was deoxidized by Si and Mn during welding, and decreased along with this.

一方、実施例7乃至12においてC及びOの含有量はそれぞれ溶接用溶加材では0.05〜0.06%、及び、0.009〜0.012%であるのに対し、肉盛溶接部では0.07〜0.08%、及び、0.033〜0.040%と、いずれも溶接後において増加した。上記したSi及びMnにより肉盛溶接部には脱酸が生ずるものの、肉盛溶接の熱による酸化も発生し、全体としてOの含有量は増加したものと考える。   On the other hand, in Examples 7 to 12, the contents of C and O are 0.05 to 0.06% and 0.009 to 0.012% in the filler metal for welding, respectively, but overlay welding In the part, 0.07 to 0.08% and 0.033 to 0.040%, both increased after welding. Although deoxidation occurs in the build-up weld due to the above-described Si and Mn, oxidation due to the heat of build-up welding also occurs, and it is considered that the O content as a whole has increased.

上記したように、実施例7乃至12の肉盛溶接部は、溶接後に熱処理を施さずとも比較的高い靭性及び硬さを併せ持っている。これは、Cの含有量を低減したこと(比較例17参照)でマルテンサイト相の生成を適度に抑制し、さらにWの含有量を増加させたこと(比較例25参照)で凝固核となる炭化物を多く生成し肉盛溶接部の組織の結晶粒を微細化させ得たと考える。   As described above, the built-up welds of Examples 7 to 12 have relatively high toughness and hardness without performing heat treatment after welding. This is because the content of C is reduced (see Comparative Example 17) to moderately suppress the formation of the martensite phase, and the content of W is further increased (see Comparative Example 25) to become solidification nuclei. It is considered that a large amount of carbide was generated and the crystal grains of the structure of the overlay weld were refined.

また、上記したように、金属ワイヤからなる溶接用溶加材を用いると、酸化により肉盛溶接部のOの含有量が増加する。一方、金属粉からなる溶接用溶加材を用いると、脱炭により肉盛溶接部のC及びOの含有量が低下する。金属ワイヤに比較して金属粉は、重量あたりの表面積が大きく、脱炭しやすいものと考えられる。そのため、上記した実施例1乃至12のように同様な成分組成の肉盛溶接部を得るために、溶接用溶加材の形状によりC及びOの含有量を調整すべきであることが判る。   Moreover, as mentioned above, when the welding filler material which consists of metal wires is used, content of O of the build-up welding part will increase by oxidation. On the other hand, when a filler metal for welding made of metal powder is used, the contents of C and O in the overlay welded portion decrease due to decarburization. Compared to metal wires, metal powder has a large surface area per weight and is considered to be easily decarburized. Therefore, it can be seen that the contents of C and O should be adjusted according to the shape of the filler metal for welding in order to obtain an overlay weld of the same component composition as in Examples 1 to 12 described above.

以上により、金属粉体若しくは金属ワイヤ(線状体)からなる溶接用溶加材を使用して、連続鋳造用ロールの芯部20の外周面に肉盛溶接して、溶接後に熱処理を施さずとも比較的高い靭性と硬さを併せ持った肉盛溶接部をロール本体2の表面に与えて、生産性に高く故に安価ながら耐久性にも優れる連続鋳造用ロール1を提供することができる(図1参照)。すなわち、図5及び図6に示される成分組成を有する肉盛層21の与えられた連続鋳造用ロール1は生産性に高く故に安価ながら耐久性にも優れるのである。   As described above, welding welding material made of metal powder or metal wire (linear body) is used, and overlay welding is performed on the outer peripheral surface of the core portion 20 of the continuous casting roll, and heat treatment is not performed after welding. However, it is possible to provide a continuous casting roll 1 that has a relatively high toughness and hardness on the surface of the roll main body 2 to provide a continuous casting roll 1 that is inexpensive and excellent in durability because of its high productivity (see FIG. 1). That is, the continuous casting roll 1 provided with the build-up layer 21 having the component composition shown in FIGS. 5 and 6 is high in productivity and is therefore excellent in durability while being inexpensive.

次に、上記した実施例と同等の肉盛溶接部を得るにあたり、金属粉又は金属ワイヤからなる溶接用溶加材としての必須添加元素の成分範囲と、肉盛溶接部としての含有元素の成分範囲とを定めた理由について説明する。   Next, in obtaining a built-up weld portion equivalent to the above-described embodiment, the component range of the essential additive element as a welding filler material made of metal powder or metal wire, and the component of the contained element as the build-up weld portion The reason for defining the range will be described.

Cは、マルテンサイト相の生成を促進し、硬さを高めるためにに添加される元素である。一方、Cが過剰となると、粒界炭化物が生成し、靭性が低化する。そこで、肉盛溶接部のCの含有量は、質量%で、0.03〜0.10%の範囲内である。同様の理由で、金属ワイヤからなる溶接用溶加材のCの添加量は、質量%で、0.03〜0.10%の範囲内である。一方、肉盛溶接を金属粉で行うと脱炭するから、金属粉からなる溶接用溶加材のCの添加量は、質量%で、0.06〜0.15%の範囲内である。   C is an element added to promote the formation of the martensite phase and increase the hardness. On the other hand, when C is excessive, grain boundary carbides are generated and the toughness is lowered. Therefore, the content of C in the build-up weld is mass% and is in the range of 0.03 to 0.10%. For the same reason, the amount of addition of C in the welding filler metal made of a metal wire is in the range of 0.03 to 0.10% in mass%. On the other hand, since decarburization is performed when overlay welding is performed with metal powder, the amount of C added to the filler metal for welding made of metal powder is in a range of 0.06 to 0.15% in mass%.

Siは、鋼の脱酸を促進するが、一方で過剰に含まれると靭性を低下させる。そこで、肉盛溶接部のSiの含有量は、質量%で、0.1〜1.6%の範囲内である。またSiは脱酸剤であり、肉盛溶接によってその含有量は低下するから、金属粉又は金属ワイヤからなる溶接用溶加材のSiの添加量は、質量%で、0.1〜1.7%の範囲内である。   Si promotes deoxidation of the steel, but on the other hand it reduces toughness if included in excess. Therefore, the Si content in the build-up weld is in mass% and is in the range of 0.1 to 1.6%. Further, since Si is a deoxidizer and its content is reduced by overlay welding, the amount of Si added to the welding filler material made of metal powder or metal wire is 0.1 to 1.% by mass. It is within the range of 7%.

Mnは、鋼の脱酸を促進するが、一方で過剰に含まれると靭性を低下させる。そこで、肉盛溶接部のMnの含有量は、質量%で、0.1〜1.6%の範囲内である。またMnは脱酸剤であり、肉盛溶接によってその含有量は低下する。そこで、金属粉又は金属ワイヤからなる溶接用溶加材のMnの添加量は、質量%で、0.1〜1.7%の範囲内である。   Mn promotes deoxidation of steel, but if it is excessively contained, it reduces toughness. Therefore, the content of Mn in the build-up weld zone is mass% and is in the range of 0.1 to 1.6%. Mn is a deoxidizer and its content is reduced by overlay welding. Therefore, the amount of Mn added to the filler metal for welding made of metal powder or metal wire is in mass% and is in the range of 0.1 to 1.7%.

Niは、フェライト相を生成して室温硬さを低下させるが、一方で過剰に含まれると、オーステナイト相を増加させヒートクラックの発生を増大させる。そこで、肉盛溶接部のNiの含有量は、質量%で、3.0〜6.0%の範囲内である。同様の理由で、金属粉又は金属ワイヤからなる溶接用溶加材のNiの添加量は、質量%で、3.0〜6.0%の範囲内である。   Ni generates a ferrite phase and lowers the room temperature hardness. On the other hand, when it is contained excessively, Ni increases the austenite phase and increases the occurrence of heat cracks. Therefore, the content of Ni in the build-up weld zone is in mass%, and is in the range of 3.0 to 6.0%. For the same reason, the addition amount of Ni in the welding filler material made of metal powder or metal wire is in the range of 3.0 to 6.0% by mass.

Crは、耐食性及び耐酸化性を高めるが、一方で過剰に含まれると、フェライト相を増加させ硬さを低下させる。そこで、肉盛溶接部のCrの含有量は、質量%で、11.0〜18.0%の範囲内である。同様の理由で、金属粉又は金属ワイヤからなる溶接用溶加材のCrの添加量は、質量%で、11.0〜18.0%の範囲内である。   Cr improves corrosion resistance and oxidation resistance, but on the other hand, if it is contained excessively, it increases the ferrite phase and decreases the hardness. Therefore, the Cr content in the weld overlay is mass% and is in the range of 11.0 to 18.0%. For the same reason, the addition amount of Cr in the welding filler material made of metal powder or metal wire is in the range of 11.0 to 18.0% in mass%.

Wは、炭化物を生成し組織を微細化させて靭性を高めるが、一方、過剰に含まれると、炭化物を増加させて靭性を低下させる。そこで、肉盛溶接部のWの含有量は、質量%で、2.0〜5.0%の範囲内である。同様の理由で、金属粉又は金属ワイヤからなる溶接用溶加材のWの添加量は、質量%で、2.0〜5.0%の範囲内である。   W generates carbides and refines the structure to increase the toughness. On the other hand, if contained in excess, the carbide increases the carbides and decreases the toughness. Therefore, the content of W in the build-up weld is mass% and is in the range of 2.0 to 5.0%. For the same reason, the addition amount of W in the welding filler material made of metal powder or metal wire is in mass% and is in the range of 2.0 to 5.0%.

更に、金属粉又は金属ワイヤからなる溶接用溶加材としての任意添加元素の成分範囲と、肉盛溶接部としての含有元素の成分範囲とを定めた理由について説明する。   Furthermore, the reason for determining the component range of the arbitrarily added element as the filler metal for welding made of metal powder or metal wire and the component range of the contained element as the build-up weld will be described.

Oは、過剰に含まれると靭性を低下させる。そこで、肉盛溶接部のOの含有量は、質量%で、0.05%以下の範囲内である。金属ワイヤからなる溶接用溶加材を用いて肉盛溶接すると、酸化して肉盛溶接部のOの含有量は増加する。そこで、金属ワイヤからなる溶接用溶加材のOの添加量は、質量%で、0.02%以下の範囲内である。一方、金属粉からなる溶接用溶加材を用いて肉盛溶接を行うと、脱炭に伴い肉盛溶接部のOの含有量は低下する。そこで、金属粉からなる溶接用溶加材のOの添加量は、質量%で、0.08%以下の範囲内である。   If O is contained excessively, it reduces toughness. Therefore, the content of O in the build-up weld is in mass% and is in the range of 0.05% or less. When build-up welding is performed using a welding filler metal made of metal wire, oxidation occurs and the content of O in the build-up weld increases. Therefore, the amount of O added to the welding filler metal made of metal wire is in mass% and is in the range of 0.02% or less. On the other hand, when overlay welding is performed using a welding filler material made of metal powder, the content of O in the overlay weld decreases with decarburization. Therefore, the amount of O added to the welding filler material made of metal powder is in mass% and is in the range of 0.08% or less.

Nbは、微細な炭化物を生成し肉盛溶接部の組織を微細化するが、一方で過剰に含まれると、炭化物が連なって生成し機械的強度を低下させる。そこで、肉盛溶接部のNbの含有量は、質量%で、0.1〜1.0%の範囲内である。同様の理由で、金属粉又は金属ワイヤからなる溶接用溶加材のNbの添加量は、質量%で、0.1〜1.0%の範囲内である。   Nb produces fine carbides and refines the structure of the weld overlay, but if excessively contained, carbides are produced in a continuous manner and lower the mechanical strength. Therefore, the content of Nb in the build-up weld is in mass% and is in the range of 0.1 to 1.0%. For the same reason, the amount of Nb added to the welding filler material made of metal powder or metal wire is in mass% and is in the range of 0.1 to 1.0%.

Moは、炭化物を生成し高温強度を高めるが、一方で過剰に含まれると、靭性を低下させる。そこで、肉盛溶接部のMoの含有量は、質量%で、0.1〜3.0%の範囲内である。同様の理由で、金属粉又は金属ワイヤからなる溶接用溶加材のMoの添加量は、質量%で、0.1〜3.0%の範囲内である。   Mo produces carbides and increases the high-temperature strength. On the other hand, if it is excessively contained, it reduces toughness. Therefore, the content of Mo in the build-up weld zone is mass% and is in the range of 0.1 to 3.0%. For the same reason, the amount of Mo added to the welding filler material made of metal powder or metal wire is in mass% and is in the range of 0.1 to 3.0%.

Vは、Moと同様に、炭化物を生成し高温強度を高めるが、一方で過剰に含まれると、靭性及び延性を低下させる。そこで、肉盛溶接部のVの含有量は、質量%で、0.1〜0.5%の範囲内である。同様の理由で、金属粉又は金属ワイヤからなる溶接用溶加材のVの添加量は、質量%で、0.1〜0.5%の範囲内である。   V, like Mo, generates carbides and increases the high-temperature strength. On the other hand, when V is contained excessively, it decreases toughness and ductility. Therefore, the content of V in the build-up weld is mass%, and is in the range of 0.1 to 0.5%. For the same reason, the addition amount of V in the filler metal for welding made of metal powder or metal wire is in mass% and is in the range of 0.1 to 0.5%.

ここまで本発明による代表的実施例及びこれに基づく変形例について説明したが、本発明は必ずしもこれらに限定されるものではない。当業者であれば、添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるだろう。   Up to this point, the representative embodiments according to the present invention and the modifications based thereon have been described, but the present invention is not necessarily limited thereto. Those skilled in the art will recognize a variety of alternative embodiments and modifications without departing from the scope of the appended claims.

1 連続鋳造用ロール
4 試験片
40 被溶接試験片
41 肉盛溶接部
DESCRIPTION OF SYMBOLS 1 Roll for continuous casting 4 Test piece 40 Welded test piece 41 Overlay welding part

Claims (9)

溶加材を肉盛溶接して与えられた肉盛金属部を含む肉盛金属部材であって、
前記肉盛金属部は、質量%で、
C:0.03〜0.10%、
Si:0.1〜1.6%、
Mn:0.1〜1.6%、
Ni:3.0〜6.0%、
Cr:11.0〜18.0%、及び、
W:2.0〜5.0%を含み、更に、
O:0.05%以下を含み得て、残部Feと不可避的不純物からなる成分組成を有するマルテンサイト系ステンレス鋼からなることを特徴とする肉盛金属部材。
A build-up metal member including a build-up metal part given by build-up welding of a filler material,
The overlay metal part is mass%,
C: 0.03-0.10%,
Si: 0.1 to 1.6%,
Mn: 0.1 to 1.6%,
Ni: 3.0-6.0%,
Cr: 11.0-18.0%, and
W: 2.0 to 5.0% included,
O: A built-up metal member comprising 0.05% or less of martensitic stainless steel having a composition composed of the remaining Fe and inevitable impurities.
更に、前記肉盛金属部は、
Nb:0.1〜1.0%の範囲内で含み得ることを特徴とする請求項1記載の肉盛金属部材。
Furthermore, the overlay metal part is
The build-up metal member according to claim 1, which may be contained within a range of Nb: 0.1 to 1.0%.
更に、前記肉盛金属部は、
Mo:0.1〜3.0%、
V:0.1〜0.5%のそれぞれの範囲内で少なくとも1つを含み得ることを特徴とする請求項1又は2に記載の肉盛金属部材。
Furthermore, the overlay metal part is
Mo: 0.1 to 3.0%,
The build-up metal member according to claim 1, wherein at least one of the V may be contained within a range of 0.1 to 0.5%.
前記肉盛金属部は、複数の層からなることを特徴とする請求項1乃至3のうちの1つに記載の肉盛金属部材。   4. The built-up metal member according to claim 1, wherein the built-up metal portion is composed of a plurality of layers. 前記肉盛金属部材は連続鋳造用ロールであることを特徴とする請求項1乃至4のうちの1つに記載の肉盛金属部材。   The build-up metal member according to claim 1, wherein the build-up metal member is a continuous casting roll. マルテンサイト系ステンレス鋼からなる粉体の肉盛溶接用溶加材であって、
必須添加元素として、質量%で、
C:0.06〜0.15%、
Si:0.1〜1.7%、
Mn:0.1〜1.7%、
Ni:3.0〜6.0%、
Cr:11.0〜18.0%、及び、
W:2.0〜5.0%を含み、
更に任意添加元素として、
O:0.08%以下を含み得て、残部Feと不可避的不純物からなる金属粉であることを特徴とする溶加材。
A filler material for overlay welding of powder made of martensitic stainless steel,
As an essential additive element,
C: 0.06 to 0.15%,
Si: 0.1 to 1.7%,
Mn: 0.1 to 1.7%,
Ni: 3.0-6.0%,
Cr: 11.0-18.0%, and
W: 2.0-5.0% included,
Furthermore, as an optional additive element,
O: A filler metal which may contain 0.08% or less and is a metal powder composed of the remainder Fe and inevitable impurities.
マルテンサイト系ステンレス鋼からなる線状体の肉盛溶接用溶加材であって、
必須添加元素として、質量%で、
C:0.03〜0.10%、
Si:0.1〜1.7%、
Mn:0.1〜1.7%、
Ni:3.0〜6.0%、
Cr:11.0〜18.0%、及び、
W:2.0〜5.0%を含み、
更に任意添加元素として、
O:0.02%以下を含み得て、残部Feと不可避的不純物からなる金属線状体であることを特徴とする溶加材。
It is a filler metal for overlay welding of a linear body made of martensitic stainless steel,
As an essential additive element,
C: 0.03-0.10%,
Si: 0.1 to 1.7%,
Mn: 0.1 to 1.7%,
Ni: 3.0-6.0%,
Cr: 11.0-18.0%, and
W: 2.0-5.0% included,
Furthermore, as an optional additive element,
O: A filler material, which may contain 0.02% or less, and is a metal linear body composed of the remaining Fe and inevitable impurities.
前記任意添加元素として、
Nb:0.1〜1.0%の範囲内で含み得ることを特徴とする請求項6又は7に記載の溶加材。
As the optional additive element,
The filler material according to claim 6 or 7, wherein Nb may be contained within a range of 0.1 to 1.0%.
前記任意添加元素として、
Mo:0.1〜3.0%、
V:0.1〜0.5%のそれぞれの範囲内で少なくとも1つを含み得ることを特徴とする請求項6乃至8のうちの1つに記載の溶加材。
As the optional additive element,
Mo: 0.1 to 3.0%,
V: Filler material according to one of claims 6 to 8, characterized in that it can contain at least one in each range of 0.1 to 0.5%.
JP2011177244A 2011-08-12 2011-08-12 Filler material and overlay metal member using the same Active JP5757466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011177244A JP5757466B2 (en) 2011-08-12 2011-08-12 Filler material and overlay metal member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011177244A JP5757466B2 (en) 2011-08-12 2011-08-12 Filler material and overlay metal member using the same

Publications (2)

Publication Number Publication Date
JP2013039589A JP2013039589A (en) 2013-02-28
JP5757466B2 true JP5757466B2 (en) 2015-07-29

Family

ID=47888485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011177244A Active JP5757466B2 (en) 2011-08-12 2011-08-12 Filler material and overlay metal member using the same

Country Status (1)

Country Link
JP (1) JP5757466B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3787011A4 (en) 2018-04-27 2022-06-08 Nitto Denko Corporation Semiconductor device manufacturing method
CN114289928B (en) * 2021-12-31 2023-05-12 武汉高力热喷涂工程有限责任公司 Plasma surfacing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258154B2 (en) * 1993-10-20 2002-02-18 株式会社フジコー Method for producing continuous casting roll and continuous casting roll produced by the method
JP5400789B2 (en) * 2008-10-20 2014-01-29 日鉄住金ハード株式会社 Continuous casting roll

Also Published As

Publication number Publication date
JP2013039589A (en) 2013-02-28

Similar Documents

Publication Publication Date Title
KR101321681B1 (en) Hollow member and method for manufacturing same
KR20120002935A (en) Fillet weld joint and method for gas shielded arc welding
WO2012111535A1 (en) Welded duplex stainless joint
JP2006289395A (en) Solid wire for gas shielded arc welding
JP5170351B1 (en) Duplex stainless steel
JP5088244B2 (en) Stainless steel welded joint weld metal
JP5622707B2 (en) Welding materials for cryogenic steel
CA2995056C (en) Method for welding austenitic stainless steel sheets
KR20190021384A (en) Arc spot welding method and welding wire
CN112512742B (en) Solid welding wire and method for manufacturing welded joint
KR20180123592A (en) Welded metal having excellent strength, toughness and sr cracking resistance
CN109804092A (en) Flux-cored wire cold-rolled steel sheet and its manufacturing method
JP5757466B2 (en) Filler material and overlay metal member using the same
JP6257454B2 (en) Overlay weld metal and machine structure
JPH03254304A (en) Wear resistance conjugated roll
JP5088245B2 (en) Stainless steel welded joint weld metal
JP7099330B2 (en) Steel Sheet, Tailored Blank, Hot Press Formed Product, Steel Tubular Tailored Blank, Hollow Hot Press Formed Product, and Steel Sheet Manufacturing Method
JP6402581B2 (en) Welded joint and method for producing welded joint
JP2001246495A (en) Welding material and method for producing welded joint
KR101949025B1 (en) Cold rolled steel sheet for flux cored wire and method of manufacturing the same
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
CN111542634A (en) Cold-rolled steel sheet for flux-cored wire and method for manufacturing same
JP7246568B2 (en) Welded structures and storage tanks
KR102443423B1 (en) Ferritic stainless steel with improved intergranular corrosion properties
WO2019082945A1 (en) Flux-cored wire for submerged arc welding, and material for submerged arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150511

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5757466

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150524