JP5755558B2 - Seismic reinforcement structure and method using compression braces - Google Patents

Seismic reinforcement structure and method using compression braces Download PDF

Info

Publication number
JP5755558B2
JP5755558B2 JP2011279380A JP2011279380A JP5755558B2 JP 5755558 B2 JP5755558 B2 JP 5755558B2 JP 2011279380 A JP2011279380 A JP 2011279380A JP 2011279380 A JP2011279380 A JP 2011279380A JP 5755558 B2 JP5755558 B2 JP 5755558B2
Authority
JP
Japan
Prior art keywords
compression
brace
steel
frame
braces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011279380A
Other languages
Japanese (ja)
Other versions
JP2013129982A (en
Inventor
温子 長濱
温子 長濱
齋藤 啓一
啓一 齋藤
勇紀 岡本
勇紀 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2011279380A priority Critical patent/JP5755558B2/en
Publication of JP2013129982A publication Critical patent/JP2013129982A/en
Application granted granted Critical
Publication of JP5755558B2 publication Critical patent/JP5755558B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

この発明は、圧縮ブレースを用いた建物の耐震補強構造および補強方法に関する。   The present invention relates to a seismic reinforcing structure and a reinforcing method for a building using a compression brace.

従来、RC造(鉄筋コンクリート造)建物やSRC造(鉄骨鉄筋コンクリート造)建物の耐震補強方法として、鉄骨枠付ブレースによる補強方法が多く用いられている。この耐震補強方法には、以下のような特徴がある。
・RC壁を増打ちして耐震補強する場合に比べて、閉塞感を低減できる。
・既存躯体に鉄骨枠付ブレースを接合する場合には、後施工アンカーと頭付きスタッドを用いモルタル充填を行う間接接合が多く採用される。
Conventionally, as a seismic reinforcement method for RC structures (steel reinforced concrete structures) and SRC structures (steel reinforced concrete structures), a reinforcement method using braces with a steel frame is often used. This seismic reinforcement method has the following characteristics.
・ The feeling of blockage can be reduced compared to the case where RC walls are reinforced and seismic reinforced.
-When joining braces with steel frames to existing frames, indirect joining is often used in which mortar filling is performed using post-installed anchors and studs with heads.

特開2009−249833号公報JP 2009-249833 A 特開2008−2133号公報JP 2008-2133 A

しかし、上記した従来の耐震補強方法のように、後施工アンカーを用いて既存躯体へ鉄骨枠付ブレースを間接接合するのでは、施工において、以下のような問題が生じる。
・後施工アンカーを打設するときに、騒音、振動、粉塵が発生する。すなわち、ブレースに引っ張り力を負担させる場合、既存建物躯体との応力伝達を確実に行うために、後施工アンカーを多数用いたり、深く埋め込む必要がある。そのため、後施工アンカーを打設するときの、騒音、振動、粉塵発生の問題が大きい。
・型枠組立、無収縮モルタルの充填・養生、型枠解体の各作業を要するので、施工期間が長期化し、コストアップを招く。
However, if the brace with a steel frame is indirectly joined to the existing frame using the post-construction anchor as in the conventional seismic reinforcement method described above, the following problems occur in the construction.
・ Noise, vibration and dust are generated when post-installed anchors are installed. That is, when a tensile force is applied to the brace, it is necessary to use a large number of post-installed anchors or to embed them deeply in order to reliably transmit stress to the existing building frame. Therefore, the problems of noise, vibration, and dust generation when placing post-installed anchors are large.
・ As each work of formwork assembly, filling / curing of non-shrink mortar, and formwork disassembly is required, the construction period becomes longer and costs increase.

これらの課題を解消するものとして、圧縮ブレースを用い、その芯材を、長さ方向の拘束材で拘束されている部分で一対の分割芯材に分割し、一対の分割芯材の間に、長さ方向と垂直な鋼板を、拘束材に渡って介在させたものを提案した(特願2010−279267号)。
しかし、両分割芯材が拘束材に対して長さ方向に移動自在な状態であるため、運搬時や建方時に分割芯材が脱落したり、長さ方向位置のずれによる初期不整が発生する恐れがある。分割芯材は、少しの長さ方向位置のずれがあっても、分割芯材と中央に配置した鋼板の間に隙間が生じれば、その隙間が1mm未満の僅かな隙間であっても、微小変位において圧縮応力が伝達できず、圧縮ブレースの性能が確保できなくなる。そのため、初期不整を戻す手間が必要となる。
As a solution to these problems, using a compression brace, the core material is divided into a pair of split core materials at a portion constrained by a length direction restraint material, and between the pair of split core materials, A steel plate perpendicular to the length direction was proposed over a restraint material (Japanese Patent Application No. 2010-279267).
However, since both split cores are movable in the length direction with respect to the constraining material, the split cores may drop off during transportation or construction, or initial irregularities may occur due to displacement in the length direction. There is a fear. Even if there is a slight displacement in the longitudinal direction of the split core material, if there is a gap between the split core material and the steel plate placed in the center, even if the gap is a slight gap of less than 1 mm, Compressive stress cannot be transmitted at a minute displacement, and the performance of the compression brace cannot be ensured. For this reason, it is necessary to troubleshoot the initial irregularity.

この発明の目的は、引張力を負担させない圧縮ブレースを用いることで、既存建物との接合部を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題がなく、さらに芯材の芯ずれによる悪影響の防止、並びに運搬時や建方時に芯材の脱落や初期不整が生じることの防止ができる耐震補強構造および耐震補強方法を提供することである。
この発明の他の目的は、鋼材使用量を削減することである。
The object of the present invention is to use a compression brace that does not impose a tensile force, so that the joint with the existing building can be simplified, and seismic reinforcement can be performed with simple construction and a short construction period. To provide a seismic strengthening structure and a seismic strengthening method that are free from dust problems, prevent adverse effects due to misalignment of the core material, and prevent the core material from dropping or initial imperfection during transportation or construction. It is.
Another object of the present invention is to reduce the amount of steel used.

この発明の圧縮ブレースによる耐震補強構造は、既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、前記芯材を、長さ方向の拘束材で拘束されている部分で一対の分割芯材に分割し、前記一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させ、前記鋼材をいずれか一方の分割芯材に接合したことを特徴とする。   The seismic reinforcement structure using a compression brace according to the present invention is a structure in which an existing building is reinforced with braces, and the brace extends along both sides of the core material, both ends of which are connected to the frame of the existing building. A compression brace having a constraining material disposed and constraining buckling of the core material, the core material being divided into a pair of split core materials at a portion constrained by a restraining material in a length direction, A steel material perpendicular to the length direction is interposed between the pair of split core materials across the restraint material, and the steel material is joined to one of the split core materials.

ブレースは、通常は引っ張り力の負荷に使用するが、この構成によると、ブレースは、その芯材が長さ方向の途中部分で分割された一対の分割芯材からなる圧縮ブレースであるため、引張力の負担がなくせる。引張力の負担を無くすことで、既存建物の躯体との接合を簡素化できる。すなわち、引張力をブレースに負担させる場合、RC造やSRC造の既存躯体の場合、接合部における応力伝達を確実に行うために、多数のアンカーを用いたり、深くアンカーを設けることが必要となる。しかし、圧縮力のみを負担するブレースであると、支圧により応力伝達が行えるため、少ないアンカー本数でブレースの連結が行える。そのため、既存建物の躯体との接合を簡素化できる。したがって、簡易な施工で短い施工期間により耐震補強が行え、コストも低くて済み、施工に伴う騒音、振動、粉塵の問題も生じない。また、前記ブレースは、芯材とその両面に沿って配置された拘束材とでなるため、拘束材が座屈を生じさせることなく、強い圧縮力を負担することができる。
前記芯材は、途中部分で分割されているが、分割箇所が拘束材が拘束されている部分であるため、圧縮力を受けたときに分割部で曲がることが防止され、強い圧縮力を負担することができる。
また、一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させており、この鋼材の介在によって当接可能な面積を広がるため、芯材の芯ずれによる悪影響を緩和することができる。
The brace is usually used for a load of a tensile force. According to this configuration, the brace is a compression brace composed of a pair of split cores divided in the middle in the length direction. The burden of power can be eliminated. By eliminating the burden of tensile force, it is possible to simplify the joining with the frame of an existing building. That is, when the tensile force is applied to the brace, in the case of an existing structure of RC structure or SRC structure, it is necessary to use a large number of anchors or to provide deep anchors in order to reliably transmit stress at the joint. . However, in the brace that bears only the compressive force, the stress can be transmitted by the bearing pressure, so that the braces can be connected with a small number of anchors. Therefore, it is possible to simplify the joining with the existing building frame. Therefore, earthquake-proof reinforcement can be performed with a simple construction and a short construction period, the cost can be reduced, and the problems of noise, vibration and dust associated with the construction do not occur. Moreover, since the said brace consists of a core material and the restraint material arrange | positioned along the both surfaces, it can bear strong compressive force, without producing a buckling of a restraint material.
The core material is divided in the middle part, but since the divided part is the part where the restraint material is restrained, it is prevented from bending at the split part when receiving the compressive force and bears a strong compressive force. can do.
In addition, a steel material perpendicular to the length direction is interposed between the pair of split core materials over the restraint material, and the area that can be contacted by this steel material increases, so the core material is misaligned. Adverse effects can be mitigated.

前記鋼材はいずれか一方の分割芯材に接合したため、鋼材が接合された分割芯材が圧縮ブレースの端部側に移動することが阻止される。そのため、鋼材が接合された分割芯材が下側となる斜め姿勢ないし立姿勢で圧縮ブレースの運搬や建方を行うことにより、これら運搬や建方時に、分割芯材が脱落することが防止され、また分割芯材が長さ方向にずれて分割芯材と鋼材との間に隙間が生じる初期不整の発生が低減する。そのため、微小変位において圧縮応力が伝達できず、圧縮ブレースの性能が確保できなることが防止され、圧縮ブレースの性能確保の信頼性が向上する。なお、前記鋼材が一方の分割芯材に接合されていても、他方の分割芯材が前記鋼材から離れる方向の移動は自在であるため、芯材分割により引張力の負担をなくす機能が損なわれることがない。   Since the steel material is bonded to any one of the split core materials, the split core material to which the steel materials are bonded is prevented from moving to the end side of the compression brace. Therefore, by transporting and building the compressed braces in an oblique or standing posture with the steel core joined, the split core can be prevented from falling off during transportation and building. In addition, the occurrence of initial irregularities in which the split core material is displaced in the length direction and a gap is generated between the split core material and the steel material is reduced. Therefore, it is prevented that the compressive stress cannot be transmitted in a minute displacement and the performance of the compression brace cannot be secured, and the reliability of securing the performance of the compression brace is improved. In addition, even if the steel material is joined to one split core material, the other split core material can move in a direction away from the steel material, so that the function of eliminating the burden of tensile force is impaired by the core material split. There is nothing.

この発明において、既存建物の躯体における梁と、この梁の両側で梁下方に延びる一対の柱とでなる部分に配置する鉄骨枠として、前記梁に沿う上部鉄骨枠材を設け、前記圧縮ブレースを互いに逆V字状に2本配置し、これら2本の圧縮ブレースの上端を、前記上部鉄骨枠材に接合するのが良い。
このように、鉄骨枠を上部鉄骨枠材だけとすることより、鋼材使用量が削減され、コスト低下が図れる。鉄骨枠を上部鉄骨枠材だけとしても、上記のように、ブレースとして圧縮ブレース用い、その圧縮ブレースを上記のように互いに逆V字状に2本配置することで、必要な耐震補強が行える。
In the present invention, as a steel frame to be arranged in a portion consisting of a beam in a frame of an existing building and a pair of columns extending below the beam on both sides of the beam, an upper steel frame material along the beam is provided, and the compression brace is provided. Two of them may be arranged in an inverted V shape, and the upper ends of these two compression braces may be joined to the upper steel frame member.
Thus, by using only the upper steel frame material as the steel frame material, the amount of steel material used can be reduced and the cost can be reduced. Even if only the upper steel frame material is used as the steel frame, as described above, the compression brace is used as the brace, and two of the compression braces are arranged in an inverted V shape as described above, so that the necessary seismic reinforcement can be performed.

この発明において、前記圧縮ブレースにおける前記一対の分割芯材の分割側端部の表面に補強板を接合しても良い。この補強板の接合により、芯材のずれおよび面外変形を抑制することができる。   In this invention, you may join a reinforcement board to the surface of the division | segmentation side edge part of the said pair of division | segmentation core material in the said compression brace. By the joining of the reinforcing plates, the core material can be prevented from shifting and out-of-plane deformation.

この発明の圧縮ブレースによる耐震補強方法は、既存建物の躯体にブレースの両端を接続して既存建物を補強する方法であって、前記ブレースとして、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有し圧縮力を支持する圧縮ブレースを用いる。この圧縮ブレースは、前記芯材を長さ方向の拘束材で拘束されている部分で一対の分割芯材に分割し、かつ前記一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させ、前記鋼材をいずれか一方の分割芯材に接合したものとする。
この耐震補強方法によると、この発明の耐震補強構造につき前述したと同様に、圧縮ブレースを用いるため、既存建物の躯体との接合を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、コストも低くて済み、施工に伴う騒音、振動、粉塵の問題も生じない。また、芯材の芯ずれによる悪影響の防止、並びに運搬時や建方時に芯材の脱落や初期不整が生じることの防止が行える。
The seismic reinforcement method using a compression brace according to the present invention is a method of reinforcing an existing building by connecting both ends of the brace to a frame of an existing building, and the core material having both ends connected to the frame of the existing building as the brace. And a compression brace that is disposed along both sides of the core material and that has a restraining material that restrains the buckling of the core material and supports the compression force. In this compression brace, the core material is divided into a pair of split core materials at a portion constrained by a length direction restraint material, and a steel material perpendicular to the length direction is interposed between the pair of split core materials. In this case, the steel material is joined to one of the divided core materials.
According to this seismic reinforcement method, the compression brace is used in the same way as described above for the seismic reinforcement structure of the present invention. It can be done at a low cost, and there are no problems with noise, vibration, or dust associated with construction. Further, it is possible to prevent adverse effects due to misalignment of the core material, and prevent the core material from dropping or initial irregularity during transportation or construction.

この発明の圧縮ブレースによる耐震補強構造は、既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、前記芯材を、長さ方向の途中部分で一対の分割芯材に分割したため、既存建物との接合部を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題を生じさせずに耐震補強することができる。さらに、一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させるため、芯材の芯ずれによる悪影響を緩和することができる。前記鋼材はいずれか一方の分割芯材に接合したため、運搬時や建方時に芯材の脱落や初期不整が生じることを防止できる。   The seismic reinforcement structure using a compression brace according to the present invention is a structure in which an existing building is reinforced with braces, and the brace extends along both sides of the core material, both ends of which are connected to the frame of the existing building. A compression brace having a constraining material that is arranged and restrains buckling of the core material, and the core material is divided into a pair of divided core materials in the middle in the length direction, so that a joint portion with an existing building is provided. It can be simplified and can be seismically reinforced with simple construction and a short construction period, and can be reinforced without causing problems of noise, vibration and dust associated with construction. Furthermore, since the steel material perpendicular to the length direction is interposed between the pair of split core materials over the restraint material, adverse effects due to the misalignment of the core material can be mitigated. Since the steel material is joined to any one of the split core materials, it is possible to prevent the core material from falling off or initial imperfection during transportation or construction.

この発明の圧縮ブレースによる耐震補強方法は、既存建物の躯体にブレースの両端を接続して既存建物を補強する方法であって、前記ブレースとして、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有し圧縮力を支持する圧縮ブレースを用い、この圧縮ブレースを、前記芯材を長さ方向の途中部分で一対の分割芯材に分割したものとしたため、既存建物との接合部を簡素化できて、簡易な施工で短い施工期間により耐震補強が行え、また施工に伴う騒音、振動、粉塵の問題を生じさせずに耐震補強することができる。さらに、一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させるため、芯材の芯ずれによる悪影響を緩和することができる。前記鋼材はいずれか一方の分割芯材に接合するため、運搬時や建方時に芯材の脱落や初期不整が生じることを防止できる。   The seismic reinforcement method using a compression brace according to the present invention is a method of reinforcing an existing building by connecting both ends of the brace to a frame of an existing building, and the core material having both ends connected to the frame of the existing building as the brace. And a compression brace that is disposed along both surfaces of the core material and restrains buckling of the core material and supports a compressive force, and the compression brace is disposed in the length direction of the core material. Since it was divided into a pair of split cores in the middle of the construction, the joint with the existing building can be simplified, and earthquake-proof reinforcement can be performed with a short construction period with simple construction, and noise, vibration, and dust associated with construction It can be seismically reinforced without causing any problems. Furthermore, since the steel material perpendicular to the length direction is interposed between the pair of split core materials over the restraint material, adverse effects due to the misalignment of the core material can be mitigated. Since the steel material is bonded to any one of the split core materials, it is possible to prevent the core material from dropping or initial irregularity during transportation or construction.

この発明の一実施形態の耐震補強構造を用いた建物躯体の正面図である。It is a front view of the building frame using the earthquake-proof reinforcement structure of one embodiment of this invention. 同耐震補強構造における圧縮ブレースの外観斜視図および断面図である。It is the external appearance perspective view and sectional drawing of the compression brace in the seismic reinforcement structure. 同圧縮ブレースの圧縮時および通常時の状態を示す作用説明図である。It is operation | movement explanatory drawing which shows the state at the time of compression of the compression brace, and normal time. 同圧縮ブレースの引張時の状態を示す作用説明図である。It is effect | action explanatory drawing which shows the state at the time of tension | pulling of the compression brace. 同圧縮ブレースの全体を示す作用説明図である。It is operation | movement explanatory drawing which shows the whole compression brace. (A)は圧縮ブレースの圧縮時の断面図、(B)は同圧縮ブレースの引張時の断面図である。(A) is sectional drawing at the time of compression of a compression brace, (B) is sectional drawing at the time of the tension | pulling of the compression brace. (A)は圧縮ブレースの他の例の圧縮時の断面図、(B)は同圧縮ブレースの引張時の断面図である。(A) is sectional drawing at the time of compression of the other example of a compression brace, (B) is sectional drawing at the time of tension | tensile_strength of the compression brace. 圧縮ブレースのさらに他の例の斜視図である。It is a perspective view of the further another example of a compression brace. 圧縮ブレースの芯材の分割側端部の表面に補強板がない場合の圧縮時の芯ずれの説明図である。It is explanatory drawing of the core shift | offset | difference at the time of compression when there is no reinforcement board in the surface of the division | segmentation side edge part of the core material of a compression brace. 図1におけるA部の拡大断面図である。It is an expanded sectional view of the A section in FIG. 図1におけるB部の拡大断面図である。It is an expanded sectional view of the B section in FIG. 図1におけるC部の拡大断面図である。It is an expanded sectional view of the C section in FIG. この実施形態の建物躯体への適用例を示す正面図である。It is a front view which shows the example of application to the building frame of this embodiment. この実施形態の建物躯体へのさらに他の適用例を示す正面図である。It is a front view which shows the further another example of application to the building frame of this embodiment. この実施形態の建物躯体へのさらに他の適用例を示す正面図である。It is a front view which shows the further another example of application to the building frame of this embodiment. この実施形態の建物躯体へのさらに他の適用例を示す正面図である。It is a front view which shows the further another example of application to the building frame of this embodiment.

この発明の一実施形態を図1ないし図16と共に説明する。図1は、この実施形態の耐震補強構造を適用した既存建物の躯体構造を示す部分正面図である。この実施形態の耐震補強構造は、既存建物を圧縮ブレース2A,2Bを用いて補強する構造である。同図に示すように、建物躯体は、隣り合う2本の柱20,20間に梁30が横架されていて、この梁30の下面に沿って、両側の柱20,20の間に上部鉄骨枠材1を設ける。この上部鉄骨枠材1の下方に、2本の圧縮ブレース2A,2Bを互いに逆V字状に配置する。すなわち、上部鉄骨枠材1の中間部と一方の柱20の下端との間に渡って第1の圧縮ブレース2Aを設け、上部鉄骨枠材1の中間部と他方の柱20の下端との間に渡って第2の圧縮ブレース2Bが設けている。建物躯体はRC造またはSRC造である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a partial front view showing a frame structure of an existing building to which the seismic reinforcement structure of this embodiment is applied. The seismic reinforcement structure of this embodiment is a structure that reinforces an existing building using the compression braces 2A and 2B. As shown in the figure, the building frame has a beam 30 horizontally mounted between two adjacent columns 20, 20, and the upper part between the columns 20, 20 on both sides along the lower surface of the beam 30. A steel frame material 1 is provided. Below the upper steel frame member 1, two compression braces 2A and 2B are arranged in an inverted V shape. That is, the first compression brace 2 </ b> A is provided between the intermediate portion of the upper steel frame member 1 and the lower end of the one column 20, and between the intermediate portion of the upper steel frame member 1 and the lower end of the other column 20. A second compression brace 2B is provided. The building frame is RC or SRC.

上部鉄骨枠材1は、図1のA部を拡大して示す図10、および図1のB部の拡大断面図を示す図11のように例えばH形鋼からなり、そのウエブ1aが水平姿勢となるように配置され、両端にはエンドプレート1bが設けられている。柱20および梁30と、上部鉄骨枠材1との間にはモルタル12が充填され、図11のように上部鉄骨枠材1の両端のエンドプレート1bをボルト13およびナット(図示せず)で柱20に接合し、上部鉄骨枠材1のウエブ1aの複数箇所を同様にボルト13およびナットで梁30に接合することにより、上部鉄骨枠材1が建物躯体に接合される。各ボルト13は、例えば梁30や柱20に後施工で設けられたホールインアンカー等のアンカーである。   The upper steel frame member 1 is made of, for example, H-shaped steel as shown in FIG. 10 showing an enlarged view of the portion A in FIG. 1 and FIG. 11 showing an enlarged sectional view of the portion B in FIG. End plates 1b are provided at both ends. The mortar 12 is filled between the column 20 and the beam 30 and the upper steel frame member 1, and the end plates 1b at both ends of the upper steel frame member 1 are bolted with bolts 13 and nuts (not shown) as shown in FIG. The upper steel frame member 1 is joined to the building frame by joining the pillar 20 and joining the plurality of portions of the web 1a of the upper steel frame member 1 to the beam 30 with bolts 13 and nuts in the same manner. Each bolt 13 is an anchor such as a hole-in anchor provided in the post-construction on the beam 30 or the pillar 20, for example.

第1および第2の圧縮ブレース2A,2Bの一端は、それぞれ連結部材3aを介して各柱20の下端に接合され、これら圧縮ブレース2A,2Bの他端はそれぞれ他の連結部材3bを介して上部鉄骨枠材1の中間部に接合される。   One end of each of the first and second compression braces 2A and 2B is joined to the lower end of each column 20 via a connecting member 3a, and the other end of each of the compression braces 2A and 2B is connected via another connecting member 3b. It is joined to the middle part of the upper steel frame material 1.

前記各圧縮ブレース2A,2Bは建物躯体に加わる水平力に抵抗する部材であって、図2に示すように、芯材3とこの芯材3の両面に沿って配置されて芯材3の座屈を拘束する一対の拘束材4,4とを有する。芯材3は、帯状の平鋼板であり、SN材(建築構造用圧延鋼材)や、LYP材(極低降伏点鋼材)等の降伏点の低い鉄鋼材料からなる。
拘束材4は、例えば芯材3に向けて開口する溝形鋼材5内にモルタルまたはコンクリート6を充填して構成される。芯材3と拘束材4との間には粘性弾性体からなるアンボンド材9が介在させてある。芯材3の両側面には、対向する一対の拘束材4,4の間の隙間を確保するスペーサ19が介在させてある。スペーサ19は、線状の鋼材またはゴム材等からなるが、省略しても良い。
芯材3の両端に、前記連結部材3aが設けられている。連結部材3aは板状の部材であり、芯材3に接合されたものであっても、芯材3に一体に形成されたものであっても良い。連結部材3aには、両面に長手方向に沿って補強リブ3aaが設けられ、補強リブ3aaは、拘束材4の溝形鋼材5の端部付近に設けられたスリット部から突出している。
Each of the compression braces 2A and 2B is a member that resists a horizontal force applied to the building frame. As shown in FIG. It has a pair of restraining materials 4 and 4 for restraining bending. The core material 3 is a strip-shaped flat steel plate, and is made of a steel material having a low yield point, such as an SN material (rolled steel material for building structures) or a LYP material (extremely low yield point steel material).
The restraint material 4 is configured by filling a mortar or concrete 6 in a channel steel material 5 that opens toward the core material 3, for example. An unbond material 9 made of a viscous elastic body is interposed between the core material 3 and the restraint material 4. Spacers 19 are provided on both side surfaces of the core material 3 to secure a gap between the pair of constraining materials 4 and 4 facing each other. The spacer 19 is made of a linear steel material or rubber material, but may be omitted.
The connecting member 3 a is provided at both ends of the core material 3. The connecting member 3 a is a plate-like member and may be joined to the core material 3 or integrally formed with the core material 3. The connecting member 3 a is provided with reinforcing ribs 3 aa on both sides along the longitudinal direction, and the reinforcing ribs 3 aa protrude from slit portions provided in the vicinity of the ends of the channel steel material 5 of the restraining material 4.

図6に示すように、芯材3は、拘束材4で拘束されている範囲で、長さ方向の途中部分、例えば中央で、一対の分割芯材3A,3Aに分割されている。これら一対の分割芯材3A,3Aの間には、長さ方向と垂直な鋼板7が、拘束材4に渡って介在させてある。図6の例では、前記鋼板7は、拘束材4の外側部材である溝形鋼材5に突き当たる位置まで、縦横とも延ばされている。拘束材4のモルタルまたはコンクリート6の部分は、鋼板7を介して左右に2分割される。
この他に図7のように、溝形鋼材5を突き切って拘束材4の外側に突出する位置まで鋼板7を延ばしても良い。この場合、拘束材4の全体が左右に2分割されることになる。
As shown in FIG. 6, the core material 3 is divided into a pair of divided core materials 3 </ b> A and 3 </ b> A at a midway portion in the length direction, for example, at the center, within a range restrained by the restraint material 4. A steel plate 7 perpendicular to the length direction is interposed between the pair of split core materials 3A and 3A across the restraint material 4. In the example of FIG. 6, the steel plate 7 is extended both vertically and horizontally to a position where it abuts against the channel steel material 5 that is the outer member of the restraint material 4. A portion of the mortar or concrete 6 of the restraint 4 is divided into left and right via a steel plate 7.
In addition to this, as shown in FIG. 7, the steel plate 7 may be extended to a position where the channel steel material 5 is cut through and protruded to the outside of the restraint material 4. In this case, the whole restraining material 4 is divided into left and right parts.

鋼板7は、片方の分割芯材3Aに接合手段31で接合されている。接合手段31は、例えば分割芯材3A,3Aの鋼板7と当接する端面の全周における隅肉溶接等の溶接部とされる。分割芯材3Aの分割側端部の表面に後述の補強板8を接合する場合は、この補強板8に鋼板7を接合手段31で溶接しても良い。接合手段31は、溶接の他に、接着剤による接着や、ボルト等であっても良い。鋼板7は、一対の分割芯材3A,3Aのいずれに接合しても良いが、建方で下側となる分割芯材3Aに接合するのが良い。圧縮ブレース2A,2Bが鋼板7の接合を除いて上下の方向性のないものである場合、つまり天地無用の構成である場合は、いずれが上側または下側であるかめを示す部材方向のマーク32(図2参照)を、圧縮ブレース2A,2Bの外側から目視できる箇所、例えば拘束材4の外面等施すことが好ましい。鋼板7に接合していない分割芯材3Aも、建方の完了時には鋼板7と接触させて隙間を零としておく。   The steel plate 7 is joined to the one split core material 3A by the joining means 31. The joining means 31 is, for example, a welded portion such as fillet welds on the entire circumference of the end surface that comes into contact with the steel plates 7 of the divided core members 3A and 3A. When a later-described reinforcing plate 8 is joined to the surface of the divided side end portion of the divided core member 3 </ b> A, the steel plate 7 may be welded to the reinforcing plate 8 by the joining means 31. The joining means 31 may be adhesive bonding, bolts, or the like in addition to welding. The steel plate 7 may be joined to either of the pair of split core materials 3A and 3A, but it is preferable to join the split core material 3A which is the lower side in the building. When the compression braces 2A and 2B have no vertical direction except for the joining of the steel plates 7, that is, when the top and bottom directions are not used, the member direction mark 32 indicates which is the upper or lower side. It is preferable to apply a portion (see FIG. 2) that can be seen from the outside of the compression braces 2A and 2B, for example, the outer surface of the restraint material 4. The split core material 3A that is not joined to the steel plate 7 is also brought into contact with the steel plate 7 when the construction is completed, leaving the gap zero.

両分割芯材3Aの分割側端部の両面には、図8のように補強板8が溶接により接合されている。補強板8を設けた場合、前記アンボンド材9により被覆される部分は、両分割芯材3Aの両面における、前記補強板8の接合部を除く部分とするのが良い。   Reinforcing plates 8 are joined to both surfaces of the split side end portions of both split cores 3A by welding as shown in FIG. When the reinforcing plate 8 is provided, the portion covered with the unbond material 9 is preferably a portion excluding the joint portion of the reinforcing plate 8 on both surfaces of both split core materials 3A.

図6は、図1における圧縮ブレース2AのVI−VI矢視断面図を、圧縮時および通常時と引張時とに分けて示している。また、図3は圧縮時および通常時の状態を、図4は引張時の状態を示す説明図である。この圧縮ブレース2Aでは、芯材3が長さ方向の途中部分で分割された一対の分割芯材3A,3Aからなるため、図6(A),図3のように圧縮力の作用時には、両分割芯材3A,3Aの端部が鋼板7を介して突き当て状態となり、圧縮力の伝達が可能であるが、図6(B),図4のように引張時には、鋼板7と接合されていない方の分割芯材3Aの端部が鋼板7から引き離され、一対の分割芯材3A,3Aが互いに離れることになって引張力を負担させることがない。
このように一対の分割芯材3A,3Aは、作用荷重によって互いに突き当て状態となったり離れたりするが、両分割芯材3A,3Aの間に鋼板7を介在させているので、分割芯材3A,3Aの端面は鋼板7に当接する。そのため、芯材3に板厚方向等の芯ずれが生じても、その芯ずれによる影響を緩和し、確実な圧縮力の伝達が行える。他方の圧縮ブレース2Bの場合も上記と同様である。また、鋼板7を拘束材4の外部まで突出させた図7の構成例の場合も同様である。
FIG. 6 is a sectional view taken along the line VI-VI of the compression brace 2A in FIG. 1 separately for compression, normal and tension. FIG. 3 is an explanatory view showing a state during compression and normal state, and FIG. 4 is an explanatory view showing a state during tension. In this compression brace 2A, since the core material 3 is composed of a pair of divided core materials 3A and 3A divided in the middle part in the length direction, both of them are applied when a compressive force is applied as shown in FIGS. The ends of the split cores 3A and 3A are brought into contact with each other through the steel plate 7 and can transmit a compressive force. However, when they are pulled as shown in FIGS. 6B and 4, they are joined to the steel plate 7. The end portion of the non-divided split core material 3A is pulled away from the steel plate 7, and the pair of split core materials 3A and 3A are separated from each other, so that no tensile force is applied.
As described above, the pair of divided core members 3A and 3A are brought into contact with or separated from each other by the applied load, but the steel plate 7 is interposed between the two divided core members 3A and 3A. The end faces of 3A and 3A are in contact with the steel plate 7. Therefore, even if the core material 3 is misaligned in the thickness direction or the like, the influence of the misalignment can be alleviated and a reliable compression force can be transmitted. The same applies to the other compressed brace 2B. The same applies to the configuration example of FIG. 7 in which the steel plate 7 is protruded to the outside of the restraint material 4.

また、これらの圧縮ブレース2A,2Bでは、図8のように分割芯材3Aの分割側端部の両面に補強板8を接合しているので、分割芯材3Aの長手方向への変位のガイドとなり、分割芯材3Aの垂直方向への芯ずれ、および端部での面外変形を抑制することができる。ちなみに、分割芯材3Aに前記補強板8が無い場合、図9(A)のように左右の分割芯材3A,3Aの間で芯が一致していたものが、図9(B)のようにアンボンド材9の厚み分だけ芯ずれする可能性がある。分割芯材3Aの分割側端部の両面に補強板8を接合すると、このような芯ずれを抑制できる。   Further, in these compression braces 2A and 2B, the reinforcing plates 8 are joined to both sides of the split side end portion of the split core member 3A as shown in FIG. 8, so that the guide for displacement of the split core member 3A in the longitudinal direction is joined. Thus, the vertical misalignment of the split core material 3A and the out-of-plane deformation at the end can be suppressed. Incidentally, when the divided core material 3A does not have the reinforcing plate 8, the cores between the left and right divided core materials 3A, 3A as shown in FIG. 9A are the same as in FIG. 9B. Furthermore, there is a possibility of misalignment by the thickness of the unbond material 9. When the reinforcing plates 8 are joined to both surfaces of the split side end portion of the split core material 3A, such misalignment can be suppressed.

分割部に介在させた鋼板7は、いずれか一方の分割芯材3Aに接合したため、運送時や建方時の問題が次のように解消される。すなわち、鋼板7が接合された分割芯材3Aは、拘束材4に対して圧縮ブレース2A,2Bの端部側に移動することが阻止される。そのため、鋼板7が接合された分割芯材3Aが下側となる斜め姿勢ないし立姿勢で圧縮ブレースの2A,2B運搬や建方を行うことにより、これら運搬や建方時に、分割芯材3Aが脱落することが防止される。
また、建方の完了状態では、鋼板7に接合していない分割芯材3Aを鋼板7と接触させ、鋼板7との隙間を零としておくことが必要であるが、両方の分割芯材3A,3Aが共に拘束材4に対して移動自在であると、建方時に分割芯材3Aが長方向にずれて分割芯材3Aと鋼板7との間に隙間が生じる初期不整が発生することがある。上記隙間が僅かでもあると、図5(B)のように、圧縮側のブレース、例えば圧縮ブレース2Bは、地震が来ても変形の初期状態の微小変位では隙間のために圧縮応力が伝達できず、補強効果が得られない。変形が進み、両分割芯材3A,3Aが互いに接した時点で、圧縮力を伝達し、補強効果を発揮させることになる。この実施形態では、片方の分割芯材3Aが鋼板7と接合されているため、上記の隙間発生の初期不整が防止され、そのため、図5(A)のように地震が来た場合に初期から圧縮力を伝達して補強効果が得られる。したがって、圧縮ブレース2A,2Bの性能確保の信頼性が向上する。なお、鋼板7が一方の分割芯材3Aに接合されていても、上記のように他方の分割芯材3Aが鋼板7から離れる方向の移動は自在であるため、芯材3の分割により引張力の負担をなくすという機能が損なわれることがない。
Since the steel plate 7 interposed in the divided portion is joined to any one of the divided core members 3A, the problems during transportation and construction are solved as follows. That is, the divided core material 3A to which the steel plate 7 is bonded is prevented from moving toward the end portions of the compression braces 2A and 2B with respect to the restraining material 4. Therefore, when the divided core material 3A to which the steel plate 7 is joined is transported and constructed in an oblique posture or a standing posture with the compressed braces 2A and 2B being transported and constructed, It is prevented from falling off.
In addition, in the completed state of the building method, it is necessary to bring the split core material 3A not joined to the steel plate 7 into contact with the steel plate 7 so that the gap between the steel plate 7 is zero, but both split core materials 3A, If both 3A are movable with respect to the restraint material 4, the split core material 3A may be displaced in the longitudinal direction during construction, and an initial irregularity in which a gap is generated between the split core material 3A and the steel plate 7 may occur. . If the gap is small, as shown in FIG. 5 (B), the compression brace, for example, the compression brace 2B, can transmit compressive stress due to the gap even in the case of an earthquake, even if an earthquake occurs. Therefore, the reinforcing effect cannot be obtained. When the deformation progresses and the split cores 3A and 3A come into contact with each other, the compressive force is transmitted to exert a reinforcing effect. In this embodiment, since one of the divided core members 3A is joined to the steel plate 7, the initial irregularity of the gap generation described above is prevented. Therefore, when an earthquake occurs as shown in FIG. Reinforcement effect is obtained by transmitting the compression force. Therefore, the reliability of securing the performance of the compression braces 2A and 2B is improved. Even if the steel plate 7 is joined to one split core 3A, the other split core 3A can move in the direction away from the steel plate 7 as described above. The function of eliminating the burden is not impaired.

両圧縮ブレース2A,2Bの両端の連結部材3a,3bは、芯材3の両端に一体形成された板状部分であり、図10および、図1のC部の拡大断面図を示す図12のように、各連結部材3a,3bにはその端部にエンドプレート10,11が設けられている。エンドプレート10,11は、例えば直角に折れ曲がったL字状とされている。このL字状の曲げ角を2分する線の方向が、圧縮ブレース2A,2Bの長さ方向となる。エンドプレート10,11は、連結部材3a,3bの両面側へ突出しているが、片面側のみに突出するものであっても良い。これらエンドプレート10,11には複数のボルト挿通孔が設けられている。   The connecting members 3a and 3b at both ends of both compression braces 2A and 2B are plate-like portions integrally formed at both ends of the core material 3, and FIG. 12 shows an enlarged cross-sectional view of a portion C in FIG. As described above, the end plates 10 and 11 are provided at the ends of the connecting members 3a and 3b. The end plates 10 and 11 are, for example, L-shaped bent at a right angle. The direction of the line that bisects the L-shaped bending angle is the length direction of the compression braces 2A and 2B. The end plates 10 and 11 protrude toward both sides of the connecting members 3a and 3b, but may protrude only on one side. These end plates 10 and 11 are provided with a plurality of bolt insertion holes.

図12のように、柱20および梁30と、両圧縮ブレース2A,2Bの下端の連結部材3aとの間にはモルタル12が充填され、連結部材3aに設けられたエンドプレート10の縦片および横片を、ホールインアンカー等のボルト13とナット(図示せず)で柱20および梁30に接合することにより、両圧縮ブレース2A,2Bの下端が既存建物躯体に接続される。   As shown in FIG. 12, the mortar 12 is filled between the column 20 and the beam 30 and the connecting member 3a at the lower end of both compression braces 2A and 2B, and the vertical piece of the end plate 10 provided on the connecting member 3a and By joining the horizontal piece to the column 20 and the beam 30 with bolts 13 and nuts (not shown) such as hole-in anchors, the lower ends of both compression braces 2A and 2B are connected to the existing building frame.

図10のように、上部鉄骨枠材1の中間部には、ウエブ部1aから垂直下方に突出する取付用鋼板14が設けられている。両圧縮ブレース2A,2Bの上端の連結部材3bに設けられたエンドプレート11の縦片および横片を、ボルト13で前記取付用鋼板14および上部鉄骨枠材1のウエブ部1aに接合することにより、両圧縮ブレース2A,2Bの上端が上部鉄骨枠材1を介して既存建物躯体に接続される。両圧縮ブレース2A,2Bのエンドプレート11の縦片は、取付用鋼板14と共に重なり状態にボルト13で接合される。   As shown in FIG. 10, a mounting steel plate 14 that protrudes vertically downward from the web portion 1 a is provided in the middle portion of the upper steel frame member 1. By joining the vertical piece and the horizontal piece of the end plate 11 provided on the connecting member 3b at the upper ends of both the compression braces 2A and 2B to the mounting steel plate 14 and the web portion 1a of the upper steel frame member 1 with bolts 13. The upper ends of both compression braces 2A and 2B are connected to the existing building frame via the upper steel frame member 1. The vertical pieces of the end plates 11 of both the compression braces 2A, 2B are joined together with the mounting steel plate 14 with bolts 13 in an overlapping state.

上記構成の圧縮ブレース2A,2Bを用いた耐震補強構造によると、圧縮ブレース2A,2Bと既存建物躯体との応力伝達を上部鉄骨枠材1を介して支圧で行うことができる。圧縮ブレース2A,2Bを用いることで、支圧による応力伝達とし、圧縮ブレース2A,2Bで引っ張り力を負担しないようにしたため、引っ張り力による既存建物躯体との応力伝達を検討する必要がなく、既存建物の躯体との接合を簡素化できる。これにより、後施工に使用するボルト13等のアンカーの本数も削減きるので、騒音、振動を抑えることができ、工期も短縮できる。
また、圧縮ブレース2A,2Bと複合して用いる鉄骨枠として、上部鉄骨枠材1のみを設けるため、使用鋼材量を削減でき、コストダウンが可能となる。鉄骨枠を全周に設けずに、上部鉄骨枠材1のみとしても、圧縮ブレース2A,2Bと既存建物躯体との応力伝達を上部鉄骨枠材1を介して行うことができ、十分な耐震補強が行える。鉄骨枠が上部鉄骨枠材1のみに削減できることからも、アンカー本数も削減でき、騒音、振動の抑制、工期の短縮に繋がる。モルタル12の充填箇所も限られるので、モルタル削減によるコストダウンが可能となる。
According to the seismic reinforcement structure using the compression braces 2A and 2B having the above-described configuration, the stress transmission between the compression braces 2A and 2B and the existing building frame can be performed by supporting pressure through the upper steel frame member 1. By using the compression braces 2A and 2B, stress transmission by supporting pressure is made, and the tension force is not borne by the compression braces 2A and 2B. It can simplify the connection with the building frame. Thereby, since the number of anchors, such as the volt | bolt 13 used for post-construction, can also be reduced, a noise and vibration can be suppressed and a construction period can also be shortened.
Moreover, since only the upper steel frame material 1 is provided as a steel frame used in combination with the compression braces 2A and 2B, the amount of steel used can be reduced and the cost can be reduced. Even if only the upper steel frame material 1 is provided without providing the steel frame, the stress transmission between the compression braces 2A and 2B and the existing building frame can be performed via the upper steel frame material 1, and sufficient seismic reinforcement is provided. Can be done. Since the steel frame can be reduced to only the upper steel frame material 1, the number of anchors can also be reduced, leading to suppression of noise and vibration and shortening of the construction period. Since the number of mortar 12 filling places is also limited, it is possible to reduce costs by reducing mortar.

図13は、この実施形態の耐震補強構造を建物躯体へ適用した一例を示す正面図である。この建物躯体では、下階がピロティとされ、上階に耐力壁40を有しており、下階ピロティに実施形態の耐震補強構造を適用している。この場合、圧縮ブレース2A,2Bを受ける梁30の中央に作用するせん断力Pは、上階の耐力壁で負担できるため、圧縮ブレース2A,2Bによる耐震補強が効果的に行れる。   FIG. 13: is a front view which shows an example which applied the seismic reinforcement structure of this embodiment to the building frame. In this building frame, the lower floor is a piloti, the upper floor has a bearing wall 40, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti. In this case, since the shear force P acting on the center of the beam 30 that receives the compression braces 2A and 2B can be borne by the load bearing wall on the upper floor, the seismic reinforcement by the compression braces 2A and 2B can be effectively performed.

図14は、この実施形態の耐震補強構造をさらに他の建物躯体へ適用した一例を示す正面図である。この建物躯体は、図13の建物躯体において耐力壁が無い場合のものであり、下階ピロティに実施形態の耐震補強構造を適用すると共に、図13におけるせん断力Pに対する補強対策として、2階と3階の梁30,30の間に座屈拘束柱15を設置している。この座屈拘束柱15により、梁30の負担を分割させることができる。この場合も、圧縮ブレース2A,2Bによる耐震補強が効果的に行れる。   FIG. 14 is a front view showing an example in which the seismic reinforcement structure of this embodiment is applied to still another building frame. This building case is a case where there is no bearing wall in the building case of FIG. 13, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti, and as a reinforcing measure against the shearing force P in FIG. A buckling restraint column 15 is installed between the beams 30 on the third floor. The buckling restraint column 15 can divide the load on the beam 30. Also in this case, the seismic reinforcement by the compression braces 2A and 2B can be effectively performed.

図15は、この実施形態の耐震補強構造をさらに他の建物躯体へ適用した一例を示す正面図である。この建物躯体も、図13の建物躯体において耐力壁が無い場合のものであり、下階ピロティに実施形態の耐震補強構造を適用すると共に、図13におけるせん断力Pに対する補強対策として、2階の梁30に連続繊維材16を設置している。このように連続繊維材16を設けることで、圧縮ブレース2A,2Bからなのせん断力に対する補強が行える。同図中に示すグラフは、この場合の梁30にかかる曲げモーメント図である。   FIG. 15 is a front view showing an example in which the seismic reinforcement structure of this embodiment is applied to still another building frame. This building frame is also a case where there is no bearing wall in the building frame of FIG. 13, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti, and as a reinforcing measure against the shearing force P in FIG. A continuous fiber material 16 is installed on the beam 30. By providing the continuous fiber material 16 in this way, it is possible to reinforce the shear force from the compression braces 2A and 2B. The graph shown in the figure is a diagram of the bending moment applied to the beam 30 in this case.

図16は、この実施形態の耐震補強構造をさらに他の建物躯体へ適用した一例を示す正面図である。この建物躯体も、図13の建物躯体において耐力壁が無い場合のものであり、下階ピロティに実施形態の耐震補強構造を適用すると共に、図13におけるせん断力Pに対する補強対策として、上階に同じ耐震補強構造を上下逆向きに設置している。これにより、せん断力Pを上階の柱20に流すことができる。   FIG. 16 is a front view showing an example in which the seismic reinforcement structure of this embodiment is applied to another building frame. This building frame is also a case where there is no bearing wall in the building frame of FIG. 13, and the seismic reinforcement structure of the embodiment is applied to the lower floor piloti, and as a reinforcement measure against the shearing force P in FIG. The same seismic reinforcement structure is installed upside down. Thereby, the shearing force P can be sent to the pillar 20 of an upper floor.

1…上部鉄骨枠材
2A,2B…圧縮ブレース
3…芯材
3A…分割芯材
4…拘束材
7…鋼板
8…補強板
31…接合手段
DESCRIPTION OF SYMBOLS 1 ... Upper steel frame material 2A, 2B ... Compression brace 3 ... Core material 3A ... Divided core material 4 ... Restraint material 7 ... Steel plate 8 ... Reinforcement plate 31 ... Joining means

Claims (5)

既存建物をブレースで補強する構造であって、前記ブレースが、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有する圧縮ブレースであり、前記芯材を、長さ方向の拘束材で拘束されている部分で一対の分割芯材に分割し、前記一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させ、前記鋼材をいずれか一方の分割芯材に接合したことを特徴とする圧縮ブレースによる耐震補強構造。   A structure in which an existing building is reinforced with braces, and the braces are arranged along both sides of the core material, both ends of which are connected to the frame of the existing building, and restrain the buckling of the core material. The core material is divided into a pair of split core materials at a portion constrained by the length direction restraint material, and the length is between the pair of split core materials. An anti-seismic reinforcing structure using a compression brace, characterized in that a steel material perpendicular to the direction is interposed over a restraining material and the steel material is joined to one of the divided core materials. 請求項1において、前記いずれか一方の分割芯材に対する前記鋼材の接合を溶接とした圧縮ブレースによる耐震補強構造。   2. The earthquake-proof reinforcement structure according to claim 1, wherein the steel material is welded to the one of the split cores. 請求項1または請求項2において、既存建物の躯体における梁と、この梁の両側で梁下方に延びる一対の柱とでなる部分に配置する鉄骨枠として、前記梁に沿う上部鉄骨枠材を設け、前記圧縮ブレースを互いに逆V字状に2本配置し、これら2本の圧縮ブレースの上端を、前記上部鉄骨枠材に接合した圧縮ブレースによる耐震補強構造。   3. The upper steel frame material along the beam is provided as a steel frame arranged in a portion consisting of a beam in a frame of an existing building and a pair of columns extending below the beam on both sides of the beam. An anti-seismic reinforcement structure comprising a compression brace in which two compression braces are arranged in an inverted V shape and the upper ends of the two compression braces are joined to the upper steel frame member. 請求項1ないし請求項3いずれか1項において、前記圧縮ブレースにおける前記一対の分割芯材の分割側端部の表面に補強板を接合した圧縮ブレースによる耐震補強構造。   4. The earthquake-proof reinforcement structure according to claim 1, wherein a compression plate is joined to a surface of a split-side end portion of the pair of split core members in the compression brace. 既存建物の躯体にブレースの両端を接続して既存建物を補強する方法であって、前記ブレースとして、両端が前記既存建物の躯体に接続される芯材と、この芯材の両面に沿って配置されて前記芯材の座屈を拘束する拘束材とを有し圧縮力を支持する圧縮ブレースを用い、この圧縮ブレースが、前記芯材を長さ方向の拘束材で拘束されている部分で一対の分割芯材に分割し、かつ前記一対の分割芯材の間に、長さ方向と垂直な鋼材を、拘束材に渡って介在させ、前記鋼材をいずれか一方の分割芯材に接合したものであることを特徴とする圧縮ブレースによる耐震補強方法。   A method of reinforcing an existing building by connecting both ends of a brace to a frame of an existing building, and as the brace, both ends are connected to the frame of the existing building and arranged along both sides of the core A compression brace having a restraining material that restrains buckling of the core material and supporting a compressive force, and the compression brace is paired at a portion where the core material is restrained by a restraining material in a length direction. A steel material perpendicular to the length direction is interposed between the pair of split core materials across the restraint material, and the steel material is joined to one of the split core materials. A seismic reinforcement method using compression braces.
JP2011279380A 2011-12-21 2011-12-21 Seismic reinforcement structure and method using compression braces Active JP5755558B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279380A JP5755558B2 (en) 2011-12-21 2011-12-21 Seismic reinforcement structure and method using compression braces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279380A JP5755558B2 (en) 2011-12-21 2011-12-21 Seismic reinforcement structure and method using compression braces

Publications (2)

Publication Number Publication Date
JP2013129982A JP2013129982A (en) 2013-07-04
JP5755558B2 true JP5755558B2 (en) 2015-07-29

Family

ID=48907752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279380A Active JP5755558B2 (en) 2011-12-21 2011-12-21 Seismic reinforcement structure and method using compression braces

Country Status (1)

Country Link
JP (1) JP5755558B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114263289A (en) * 2022-01-18 2022-04-01 湖南大学 Anti-seismic component with energy consumption and bearing double functions and buffer

Also Published As

Publication number Publication date
JP2013129982A (en) 2013-07-04

Similar Documents

Publication Publication Date Title
JP4917168B1 (en) Seismic reinforcement structure and method using compression braces
JP4649360B2 (en) Seismic joint structure and construction method thereof
WO2020100367A1 (en) Bonding structure
TWI495776B (en) Joint Structure of Steel Reinforced Concrete Column and Steel Bone Beam
JP2011208434A (en) Beam-column joint structure
JP2016023476A (en) Concrete mold for aseismic and vibration control reinforcement of concrete structure, and aseismic and vibration control reinforcement method for concrete structure using the same
JP6246464B2 (en) Buckling-restrained brace and seismic reinforcement structure using the same
JP6511233B2 (en) Joint structure of column base and steel beam
JP5368762B2 (en) Reinforcement joint structure
JP5755558B2 (en) Seismic reinforcement structure and method using compression braces
KR101209363B1 (en) Concrete block for seismic reinforcement of H-shaped column and seismic reinforcing method using the same
JP5934033B2 (en) Seismic reinforcement structure and method using compression braces
JP5268470B2 (en) How to lift a rebar basket
JP2021011736A (en) Girder reinforcement structure
JP4045504B2 (en) Damping structure
JP6033574B2 (en) Seismic reinforcement structure with compression braces
JP4980782B2 (en) Seismic isolation mechanism for intermediate floors of buildings
JP7052953B2 (en) Damping structure
JP6388738B1 (en) Seismic reinforcement structure for concrete structures
JP5755559B2 (en) Seismic reinforcement structure and method using compression braces
JP3851563B2 (en) Frame reinforcement structure and its construction method
JP6474575B2 (en) Brace seismic reinforcement structure and seismic reinforcement method for existing buildings
JP2005188240A (en) Vibration control structure
JP6240420B2 (en) Seismic reinforcement structure
JP2019065532A (en) Axial force resistant member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250