JP5753528B2 - Fatigue crack growth control paste - Google Patents
Fatigue crack growth control paste Download PDFInfo
- Publication number
- JP5753528B2 JP5753528B2 JP2012253997A JP2012253997A JP5753528B2 JP 5753528 B2 JP5753528 B2 JP 5753528B2 JP 2012253997 A JP2012253997 A JP 2012253997A JP 2012253997 A JP2012253997 A JP 2012253997A JP 5753528 B2 JP5753528 B2 JP 5753528B2
- Authority
- JP
- Japan
- Prior art keywords
- paste
- fatigue crack
- particles
- fatigue
- crack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23P—METAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
- B23P6/00—Restoring or reconditioning objects
- B23P6/04—Repairing fractures or cracked metal parts or products, e.g. castings
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
- C01P2004/52—Particles with a specific particle size distribution highly monodisperse size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/62—Submicrometer sized, i.e. from 0.1-1 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/22—Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Geology (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
Description
本発明は、金属部材に発生した疲労き裂の進展を抑制する疲労き裂進展抑制用ペーストに関するものである。 The present invention relates to a paste for suppressing fatigue crack growth that suppresses the growth of fatigue cracks generated in a metal member.
疲労き裂は、繰返し応力の作用下で形成されるき裂であり、金属部材に発生した疲労き裂に、さらに、応力が繰返し加わることによって、疲労き裂が進展し、ひいてはその金属部材の切断に繋がることとなる。そのため、疲労き裂の進展を抑制する技術が重要となっている。疲労き裂に関して、疲労き裂面内にフレッティング酸化物(き裂面の酸化層がこすれて生じた酸化物)等の異物が生じることで、くさび効果によって疲労き裂進展速度が低下することが広く知られている。 A fatigue crack is a crack formed under the action of repetitive stress. Further, when a stress is repeatedly applied to a fatigue crack generated in a metal member, the fatigue crack progresses and eventually the metal member It will lead to cutting. Therefore, a technique for suppressing the progress of fatigue cracks is important. With regard to fatigue cracks, foreign matter such as fretting oxide (oxide generated by rubbing the oxide layer on the crack surface) is generated in the fatigue crack surface, and the fatigue crack growth rate is reduced due to the wedge effect. Is widely known.
くさび効果による疲労き裂進展速度の低下のメカニズムは、図8に示すように、き裂面内に異物が入ることで、き裂先端開口変位量が減少することにある(き裂進展に有効な応力範囲が小さくなる)。なお、図8では異物が全く潰れない場合のものを示している。応力変動1サイクルあたりの疲労き裂進展速度は疲労き裂先端の開口変位量と強い相関がある。 As shown in Fig. 8, the mechanism of the decrease in fatigue crack growth rate due to the wedge effect is to reduce the opening displacement of the crack tip when foreign matter enters the crack surface (effective for crack growth). The stress range becomes smaller). FIG. 8 shows a case where the foreign matter is not crushed at all. The fatigue crack growth rate per cycle of stress fluctuation has a strong correlation with the opening displacement at the tip of the fatigue crack.
技術文献「H. Kitagawa, et.al.: A new method of arresting fatigue crack growth by artificial wedge,Proceedings of International Conference on Fracture Mechanics in Engineering Applications,pp.281-293,1979.」(非特許文献1)には、き裂に接着剤を流し込むことで疲労き裂の進展を遅らせるようにした技術が開示されている。この技術は、接着剤による前記くさび効果を積極的に発現する技術である。例えば、アルミニウム合金部材に発生した疲労き裂内に接着剤を注入することによって、疲労き裂の開閉口が抑制され、疲労き裂進展速度を低下することが示されている。ところが、この技術では、接着剤は一度硬化すると流動性が失われるため、疲労き裂進展抑制効果は接着剤注入直後には得られるものの、接着剤注入後に疲労き裂が進展すると大幅に小さくなってしまい、疲労き裂進展抑制効果が継続的に得られないという問題点がある。 Technical literature “H. Kitagawa, et.al .: A new method of arresting fatigue crack growth by artificial wedge, Proceedings of International Conference on Fracture Mechanics in Engineering Applications, pp.281-293, 1979” (Non-Patent Document 1) Discloses a technique in which the progress of a fatigue crack is delayed by pouring an adhesive into the crack. This technique is a technique for positively expressing the wedge effect by the adhesive. For example, it has been shown that by injecting an adhesive into a fatigue crack generated in an aluminum alloy member, the opening and closing port of the fatigue crack is suppressed and the fatigue crack growth rate is reduced. However, with this technology, once the adhesive is cured, the fluidity is lost. Therefore, although the effect of suppressing fatigue crack growth is obtained immediately after the injection of the adhesive, it becomes much smaller when the fatigue crack propagates after the injection of the adhesive. Therefore, there is a problem that the fatigue crack growth suppressing effect cannot be obtained continuously.
そこで、前記非特許文献1に開示された技術の前記問題点を解消するため、高硬度の微細な粒子と油などの液体とを混合した疲労き裂進展抑制用のペーストが提案されている(例えば、特許文献1,2)。このペーストは、金属部材の疲労き裂の発生箇所に塗布され、毛細管現象とポンプ効果の作用によって疲労き裂先端まで侵入する。そして、ペースト中に含まれている粒子が、疲労き裂先端において前述したくさび効果を発現する。このペーストによると、接着剤と違って硬化することがなく、流動性を有しており、き裂内に侵入するため、継続的にき裂進展抑制効果を発揮することが可能である。
Therefore, in order to solve the above-described problems of the technique disclosed in
例えば、特許第3808846号公報(特許文献1)には、疲労き裂進展抑制用のペーストとして、金属部材の疲労き裂の発生箇所に塗布されるペーストであって、粒径が2μm〜40μmのアルミナ粒子と粘度が5〜15Pa・sの油とを混合してなるペーストが開示されている。 For example, in Japanese Patent No. 3808844 (Patent Document 1), as a paste for suppressing fatigue crack growth, it is a paste applied to a place where a fatigue crack occurs in a metal member, and has a particle size of 2 μm to 40 μm. A paste formed by mixing alumina particles and oil having a viscosity of 5 to 15 Pa · s is disclosed.
前記特許文献1記載のペーストでは、後述するようにアルミナ粒子の粒度分布が考慮されていないため、応力拡大係数範囲(応力拡大係数範囲:疲労き裂先端に作用する疲労負荷の大きさを表す指標であり、この応力拡大係数範囲が大きいと、き裂先端の開口変位量が大きくなり、したがって疲労き裂の進展速度が大きくなる。)の大小によっては、ペーストを用いない場合と比較して、疲労き裂進展抑制の効果が小さく不十分となる場合があるという問題があった。
In the paste described in
すなわち、ペーストを構成する粒子の粒径について考察すると、応力拡大係数範囲が小さい場合(疲労き裂が発生した初期の状態)には、き裂先端開口量が小さいため、その開口量にマッチした小径の粒子が、当該粒子のき裂内侵入によるき裂閉口を促進しやすい(図1の(a)参照)。一方、き裂長さの長い疲労き裂に大きな応力が作用し、応力拡大係数範囲が大きい場合(発生した疲労き裂が進展し拡大した状態)には、き裂先端開口量が大きいため、その開口量にマッチした大径の粒子が、当該粒子のき裂内侵入によるき裂閉口の促進に適するものとなる(図1の(b)参照)。 In other words, considering the particle size of the particles constituting the paste, when the stress intensity factor range was small (the initial state where fatigue cracks were generated), the crack tip opening amount was small, so it matched the opening amount. Small-diameter particles tend to promote crack closure due to penetration of the particles into the crack (see FIG. 1A). On the other hand, when a large stress acts on a fatigue crack with a long crack length and the stress intensity factor range is large (when the generated fatigue crack has propagated and expanded), the crack tip opening is large. Large-diameter particles matching the opening amount are suitable for promoting crack closure by the penetration of the particles into the crack (see FIG. 1B).
ところが、前記特許文献1記載のペーストでは、その実施例によると、平均粒径15.2μmという比較的大きな粒径のアルミナ粒子を用いたペーストであるため、き裂先端開口量が大きい状態(応力拡大係数範囲が大きい領域であり、例えば、き裂先端開口量が10〜20μm)では有効である一方、き裂先端開口量が小さい状態(応力拡大係数範囲が小さい領域であり、例えば、き裂先端開口量が2μm以下)ではアルミナ粒子が大きすぎて、疲労き裂進展抑制効果が有効に発揮されなかったものと推察される。
However, according to the example, the paste described in
なお、ペースト中に含有させるアルミナ粒子として、疲労き裂のその時点におけるき裂先端開口量に合わせた粒径のみのアルミナ粒子を選択することは、実用上意味がない。なぜなら、ある時点における疲労き裂に対してそのときのき裂先端開口量に対応した粒径のアルミナ粒子を選択してペーストを製作し、この疲労き裂の部位に塗布するようにしても、その後にこの疲労き裂が進展して、き裂先端開口量が塗布時点に比べて大きくなった状態では、前記塗布時点でのアルミナ粒子ではその粒径が相対的に小径のものとなり、進展した疲労き裂に対して適さないペーストとなるためである。つまり、ペースト中に含有させるアルミナ粒子については、疲労き裂の進展に伴い変化するき裂先端開口量に対応した粒度分布をもたせるように考慮する必要がある。 Note that it is not practically meaningful to select alumina particles having only a particle size that matches the opening amount of the crack tip at the time of the fatigue crack as the alumina particles to be included in the paste. Because, for a fatigue crack at a certain time point, an alumina particle having a particle size corresponding to the opening amount of the crack tip at that time is selected to produce a paste and applied to the site of this fatigue crack, Then, when this fatigue crack progresses and the crack tip opening amount is larger than that at the time of application, the alumina particles at the time of application have a relatively small particle diameter and have progressed. This is because the paste is not suitable for fatigue cracks. In other words, it is necessary to consider the alumina particles contained in the paste so as to have a particle size distribution corresponding to the opening amount of the crack tip that changes as the fatigue crack progresses.
そこで、本発明の課題は、疲労き裂の進展に対応して常に疲労き裂進展抑制効果を発揮することができる疲労き裂進展抑制用ペーストを提供することにある。 Then, the subject of this invention is providing the paste for fatigue crack growth suppression which can always exhibit the fatigue crack growth inhibitory effect corresponding to progress of a fatigue crack.
前記の課題を解決するため、本願発明では、次の技術的手段を講じている。 In order to solve the above problems, the present invention takes the following technical means.
請求項1の発明は、金属部材の疲労き裂の進展を抑制する疲労き裂進展抑制用ペーストであって、粒子と液体とを混合してなり、前記粒子の粒度分布が、粒径20μm以下の粒子が100質量%、粒径10μm以下の粒子が95〜100質量%、粒径2.0μm以下の粒子が45〜99質量%、粒径1.0μm以下の粒子が20〜85質量%、粒径0.5μm以下の粒子が7〜50質量%、粒径0.1μm以下の粒子が0〜5質量%、の範囲であることを特徴とする疲労き裂進展抑制用ペーストである。
The invention of
請求項2の発明は、請求項1記載の疲労き裂進展抑制用ペーストにおいて、粘度が5Pa・s以上70Pa・s未満であることを特徴とするものである。
The invention of
請求項3の発明は、請求項1又は2記載の疲労き裂進展抑制用ペーストにおいて、前記粒子がアルミナであることを特徴とするものである。 According to a third aspect of the present invention, in the paste for suppressing fatigue crack growth according to the first or second aspect, the particles are alumina.
本願発明の疲労き裂進展抑制用ペーストによると、ペーストを構成する粒子に、疲労き裂の進展に伴い変化するき裂先端開口量に合わせた適正な粒度分布をもたせているので、疲労き裂の進展に対応して常に疲労き裂進展抑制効果を十分発揮することができる。よって、疲労き裂が発生した例えば鋼構造物の延命化を図ることができる。 According to the fatigue crack growth suppressing paste of the present invention, since the particles constituting the paste have an appropriate particle size distribution that matches the crack tip opening amount that changes as the fatigue crack progresses, The fatigue crack growth suppressing effect can always be sufficiently exhibited in response to the progress of cracks. Therefore, the life extension of, for example, a steel structure in which a fatigue crack has occurred can be achieved.
以下、さらに詳しく本発明について説明する。 Hereinafter, the present invention will be described in more detail.
本発明の疲労き裂進展抑制用ペースト(以下、単にペーストともいう)は、流動性を有しており、アルミナ粒子などの高硬度の粒子と工業油などの適度の粘度を持つ液体とを混合してなるものである。そして、本発明のペーストの特徴は、ペーストを構成する粒子に、疲労き裂の進展に伴い小さい状態から大きい状態に変化するき裂先端開口量に合わせた粒度分布をもたせていることにある(前述の図1参照)。これにより、本発明のペーストは、疲労き裂の進展に対応して常にくさび効果を継続的に発現して疲労き裂進展抑制効果を十分発揮することができる。すなわち、本発明のペーストは、疲労き裂の進展に伴って変化する疲労負荷の大きさ(応力拡大係数範囲の大きさ)にかかわらず、常に疲労き裂進展抑制効果を十分発揮することができる。 The paste for suppressing fatigue crack growth of the present invention (hereinafter also simply referred to as paste) has fluidity, and is a mixture of high hardness particles such as alumina particles and a liquid having an appropriate viscosity such as industrial oil. It is made. A feature of the paste of the present invention is that the particles constituting the paste have a particle size distribution matched to the crack tip opening amount that changes from a small state to a large state as the fatigue crack progresses ( (See FIG. 1 above). Thereby, the paste of this invention can fully exhibit the fatigue crack progress inhibitory effect by always expressing the wedge effect continuously corresponding to the progress of the fatigue crack. That is, the paste of the present invention can always sufficiently exert the effect of suppressing fatigue crack growth regardless of the size of the fatigue load (the magnitude of the stress intensity factor range) that changes with the progress of the fatigue crack. .
図2は、本発明の作用効果を説明するため、ペーストを構成する粒子の粒度分布の適否とそれによるき裂進展特性との関係を示す図である。 FIG. 2 is a diagram showing the relationship between the suitability of the particle size distribution of the particles constituting the paste and the crack growth characteristics due to this, in order to explain the effects of the present invention.
図2に示すように、疲労き裂に対してペーストを用いない場合には、(ア)で示すき裂進展特性のように、疲労き裂の進展に伴う応力拡大係数範囲ΔKの増大に伴い疲労き裂進展速度が大きくなる。 As shown in FIG. 2, when the paste is not used for a fatigue crack, as the crack growth characteristics shown in (a), as the stress intensity factor range ΔK increases as the fatigue crack progresses, The fatigue crack growth rate increases.
一方、適正粒度分布に対して粒径が小径側に逸脱した不適正粒度分布の粒子でなるペーストの場合には、(イ)で示すき裂進展特性のように、疲労き裂が進展して応力拡大係数範囲が大きい領域では、き裂先端が大きく開口し、それに見合う大径の粒子が不足して大径粒子のき裂内侵入によるき裂閉口を誘起できないため、前記(ア)のペーストなしの場合に比較して疲労き裂進展速度を低下させることができない。なお、このペーストの場合、当該疲労き裂が発生して間もない時期で応力拡大係数範囲が小さい領域(き裂先端開口量が小さい領域)では、前記(ア)のペーストなしの場合に比較して疲労き裂進展速度を低減させることができる。 On the other hand, in the case of a paste made of particles having an inappropriate particle size distribution with the particle size deviating to the small particle size side with respect to the appropriate particle size distribution, fatigue cracks propagate as shown in (a). In the region where the stress intensity factor range is large, the crack tip has a large opening, and there is a shortage of large-diameter particles corresponding to it, so that it is impossible to induce crack closure due to penetration of large-diameter particles into the crack. The fatigue crack growth rate cannot be reduced as compared with the case of none. In the case of this paste, in the region where the stress intensity factor range is small (region where the crack tip opening amount is small) at a time when the fatigue crack has occurred, it is compared with the case of (a) without the paste. Thus, the fatigue crack growth rate can be reduced.
また、前記小径側への逸脱とは逆に、適正粒度分布に対して粒径が大径側に逸脱した不適正粒度分布の粒子でなるペーストの場合には、(ウ)で示すき裂進展特性のように、応力拡大係数範囲が小さい領域(き裂先端開口量が小さい領域)では、き裂先端の開口が小さく、それに見合う小径の粒子が不足して小径粒子のき裂内侵入によるき裂閉口を誘起できないため、前記(ア)のペーストなしの場合に比較して疲労き裂進展速度を十分低下させることができない。なお、このペーストの場合、当該疲労き裂が進展して応力拡大係数範囲が大きい領域では、前記(ア)のペーストなしの場合に比較して疲労き裂進展速度を低下させることができる。 Contrary to the deviation to the small diameter side, in the case of a paste made of particles having an inappropriate particle size distribution in which the particle diameter deviates to the large diameter side with respect to the appropriate particle size distribution, the crack propagation indicated by (c) As in the characteristics, in the region where the stress intensity factor range is small (the region where the crack tip opening amount is small), the crack tip opening is small, and there is a shortage of small-sized particles corresponding to the crack. Since the crack closure cannot be induced, the fatigue crack growth rate cannot be sufficiently reduced as compared with the case (a) without the paste. In the case of this paste, in the region where the fatigue crack propagates and the stress intensity factor range is large, the fatigue crack growth rate can be reduced as compared with the case (a) without the paste.
これに対して、本願発明のペーストのように、疲労き裂の進展に伴い変化するき裂先端開口量に合わせた粒径の粒度分布をもつ粒子でなるペーストの場合には、(エ)で示すき裂進展特性のように、疲労き裂の進展に対応して、応力拡大係数範囲が小さい領域から大きい領域にわたって、前記(ア)のペーストなしの場合に比較して、常に疲労き裂進展速度を低減させることができる。 On the other hand, in the case of a paste made of particles having a particle size distribution corresponding to the crack tip opening amount that changes as the fatigue crack progresses, such as the paste of the present invention, (D) As shown in the crack growth characteristics shown above, the fatigue crack growth always corresponds to the fatigue crack growth from the small stress intensity factor range to the large region compared to the case of (a) without the paste. Speed can be reduced.
このように、疲労き裂進展抑制用ペーストでは、ペーストを構成する粒子に前述のように適正な粒度分布をもたせる必要がある。そこで、本発明のペーストは、金属部材に発生する疲労き裂として、き裂先端の開口量が最終的に10μm〜20μm程度まで進展する疲労き裂(進展抑制対象とされる一般的な疲労き裂)を対象としており、図3に示すように、粒子の粒度分布が、粒径20μm以下の粒子が100質量%、粒径10μm以下の粒子が95〜100質量%、粒径2.0μm以下の粒子が45〜99質量%、粒径1.0μm以下の粒子が20〜85質量%、粒径0.5μm以下の粒子が7〜50質量%、粒径0.1μm以下の粒子が0〜5質量%、の範囲としたものである。 As described above, in the paste for suppressing fatigue crack growth, it is necessary that the particles constituting the paste have an appropriate particle size distribution as described above. Therefore, the paste of the present invention is a fatigue crack in which the opening amount of the crack tip finally propagates to about 10 μm to 20 μm as a fatigue crack generated in a metal member (a general fatigue which is a target for suppressing growth). As shown in FIG. 3, the particle size distribution is 100% by mass for particles having a particle size of 20 μm or less, 95-100% by mass for particles having a particle size of 10 μm or less, and 2.0 μm or less for particle size. Particles of 45 to 99% by mass, particles having a particle size of 1.0 μm or less are 20 to 85% by mass, particles having a particle size of 0.5 μm or less are 7 to 50% by mass, and particles having a particle size of 0.1 μm or less are 0 to The range is 5% by mass.
本発明のペーストは、ペーストを構成する粒子に前記の粒度分布をもたせていることにより、前述した対象とする疲労き裂に適用することで、ペーストなしの場合に比較して、疲労き裂の進展に対応して常に疲労き裂進展速度を低減させることができる。なお、本発明では、粒子の粒径の測定は、レーザー回折・散乱法による測定装置によって行った。また、本発明では、特定粒径を持つ粒子の存在比率を規定する百分率は、大小粒の混合程度を表す指標のため本来的には体積百分率であるが、実用上は質量百分率であっても差し支えないので、質量百分率としている。 The paste of the present invention has the above-mentioned particle size distribution in the particles constituting the paste, so that it can be applied to the above-mentioned fatigue crack, thereby reducing the fatigue crack compared to the case without the paste. The fatigue crack growth rate can always be reduced corresponding to the growth. In the present invention, the particle size of the particles was measured by a measuring device using a laser diffraction / scattering method. In the present invention, the percentage that defines the abundance ratio of particles having a specific particle size is essentially a volume percentage because it is an index representing the degree of mixing of large and small particles, but in practice it may be a mass percentage. Since it does not matter, the mass percentage is used.
本発明のペーストでは、疲労き裂にペーストを確実に侵入させるため、ペースト自体の粘度が5Pa・s以上70Pa・s未満であることがよい。ペースト自体の粘度が5Pa・s未満では、流動性が高すぎて疲労き裂発生部分に塗布されたペーストが疲労き裂発生部分から流れ出して疲労き裂内に留まらない。一方、70Pa・s以上では疲労き裂発生部分にペーストが固着する。したがって、ペースト自体の粘度は、5Pa・s以上70Pa・s未満であることがよい。 In the paste of the present invention, the viscosity of the paste itself is preferably 5 Pa · s or more and less than 70 Pa · s in order to surely allow the paste to enter the fatigue crack. If the viscosity of the paste itself is less than 5 Pa · s, the fluidity is too high, and the paste applied to the fatigue crack occurrence portion flows out of the fatigue crack occurrence portion and does not stay in the fatigue crack. On the other hand, at 70 Pa · s or more, the paste adheres to the fatigue crack occurrence portion. Therefore, the viscosity of the paste itself is preferably 5 Pa · s or more and less than 70 Pa · s.
本発明のペーストでは、粒子と混合する工業用油などの液体の粘度は、0.8Pa・s以下であることがよい。0.8Pa・s以下というように「サラサラ」の液体を用いることにより、同一ペースト粘度において、ペースト単位量あたりの粒子の量が多くなるので、当該粒子によるくさび効果を十分に発揮することができる。 In the paste of the present invention, the viscosity of a liquid such as industrial oil mixed with the particles is preferably 0.8 Pa · s or less. By using a “smooth” liquid such as 0.8 Pa · s or less, the amount of particles per unit amount of paste increases at the same paste viscosity, so that the wedge effect due to the particles can be sufficiently exerted. .
本発明のペーストを構成する粒子として、アルミナ、シリカ、ダイヤモンド、炭化ケイ素、炭化ホウ素などの高硬度の物質からなるものが挙げられる。そして、広い粒径範囲のものが容易に入手でき、価格も安価であることなどから、粒子として特にアルミナからなるものが好適である。 Examples of the particles constituting the paste of the present invention include those made of a material with high hardness such as alumina, silica, diamond, silicon carbide, boron carbide. And since the thing of a wide particle size range can be obtained easily and a price is cheap, what consists of alumina especially as a particle | grain is suitable.
以下、本発明の実施例及び比較例について説明する。 Examples of the present invention and comparative examples will be described below.
本発明のペーストを評価するため、疲労き裂進展試験を実施した。ペーストを構成する粒子にはアルミナを用い、アルミナ粒子の粒度分布が異なる8種類のアルミナペースト(実施例1〜3、比較例1〜5)を作製し、疲労き裂進展試験に供した。 In order to evaluate the paste of the present invention, a fatigue crack growth test was conducted. Alumina was used as particles constituting the paste, and eight types of alumina pastes (Examples 1 to 3 and Comparative Examples 1 to 5) having different particle size distributions of alumina particles were prepared and subjected to a fatigue crack growth test.
表1に、疲労き裂進展試験に供された8種類のアルミナペースト中に含まれるアルミナ粒子の粒度分布を示す。前記8種類のアルミナペーストは、表1に示す粒度分布を持つアルミナ粒子に工業用油を添加して製作した。この製作に際し、これらのアルミナペーストは、ペーストの粘度が5Pa・s以上、70Pa・s未満となるように、アルミナ粒子と工業用油との配合割合を調整した。 Table 1 shows the particle size distribution of alumina particles contained in the eight types of alumina paste subjected to the fatigue crack growth test. The eight types of alumina pastes were produced by adding industrial oil to alumina particles having the particle size distribution shown in Table 1. In this production, the blending ratio of the alumina particles and the industrial oil was adjusted so that the viscosity of the paste of these alumina pastes was 5 Pa · s or more and less than 70 Pa · s.
図4は本発明の実施例における試験に供された引張疲労試験片を示す図であって、その(a)は正面図、その(b)は側面図である。この引張疲労試験片の材質はSS400であり、図4(b)に示すように厚み(板厚)は12.5mmである。引張疲労試験片の初期き裂長さは、20mm[(スリット長さ15mm)+(予き裂長さ5mm)]である。疲労き裂進展試験(引張疲労試験)は、この引張疲労試験片に対してアルミナペーストを塗布して実施した。この試験片は、φ12.5mmの孔に挿通した2本のボルトで試験機に装着され、図4における上下方向に引張荷重が繰り返し付加される。試験機は、油圧サーボ式の疲労試験機であり、荷重制御による単軸引張の試験を行う。試験条件は、応力比(最小応力/最大応力):0.05、試験周波数:20Hzである。
FIG. 4 is a view showing a tensile fatigue test piece subjected to a test in an example of the present invention, in which (a) is a front view and (b) is a side view. The material of the tensile fatigue test piece is SS400, and the thickness (plate thickness) is 12.5 mm as shown in FIG. The initial crack length of the tensile fatigue test piece is 20 mm [(
前記の疲労き裂進展試験により、前記の各アルミナペーストを用いた場合におけるき裂進展特性(応力拡大係数範囲と疲労き裂進展速度との関係)を求めた。この場合、試験機に装着された引張疲労試験片における進展中の疲労き裂について定期的にき裂長さを計測し、その計測値をもとにして応力拡大係数範囲と疲労き裂進展速度との関係を求めた。 From the fatigue crack growth test, the crack growth characteristics (relationship between the stress intensity factor range and the fatigue crack growth rate) when each of the alumina pastes was used were determined. In this case, the crack length is periodically measured for a developing fatigue crack in a tensile fatigue test piece mounted on a testing machine, and the stress intensity factor range, fatigue crack growth rate, and Sought the relationship.
なお、この場合の応力拡大係数範囲ΔKは、荷重(N)、き裂長さ(mm)、試験片寸法をもとにして次式で表される。
ΔK=f×(P/(B√W))
ここで、f:き裂の形状係数、P:荷重(N)、B:試験片厚み(mm)、W:試験片における荷重面から試験片端までの距離(mm)である。
また、前記のき裂の形状係数fは、次式で表される。なお、式中のaは、き裂長さ(mm)である。
f=29.6×(a/W)1/2−185.5×(a/W)3/2+655.7×(a/W)5/2−1017×(a/W)7/2+638.9×(a/W)9/2
In this case, the stress intensity factor range ΔK is expressed by the following equation based on the load (N), crack length (mm), and specimen size.
ΔK = f × (P / (B√W))
Here, f: crack shape factor, P: load (N), B: test piece thickness (mm), W: distance (mm) from the load surface to the end of the test piece.
The crack shape factor f is expressed by the following equation. In the formula, a is the crack length (mm).
f = 29.6 × (a / W) 1/2 -185.5 × (a / W) 3/2 + 655.7 × (a / W) 5 / 2−1017 × (a / W) 7/2 + 638.9 × (a / W) 9/2
表2は実施例1〜3のペーストによるき裂進展特性(応力拡大係数範囲と疲労き裂進展速度との関係)を示すデータであり、表3は比較例1〜5のペーストによるき裂進展特性を示すデータである。また、表4はペーストなしの場合でのき裂進展特性を示すデータである。 Table 2 shows data indicating crack growth characteristics (relationship between stress intensity factor range and fatigue crack growth rate) with the pastes of Examples 1 to 3, and Table 3 shows crack growth with the pastes of Comparative Examples 1 to 5. It is data indicating characteristics. Table 4 shows data indicating crack propagation characteristics in the case of no paste.
そして、比較のため、これらの表2〜表4のデータをグラフ化したものが図5〜図7である。図5は本発明の実施例1,2,3による疲労き裂進展試験結果を示すもので、応力拡大係数範囲と疲労き裂進展速度との関係を示す図であり、図6は本発明の実施例3と比較例1,2とによる疲労き裂進展試験結果を示すもので、応力拡大係数範囲と疲労き裂進展速度との関係を示す図である。また、図7は、本発明の実施例3と比較例3,4,5とによる疲労き裂進展試験結果を示すもので、応力拡大係数範囲と疲労き裂進展速度との関係を示す図である。 For comparison, FIG. 5 to FIG. 7 are graphs of the data in Tables 2 to 4. FIG. 5 shows the results of fatigue crack growth tests according to Examples 1, 2, and 3 of the present invention, showing the relationship between the stress intensity factor range and the fatigue crack growth rate, and FIG. It is a figure which shows the fatigue crack growth test result by Example 3 and Comparative Examples 1 and 2, and shows the relationship between the stress intensity factor range and the fatigue crack growth rate. FIG. 7 shows the fatigue crack growth test results of Example 3 of the present invention and Comparative Examples 3, 4 and 5, and shows the relationship between the stress intensity factor range and the fatigue crack growth rate. is there.
図5からわかるように、本発明の実施例1〜3のペーストによれば、試験データ全域(応力拡大係数範囲ΔK:16.4〜38.4MPa・m1/2)にわたって、「ペーストなし」と比較して疲労き裂進展速度が大幅に低下しており、疲労き裂進展速度がペーストなしでの疲労き裂進展速度の約1/20という良好な結果が得られた。よって、実施例1〜3のペーストでは、発生した疲労き裂に対してその初期段階から継続して常にき裂進展抑制効果を発揮でき、疲労き裂のある鋼構造物の延命化に寄与できることとなる。 As can be seen from FIG. 5, according to the pastes of Examples 1 to 3 of the present invention, “no paste” over the entire test data (stress intensity factor range ΔK: 16.4 to 38.4 MPa · m 1/2 ). The fatigue crack growth rate was significantly reduced as compared with the above, and a good result was obtained that the fatigue crack growth rate was about 1/20 of the fatigue crack growth rate without the paste. Therefore, in the pastes of Examples 1 to 3, it is possible to continuously exert the crack growth suppressing effect continuously from the initial stage with respect to the generated fatigue crack, and contribute to the extension of the life of the steel structure with the fatigue crack. It becomes.
これに対して、図6からわかるように、粒径が小径側に逸脱し、大径の粒子が不足している粒度分布をもつ粒子でなる比較例1,2のペーストでは、応力拡大係数範囲ΔKが小さい領域では、実施例1〜3と同様に、き裂進展速度が低下したが、疲労き裂が進展して応力拡大係数範囲ΔKが大きい領域(23MPa・m1/2以上)では、実施例1〜3に比べて、き裂進展速度の低下が図れず、き裂進展抑制効果が大幅に小さくなった。 On the other hand, as can be seen from FIG. 6, in the pastes of Comparative Examples 1 and 2 made of particles having a particle size distribution in which the particle diameter deviates to the small diameter side and the large particles are insufficient, the stress intensity factor range In the region where ΔK is small, the crack growth rate decreased as in Examples 1 to 3, but in the region where the fatigue crack propagates and the stress intensity factor range ΔK is large (23 MPa · m 1/2 or more), Compared to Examples 1 to 3, the crack growth rate could not be reduced, and the crack growth suppressing effect was greatly reduced.
このため、比較例1,2のペーストでは、疲労き裂が進展して疲労き裂先端に作用する疲労負荷が大きくなると、き裂進展抑制効果が不十分となり、よって、疲労き裂のある鋼構造物の延命化に寄与できないこととなる。 For this reason, in the pastes of Comparative Examples 1 and 2, when the fatigue crack propagates and the fatigue load acting on the fatigue crack tip increases, the crack growth inhibiting effect becomes insufficient, and therefore the steel with fatigue cracks. It cannot contribute to the extension of the life of the structure.
また、図7からわかるように、粒径が大径側に逸脱し、小径の粒子が不足している粒度分布をもつ粒子でなる比較例3〜5のペーストのうち、比較例4,5のペーストでは、応力拡大係数範囲ΔKが大きい領域では、実施例1〜3と同様に、き裂進展速度が低下したが、応力拡大係数範囲ΔKが小さい領域(26MPa・m1/2以下)では、き裂進展速度の低下が図れず、き裂進展抑制効果が小さくなった。なお、比較例3〜5のペーストのうち、比較例3のペーストについては、比較例4,5に比べて粒径が比較的小さい範囲(2μm超〜10μm以下)の粒子も有しているので、き裂進展抑制効果が発現しない範囲が狭く、応力拡大係数範囲ΔKが比較例4,5の場合に比べてより小さい領域において、実施例3よりもき裂進展抑制効果が小さくなった。 Further, as can be seen from FIG. 7, among the pastes of Comparative Examples 3 to 5 consisting of particles having a particle size distribution in which the particle diameter deviates to the large diameter side and the small diameter particles are insufficient, Comparative Examples 4 and 5 In the paste, in the region where the stress intensity factor range ΔK is large, the crack growth rate is reduced as in Examples 1 to 3, but in the region where the stress intensity factor range ΔK is small (26 MPa · m 1/2 or less), The crack growth rate could not be reduced, and the crack growth suppressing effect was reduced. Of the pastes of Comparative Examples 3 to 5, the paste of Comparative Example 3 also has particles having a relatively small particle size (over 2 μm to 10 μm or less) compared to Comparative Examples 4 and 5. In a region where the crack growth inhibiting effect is not manifested and the stress intensity factor range ΔK is smaller than those in Comparative Examples 4 and 5, the crack propagation inhibiting effect is smaller than in Example 3.
このため、比較例4,5のペーストでは、発生した疲労き裂に対して、その初期段階、あるいは初期段階からき裂が進展する段階にかけて、また、比較例3のペーストでは、発生した疲労き裂の初期段階において、き裂進展抑制効果が不十分となり、よって、疲労き裂のある鋼構造物の延命化に寄与できないこととなる。 For this reason, with the pastes of Comparative Examples 4 and 5, the fatigue cracks that occurred occurred in the initial stage or the stage where the cracks propagated from the initial stage. In the initial stage, the crack growth suppressing effect is insufficient, and therefore it cannot contribute to the extension of the life of a steel structure having a fatigue crack.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012253997A JP5753528B2 (en) | 2011-11-21 | 2012-11-20 | Fatigue crack growth control paste |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011254165 | 2011-11-21 | ||
JP2011254165 | 2011-11-21 | ||
JP2012253997A JP5753528B2 (en) | 2011-11-21 | 2012-11-20 | Fatigue crack growth control paste |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013129057A JP2013129057A (en) | 2013-07-04 |
JP5753528B2 true JP5753528B2 (en) | 2015-07-22 |
Family
ID=48469772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012253997A Active JP5753528B2 (en) | 2011-11-21 | 2012-11-20 | Fatigue crack growth control paste |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5753528B2 (en) |
KR (1) | KR101632125B1 (en) |
CN (1) | CN103945977B (en) |
WO (1) | WO2013077328A1 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6069126B2 (en) * | 2013-08-01 | 2017-02-01 | 株式会社神戸製鋼所 | Evaluation method of fatigue crack growth inhibition effect |
JP6319844B2 (en) | 2013-09-26 | 2018-05-09 | 国立研究開発法人 海上・港湾・航空技術研究所 | Fatigue crack growth suppression paste, progress suppression method, progress detection paste, and progress detection method |
JPWO2020196299A1 (en) * | 2019-03-22 | 2020-10-01 | ||
JP7466798B1 (en) | 2022-07-13 | 2024-04-12 | 三菱電機株式会社 | CRACK INSPECTION DEVICE, CRACK MONITORING SYSTEM, AND CRACK INSPECTION METHOD |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1054006A1 (en) * | 1982-07-22 | 1983-11-15 | Харьковский Ордена Ленина Авиационный Институт Им.Н.Е.Жуковского | Method of preventing the growth of fatigue cracks in thin-walled structures |
JPH04280455A (en) * | 1991-03-08 | 1992-10-06 | Nkk Corp | Manufacture of semiconductor device |
JP2840479B2 (en) * | 1991-05-10 | 1998-12-24 | 株式会社神戸製鋼所 | Manufacturing method of high strength hot rolled steel sheet with excellent fatigue strength and fatigue crack propagation resistance |
JP3808846B2 (en) * | 2003-07-07 | 2006-08-16 | 独立行政法人海上技術安全研究所 | Fatigue crack growth suppression method and detection method, and paste used therefor |
JP4394996B2 (en) * | 2004-03-30 | 2010-01-06 | 新日本製鐵株式会社 | Welded joints with excellent brittle fracture resistance |
US7451661B2 (en) * | 2005-08-15 | 2008-11-18 | The Boeing Company | Friction stir welding load confirmation system |
JP4735192B2 (en) * | 2005-10-28 | 2011-07-27 | Jfeスチール株式会社 | High toughness steel with excellent fatigue crack propagation characteristics |
JP5257882B2 (en) * | 2008-03-12 | 2013-08-07 | 独立行政法人海上技術安全研究所 | Fatigue crack detection / progress suppression method and structure |
JP4852163B2 (en) * | 2009-05-28 | 2012-01-11 | 株式会社神戸製鋼所 | Particle-containing paste for reducing fatigue crack growth rate of metal material, and metal material coated with the paste |
-
2012
- 2012-11-20 WO PCT/JP2012/080086 patent/WO2013077328A1/en active Application Filing
- 2012-11-20 CN CN201280055902.4A patent/CN103945977B/en active Active
- 2012-11-20 KR KR1020147013177A patent/KR101632125B1/en active IP Right Grant
- 2012-11-20 JP JP2012253997A patent/JP5753528B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2013077328A1 (en) | 2013-05-30 |
JP2013129057A (en) | 2013-07-04 |
KR20140079487A (en) | 2014-06-26 |
CN103945977A (en) | 2014-07-23 |
KR101632125B1 (en) | 2016-06-20 |
CN103945977B (en) | 2016-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Malarvizhi et al. | Fatigue crack growth resistance of gas tungsten arc, electron beam and friction stir welded joints of AA2219 aluminium alloy | |
JP5753528B2 (en) | Fatigue crack growth control paste | |
Lv et al. | Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass | |
Sun et al. | Study on small fatigue crack initiation and growth for friction stir welded joints | |
Pilchak et al. | Low ΔK faceted crack growth in titanium alloys | |
JP7333934B2 (en) | Fatigue Crack Propagation Control Paste, Propagation Control Method, Progress Detection Paste, and Progress Detection Method | |
Pramanik et al. | Fracture and fatigue life of Al-based MMCs machined at different conditions | |
Mo et al. | Effect of microstructural features on fatigue behavior in A319-T6 aluminum alloy | |
Patel et al. | Abrasive wear behavior of SiC particulate reinforced AA5052 metal matrix composite | |
Motz et al. | Fatigue crack propagation in cellular metals | |
Sevim et al. | Effect of fracture toughness on abrasive wear resistance of steels | |
Albedah et al. | Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys | |
Chen et al. | Advances in the mechanism of cleavage fracture of low alloy steel at low temperature. Part I: Critical event | |
Fremy et al. | Load path effect on fatigue crack propagation in I+ II+ III mixed mode conditions–Part 1: Experimental investigations | |
Hashemi et al. | RETRACTED: Effects of tensile overload on fatigue crack growth in AM60 magnesium alloys | |
Sathiyaraj et al. | Experimental investigations on mechanical properties of Al-B4C metal matrix composites | |
Wang et al. | Size effects on the fatigue behavior of bulk metallic glasses | |
Sun et al. | Welding parameter selection and short fatigue crack growth of dissimilar aluminum alloy friction stir welded joint | |
Trdan et al. | High-cycle fatigue enhancement of dissimilar 2017A-T451/7075-T651 Al alloy joint fabricated by a single pass FSW without any post-processing | |
Hu et al. | Fretting fatigue behaviours of SiC reinforced aluminium alloy matrix composite and its monolithic alloy | |
Singh et al. | Wear and frictional attributes of Al-alloy hybrid composite dispersed with hard-ceramic (ZrO2) and solid-lubricant (Gr) particles | |
Grell et al. | Corrosion fatigue studies on a bulk glassy Zr-based alloy under three-point bending | |
Hattori et al. | Formulation of cavitation erosion behavior based on logistic analysis | |
Gavras et al. | Effects of microstructure on the fatigue crack growth behavior of light metals and design considerations | |
Li et al. | Microstructural characteristics, deformation behavior and mechanical properties of Inconel 718 treated by Te infiltration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140901 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150423 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150428 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150522 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5753528 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |