JP5752217B2 - Drilling method - Google Patents

Drilling method Download PDF

Info

Publication number
JP5752217B2
JP5752217B2 JP2013248471A JP2013248471A JP5752217B2 JP 5752217 B2 JP5752217 B2 JP 5752217B2 JP 2013248471 A JP2013248471 A JP 2013248471A JP 2013248471 A JP2013248471 A JP 2013248471A JP 5752217 B2 JP5752217 B2 JP 5752217B2
Authority
JP
Japan
Prior art keywords
axis
hole
tool
rotary
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013248471A
Other languages
Japanese (ja)
Other versions
JP2015104784A (en
Inventor
前田 淳一
淳一 前田
司陽 植草
司陽 植草
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Makino Milling Machine Co Ltd
Original Assignee
Makino Milling Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Makino Milling Machine Co Ltd filed Critical Makino Milling Machine Co Ltd
Priority to JP2013248471A priority Critical patent/JP5752217B2/en
Publication of JP2015104784A publication Critical patent/JP2015104784A/en
Application granted granted Critical
Publication of JP5752217B2 publication Critical patent/JP5752217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、貫通穴の基端側から工具を挿入して、貫通穴の先端側(裏側)に穴の直径が大きくなる大径部を形成する穴加工方法に関する。   The present invention relates to a hole machining method in which a tool is inserted from the base end side of a through hole to form a large diameter portion in which the diameter of the hole is increased on the distal end side (back side) of the through hole.

例えば、歯車ポンプのケーシングに歯車と歯車の軸を回転可能に支持する軸受とを受容するために、軸を通す貫通穴の両側に大径部を形成するなど、ワークを反転させて所謂座ぐり加工や中ぐり加工を両側に行うことは従来から公知となっている。また、特許文献1には、偏心した工具を直動送りによって貫通穴に挿通させ、裏座ぐり加工を行う切削工具が記載されている。また、特許文献2には、カルダン継手を介して工具を取付頸軸に取り付け、穴加工の最終段階で工具を傾斜させて、穴の最奥部において穴の直径を広げるアンダーカットドリルが記載されている。   For example, in order to receive the gear and the bearing that rotatably supports the shaft of the gear in the casing of the gear pump, a large diameter portion is formed on both sides of the through hole through which the shaft passes, so that the workpiece is reversed so-called counterbore It is conventionally known to perform machining and boring on both sides. Further, Patent Document 1 describes a cutting tool that inserts an eccentric tool through a through hole by linear motion feed and performs back spot facing. Patent Document 2 describes an undercut drill that attaches a tool to a mounting neck via a cardan joint, tilts the tool at the final stage of drilling, and widens the diameter of the hole at the deepest part of the hole. ing.

特開昭61−065706号公報Japanese Patent Laid-Open No. 61-065706 特表平01−503615号公報Japanese Translation of National Publication No. 01-503615

ワークを反転させて貫通穴の両側に座ぐり加工や中ぐり加工を行うと、反転する際に同軸度が悪くなりやすい。そのため、特許文献1のような裏座ぐり加工を行う切削工具が考案されている。   If the workpiece is reversed and counterbored or bored on both sides of the through hole, the coaxiality tends to deteriorate when the workpiece is reversed. Therefore, a cutting tool for performing counterbore machining as in Patent Document 1 has been devised.

然しながら、特許文献1の切削工具では、工具を貫通穴の軸線に沿って真っ直ぐに挿通させて裏座ぐり加工するので、工具の中心軸線に垂直方向の刃部の長さを大きくすることができず、座ぐりの直径は比較的小さくならざるを得ない。一方、特許文献2のアンダーカットドリルでは、工具を傾斜させるためにカルダン継手(自在継手)を用いているので、工具の剛性が低く加工精度が著しく低くなる。   However, in the cutting tool disclosed in Patent Document 1, since the tool is inserted straight along the axis of the through hole and the back face is machined, the length of the blade portion perpendicular to the center axis of the tool can be increased. The diameter of the counterbore must be relatively small. On the other hand, in the undercut drill of Patent Document 2, since a cardan joint (universal joint) is used to incline the tool, the rigidity of the tool is low and the machining accuracy is remarkably lowered.

本発明は、こうした従来技術の問題を解決することを技術課題としており、座ぐりや中ぐり等、貫通穴の裏側で穴の直径が大きくなる形状の加工において、ワークの反転を行わずに、高効率で高精度の加工を行う穴加工方法を提供することを目的としている。   The present invention has a technical problem to solve such problems of the prior art, and in the machining of a shape in which the diameter of the hole is large on the back side of the through hole, such as a counterbore or a boring hole, the workpiece is not reversed, The object is to provide a hole drilling method that performs highly accurate machining with high efficiency.

上述した本発明の目的を達成するために、本発明によれば少なくとも2つの直動送り軸と、1つの回転送り軸とを有し、回転工具とワークを相対的に移動させてワークの貫通穴の裏側を加工する工作機械を用いた穴加工方法において、前記回転工具は、中心軸線に沿って延びるシャンクと、該シャンクの先端部において前記中心軸線に対して略半径方向に突出し先端部に切刃を有した刃部とを有して略L字形に形成されており、前記刃部は、すくい面を形成する上面と、該上面の反対側の下面とで形成されており、前記直動送り軸2軸と回転送り軸1軸の動作を複数回行うまたは同時3軸制御で行って、前記回転工具の中心軸線と直交する方向の直動送り軸方向に見た前記貫通穴の開口部の高さが、前記刃部の高さよりも高くなるまで前記回転送り軸を回転させ、前記回転工具の刃部を前記貫通の裏側まで通し、前記回転工具を回転させて前記貫通穴の裏側の加工を行うようにした穴加工方法が提供される。 In order to achieve the above-described object of the present invention, according to the present invention, at least two linear feed shafts and one rotary feed shaft are provided, and the rotary tool and the workpiece are moved relatively to penetrate the workpiece. In the hole drilling method using a machine tool for machining the back side of the hole, the rotary tool has a shank extending along a central axis, and protrudes in a substantially radial direction with respect to the central axis at the tip of the shank. A blade portion having a cutting edge, and is formed in a substantially L shape. The blade portion is formed by an upper surface forming a rake face and a lower surface opposite to the upper surface. Opening of the through hole as viewed in the direction of the linear feed axis in the direction orthogonal to the central axis of the rotary tool by performing the operations of the two feed axes and the one rotary feed axis a plurality of times or by simultaneous three-axis control Until the height of the part becomes higher than the height of the blade part. Rotating the feed axis, the blade portion of the rotary tool through to the back side of the through hole, hole drilling method to perform processing of the back side of the rotary tool is rotated the through hole is provided.

本発明によれば、ワークを反転させることなく工具側から見て貫通穴の裏側を貫通穴の直径より刃部の長さが長い工具で加工可能となる。これによって、高効率、高精度に穴加工を行うことが可能となる。   According to the present invention, it is possible to process the back side of the through hole with a tool having a blade portion longer than the diameter of the through hole as viewed from the tool side without inverting the workpiece. This makes it possible to perform hole processing with high efficiency and high accuracy.

本発明の穴加工方法を実施するための工作機械の一例を示す側面図である。It is a side view which shows an example of the machine tool for enforcing the drilling method of this invention. 本発明の穴加工方法で用いる回転工具の一例を示す側面図である。It is a side view which shows an example of the rotary tool used with the hole drilling method of this invention. 図2Aの回転工具の正面図である。It is a front view of the rotary tool of FIG. 2A. 本発明の穴加工方法により加工するワークの一例を示す平面図である。It is a top view which shows an example of the workpiece | work processed with the hole processing method of this invention. 図3Aの矢視線B-Bに沿うワークの断面図である。It is sectional drawing of the workpiece | work in alignment with arrow BB of FIG. 3A. 図3Bの円Cで示す部分の拡大断面図である。It is an expanded sectional view of the part shown by circle C in FIG. 3B. 図2A、2Bに示した回転工具を用いて本発明の穴加工方法により図3A〜図3Cに示したワークに行う穴加工を説明するための図である。It is a figure for demonstrating the hole processing performed to the workpiece | work shown to FIG. 3A-FIG. 3C by the drilling method of this invention using the rotary tool shown to FIG. 2A and 2B. 図2A、2Bに示した回転工具を用いて本発明の穴加工方法により図3A〜図3Cに示したワークに行う穴加工を説明するための図である。It is a figure for demonstrating the hole processing performed to the workpiece | work shown to FIG. 3A-FIG. 3C by the drilling method of this invention using the rotary tool shown to FIG. 2A and 2B. 図2A、2Bに示した回転工具を用いて本発明の穴加工方法により図3A〜図3Cに示したワークに行う穴加工を説明するための図である。It is a figure for demonstrating the hole processing performed to the workpiece | work shown to FIG. 3A-FIG. 3C by the drilling method of this invention using the rotary tool shown to FIG. 2A and 2B. 図2A、2Bに示した回転工具を用いて本発明の穴加工方法により図3A〜図3Cに示したワークに行う穴加工を説明するための図である。It is a figure for demonstrating the hole processing performed to the workpiece | work shown to FIG. 3A-FIG. 3C by the drilling method of this invention using the rotary tool shown to FIG. 2A and 2B. 図2A、2Bに示した回転工具を用いて本発明の穴加工方法により図3A〜図3Cに示したワークに行う穴加工を説明するための図である。It is a figure for demonstrating the hole processing performed to the workpiece | work shown to FIG. 3A-FIG. 3C by the drilling method of this invention using the rotary tool shown to FIG. 2A and 2B. 工具をワークの貫通穴に導入する直前の状態を示す部分拡大図である。It is the elements on larger scale which show the state just before introduce | transducing a tool into the through-hole of a workpiece | work. 本発明の穴加工方法を適用しない場合に用いられる図2Aと同様の回転工具の側面図である。It is a side view of the rotary tool similar to FIG. 2A used when not applying the drilling method of this invention. 図5Aの回転工具の正面図である。It is a front view of the rotary tool of FIG. 5A.

以下、添付図面を参照して、本発明の好ましい実施の形態を説明する。
図1を参照すると、本発明を適用する工作機械の一例が示されている。図1において、本発明の好ましい実施の形態による工作機械10は、横形マシニングセンタを構成しており、工場の床面に固定された基台としてのベッド12、該ベッド12の後端側(図1では右側)の上面で左右方向またはX軸方向(図1では紙面に垂直な方向)に移動可能に設けられたコラム14、該コラム14の前面で上下方向またはY軸方向に移動可能に設けられたヘッドストック16、該ヘッドストック16に取り付けられ主軸20を回転可能に支持する主軸頭18、ベッド12の前方部分(図1では左側)の上面で前後方向またはZ軸方向(図1では左右方向)に移動可能に設けられロータリーワークヘッド24を介してワーク40を取り付けるテーブル22を具備している。
Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
Referring to FIG. 1, an example of a machine tool to which the present invention is applied is shown. 1, a machine tool 10 according to a preferred embodiment of the present invention constitutes a horizontal machining center, and includes a bed 12 as a base fixed to the floor of a factory, and a rear end side of the bed 12 (FIG. 1). Column 14 provided to be movable in the left-right direction or the X-axis direction (direction perpendicular to the paper surface in FIG. 1) on the upper surface on the right side, and provided to be movable in the vertical direction or Y-axis direction on the front surface of the column 14. The head stock 16, the spindle head 18 attached to the head stock 16 and rotatably supporting the main shaft 20, the front-rear direction or the Z-axis direction (left-right direction in FIG. 1) ) Is provided so as to be movable, and a table 22 to which a work 40 is attached via a rotary work head 24 is provided.

ロータリーワークヘッド24は、上面がワーク40を固定するワーク面となっており、該ワーク面の反対側の底面において、テーブル22の上面に固定される。ロータリーワークヘッド24は、前記ワーク面を鉛直軸線周りのB軸方向に回転送りするためのB軸サーボモータ(図示せず)と、B軸方向の前記上面の回転位置を検知するロータリーエンコーダのような回転センサより成るB軸回転位置センサ(図示せず)とを有している。   The rotary work head 24 has a work surface for fixing the work 40 on the upper surface, and is fixed to the upper surface of the table 22 on the bottom surface opposite to the work surface. The rotary work head 24 is like a B-axis servo motor (not shown) for rotating and feeding the work surface in the B-axis direction around the vertical axis, and a rotary encoder for detecting the rotational position of the upper surface in the B-axis direction. And a B-axis rotational position sensor (not shown) formed of a rotational sensor.

テーブル22は、ベッド12の上面において水平なZ軸方向(図1の左右方向)に延設された一対のZ軸案内レール(図示せず)に沿って往復動可能に設けられており、ベッド12には、テーブル22をZ軸案内レールに沿って往復駆動するZ軸送り装置として、Z軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたZ軸サーボモータ(図示せず)が設けられており、テーブル22には、前記ボールねじに係合するナット(図示せず)が取り付けられている。ベッド12には、また、テーブル22のZ軸方向の座標位置を測定するZ軸スケール(図示せず)が取り付けられている。   The table 22 is provided so as to reciprocate along a pair of Z-axis guide rails (not shown) extending in the horizontal Z-axis direction (left-right direction in FIG. 1) on the upper surface of the bed 12. 12, as a Z-axis feeding device for reciprocating the table 22 along the Z-axis guide rail, a ball screw (not shown) extending in the Z-axis direction and a Z-screw connected to one end of the ball screw. A shaft servomotor (not shown) is provided, and a nut (not shown) that engages with the ball screw is attached to the table 22. The bed 12 is also provided with a Z-axis scale (not shown) that measures the coordinate position of the table 22 in the Z-axis direction.

コラム14は、ベッド12の上面において水平なX軸方向(図1の紙面に垂直な方向)に延設された一対のX軸案内レール(図示せず)に沿って往復動可能に設けられており、ベッド12には、コラム14をX軸案内レールに沿って往復駆動するX軸送り装置として、X軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたX軸サーボモータ(図示せず)が設けられており、コラム14には、前記ボールねじに係合するナット(図示せず)が取り付けられている。ベッド12には、更に、コラム14のX軸方向の座標位置を測定するX軸スケール(図示せず)が取り付けられている。   The column 14 is provided so as to reciprocate along a pair of X-axis guide rails (not shown) extending in the horizontal X-axis direction (direction perpendicular to the paper surface of FIG. 1) on the upper surface of the bed 12. The bed 12 is connected to a ball screw (not shown) extending in the X-axis direction and one end of the ball screw as an X-axis feeding device for reciprocating the column 14 along the X-axis guide rail. An X-axis servomotor (not shown) is provided, and a nut (not shown) that engages with the ball screw is attached to the column 14. Further, an X-axis scale (not shown) for measuring the coordinate position of the column 14 in the X-axis direction is attached to the bed 12.

ヘッドストック16はコラム14の前面においてY軸方向(図1では上下方向)に延設された一対のY軸案内レールに沿って往復動可能に設けられている。コラム14には、ヘッドストック16をY軸案内レールに沿って往復駆動するY軸送り装置として、Y軸方向に延設されたボールねじ(図示せず)と、該ボールねじの一端に連結されたY軸サーボモータ(図示せず)が設けられており、ヘッドストック16には、前記ボールねじに係合するナット(図示せず)が取り付けられている。コラム14には、また、ヘッドストック16のY軸方向の座標位置を測定するY軸スケール(図示せず)が取り付けられている。   The head stock 16 is provided so as to reciprocate along a pair of Y-axis guide rails extending in the Y-axis direction (vertical direction in FIG. 1) on the front surface of the column 14. The column 14 is connected to a ball screw (not shown) extending in the Y-axis direction and one end of the ball screw as a Y-axis feeding device that reciprocates the headstock 16 along the Y-axis guide rail. A Y-axis servomotor (not shown) is provided, and a nut (not shown) that engages with the ball screw is attached to the headstock 16. Further, a Y-axis scale (not shown) for measuring the coordinate position of the head stock 16 in the Y-axis direction is attached to the column 14.

ヘッドストック16には、また、主軸20をZ軸方向の回転軸線Oを中心に回転可能に支持する主軸頭18が取り付けられている。主軸頭18は、主軸20を回転駆動するスピンドルサーボモータ(図示せず)と、回転軸線O周りの主軸20の回転位置を検知するロータリーエンコーダのような回転センサより成る主軸回転位置センサ(図示せず)とを有している。   The head stock 16 is also provided with a spindle head 18 that supports the spindle 20 so as to be rotatable about a rotation axis O in the Z-axis direction. The spindle head 18 is a spindle rotational position sensor (not shown) comprising a spindle servo motor (not shown) that rotationally drives the spindle 20 and a rotation sensor such as a rotary encoder that detects the rotational position of the spindle 20 around the rotational axis O. Z).

X軸サーボモータ、Y軸サーボモータ、Z軸サーボモータおよびスピンドルサーボモータ、並びに、X軸スケール、Y軸スケール、Z軸スケール、B軸回転位置センサおよび主軸回転位置センサはNC装置26に接続されている。該NC装置26によって、夫々のサーボモータへ供給される電力(電流値)が制御される。   The X-axis servo motor, Y-axis servo motor, Z-axis servo motor and spindle servo motor, and the X-axis scale, Y-axis scale, Z-axis scale, B-axis rotational position sensor and spindle rotational position sensor are connected to the NC device 26. ing. The NC device 26 controls the power (current value) supplied to each servo motor.

図2A、2Bを参照すると、本実施形態で使用する工具30の一例が示されている。工具30は、中心軸線Otに沿って延び主軸20の工具装着孔(図示せず)または工具ホルダ(図示せず)の工具装着孔に嵌合させるシャンク32、および、頸部34を介してシャンク32の先端部に結合されている刃部36を備えて、全体的に略L形に形成されている。刃部36は、すくい面を形成する上面36b、上面36bの反対側の下面36c、上面36bと下面36cとの間に延在し逃げ面を形成する先端面36d、上面36bと先端面36dとの間に形成された切刃36aを有している。刃部36の基端部において、頸部34と下面36cとの間は中心軸線Otに対して斜めに傾斜した斜面によって切り欠かれた欠切部38となっている。欠切部38を形成する斜面は、例えば中心軸線略Otに対して45°の角度で傾斜させることができる。 2A and 2B, an example of the tool 30 used in the present embodiment is shown. The tool 30 extends along the central axis O t , a shank 32 that fits into a tool mounting hole (not shown) of the main shaft 20 or a tool mounting hole of a tool holder (not shown), and a neck 34. The blade portion 36 connected to the tip portion of the shank 32 is provided, and is formed in a substantially L shape as a whole. The blade portion 36 includes an upper surface 36b that forms a rake face, a lower surface 36c opposite to the upper surface 36b, a tip surface 36d that extends between the upper surface 36b and the lower surface 36c, and forms a flank, and an upper surface 36b and a tip surface 36d. The cutting blade 36a is formed between the two. At the proximal end of the blade portion 36, between the neck 34 and the lower surface 36c has a cutout 38 is cut out by the inclined surface which is inclined obliquely to the central axis O t. The inclined surface forming the notch 38 can be inclined at an angle of 45 ° with respect to the central axis line O t , for example.

図3A〜図3Cを参照すると、本発明を適用して加工されるワーク40の一例が示されている。一例として、ワーク40は歯車ポンプのケーシングであって、平板状の底壁42および底壁42の外周に沿って延在する側壁44を備え、底壁42と側壁44とによって、歯車ポンプの歯車(図示せず)を受け入れる受容部50が画成され、側壁44の内側の円弧部44a、44bに歯車の歯先が内接するように形成される。底壁42には歯車ポンプの歯車の軸を通すための第1と第2の貫通穴46、48が、底壁42の受容部50側の内面から反対側の外面へ形成されている。第1と第2の貫通穴46、48の各々の中心軸線O1、O2は、底壁42の内面または外面に平行な方向に延びるワーク40の中心軸線Ac上に配置されている。 3A to 3C, an example of a workpiece 40 processed by applying the present invention is shown. As an example, the workpiece 40 is a casing of a gear pump, and includes a flat bottom wall 42 and a side wall 44 extending along an outer periphery of the bottom wall 42, and the bottom wall 42 and the side wall 44 define a gear pump gear. A receiving portion 50 for receiving (not shown) is defined and formed so that the tooth tips of the gear are inscribed in the arc portions 44 a and 44 b inside the side wall 44. The bottom wall 42 is formed with first and second through holes 46 and 48 for passing the gear shaft of the gear pump from the inner surface on the receiving portion 50 side of the bottom wall 42 to the outer surface on the opposite side. The central axes O 1 and O 2 of the first and second through holes 46 and 48 are disposed on the central axis Ac of the workpiece 40 extending in a direction parallel to the inner surface or the outer surface of the bottom wall 42.

特に、図3Cを参照すると、第1と第2の貫通穴46(48)は、歯車の軸を回転支持するための軸受(図示せず)を受容する大径部46a(48a)と、歯車の軸を通すための小径部46b(48b)とを有し、大径部46a(48a)と小径部46b(48b)との間には逃げ部46cが形成されている。逃げ部46cには、シール部材(図示せず)を配置することができる。また、歯車ポンプの設計上は、大径部46a(48a)と小径部46b(48b)と円弧部44a(44b)との各々の中心軸線は一致しているが、既述したように、そのように加工、特に仕上げ加工することは難しかった。   In particular, referring to FIG. 3C, the first and second through holes 46 (48) include a large diameter portion 46a (48a) that receives a bearing (not shown) for rotationally supporting the shaft of the gear, and the gear. A small-diameter portion 46b (48b) for allowing the shaft to pass therethrough, and an escape portion 46c is formed between the large-diameter portion 46a (48a) and the small-diameter portion 46b (48b). A seal member (not shown) can be disposed in the escape portion 46c. Further, in the design of the gear pump, the central axes of the large-diameter portion 46a (48a), the small-diameter portion 46b (48b), and the arc portion 44a (44b) coincide with each other. Thus, it was difficult to finish, especially finish.

以下、本実施形態の作用を説明する。
先ず、ワーク40が、第1と第2の貫通穴46、48の中心軸線O1、O2が工作機械10のX−Z平面に平行となるように、ロータリーワークヘッド24に取り付けられ、荒加工によってワーク40の側壁44の内周面、底壁42の内面、第1と第2の貫通穴46、48の大径部46a、48aおよび小径部46b、48bが形成される。荒加工工程では、第1と第2の貫通穴46、48の大径部46a、48aを形成する際に、B軸を180°回転送りすることによってワーク40を反転し、ワーク40の外面から座ぐり加工によって大径部46a、48aが加工される。
Hereinafter, the operation of the present embodiment will be described.
First, the work 40 is attached to the rotary work head 24 so that the central axes O 1 and O 2 of the first and second through holes 46 and 48 are parallel to the XZ plane of the machine tool 10, and rough. By processing, the inner peripheral surface of the side wall 44 of the workpiece 40, the inner surface of the bottom wall 42, the large diameter portions 46a, 48a and the small diameter portions 46b, 48b of the first and second through holes 46, 48 are formed. In the roughing process, when forming the large diameter portions 46 a and 48 a of the first and second through holes 46 and 48, the workpiece 40 is reversed by rotating the B axis by 180 °, and from the outer surface of the workpiece 40. The large-diameter portions 46a and 48a are processed by spot facing.

次いで、ロータリーワークヘッド24によってワーク40をB軸方向に回転送りし、ワーク40の底壁42の内面が主軸20先端部に取り付けられる工具30に対面し、かつ、第1と第2の貫通穴46、48の中心軸線O1、O2がZ軸に平行となるようにワーク40が配向される。この状態で、工具30が仕上げ加工用の例えばスクエアエンドミルに交換され、ワーク40の側壁44の内周面および底壁42の内面が仕上げ加工される。 Next, the rotary workpiece head 24 rotates and feeds the workpiece 40 in the B-axis direction, the inner surface of the bottom wall 42 of the workpiece 40 faces the tool 30 attached to the tip end of the main shaft 20, and the first and second through holes. The workpiece 40 is oriented so that the central axes O 1 and O 2 of 46 and 48 are parallel to the Z axis. In this state, the tool 30 is replaced with a square end mill for finishing, for example, and the inner peripheral surface of the side wall 44 and the inner surface of the bottom wall 42 of the workpiece 40 are finished.

次いで、工具30が、仕上げ加工用の例えば中ぐり工具に交換され、小径部46b、48bの内周面が仕上げ加工される。このときの工具30は、工具の中心軸線Otと切刃36aとの間の距離が、仕上げ加工された小径部46b、48bの半径に一致している。従って、小径部46b、48b加工用の工具30は、半径方向に少なくとも仕上げ加工代に相当する長さをもって、その中心軸線Otを第1と第2の貫通穴46、48の中心軸線O1、O2に一致させることによって、容易に小径部46b、48bを通して刃部36を裏側(大径部側)に配置することができる。 Next, the tool 30 is replaced with a boring tool for finishing, for example, and the inner peripheral surfaces of the small diameter portions 46b and 48b are finished. In this case, the distance between the center axis O t of the tool and the cutting edge 36a of the tool 30 coincides with the radius of the finished small diameter portions 46b and 48b. Therefore, the small diameter portion 46b, the tool 30 for 48b processing, have a length corresponding to at least finishing allowance in the radial direction, the center axis O 1 of the central axis O t first and second through holes 46, 48 , O 2 , the blade portion 36 can be easily arranged on the back side (large diameter portion side) through the small diameter portions 46b and 48b.

小径部46b、48bの内周面の仕上げ加工が完了すると、小径部46b、48b加工用の工具30が大径部46a、48aを仕上げ加工するための工具と交換される。この大径部46a、48a加工用の工具30は、工具の中心軸線Otと切刃36aとの間の長さLcが、仕上げ加工された大径部46a、48aの半径に一致している、つまり1/2D1=Lc(D1:大径部46a、48aの直径)である。 When finishing of the inner peripheral surfaces of the small diameter portions 46b and 48b is completed, the tool 30 for processing the small diameter portions 46b and 48b is replaced with a tool for finishing the large diameter portions 46a and 48a. The large diameter portion 46a, the tool 30 for 48a processing, the length L c between the central axis O t and the cutting edge 36a of the tool, finished machined large diameter portion 46a, coincides with the radius of 48a That is, 1 / 2D 1 = L c (D 1 : diameter of the large diameter portions 46a and 48a).

また、大径部46a、48a加工用の工具30において、頸部34の直径をdとしたときに、長さLcに工具30の半径を加えた長さ(刃部の長さ)が小径部46b、48bの直径D2よりも大きい場合、つまり
2≦1/2d+Lc=1/2(d+D1)…(1)
の場合には、該工具30をZ軸方向に配向した状態でワーク40に対してZ軸方向に移動させても、刃部36は小径部46b、48bを通過できない。従って、大径部46a、48aと小径部46b、48bの半径の差が大きくなると、工具30をワーク40に対してZ軸方向に相対移動させて刃部36を小径部46b、48bに通すためには、通常、図5Bに示すように、頸部34の直径dを細くしなければならない。
Further, the large diameter portion 46a, the tool 30 for 48a machining, the diameter of the neck 34 when the d, the length plus the radius of the tool 30 to the length L c (length of the blade portion) is small When the diameter is larger than the diameter D 2 of the portions 46b and 48b, that is, D 2 ≦ 1 / 2d + L c = 1/2 (d + D 1 ) (1)
In this case, even if the tool 30 is oriented in the Z-axis direction and moved in the Z-axis direction with respect to the workpiece 40, the blade portion 36 cannot pass through the small diameter portions 46b and 48b. Accordingly, when the difference in radius between the large diameter portions 46a and 48a and the small diameter portions 46b and 48b increases, the tool 30 is moved relative to the workpiece 40 in the Z-axis direction so that the blade portion 36 is passed through the small diameter portions 46b and 48b. In general, as shown in FIG. 5B, the diameter d of the neck 34 must be reduced.

そうした場合でも、後述する本発明の穴加工方法によれば、小径部46b、48bと大径部46a、48aの直径が不等式(1)を満たす場合であっても、工具30の頸部34の直径dを細くすることなく、小径部46b、48bを通して刃部36を裏側に配置することが可能となる。以下、図4A〜図4Fを参照して、本実施形態の作用を更に説明する。なお、以下の説明では、第1の貫通穴46についてのみ説明するが、第2の貫通穴48についても同様であることは理解されよう。   Even in such a case, according to the hole drilling method of the present invention, which will be described later, even if the diameters of the small diameter portions 46b and 48b and the large diameter portions 46a and 48a satisfy the inequality (1), It is possible to arrange the blade portion 36 on the back side through the small diameter portions 46b and 48b without reducing the diameter d. Hereinafter, the operation of the present embodiment will be further described with reference to FIGS. 4A to 4F. In the following description, only the first through hole 46 will be described, but it will be understood that the same applies to the second through hole 48.

先ず、刃部36がX軸上において第2の貫通穴48側に配置されるように、工具30がその中心軸線Ot周りに割出し、回転位置決めされる。次いで、Z軸およびX軸方向に工具30とワーク40とを相対移動させて、工具30の刃部36が第1の貫通穴46の小径部46bの近接位置に配置される(図4A)。次いで、第1の貫通穴46の中心軸線O1が工具30の中心軸線OtまたはZ軸に対して所定の角度θ(図4F)となるまで、第2の貫通穴48が工具30に接近する方向に、ロータリーワークヘッド24によってワーク40をB軸方向に回転送りする。つまり、本発明による穴加工方法では、大径部と小径部とを有した複数の貫通穴が所定の軸線に沿って並設されているワークにおいて、小径部側から大径部を仕上げ加工する場合に、ワークを前記所定の軸線および回転工具の中心軸線に対して垂直な軸線を中心として、当該穴加工すべき貫通穴以外の貫通穴が工具に接近する方向に回転送りするようにしている。 First, the tool 30 is indexed around its central axis O t and rotationally positioned so that the blade portion 36 is disposed on the second through hole 48 side on the X axis. Next, the tool 30 and the workpiece 40 are relatively moved in the Z-axis and X-axis directions, and the blade portion 36 of the tool 30 is disposed at a position close to the small-diameter portion 46b of the first through hole 46 (FIG. 4A). Next, the second through hole 48 approaches the tool 30 until the central axis O 1 of the first through hole 46 is at a predetermined angle θ (FIG. 4F) with respect to the central axis O t of the tool 30 or the Z axis. In this direction, the rotary work head 24 rotates and feeds the work 40 in the B-axis direction. That is, in the hole drilling method according to the present invention, a large diameter portion is finished from the small diameter portion side in a workpiece in which a plurality of through holes having a large diameter portion and a small diameter portion are arranged along a predetermined axis. In this case, the workpiece is rotated and fed in a direction in which the through-holes other than the through-hole to be drilled approach the tool around the predetermined axis and the axis perpendicular to the center axis of the rotary tool. .

このように、工具30の刃部36を小径部46b内に導入するためにB軸方向にワーク40を回転送りする角度θは、第1の貫通穴46の小径部46bをX軸方向に見たときの開口高さHoが刃部36の高さHcよりも大きくなるような角度であって、第1の貫通穴46の中心軸線O1方向の小径部46bの長さをLoとしたときに、以下の不等式を満たす角度とすることができる。
c<Ho=D2・sinθ−Locosθ…(2)
As described above, the angle θ at which the workpiece 40 is rotated and fed in the B-axis direction in order to introduce the blade portion 36 of the tool 30 into the small-diameter portion 46b is viewed from the small-diameter portion 46b of the first through hole 46 in the X-axis direction. The opening height H o is larger than the height H c of the blade portion 36, and the length of the small diameter portion 46 b in the direction of the central axis O 1 of the first through hole 46 is L o. , The angle satisfies the following inequality.
H c <H o = D 2 · sin θ−L o cos θ (2)

ワーク40をB軸方向に回転送りした後、Z軸およびX軸方向に工具30とワーク40とを相対移動させて、工具30の刃部36を第1の貫通穴46の小径部46bに導入する(図4B)。次いで、X軸、Z軸およびB軸を同時に制御することによって、工具30の刃部36を小径部46bから大径部46a内へ導入し(図4C)、更に、頸部34が小径部46b内に挿通可能な配置(図4D)に、工具30とワーク40とを相対移動させる。図4C、4Dに示す工程では、工具30に欠切部38を形成することによって、刃部36の長さLc(図5参照)が比較的長い工具30を用いても、小径部46bから大径部46aへ刃部36を通すことが可能となる。 After rotating the workpiece 40 in the B-axis direction, the tool 30 and the workpiece 40 are relatively moved in the Z-axis and X-axis directions, and the blade portion 36 of the tool 30 is introduced into the small diameter portion 46b of the first through hole 46. (FIG. 4B). Next, by simultaneously controlling the X axis, the Z axis, and the B axis, the blade portion 36 of the tool 30 is introduced from the small diameter portion 46b into the large diameter portion 46a (FIG. 4C), and the neck portion 34 is further reduced to the small diameter portion 46b. The tool 30 and the workpiece 40 are relatively moved in an arrangement (FIG. 4D) that can be inserted into the tool. In the steps shown in FIGS. 4C and 4D, by forming the notch 38 in the tool 30, even if the tool 30 having a relatively long length L c (see FIG. 5) is used, The blade portion 36 can be passed through the large diameter portion 46a.

更に、工具30の刃部36が大径部46aの外に配置され、中心軸線Otと、第1の貫通穴46の中心軸線O1が一致するように、X軸、Z軸およびB軸が同時に制御される(図4E)。次いで、主軸20を所定の回転速度で回転させつつ、テーブル22をZ軸方向へ送ることによって、大径部46aの内周面が加工される。 Further, the blade portion 36 of the tool 30 is disposed outside the large-diameter portion 46a, and the X axis, the Z axis, and the B axis so that the center axis O t coincides with the center axis O 1 of the first through hole 46. Are controlled simultaneously (FIG. 4E). Next, the inner peripheral surface of the large-diameter portion 46a is processed by sending the table 22 in the Z-axis direction while rotating the main shaft 20 at a predetermined rotational speed.

第2の貫通穴48の大径部48aについも、第1の貫通穴46の大径部46aと同様に仕上げ加工できるが、最初に工具30を中心軸線Ot周りに回転位置決めする際に、刃部36がX軸上において第1の貫通穴46側に配置されるように割り出される。本実施形態では、工具30をこのように割り出すことによって、工具30とワーク40の側壁44との干渉を避けて、ワーク40をB軸方向に大きく回転送り可能となり、不等式(2)を満たすθの範囲を大きくすることができる。 The large diameter portion 48a of the second through hole 48 can also be finished in the same manner as the large diameter portion 46a of the first through hole 46. However, when the tool 30 is first rotated and positioned around the central axis O t , The blade portion 36 is indexed so as to be disposed on the first through hole 46 side on the X axis. In the present embodiment, by indexing the tool 30 in this way, it is possible to avoid the interference between the tool 30 and the side wall 44 of the workpiece 40, and the workpiece 40 can be greatly rotated in the B-axis direction, and θ satisfying the inequality (2) The range can be increased.

このように、本実施形態による穴加工方法によれば、ワーク40をB軸方向に180°回転させることなく、工具30から見てワーク40の底壁42の反対側の表面に大径部46a、48aを形成することが可能である。もちろん、ワーク40をB軸方向に180°回転して、底壁42の外面を工具30に対面させることによって、大径部46a、48aを簡単に仕上げ加工することはできるが、そのようにして大径部46a、48aを仕上げ加工すると、大径部46a、48aの中心軸線と小径部46b、48bの中心軸線との位置ズレ、特にB軸の鉛直軸線に垂直なX軸方向の位置ズレが大きくなる。つまり、B軸を180°回転して大径部46a、48aの仕上げ加工を行うと、X軸方向の加工誤差が倍加してしまう。これに対して本実施形態によれば、ワーク40をB軸方向に180°回転させることなく、底壁42の内面側から大径部46a、48aを仕上げ加工するために、大径部46a、48aの中心軸線と小径部46b、48bの中心軸線と円弧部44a、44bの中心軸線のズレを最小限とすることができる。   Thus, according to the drilling method according to the present embodiment, the large diameter portion 46a is formed on the surface opposite to the bottom wall 42 of the work 40 as viewed from the tool 30 without rotating the work 40 by 180 ° in the B-axis direction. , 48a can be formed. Of course, the large-diameter portions 46a and 48a can be easily finished by rotating the workpiece 40 180 ° in the B-axis direction and causing the outer surface of the bottom wall 42 to face the tool 30. When the large-diameter portions 46a and 48a are finished, the positional deviation between the central axis of the large-diameter portions 46a and 48a and the central axis of the small-diameter portions 46b and 48b, particularly the positional deviation in the X-axis direction perpendicular to the vertical axis of the B-axis. growing. That is, if the B axis is rotated 180 ° to finish the large diameter portions 46a and 48a, the machining error in the X axis direction is doubled. On the other hand, according to this embodiment, in order to finish the large diameter portions 46a and 48a from the inner surface side of the bottom wall 42 without rotating the workpiece 40 by 180 ° in the B-axis direction, the large diameter portions 46a, The shift between the central axis of 48a and the central axis of the small diameter portions 46b and 48b and the central axis of the arc portions 44a and 44b can be minimized.

10 工作機械
30 工具
32 シャンク
34 頸部
36 刃部
40 ワーク
46 第1の貫通穴
46a 大径部
46b 小径部
48 第2の貫通穴
48a 大径部
48b 小径部
DESCRIPTION OF SYMBOLS 10 Machine tool 30 Tool 32 Shank 34 Neck part 36 Blade part 40 Work 46 1st through-hole 46a Large diameter part 46b Small diameter part 48 2nd through hole 48a Large diameter part 48b Small diameter part

Claims (3)

少なくとも2つの直動送り軸と、1つの回転送り軸とを有し、回転工具とワークを相対的に移動させてワークの貫通穴の裏側を加工する工作機械を用いた穴加工方法において、
前記回転工具は、中心軸線(O t に沿って延びるシャンク(32)と、該シャンク(32)の先端部において前記中心軸線(O t に対して略半径方向に突出し先端部に切刃を有した刃部(36)とを有して略L字形に形成されており、
前記刃部(36)は、すくい面を形成する上面(36b)と、該上面の反対側の下面(36c)とで形成されており、前記直動送り軸2軸と回転送り軸1軸の動作を複数回行うまたは同時3軸制御で行って、前記回転工具の中心軸線(O t )と直交する方向の直動送り軸方向に見た前記貫通穴の開口部の高さ(H o )が、前記刃部(36)の高さ(H c )よりも高くなるまで前記回転送り軸を回転させ、前記回転工具の刃部(36)を前記貫通の裏側まで通し、
前記回転工具を回転させて前記貫通穴の裏側の加工を行うことを特徴とした穴加工方法。
In a hole drilling method using a machine tool that has at least two linear motion feed shafts and one rotary feed shaft, and moves the rotary tool and the workpiece relative to each other to machine the back side of the through hole of the workpiece,
The rotary tool includes a shank (32) extending along a central axis (O t ) , and a distal end portion of the shank (32) that protrudes in a substantially radial direction with respect to the central axis (O t ) and has a cutting edge at the distal end portion. And a substantially L-shaped blade portion (36) having
The blade portion (36) is formed by an upper surface (36b) that forms a rake face and a lower surface (36c) opposite to the upper surface, and includes two linear motion feed shafts and one rotary feed shaft. The height (H o ) of the opening of the through hole as seen in the direction of the linear feed axis in the direction orthogonal to the central axis (O t ) of the rotary tool by performing the operation a plurality of times or by simultaneous three-axis control Rotating the rotary feed shaft until it becomes higher than the height (H c ) of the blade portion (36), and passing the blade portion (36) of the rotary tool to the back side of the through hole ,
A hole drilling method comprising: rotating the rotary tool to perform processing on the back side of the through hole.
前記ワークは、前記貫通穴の軸線(O 1 、O 2 が前記2つの直動送り軸で構成される平面と平行に、かつ、前記回転送り軸の軸線に垂直に前記工作機械に取り付けるようにした請求項1に記載の穴加工方法。 The workpiece is attached to the machine tool such that the axis (O 1 , O 2 ) of the through hole is parallel to the plane formed by the two linear feed axes and perpendicular to the axis of the rotary feed axis. The drilling method according to claim 1. 前記回転工具の刃部(36)を前記貫通の裏側まで通す動作は、前記回転工具の略L字形の先端部を最初に前記貫通穴に進入させ、前記貫通穴を通過するように、前記2つの直動送り軸および1つの回転送り軸を制御する請求項1または2に記載の穴加工方法。 The operation of passing the blade part (36) of the rotary tool to the back side of the through hole is performed by first causing the substantially L-shaped tip of the rotary tool to enter the through hole and passing through the through hole. The drilling method according to claim 1 or 2, wherein two linear motion feed shafts and one rotary feed shaft are controlled.
JP2013248471A 2013-11-29 2013-11-29 Drilling method Active JP5752217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248471A JP5752217B2 (en) 2013-11-29 2013-11-29 Drilling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248471A JP5752217B2 (en) 2013-11-29 2013-11-29 Drilling method

Publications (2)

Publication Number Publication Date
JP2015104784A JP2015104784A (en) 2015-06-08
JP5752217B2 true JP5752217B2 (en) 2015-07-22

Family

ID=53435228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248471A Active JP5752217B2 (en) 2013-11-29 2013-11-29 Drilling method

Country Status (1)

Country Link
JP (1) JP5752217B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2969000A (en) * 1957-09-24 1961-01-24 Cleaver Brooks Co Chamfering tool
US2944447A (en) * 1958-12-01 1960-07-12 Curtiss Wright Corp Hole chamfering tool
US4303356A (en) * 1980-01-07 1981-12-01 Williams David B Deburring tool
JPS63201011U (en) * 1987-06-13 1988-12-26
GB2399781A (en) * 2002-08-24 2004-09-29 Alstom Tool and method for multi-axis back spot facing
DE10334026A1 (en) * 2003-07-18 2005-02-03 Gebr. Heller Maschinenfabrik Gmbh Method for backwards processing of areas adjacent to bore and device for performing appropriate operation

Also Published As

Publication number Publication date
JP2015104784A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
CN100408260C (en) Composite working machine tool and working method in composite working machine tool
TWI659789B (en) Machine tool with tool table
US5020201A (en) Machine tool
JP4988427B2 (en) Machine Tools
JP5631467B1 (en) Drilling method and numerical control device
TWI767071B (en) Lathe with tool unit installed
JP2013514902A (en) Method and apparatus for manufacturing bevel gears
KR20200000189A (en) apparatus of the shaft type roller gear cam
JP5752217B2 (en) Drilling method
JP6861796B2 (en) Machine Tools
CN107225274B (en) Cutting method and machine tool
CN104526356A (en) Multi-station horizontal type turn-milling integrated machine
JP2014087878A (en) Electric discharge machine
JP2012161904A (en) Composite tool, machining method, and machine tool
JP2009285783A (en) Boring method of nc machine tool
JP6829675B2 (en) Tool holder for lathes and lathes equipped with this tool holder
JP2001129701A (en) Numerically controlled automatic lathe and method of machining workpiece by numerically controlled automatic lathe
JP4621569B2 (en) Machining method of spindle crossing inner circumference in lathe
JP2003062701A (en) Cnc lathe with counter spindle
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
JP2002144106A (en) Eccentric position spherical surface working method using nc lathe
KR20090123769A (en) Vertical bta drill machining center
JP2007301701A (en) Surface machining tool and machining method using the same
JP7089574B2 (en) Processing machine and manufacturing method of workpiece
JP7058103B2 (en) Work end face cutting method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150519

R150 Certificate of patent or registration of utility model

Ref document number: 5752217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150