JP2012161904A - Composite tool, machining method, and machine tool - Google Patents

Composite tool, machining method, and machine tool Download PDF

Info

Publication number
JP2012161904A
JP2012161904A JP2011111181A JP2011111181A JP2012161904A JP 2012161904 A JP2012161904 A JP 2012161904A JP 2011111181 A JP2011111181 A JP 2011111181A JP 2011111181 A JP2011111181 A JP 2011111181A JP 2012161904 A JP2012161904 A JP 2012161904A
Authority
JP
Japan
Prior art keywords
blade
tool
composite tool
workpiece
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011111181A
Other languages
Japanese (ja)
Inventor
Koichi Kato
孝一 加藤
Toshio Ozawa
敏夫 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2011111181A priority Critical patent/JP2012161904A/en
Publication of JP2012161904A publication Critical patent/JP2012161904A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Drilling Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive composite tool with which hole machining, spot facing and chamfering can be continuously performed by one tool without replacing tools, to provide a machining method, and to provide a machine tool.SOLUTION: The composite tool includes: a tool body 41 which includes an attachment part 42 that is formed on one axial end side of the tool body and can be inserted in a main shaft of a machine tool and a blade part attachment part 44 formed on the another axial end side; a first blade part 51 attached to a side opposite to the attachment part 42 in the blade part attachment part of the tool body; and a second blade part 52 attached to the attachment part side in the blade part attachment part of the tool body. A dimension from the axial line to an end part of the second blade part is smaller than the dimension from the axis line to an end part of the first blade part.

Description

本発明は、単一の工具によって孔加工から座ぐり加工、面取り加工を行うことが可能な複合工具、この複合工具を用いた加工方法および工作機械に関する。   The present invention relates to a composite tool capable of performing drilling, counterboring, and chamfering with a single tool, a machining method using the composite tool, and a machine tool.

ワークの加工において、ワークに表裏面を貫通する下孔を加工したのち、あるいは、予め形成された下孔の内面を仕上加工したのち、その下孔の裏面に裏座ぐり加工を行う場合がある。このような場合、まず、エンドミル工具などで下孔加工(下孔の内面仕上加工を含む)したのち、この下孔の裏側周囲に裏座ぐり加工を行う。
従来、裏座ぐり加工を行う工具として、特許文献1に開示された裏座ぐり切削工具が知られている。これは、基端側に工作機械への装着部を有するシャフトと、このシャフトの先端側に回動可能に支持され、シャフトに沿って倒れる収納位置とシャフトに対して起立する突出位置とに起伏される刃具と、この刃具を起立させて突出位置に付勢するばねと、側面に窓を有しかつシャフトにスライド可能に装着され、スライド位置に応じて刃具を突出位置と収納位置とに切り換えるガイドスリーブとを備える構成である。
In machining a workpiece, after machining a pilot hole penetrating the front and back surfaces of the workpiece, or after finishing the inner surface of a previously formed pilot hole, a back spot machining may be performed on the back surface of the pilot hole. . In such a case, first, a pilot hole is processed with an end mill tool or the like (including inner surface finishing of the pilot hole), and then a countersink is formed around the back side of the pilot hole.
Conventionally, a back spot cutting tool disclosed in Patent Document 1 is known as a back spot facing tool. The shaft has a mounting portion for a machine tool on the base end side, and is supported at the tip end side of the shaft so as to be rotatable, and is retracted into a storage position that falls along the shaft and a protruding position that stands up with respect to the shaft. A cutting tool, a spring for raising the cutting tool and biasing it to the protruding position, a window having a side surface and slidably mounted on the shaft, and switching the cutting tool between the protruding position and the storage position according to the sliding position. It is the structure provided with a guide sleeve.

裏座ぐり加工にあたって、予め、ワークの表裏面を貫通する下孔を加工しておき、工作機械の主軸に取り付けたシャフトを下孔に挿入してシャフトの先端をワークの裏面側に突出させる。この状態において、ガイドスリーブをスライドさせると、刃具がばねによってシャフトに対して起立する突出位置に起立されるから、この状態でシャフトまたはワークを回転させると、下孔の裏面周囲に裏座ぐり加工が施される。   In back spot machining, a pilot hole penetrating the front and back surfaces of the workpiece is processed in advance, and a shaft attached to the spindle of the machine tool is inserted into the pilot hole so that the tip of the shaft protrudes from the back surface side of the workpiece. In this state, if the guide sleeve is slid, the cutting tool will stand at the protruding position where it stands up against the shaft by the spring. If the shaft or workpiece is rotated in this state, the countersink will be machined around the back of the pilot hole. Is given.

特開2011−675号公報JP2011-675A

しかしながら、特許文献1に記載の裏座ぐり切削工具は、シャフトに刃具を回動可能に支持し、この刃具を起立するように付勢するばねをシャフト内に内蔵するとともに、シャフトの外側にガイドスリーブをスライド可能に装着した構造であるため、構造が複雑化し、コストも高くなるという欠点がある。
しかも、裏座ぐり加工にあたっては、予め、エンドミル工具などで下孔加工しておく必要があるうえ、エンドミル工具から裏座ぐり切削工具に交換するための工具交換作業が必要であるため、作業効率が悪い。
However, the counterbore cutting tool described in Patent Document 1 supports a blade in a rotatable manner on a shaft, and incorporates a spring that urges the blade to stand up in the shaft, and guides it outside the shaft. Since the sleeve is slidably mounted, the structure is complicated and the cost is increased.
In addition, in countersinking, it is necessary to drill a pilot hole in advance with an end mill tool, etc., and it is also necessary to change the tool from the end mill tool to the back countersink cutting tool. Is bad.

本発明の目的は、このような課題を解消し、安価で、しかも、工具交換を行うことなく、孔加工から座ぐり加工、面取り加工を1つの工具によって連続的に行うことができる複合工具、加工方法および工作機械を提供することにある。   The object of the present invention is to solve such problems, is inexpensive, and is a composite tool capable of continuously performing drilling, counterboring, and chamfering with a single tool without changing tools, It is in providing a processing method and a machine tool.

本発明の複合工具は、軸線方向の一端側に形成され工作機械の工具取付部に差し込み可能な装着部、および、前記軸線方向の他端側に形成された刃部取付部を含んで構成された工具本体と、前記工具本体の刃部取付部において、前記装着部とは反対側に取り付けられた第1刃部と、前記工具本体の刃部取付部において、前記装着部側に取り付けられた第2刃部とを備え、前記軸線から前記第1刃部の先端までの寸法に対して、前記軸線から前記第2刃部の先端までの寸法が小さい、ことを特徴とする。   The composite tool of the present invention includes a mounting portion that is formed on one end side in the axial direction and can be inserted into a tool mounting portion of a machine tool, and a blade portion mounting portion that is formed on the other end side in the axial direction. In the tool body, the blade attachment portion of the tool body, the first blade portion attached to the opposite side of the attachment portion, and the blade attachment portion of the tool body, attached to the attachment portion side. And a second blade part, wherein the dimension from the axis to the tip of the second blade part is smaller than the dimension from the axis to the tip of the first blade part.

このような構成によれば、複合工具および被加工物の一方を回転させるとともに、複合工具および被加工物を回転軸線と平行な軸方向へ相対移動させると、複合工具の第1刃部によって被加工物に下孔が加工、あるいは、予め形成された下孔の内面が加工される。このとき、軸線から第1刃部の先端までの寸法に対して、軸線から第2刃部の先端までの寸法が小さいから、第1刃部によって加工された下孔に第2刃部が接触することがない。従って、下孔の加工を支障なく行える。
次に、この下孔加工した被加工物の裏面に複合工具の第2刃部を突出させた状態において、複合工具および被加工物の一方を回転させるとともに、複合工具および被加工物を、回転軸線と平行な軸方向および回転軸線に対して直交する軸方向へ相対移動させると、複合工具の第2刃部によって被加工物の裏面において裏座ぐり加工や面取り加工を行うことができる。
また、下孔加工した被加工物の表面に複合工具の第1刃部を突出させた状態において、複合工具および被加工物の一方を回転させるとともに、複合工具および被加工物を、回転軸線と平行な軸方向および回転軸線に対して直交する軸方向へ相対移動させると、複合工具の第1刃部によって被加工物の表面において表座ぐり加工や面取り加工を行うことができる。
従って、工具交換を行うことなく、孔加工から表裏座ぐり加工および面取り加工を1つの工具によって連続的に行うことができるから、作業効率を向上させることができる。しかも、工具本体の刃部取付部において、装着部とは反対側に第1刃部を、装着部側に第2刃部を取り付けるだけで構成できるから、安価に構成できる。
According to such a configuration, when one of the composite tool and the workpiece is rotated and the composite tool and the workpiece are relatively moved in the axial direction parallel to the rotation axis, the first blade portion of the composite tool covers the workpiece. A prepared hole is processed in the workpiece, or an inner surface of a previously formed prepared hole is processed. At this time, since the dimension from the axis to the tip of the second blade is smaller than the dimension from the axis to the tip of the first blade, the second blade contacts the pilot hole machined by the first blade. There is nothing to do. Therefore, it is possible to process the prepared hole without any trouble.
Next, in a state in which the second blade portion of the composite tool is protruded from the back surface of the prepared workpiece, the composite tool and the work piece are rotated, and the composite tool and the work piece are rotated. When the relative movement is performed in the axial direction parallel to the axis and in the axial direction perpendicular to the rotation axis, the counterbore or chamfering can be performed on the back surface of the workpiece by the second blade portion of the composite tool.
Further, in a state where the first blade portion of the composite tool is protruded from the surface of the workpiece that has been drilled, one of the composite tool and the work is rotated, and the composite tool and the work are connected to the rotation axis. When the relative movement is performed in the parallel axial direction and the axial direction orthogonal to the rotation axis, the face facing or chamfering can be performed on the surface of the workpiece by the first blade portion of the composite tool.
Accordingly, since the front and back spot facing and the chamfering can be continuously performed by one tool without exchanging the tool, the working efficiency can be improved. In addition, in the blade mounting portion of the tool body, the first blade portion can be configured only on the side opposite to the mounting portion, and the second blade portion can be mounted on the mounting portion side.

本発明の複合工具において、前記工具本体は、前記装着部と、基端に前記装着部を有する延長シャフトと、この延長シャフトの先端に設けられた前記刃部取付部とを含んで構成され、前記刃部取付部は、前記軸線方向に対して直交する方向から見て幅方向両端側が前記装着部に向かうに従って次第に幅方向寸法が狭くなった台形形状に形成され、前記台形形状の角部に前記第1刃部および第2刃部が取り付けられている、ことが好ましい。   In the composite tool of the present invention, the tool body includes the mounting portion, an extension shaft having the mounting portion at the base end, and the blade portion mounting portion provided at the distal end of the extension shaft. The blade portion mounting portion is formed in a trapezoidal shape with the widthwise dimension gradually narrowing toward the mounting portion when viewed from the direction orthogonal to the axial direction, and at the corner portion of the trapezoidal shape. It is preferable that the first blade portion and the second blade portion are attached.

このような構成によれば、工具本体は、装着部と、延長シャフトと、刃部取付部とを含んで構成され、刃部取付部は、幅方向両端側が装着部に向かうに従って次第に幅方向寸法が狭くなった台形形状に形成され、その台形形状の角部に第1刃部および第2刃部が取り付けられているから、第1刃部によって被加工物に下孔加工する際、刃部取付部の幅方向両端面が下孔に干渉することがない。従って、下孔加工を支障なく行うことができる。   According to such a configuration, the tool body is configured to include the mounting portion, the extension shaft, and the blade portion mounting portion, and the blade portion mounting portion gradually measures in the width direction as both ends in the width direction face the mounting portion. Is formed in a trapezoidal shape with a narrowed shape, and the first blade portion and the second blade portion are attached to the corner portion of the trapezoidal shape. Both end surfaces in the width direction of the mounting portion do not interfere with the prepared hole. Therefore, it is possible to perform the pilot hole processing without hindrance.

本発明の複合工具において、前記第1刃部および前記第2刃部は、前記軸線に対して直交する線上に沿って配置されている、ことが好ましい。
このような構成によれば、第1刃部および第2刃部が、複合工具の軸線に対して直交する線上に配置されているから、切削加工時にびびり等が生じることなく、加工する表面状態を良好に仕上げることができる。
The composite tool of this invention WHEREIN: It is preferable that the said 1st blade part and the said 2nd blade part are arrange | positioned along the line orthogonal to the said axis line.
According to such a structure, since the 1st blade part and the 2nd blade part are arrange | positioned on the line orthogonal to the axis line of a composite tool, the surface state processed without chattering etc. at the time of cutting Can be finished well.

本発明の複合工具において、前記工具本体の刃部取付部において、前記装着部とは反対側に取り付けられた第3刃部を備え、前記第3刃部は、前記第1刃部に対して、前記軸線方向へ突出して取り付けられているとともに、前記軸線から前記第1刃部の先端までの寸法に対して、前記軸線から前記第3刃部の先端までの寸法が小さい、ことが好ましい。
このような構成によれば、第3刃部は、第1刃部に対して、軸線方向へ突出して取り付けられているから、被加工物の表面において表座ぐり加工や面取り加工を行うことができる。従って、第1刃部については孔加工のみでよいから、それぞれの加工に適した刃部を用いることにより、高精度な加工が期待できる。
In the composite tool of the present invention, the blade attachment portion of the tool body includes a third blade attached to the opposite side of the mounting portion, and the third blade is in relation to the first blade. It is preferable that the projection extends in the axial direction, and that the dimension from the axis to the tip of the third blade is smaller than the dimension from the axis to the tip of the first blade.
According to such a configuration, since the third blade portion is attached to the first blade portion so as to protrude in the axial direction, it is possible to perform face spot machining or chamfering on the surface of the workpiece. it can. Therefore, since only the hole processing is required for the first blade portion, high-precision processing can be expected by using a blade portion suitable for each processing.

本発明の加工方法は、上述した複合工具を用いて、被加工物を加工する加工方法において、前記複合工具および被加工物の一方を回転軸線を中心として回転させるとともに、前記複合工具および被加工物を前記回転軸線と平行な軸方向へ相対移動させながら、前記複合工具の第1刃部によって被加工物に下孔を加工する孔加工工程と、前記下穴を加工した前記被加工物の裏面に前記複合工具の第2刃部を突出させた状態において、前記複合工具および被加工物の一方を回転させるとともに、前記複合工具および被加工物を、前記回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させながら、前記複合工具の第2刃部によって被加工物の裏面に裏座ぐり穴を加工する裏座ぐり加工工程と、を備えることを特徴とする。
このような構成によれば、工具交換を行うことなく、下孔加工から裏座ぐり加工を1つの複合工具によって連続的に加工することができるから、作業効率を向上させることができる。
The machining method of the present invention is a machining method for machining a workpiece using the above-described composite tool, wherein one of the composite tool and the workpiece is rotated about a rotation axis, and the composite tool and the workpiece are processed. A hole machining step of machining a prepared hole in the workpiece by the first blade portion of the composite tool while relatively moving the workpiece in an axial direction parallel to the rotation axis, and the workpiece processed in the prepared hole In a state where the second blade portion of the composite tool protrudes from the back surface, one of the composite tool and the workpiece is rotated, and the composite tool and the workpiece are moved in an axial direction parallel to the rotation axis and the workpiece. A countersinking step of processing a counterbore hole on the back surface of the workpiece by the second blade portion of the composite tool while relatively moving in an axial direction perpendicular to the rotation axis. You .
According to such a configuration, it is possible to continuously process the pilot hole machining to the back spot machining with one composite tool without changing the tool, so that the work efficiency can be improved.

本発明の加工方法において、前記下孔を加工した前記被加工物の表面に前記複合工具の第1刃部を突出させた状態において、前記複合工具および被加工物の一方を回転させるとともに、前記複合工具および被加工物を、前記回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させながら、前記複合工具の第1刃部によって被加工物の表面に表座ぐり穴を加工する表座ぐり加工工程と、を備えることが好ましい。
このような構成によれば、工具交換を行うことなく、下孔加工から裏座ぐり加工および表座ぐり加工を1つの複合工具によって連続的に加工することができるから、作業効率を向上させることができる。
In the processing method of the present invention, in a state where the first blade portion of the composite tool is protruded from the surface of the workpiece processed the prepared hole, one of the composite tool and the workpiece is rotated, and While the composite tool and the workpiece are relatively moved in an axial direction parallel to the rotation axis and in an axial direction orthogonal to the rotation axis, the first tool portion of the composite tool is seated on the surface of the workpiece. It is preferable to include a face spot machining step for machining a counterbore.
According to such a configuration, since a single composite tool can be continuously processed from the prepared hole drilling to the back spot facing and the front spot facing without changing the tool, work efficiency can be improved. Can do.

本発明の加工方法において、前記下孔と前記裏座ぐり穴または表座ぐり穴との角部に前記複合工具の第2刃部または第1刃部を接触させた状態において、前記複合工具および被加工物の一方を回転させるとともに、前記複合工具および被加工物を、前記回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させながら、前記複合工具の第2刃部または第1刃部によって前記角部に面取り加工を行う面取り加工工程と、を備えることが好ましい。
このような構成によれば、工具交換を行うことなく、下孔加工から裏座ぐり加工および表座ぐり加工、更に、これら下孔と座ぐり穴との間の面取り加工を1つの複合工具によって連続的に加工することができるから、作業効率を飛躍的に向上させることができる。
In the processing method of the present invention, in the state where the second blade portion or the first blade portion of the composite tool is in contact with the corner portion of the prepared hole and the back counterbore or the front counterbore, the composite tool and While rotating one of the workpieces and relatively moving the composite tool and the workpiece in an axial direction parallel to the rotational axis and an axial direction perpendicular to the rotational axis, the second of the composite tool It is preferable to include a chamfering process in which the corner portion is chamfered by the blade portion or the first blade portion.
According to such a configuration, one composite tool can perform chamfering between the prepared hole and the counterbore, and the chamfering between the prepared hole and the counterbore, without performing tool replacement. Since it can process continuously, work efficiency can be improved dramatically.

本発明の工作機械は、被加工物を載置するテーブル、主軸、前記テーブルおよび前記主軸の少なくとも一方を回転駆動させる回転駆動機構、並びに、前記テーブルおよび前記主軸を前記回転駆動機構の回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させる直線駆動機構を備えた工作機械本体と、前記回転駆動機構および直線駆動機構を加工プログラムに従って駆動制御する制御装置と、前記主軸に装着される複合工具とを備え、前記複合工具は、上述したいずれかの複合工具が用いられている、ことを特徴とする。   A machine tool according to the present invention includes a table on which a workpiece is placed, a main shaft, a rotation drive mechanism that rotationally drives at least one of the table and the main shaft, and the table and the main shaft as rotation axes of the rotation drive mechanism. A machine tool body provided with a linear drive mechanism that relatively moves in a parallel axial direction and an axial direction orthogonal to the rotation axis; a control device that drives and controls the rotation drive mechanism and the linear drive mechanism according to a machining program; And a composite tool mounted on a main shaft, wherein the composite tool uses any of the composite tools described above.

このような構成によれば、制御装置によって、回転駆動機構および直線駆動機構を駆動制御すると、主軸に装着された複合工具によって、被加工物に対して、下孔加工および表裏座ぐり加工、表裏面取り加工を連続して実行することができる。そのため、より効率的な加工を実現できる。   According to such a configuration, when the rotation drive mechanism and the linear drive mechanism are driven and controlled by the control device, the prepared tool mounted on the main shaft is used to process the prepared hole and front and back counterbore, front and back surfaces of the workpiece. Chamfering can be performed continuously. Therefore, more efficient processing can be realized.

本発明の第1実施形態に係る工作機械を示す斜視図。1 is a perspective view showing a machine tool according to a first embodiment of the present invention. 前記実施形態で用いる複合工具を示す斜視図。The perspective view which shows the composite tool used in the said embodiment. 前記実施形態で用いる複合工具を示す部分正面図。The partial front view which shows the composite tool used in the said embodiment. 前記実施形態の複合工具を用いて加工した例を示す図。The figure which shows the example processed using the composite tool of the said embodiment. 前記実施形態の複合工具を用いて加工した他の例を示す図。The figure which shows the other example processed using the composite tool of the said embodiment. 本発明の第2実施形態で用いる複合工具を示す斜視図。The perspective view which shows the composite tool used in 2nd Embodiment of this invention. 前記実施形態で用いる複合工具を示す部分正面図。The partial front view which shows the composite tool used in the said embodiment. 前記実施形態で用いる複合工具を示す平面図。The top view which shows the composite tool used in the said embodiment. 前記実施形態の複合工具を用いて下孔加工する際の図。The figure at the time of carrying out a pilot hole process using the composite tool of the said embodiment. 前記実施形態の複合工具を用いて裏座ぐり、面取り加工する際の図。The figure at the time of a counterbore and a chamfering process using the composite tool of the said embodiment. 前記実施形態の複合工具を用いて表座ぐり、面取り加工する際の図。The figure at the time of surface spot facing and chamfering using the composite tool of the embodiment. 本発明の第3実施形態で用いる複合工具を示す正面図。The front view which shows the composite tool used in 3rd Embodiment of this invention. 前記実施形態の複合工具を用いて加工した例を示す図。The figure which shows the example processed using the composite tool of the said embodiment. 本発明の複合工具の他の例を示す図。The figure which shows the other example of the composite tool of this invention.

[第1実施形態]
図1は、本発明の工作機械の第1実施形態を示す斜視図である。同工作機械は、工作機械本体10と、この工作機械本体10を加工プログラムに従って駆動制御する制御装置30と、工作機械本体10に取り付けられ被加工物としてのワークを加工する複合工具40とを備える。
[First Embodiment]
FIG. 1 is a perspective view showing a first embodiment of a machine tool of the present invention. The machine tool includes a machine tool body 10, a control device 30 that drives and controls the machine tool body 10 according to a machining program, and a composite tool 40 that is attached to the machine tool body 10 and processes a workpiece as a workpiece. .

<工作機械本体の説明>
工作機械本体10は、ベース11と、このベース11の上面に前後方向(X軸方向)へ移動可能に設けられたXテーブル12Aと、このXテーブル12Aの上面に垂直な軸(C軸)を中心に回転可能に設けられ上面に被加工物としてのワークを載置する回転テーブル12Bと、ベース11の両側に立設された一対のコラム13A,13Bと、この両コラム13A,13Bの上部間に掛け渡されたクロスレール14と、このクロスレール14に沿って左右方向(Y軸方向)へ移動可能に設けられたサドル15と、このサドル15に上下方向(Z軸方向)へ昇降可能に設けられたラム16と、このラム16内に回転可能に収納された工具取付部としての主軸17と、この主軸17を回転駆動させる回転駆動源(図示省略)を備える門型工作機械によって構成されている。主軸17の先端には、自動工具交換装置あるいは手動によって、複合工具40が取り付けられる。
<Description of machine tool body>
The machine tool body 10 includes a base 11, an X table 12A provided on the upper surface of the base 11 so as to be movable in the front-rear direction (X-axis direction), and an axis (C axis) perpendicular to the upper surface of the X table 12A. A rotary table 12B that is rotatably provided at the center and places a workpiece as a workpiece on the upper surface, a pair of columns 13A and 13B that are erected on both sides of the base 11, and an upper portion between the columns 13A and 13B. A cross rail 14 that is stretched over, a saddle 15 that is movable along the cross rail 14 in the left-right direction (Y-axis direction), and the saddle 15 can be moved up and down in the vertical direction (Z-axis direction). A portal machine tool including a ram 16 provided, a main shaft 17 as a tool mounting portion rotatably accommodated in the ram 16, and a rotation drive source (not shown) for rotating the main shaft 17. It is configured me. A composite tool 40 is attached to the tip of the main shaft 17 by an automatic tool changer or manually.

ベース11にはXテーブル12AをX軸方向へ移動させるX軸直線駆動機構(図示省略)が、Xテーブル12Aには回転テーブル12BをC軸(Z軸と平行な軸)を中心に回転させる回転駆動機構(図示省略)が設けられている。また、クロスレール14には、サドル15をY軸方向に移動させるY軸直線駆動機構22が、サドル15には、ラム16をZ軸方向に移動させるZ軸直線駆動機構23が設けられている。
従って、回転テーブル12Bに載置されるワークは、回転およびX軸方向へ移動可能な構造に、また、主軸17に取り付けられる複合工具40については、回転およびX軸方向、Y軸方向およびZ軸方向への移動が可能な構造に構成されている。
The base 11 has an X-axis linear drive mechanism (not shown) that moves the X table 12A in the X-axis direction, and the X table 12A has a rotation table 12B that rotates around the C-axis (axis parallel to the Z-axis). A drive mechanism (not shown) is provided. The cross rail 14 is provided with a Y-axis linear drive mechanism 22 that moves the saddle 15 in the Y-axis direction, and the saddle 15 is provided with a Z-axis linear drive mechanism 23 that moves the ram 16 in the Z-axis direction. .
Accordingly, the workpiece placed on the rotary table 12B has a structure that can be rotated and moved in the X-axis direction, and for the composite tool 40 attached to the main shaft 17, the rotation, the X-axis direction, the Y-axis direction, and the Z-axis It is structured to be movable in the direction.

<制御装置の説明>
制御装置30は、工作機械本体10を、手動、あるいは、予め設定されたプログラムに従って駆動を制御するもので、具体的には、Xテーブル12AのX軸直線駆動機構、回転テーブル12Bの回転駆動機構、サドル15のY軸直線駆動機構22、ラム16のZ軸直線駆動機構23、主軸17の回転駆動源を予め設定された加工プログラムに従って駆動制御する。
<Description of control device>
The control device 30 controls the drive of the machine tool body 10 manually or according to a preset program. Specifically, the control device 30 controls the X-axis linear drive mechanism of the X table 12A and the rotary drive mechanism of the rotary table 12B. The Y-axis linear drive mechanism 22 of the saddle 15, the Z-axis linear drive mechanism 23 of the ram 16, and the rotational drive source of the main shaft 17 are driven and controlled according to a preset machining program.

<複合工具の説明>
図2は複合工具40の斜視図、図3は複合工具40の部分正面図である。
複合工具40は、工具本体41と、この工具本体41に取り付けられる第1刃部51および第2刃部52とを含んで構成されている。
工具本体41は、軸線方向の一端側に形成された装着部42と、基端に装着部42を有し軸線方向に延びる延長シャフト43と、この延長シャフト43の先端(軸線方向の他端側)に設けられた刃部取付部44とを含んで構成されている。
<Description of composite tool>
FIG. 2 is a perspective view of the composite tool 40, and FIG. 3 is a partial front view of the composite tool 40.
The composite tool 40 includes a tool main body 41 and a first blade portion 51 and a second blade portion 52 that are attached to the tool main body 41.
The tool body 41 includes an attachment portion 42 formed on one end side in the axial direction, an extension shaft 43 having the attachment portion 42 at the base end and extending in the axial direction, and a distal end of the extension shaft 43 (the other end side in the axial direction). ) And the blade portion mounting portion 44 provided in the above.

装着部42は、工作機械の工具取付部、つまり、主軸17に差し込みできるように、テーパシャンクに形成されている。
延長シャフト43は、棒状または筒状素材によって形成され、加工する孔の深さに対応できる長さ寸法に形成されている。
刃部取付部44は、軸線方向の他端側に形成され、装着部42の軸線方向に対して直交する方向の寸法よりも大きい外形寸法を有する形状に形成されている。つまり、軸線方向に対して直交する方向から見て、幅方向両端側が装着部42に向かうに従って次第に幅方向寸法が狭くなった台形形状で、奥行き寸法が一定厚みに形成されている。具体的には、台形形状の正面44A、背面44B、左右側面44C,44D、上面44E、底面44Fを有する台形箱状に形成され、底面44Fは、中央部分が上面に向かって台形状に窪んだ凹部に形成されている。
The mounting portion 42 is formed in a taper shank so that it can be inserted into the tool mounting portion of the machine tool, that is, the main shaft 17.
The extension shaft 43 is formed of a rod-like or cylindrical material and has a length dimension that can correspond to the depth of the hole to be processed.
The blade attachment portion 44 is formed on the other end side in the axial direction, and has a shape having an outer dimension larger than the dimension in the direction orthogonal to the axial direction of the mounting portion 42. In other words, when viewed from the direction orthogonal to the axial direction, the width dimension is formed in a trapezoidal shape in which the width dimension is gradually narrowed toward the mounting portion 42, and the depth dimension is formed with a constant thickness. Specifically, a trapezoidal front surface 44A, a rear surface 44B, left and right side surfaces 44C and 44D, a top surface 44E, and a bottom surface 44F are formed in a trapezoidal box shape. It is formed in the recess.

第1刃部51は、菱形板状の刃で、工具本体41の刃部取付部44において、装着部42とは反対側に取り付けられている。本実施形態では、刃部取付部44の正面44Aおよび背面44Bにおいて、底面44F側角部のうち右側の角部に、刃先が刃部取付部44の底面44Fおよび側面44C,44Dより突出するように、ボルトなどにより取り付けられている。
第2刃部52は、菱形板状の刃で、工具本体41の刃部取付部44において、装着部42側に取り付けられている。本実施形態では、刃部取付部44の正面44Aおよび背面44Bにおいて、上面44E側角部のうち右側角部に、刃先が刃部取付部44の上面44Eおよび側面44C,44Dより突出するように、ボルトなどにより取り付けられている。
ここで、工具本体41の軸線(回転軸線)から第1刃部51の先端までの寸法L1に対して、工具本体41の軸線(回転軸線)から第2刃部52の先端までの寸法L2が小さい寸法に形成されている。
The first blade portion 51 is a diamond-shaped blade, and is attached to the opposite side of the mounting portion 42 in the blade portion attachment portion 44 of the tool body 41. In the present embodiment, the blade tip protrudes from the bottom surface 44F and the side surfaces 44C, 44D of the blade mounting portion 44 at the right corner of the bottom surface 44F side corners on the front surface 44A and the back surface 44B of the blade mounting portion 44. It is attached with bolts.
The second blade portion 52 is a diamond-shaped blade, and is attached to the mounting portion 42 side in the blade portion attachment portion 44 of the tool body 41. In the present embodiment, the blade tip protrudes from the upper surface 44E and the side surfaces 44C and 44D of the blade mounting portion 44 at the right corner of the upper surface 44E side corners on the front surface 44A and the back surface 44B of the blade mounting portion 44. It is attached with bolts.
Here, the dimension L2 from the axis (rotation axis) of the tool body 41 to the tip of the second blade 52 is smaller than the dimension L1 from the axis (rotation axis) of the tool body 41 to the tip of the first blade 51. It is formed with small dimensions.

<加工方法の説明>
図4は、ワークWの壁部分W1,W2に下孔H1,H2を連続して加工(孔加工工程)したのち、壁部分W1の裏面において、下孔H1の周囲に沿って裏座ぐり穴Z1を加工(裏座ぐり加工工程)する例である。
孔加工工程では、回転テーブル12Bの回転およびサドル15のY軸方向への移動により、主軸17をワークWの加工位置に位置決めしたのち、主軸17を回転させる。この状態において、ラム16を下降させる。すると、複合工具40の第1刃部51によってワークWの壁部分W1,W2に下孔H1,H2が連続的に加工される。
<Description of processing method>
FIG. 4 shows a back counterbore hole along the periphery of the lower hole H1 on the back surface of the wall part W1 after the lower holes H1 and H2 are continuously machined (hole drilling process) in the wall parts W1 and W2 of the workpiece W. This is an example of processing Z1 (back spot facing processing step).
In the hole drilling process, the spindle 17 is rotated after the spindle 17 is positioned at the machining position of the workpiece W by rotating the rotary table 12B and moving the saddle 15 in the Y-axis direction. In this state, the ram 16 is lowered. Then, the first holes 51 of the composite tool 40 continuously process the prepared holes H1 and H2 in the wall portions W1 and W2 of the workpiece W.

この下孔加工において、工具本体41は、装着部42と、延長シャフト43と、刃部取付部44とを含んで構成され、刃部取付部44は、幅方向両端側が装着部42に向かうに従って次第に幅方向寸法が狭くなった台形形状に形成され、その台形形状の角部に第1刃部51および第2刃部52が取り付けられているから、第1刃部51によってワークWに下孔加工する際、刃部取付部44の幅方向両側面44C,44Dや第2刃部52がワークWの下孔H1,H2に干渉することがない。従って、下孔加工を支障なく行うことができる。   In this pilot hole machining, the tool body 41 is configured to include a mounting portion 42, an extension shaft 43, and a blade portion mounting portion 44, and the blade portion mounting portion 44 is configured such that both end sides in the width direction face the mounting portion 42. Since the first blade portion 51 and the second blade portion 52 are attached to the corners of the trapezoidal shape, the pilot blade is formed in the workpiece W by the first blade portion 51. When machining, both side surfaces 44C and 44D in the width direction of the blade portion mounting portion 44 and the second blade portion 52 do not interfere with the pilot holes H1 and H2 of the workpiece W. Therefore, it is possible to perform the pilot hole processing without hindrance.

裏座ぐり加工工程では、ラム16を上昇させて、複合工具40の第2刃部52を孔加工したワークWの壁部分W1の裏面に突出させた状態において、サドル15のY軸方向への移動により、複合工具40の第2刃部52を座ぐり位置に移動させる。この位置から、主軸17を回転させるとともに、X−Y軸の円弧補間動作、つまり、Xテーブル12AのX軸方向への移動、サドル15のY軸方向への移動を制御して複合工具40の第2刃部52を円運動させながら、ラム16のZ軸方向の移動を制御する。つまり、複合工具40の第2刃部52を下孔H1を中心とする螺旋運動させる。すると、下孔H1の裏面周囲に裏座ぐり穴Z1が形成される。   In the back spot machining process, the ram 16 is raised, and the second blade part 52 of the composite tool 40 is protruded from the back surface of the wall part W1 of the work W that has been drilled. By the movement, the second blade portion 52 of the composite tool 40 is moved to the spot facing position. The spindle 17 is rotated from this position, and the circular interpolation operation of the X-Y axes, that is, the movement of the X table 12A in the X-axis direction and the movement of the saddle 15 in the Y-axis direction are controlled. The movement of the ram 16 in the Z-axis direction is controlled while moving the second blade portion 52 in a circular motion. That is, the second blade portion 52 of the composite tool 40 is spirally moved around the pilot hole H1. Then, a back counterbore Z1 is formed around the back surface of the pilot hole H1.

従って、第1実施形態によれば、工具交換を行うことなく、下孔加工から裏座ぐり加工を1つの複合工具40によって連続的に行うことができるから、作業効率を向上させることができる。もとより、構成的には、工具本体41の刃部取付部44において、装着部42とは反対側に第1刃部51を、装着部42側に第2刃部52を取り付けるだけで構成できるから、安価に構成できる。   Therefore, according to the first embodiment, it is possible to continuously perform the counterbore processing from the counterbore processing to the back-sinking by the single composite tool 40 without changing the tool, so that the work efficiency can be improved. Of course, it is possible to configure the blade body mounting portion 44 of the tool body 41 simply by mounting the first blade portion 51 on the opposite side of the mounting portion 42 and the second blade portion 52 on the mounting portion 42 side. It can be configured at low cost.

更に、上述した裏座ぐり加工の動作を応用すれば、裏座ぐり加工が完了した加工部位の面取り加工も行うことができる。
例えば、図5に示すように、裏座ぐり穴Z1と下孔H1との角部に面取りC1を、裏座ぐり穴Z1の裏面側角部に面取りC11を、複合工具40の第2刃部52を利用して行うこともできる。また、同様にして、裏面側のボスの外周角部にも面取りC12を加工することもできる。
Furthermore, if the operation of the back face counter machining described above is applied, it is possible to perform a chamfering process of the processed part where the back face counter machining is completed.
For example, as shown in FIG. 5, the chamfer C1 is formed at the corners of the back countersunk hole Z1 and the lower hole H1, the chamfer C11 is formed at the back side corner of the back countersunk hole Z1, and the second cutting edge of the composite tool 40. 52 can also be used. Similarly, the chamfering C12 can also be processed at the outer peripheral corner of the boss on the back surface side.

[第2実施形態]
図6は第2実施形態で用いる複合工具40Aを示す斜視図、図7は同複合工具40Aの部分正面図、図8は同複合工具40Aの平面図である。
これらの図に示すように、第2実施形態の複合工具40Aは、第1実施形態の複合工具40に対して、刃部取付部44の形状が異なる。刃部取付部44は、延長シャフト43の下端に一体的に形成されこれよりも径大な円筒部44Gと、この円筒部44Gの外周面180度間隔位置に工具本体41の軸線に対して直交する方向へ突出された一対の突起部44Hとを有する。各突起部44Hは、工具本体41の軸線に対して直交する軸線と平行でかつ互いに逆向きな刃部取付面45を有し、この刃部取付面45に第1刃部51および第2刃部52が取り付けられている。
[Second Embodiment]
6 is a perspective view showing a composite tool 40A used in the second embodiment, FIG. 7 is a partial front view of the composite tool 40A, and FIG. 8 is a plan view of the composite tool 40A.
As shown in these drawings, the composite tool 40A of the second embodiment is different from the composite tool 40 of the first embodiment in the shape of the blade mounting portion 44. The blade portion attachment portion 44 is formed integrally with the lower end of the extension shaft 43, and has a cylindrical portion 44G having a larger diameter than that of the extension shaft 43. And a pair of projecting portions 44H projecting in the direction in which they are to be moved. Each protrusion 44H has a blade attachment surface 45 that is parallel to and opposite to an axis orthogonal to the axis of the tool body 41. The first blade 51 and the second blade are provided on the blade attachment surface 45. Part 52 is attached.

つまり、第1刃部51は、刃部取付面45において、刃先部分が刃部取付面45の底面および側面より突出するように、接着剤などにより取り付けられている。
第2刃部52は、刃部取付面45において、刃先部分が刃部取付面45の上面および側面より突出するように、接着剤などにより取り付けられている。
ここで、第1刃部51および第2刃部52の刃面は、図8に示すように、工具本体41の軸線に対して直交する線上に沿って配置されている。また、第1実施形態と同様に、工具本体41の軸線から第1刃部51の先端までの寸法L1に対して、工具本体41の軸線から第2刃部52の先端までの寸法L2が小さい寸法に形成されている。
That is, the first blade portion 51 is attached to the blade portion attachment surface 45 with an adhesive or the like so that the blade edge portion protrudes from the bottom surface and the side surface of the blade portion attachment surface 45.
The second blade portion 52 is attached with an adhesive or the like so that the blade edge portion protrudes from the upper surface and the side surface of the blade portion attachment surface 45 on the blade portion attachment surface 45.
Here, the blade surfaces of the first blade portion 51 and the second blade portion 52 are arranged along a line orthogonal to the axis of the tool body 41 as shown in FIG. Similarly to the first embodiment, the dimension L2 from the axis of the tool body 41 to the tip of the second blade part 52 is smaller than the dimension L1 from the axis of the tool body 41 to the tip of the first blade part 51. Dimension is formed.

<加工方法の説明>
図9〜図11は、ワークWの壁部分W3に下孔H3を加工(孔加工工程)したのち、壁部分W3の裏面において、下孔H3の周囲に沿って裏座ぐり穴Z3を加工(裏座ぐり加工工程)するとともに、裏座ぐり穴Z3と下孔H3との角部に面取りC3を加工(裏面取り加工工程)したのち、壁部分W3に表面において、下孔H3の周囲に沿って表座ぐり穴Z4を加工(表座ぐり加工工程)するとともに、表座ぐり穴Z4と下孔H3との角部に面取りC4を加工(表面取り加工工程)する例である。
<Description of processing method>
9-11, after machining the pilot hole H3 in the wall part W3 of the workpiece W (drilling process), the back counterbore Z3 is machined along the periphery of the pilot hole H3 on the back surface of the wall part W3 ( (Back face counterboring process) and chamfering C3 at the corners of the back counterbore hole Z3 and the lower hole H3 (back face chamfering process), and then on the surface of the wall portion W3 along the periphery of the lower hole H3. This is an example of processing the front counterbore hole Z4 (front counterbore processing step) and processing the chamfering C4 (surface chamfering step) at the corners of the front counterbore hole Z4 and the lower hole H3.

孔加工工程では、図9に示すように、回転テーブル12Bの回転およびサドル15のY軸方向への移動により、主軸17をワークWの加工位置(壁部分W3)に位置決めしたのち、主軸17を回転させる。この状態において、ラム16を下降させる。すると、複合工具40Aの第1刃部51によってワークWの壁部分W3に下孔H3が加工される。   In the hole drilling process, as shown in FIG. 9, the spindle 17 is positioned at the machining position (wall portion W3) of the workpiece W by rotating the rotary table 12B and moving the saddle 15 in the Y-axis direction, and then the spindle 17 is moved. Rotate. In this state, the ram 16 is lowered. Then, the pilot hole H3 is machined in the wall portion W3 of the workpiece W by the first blade portion 51 of the composite tool 40A.

裏座ぐり加工工程および裏面取り加工工程では、図10(A)に示すように、ラム16を上昇させて、複合工具40Aの第2刃部52を下孔加工したワークWの壁部分W3の裏面に接触させた状態において、サドル15のY軸方向への移動により、複合工具40の第2刃部52を座ぐり位置に移動させる。この位置から、主軸17を回転させるとともに、複合工具40Aの第2刃部52を下孔H3を中心とする螺旋運動させる。つまり、X−Y軸の円弧補間動作(Xテーブル12AのX軸方向への移動およびサドル15のY軸方向への移動制御)させて複合工具40Aの第2刃部52を円運動させながら、ラム16のZ軸方向の移動を制御する。すると、下孔H3の裏面周囲に裏座ぐり穴Z3が形成される。
続いて、図10(B)に示すように、複合工具40Aの第2刃部52を裏座ぐりZ3と下孔H3との角部に位置させ、この位置から、主軸17を回転させるとともに、複合工具40Aの第2刃部52を下孔H3を中心とする円錐螺旋運動させる。つまり、Xテーブル12AのX軸方向への移動、サドル15のY軸方向への移動およびラム16のZ軸方向の移動を制御しながら、複合工具40Aの第2刃部52を螺旋運動させる。すると、裏座ぐり穴Z3と下孔H3との角部に裏面取りC3が形成される。
As shown in FIG. 10 (A), in the back spot machining process and the back surface machining process, the ram 16 is raised and the second blade 52 of the composite tool 40A is drilled in the wall portion W3 of the workpiece W. In a state where it is in contact with the back surface, the second blade portion 52 of the composite tool 40 is moved to the spot facing position by the movement of the saddle 15 in the Y-axis direction. From this position, the main shaft 17 is rotated, and the second blade portion 52 of the composite tool 40A is spirally moved around the pilot hole H3. That is, while circularly moving the second blade portion 52 of the composite tool 40A by performing circular interpolation operation of the XY axis (movement of the X table 12A in the X axis direction and movement control of the saddle 15 in the Y axis direction) The movement of the ram 16 in the Z-axis direction is controlled. Then, a back counterbore Z3 is formed around the back surface of the pilot hole H3.
Subsequently, as shown in FIG. 10 (B), the second blade portion 52 of the composite tool 40A is positioned at the corner portion between the back spot facing Z3 and the lower hole H3, and the spindle 17 is rotated from this position, The second blade 52 of the composite tool 40A is conically spiraled around the pilot hole H3. That is, while controlling the movement of the X table 12A in the X-axis direction, the movement of the saddle 15 in the Y-axis direction, and the movement of the ram 16 in the Z-axis direction, the second blade portion 52 of the composite tool 40A is spirally moved. Then, the back surface C3 is formed at the corner portion between the back counterbore hole Z3 and the lower hole H3.

表座ぐり加工工程および表面取り加工工程では、図11(A)に示すように、ラム16を上昇させて、複合工具40Aの第1刃部51を下孔加工したワークWの壁部分W3の表面に接触させた状態において、サドル15のY軸方向への移動により、複合工具40Aの第1刃部51を座ぐり位置に移動させる。この位置から、主軸17を回転させるとともに、複合工具40Aの第1刃部51を下孔H3を中心とする螺旋運動させる。つまり、Xテーブル12AのX軸方向への移動、サドル15のY軸方向への移動およびラム16のZ軸方向の移動を制御しながら、複合工具40Aの第1刃部51を螺旋運動させる。すると、下孔H3の表面周囲に表座ぐり穴Z4が形成される。
続いて、図11(B)に示すように、複合工具40Aの第1刃部51を表座ぐり穴Z4と下孔H3との角部に位置させ、この位置から、主軸17を回転させるとともに、複合工具40Aの第2刃部51を下孔H3を中心とする円錐螺旋運動させる。つまり、X−Y軸の円弧補間動作(Xテーブル12AのX軸方向への移動およびサドル15のY軸方向への移動制御)させて複合工具40Aの第1刃部51を螺旋運動させながら、ラム16のZ軸方向の移動を制御する。すると、表座ぐり穴Z4と下孔H3との角部に裏面取りC4が形成される。
In the face spot machining step and the chamfering step, as shown in FIG. 11 (A), the ram 16 is raised and the wall portion W3 of the workpiece W in which the first blade portion 51 of the composite tool 40A is drilled. In a state where the saddle 15 is in contact with the surface, the first blade portion 51 of the composite tool 40A is moved to the spot facing position by the movement of the saddle 15 in the Y-axis direction. From this position, the spindle 17 is rotated, and the first blade portion 51 of the composite tool 40A is spirally moved around the pilot hole H3. That is, while controlling the movement of the X table 12A in the X-axis direction, the movement of the saddle 15 in the Y-axis direction, and the movement of the ram 16 in the Z-axis direction, the first blade portion 51 of the composite tool 40A is spirally moved. As a result, a front counterbore Z4 is formed around the surface of the pilot hole H3.
Subsequently, as shown in FIG. 11 (B), the first blade portion 51 of the composite tool 40A is positioned at the corner between the front counterbore Z4 and the lower hole H3, and the main shaft 17 is rotated from this position. Then, the second blade portion 51 of the composite tool 40A is conically spiraled around the lower hole H3. That is, while performing the circular interpolation operation of the XY axis (movement of the X table 12A in the X axis direction and movement control of the saddle 15 in the Y axis direction), the first blade portion 51 of the composite tool 40A is spirally moved. The movement of the ram 16 in the Z-axis direction is controlled. As a result, a back surface C4 is formed at the corner between the front counterbore hole Z4 and the lower hole H3.

従って、第2実施形態によれば、工具交換を行うことなく、下孔加工から裏座ぐり加工および裏面取り加工、更に、表座ぐり加工および表面取り加工を1つの複合工具40Aによって連続的に加工することができるから、作業効率を向上させることができる。
しかも、第2実施形態で用いる複合工具40Aは、第1刃部51および第2刃部52が、複合工具40Aの軸線に対して直交する線上に配置されているから、切削加工時にびびり等が生じることなく、表面状態を良好に仕上げることができる。
Therefore, according to the second embodiment, a single composite tool 40A is used to continuously perform pilot hole machining, back spot machining and back surface machining, and front face machining and surface machining, without performing tool replacement. Since it can process, work efficiency can be improved.
In addition, in the composite tool 40A used in the second embodiment, since the first blade portion 51 and the second blade portion 52 are arranged on a line orthogonal to the axis of the composite tool 40A, chatter or the like occurs during cutting. The surface condition can be satisfactorily finished without being generated.

[第3実施形態]
図12は第3実施形態で用いる複合工具40Bを示す部分正面図である。
この図に示すように、第3実施形態の複合工具40Bは、第1実施形態の複合工具40において、刃部取付部44の正面44Aおよび背面44Bに設けられた一対の第1刃部51のうち、一方が省略され、その一方の代わりに第3刃部53が設けられている。
第3刃部53は、第1刃部51に対して、軸線方向へ寸法Dだけ突出して取り付けられているとともに、軸線から第1刃部51の先端までの寸法L1に対して、軸線から第3刃部の先端までの寸法L2が小さい位置に取り付けられている。
[Third Embodiment]
FIG. 12 is a partial front view showing the composite tool 40B used in the third embodiment.
As shown in this figure, the composite tool 40B of the third embodiment is the same as that of the pair of first blade parts 51 provided on the front surface 44A and the back surface 44B of the blade part attachment part 44 in the composite tool 40 of the first embodiment. One of them is omitted, and the third blade 53 is provided instead of the one.
The third blade portion 53 is attached to the first blade portion 51 so as to protrude in the axial direction by a dimension D, and the third blade portion 53 extends from the axis to the dimension L1 from the axis to the tip of the first blade portion 51. It is attached to a position where the dimension L2 up to the tip of the three blade portions is small.

<加工方法の説明>
図13は、ワークWの壁部分W4に表座ぐり穴Z5を加工(表座ぐり加工工程)し、続いて、下孔H4の内面を加工(孔加工工程)し、続いて、下孔H4の周囲に沿って裏座ぐり穴Z6を加工(裏座ぐり加工工程)する。次に、ワークWの壁部分W5に表座ぐり穴Z7を加工(表座ぐり加工工程)し、続いて、下孔H5の内面を加工(孔加工工程)し、続いて、下孔H5の周囲に沿って裏座ぐり穴Z8を加工(裏座ぐり加工工程)する。次に、裏座ぐり穴Z8と下孔H5との角部に面取りC5を加工(裏面取り加工工程)し、続いて、下孔H5と表座ぐり穴Z7との角部に面取りC6を加工(表面取り加工工程)する。最後に、裏座ぐり穴Z6と下孔H4との角部に面取りC7を加工(裏面取り加工工程)し、続いて、下孔H4と表座ぐり穴Z5との角部に面取りC8を加工(表面取り加工工程)する例である。
<Description of processing method>
In FIG. 13, the front counterbore hole Z5 is processed in the wall portion W4 of the work W (front counterbore processing step), and then the inner surface of the lower hole H4 is processed (hole processing step), followed by the lower hole H4. The back countersink hole Z6 is processed along the circumference of the back side (back counterboring process). Next, a front counterbore hole Z7 is processed in the wall portion W5 of the workpiece W (front counterbore processing step), and then the inner surface of the lower hole H5 is processed (hole processing step). The back countersunk hole Z8 is machined along the periphery (back spot face machining step). Next, chamfering C5 is processed at the corners of the counterbore hole Z8 and the lower hole H5 (back surface chamfering process), and then the chamfering C6 is processed at the corners of the lower hole H5 and the front counterbore hole Z7. (Surface chamfering process). Finally, chamfering C7 is processed at the corners of the back counterbore hole Z6 and the lower hole H4 (back surface chamfering process), and then the chamfering C8 is processed at the corners of the lower hole H4 and the front counterbore hole Z5. This is an example of (surface chamfering process).

表座ぐり加工工程では、複合工具40Bの第3刃部53を表座ぐり穴Z5の位置に移動させたのち、この位置から、主軸17を回転させるとともに、複合工具40Bの第3刃部53を下孔H4を中心とする螺旋運動させる。つまり、X−Y軸の円弧補間動作(Xテーブル12AのX軸方向への移動およびサドル15のY軸方向への移動制御)させて複合工具40Bの第3刃部53を円運動させながら、ラム16のZ軸方向の移動を制御する。すると、下孔H4の表面周囲に表座ぐり穴Z5が形成される。   In the face spot machining step, after the third blade part 53 of the composite tool 40B is moved to the position of the face spot hole Z5, the spindle 17 is rotated from this position, and the third blade part 53 of the composite tool 40B is rotated. Is spirally moved around the pilot hole H4. That is, while the circular interpolation movement of the XY axis (the movement of the X table 12A in the X-axis direction and the movement control of the saddle 15 in the Y-axis direction) is performed to circularly move the third blade portion 53 of the composite tool 40B, The movement of the ram 16 in the Z-axis direction is controlled. Then, a front counterbore Z5 is formed around the surface of the pilot hole H4.

孔加工工程では、複合工具40Bの第1刃部51を下穴H4の位置に位置させたのち、主軸17を回転させるとともに、ラム16を下降させる。すると、複合工具40Bの第1刃部51によってワークWの壁部分W4に下孔H4が加工される。   In the drilling step, after the first blade portion 51 of the composite tool 40B is positioned at the position of the pilot hole H4, the spindle 17 is rotated and the ram 16 is lowered. Then, the pilot hole H4 is machined in the wall portion W4 of the workpiece W by the first blade portion 51 of the composite tool 40B.

裏座ぐり加工工程では、複合工具40Aの第2刃部52を孔加工したワークWの壁部分W4の裏面に接触させた状態において、複合工具40Bの第2刃部52を座ぐり穴Z6の位置に移動させる。この位置から、主軸17を回転させるとともに、複合工具40Bの第2刃部52を下孔H4を中心とする螺旋運動させる。つまり、X−Y軸の円弧補間動作(Xテーブル12AのX軸方向への移動およびサドル15のY軸方向への移動制御)させて複合工具40Bの第2刃部52を円運動させながら、ラム16のZ軸方向の移動を制御する。すると、下孔H4の表面周囲に裏座ぐり穴Z6が形成される。   In the counterbore machining step, the second blade 52 of the composite tool 40B is inserted into the counterbore Z6 in a state where the second blade 52 of the composite tool 40A is in contact with the back surface of the wall portion W4 of the workpiece W that has been drilled. Move to position. From this position, the main shaft 17 is rotated, and the second blade portion 52 of the composite tool 40B is spirally moved around the lower hole H4. That is, while circularly moving the second blade portion 52 of the composite tool 40B by performing circular interpolation of the XY axes (movement of the X table 12A in the X-axis direction and movement control of the saddle 15 in the Y-axis direction) The movement of the ram 16 in the Z-axis direction is controlled. Then, a back counterbore Z6 is formed around the surface of the lower hole H4.

このようにして、ワークWの壁部分W5の部分についても、表座ぐり穴Z7を加工(表座ぐり加工工程)し、続いて、下孔H5の内面を加工(孔加工工程)し、続いて、下孔H5の周囲に沿って裏座ぐり穴Z8を加工(裏座ぐり加工工程)する。   Thus, also for the wall portion W5 of the workpiece W, the front counterbore hole Z7 is processed (front counterbore processing step), and then the inner surface of the lower hole H5 is processed (hole processing step). Then, the back countersunk hole Z8 is processed along the periphery of the lower hole H5 (back spot facing processing step).

裏面取り加工工程では、複合工具40Bの第2刃部52を裏座ぐり穴ZZ8と下孔H5との角部に位置させ、この位置から、主軸17を回転させるとともに、複合工具40Bの第2刃部52を下孔H5を中心とする円錐螺旋運動させる。つまり、Xテーブル12AのX軸方向への移動、サドル15のY軸方向への移動およびラム16のZ軸方向の移動を制御しながら、複合工具40Bの第2刃部52を円錐螺旋運動させる。すると、裏座ぐり穴Z8と下孔H5との角部に裏面取りC5が形成される。
同様にして、裏座ぐり穴Z6と下孔H4との角部に裏面取りC7を形成することができる。
In the back chamfering process, the second blade 52 of the composite tool 40B is positioned at the corner between the back counterbore ZZ8 and the lower hole H5, and from this position, the spindle 17 is rotated, and the second of the composite tool 40B. The blade 52 is conically spiraled around the pilot hole H5. That is, while controlling the movement of the X table 12A in the X-axis direction, the movement of the saddle 15 in the Y-axis direction, and the movement of the ram 16 in the Z-axis direction, the second blade portion 52 of the composite tool 40B is conically spiraled. . Then, the back surface C5 is formed at the corner portion between the back counterbore Z8 and the lower hole H5.
Similarly, the back surface chamfering C7 can be formed at the corner portion between the back counterbore hole Z6 and the lower hole H4.

表面取り加工工程では、複合工具40Bの第3刃部53を表座ぐり穴ZZ7と下孔H5との角部に位置させ、この位置から、主軸17を回転させるとともに、複合工具40Bの第3刃部53を下孔H5を中心とする円錐螺旋運動させる。つまり、Xテーブル12AのX軸方向への移動、サドル15のY軸方向への移動およびラム16のZ軸方向の移動を制御しながら、複合工具40Bの第3刃部53を円錐螺旋運動させる。すると、表座ぐり穴Z7と下孔H5との角部に裏面取りC6が形成される。
同様にして、表座ぐり穴Z5と下孔H4との角部に裏面取りC8を形成することができる。
In the chamfering process, the third blade portion 53 of the composite tool 40B is positioned at the corner portion of the front counterbore ZZ7 and the lower hole H5, and the spindle 17 is rotated from this position, and the third tool portion of the composite tool 40B is rotated. The blade portion 53 is conically spiraled around the pilot hole H5. That is, the third blade 53 of the composite tool 40B is conically spiral-moved while controlling the movement of the X table 12A in the X-axis direction, the movement of the saddle 15 in the Y-axis direction, and the movement of the ram 16 in the Z-axis direction. . As a result, a back surface C6 is formed at the corner between the front counterbore hole Z7 and the lower hole H5.
In the same manner, the back surface chamfering C8 can be formed at the corner between the front counterbore hole Z5 and the lower hole H4.

従って、第3実施形態によれば、工具交換を行うことなく、下孔加工から裏座ぐり加工および裏面取り加工、更に、表座ぐり加工および表面取り加工を1つの複合工具40Bによって連続的に加工することができるから、作業効率を向上させることができる。
しかも、第3実施形態で用いる複合工具40Bは、第1刃部51および第2刃部52のほかに、第3刃部53が設けられているから、被加工物の表面において表座ぐり加工や面取り加工を行うことができる。従って、第1刃部51については孔加工のみでよいから、それぞれの加工に適した刃部を用いることにより、高精度な加工精度ができる。
Therefore, according to the third embodiment, a single composite tool 40B can be used to continuously perform the prepared hole machining, the back spot facing process and the back face chamfering process, and the front face facing process and the chamfering process without changing the tool. Since it can process, work efficiency can be improved.
In addition, since the composite tool 40B used in the third embodiment is provided with the third blade portion 53 in addition to the first blade portion 51 and the second blade portion 52, a face spot machining is performed on the surface of the workpiece. And chamfering can be performed. Therefore, since only the hole processing is required for the first blade portion 51, a high processing accuracy can be achieved by using a blade portion suitable for each processing.

<変形例>
なお、本発明は、前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
第1実施形態では、刃部取付部44を台形箱状に形成し、その角部に第1刃部51およ
び第2刃部52を取り付けて、工具本体41の軸線(回転軸線)から第1刃部51の先端までの寸法L1に対して、工具本体41の軸線(回転軸線)から第2刃部52の先端までの寸法L2が小さい寸法に形成したが、これに限られない。例えば、刃部取付部44を矩形箱状とし、工具本体41の軸線(回転軸線)から第1刃部51の先端までの寸法L1に対して、工具本体41の軸線(回転軸線)から第2刃部52の先端までの寸法L2が小さい寸法になるように、第1刃部51および第2刃部52を矩形箱状の刃部取付部44に取り付けてもよい。
<Modification>
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the first embodiment, the blade attachment portion 44 is formed in a trapezoidal box shape, and the first blade portion 51 and the second blade portion 52 are attached to the corners of the blade portion attachment portion 44 so as to be first from the axis (rotation axis) of the tool body 41. Although the dimension L2 from the axis (rotation axis) of the tool body 41 to the tip of the second blade 52 is smaller than the dimension L1 to the tip of the blade 51, the present invention is not limited to this. For example, the blade attachment portion 44 is formed in a rectangular box shape, and the second dimension from the axis (rotation axis) of the tool body 41 to the dimension L1 from the axis (rotation axis) of the tool body 41 to the tip of the first blade 51 is second. You may attach the 1st blade part 51 and the 2nd blade part 52 to the rectangular box-shaped blade part attaching part 44 so that the dimension L2 to the front-end | tip of the blade part 52 may become a small dimension.

前記3実施形態では、刃部取付部44の正面44Aおよび背面44Bに設けられた一対の第1刃部51のうち、一方を省略し、その一方の代わりに第3刃部53を取り付けたが、例えば、図14に示すように、刃部取付部44の正面44Aおよび背面44Bにおいて、第1刃部51とは反対側に第3刃部53を設けるようにしてもよい。このようにすれば、工具本体41を一方向(時計方向)へ回転させれば、第1刃部51によって下孔を加工することができ、また、他方向(反時計方向)へ回転させれば、第3刃部53によって座ぐり加工および面取り加工することができる。
この場合、第2刃部52についても、図14に示すように、第3刃部53と同じ側に設けるようにすれば、工具本体41の他方向(反時計方向)への回転により、第2刃部52によって裏座ぐり穴加工および裏面取り加工することができる。
In the third embodiment, one of the pair of first blade portions 51 provided on the front surface 44A and the back surface 44B of the blade portion attachment portion 44 is omitted, and the third blade portion 53 is attached instead of the one. For example, as illustrated in FIG. 14, the third blade portion 53 may be provided on the opposite side of the first blade portion 51 on the front surface 44 </ b> A and the back surface 44 </ b> B of the blade portion mounting portion 44. In this way, if the tool body 41 is rotated in one direction (clockwise), the first hole portion 51 can process the prepared hole, and can be rotated in the other direction (counterclockwise). For example, the third blade portion 53 can be counterbored and chamfered.
In this case, as shown in FIG. 14, if the second blade portion 52 is provided on the same side as the third blade portion 53, the rotation of the tool body 41 in the other direction (counterclockwise direction) The counterbore hole machining and the back surface machining can be performed by the two blade portions 52.

各実施形態では、第1刃部51および第2刃部52がそれぞれ2つずつであったが、第1刃部51および第2刃部52の数は1つでもよく、あるいは、3つ以上であってもよい。
例えば、第1刃部51および第2刃部52を3つ以上設ける場合、刃部取付部44の形状を円錐台形状に形成し、この円錐台の底面に複数の第1刃部51を放射状にかつ等間隔に配置すればよい。また、第2刃部52についても、円錐台の上面に複数の第2刃部52を放射状にかつ等間隔に配置すればよい。
In each embodiment, there are two first blade portions 51 and two second blade portions 52, but the number of first blade portions 51 and second blade portions 52 may be one, or three or more. It may be.
For example, when three or more first blade portions 51 and second blade portions 52 are provided, the shape of the blade portion mounting portion 44 is formed in a truncated cone shape, and a plurality of first blade portions 51 are radially formed on the bottom surface of the truncated cone. It is sufficient to arrange them at regular intervals. In addition, with respect to the second blade portion 52, a plurality of second blade portions 52 may be arranged radially and at equal intervals on the upper surface of the truncated cone.

各実施形態では、工具本体41を、装着部42と、延長シャフト43と、刃部取付部44とから構成したが、延長シャフト43の長さは、加工しようとする孔の深さに応じて最適な長さのものを用いるようにすればよい。   In each embodiment, although the tool main body 41 is comprised from the mounting part 42, the extension shaft 43, and the blade part attaching part 44, the length of the extension shaft 43 is according to the depth of the hole to process. An optimal length may be used.

各実施形態では、工作機械本体10として、垂直な軸(C軸)を中心に回転可能に設けられ上面に被加工物としてのワークを載置する回転テーブル12Bと、複合工具40を取り付ける主軸17を回転駆動させる回転駆動源と、主軸17を回転テーブル12Bの回転軸線(C軸)と平行なZ軸方向およびこれに対して直交するX軸方向へ移動させるX軸直線駆動機構22およびZ軸直線駆動機構23とを備えた門型加工機を用いたが、これに限られない。   In each embodiment, the machine tool main body 10 is provided so as to be rotatable about a vertical axis (C axis), and a main table 17 on which a rotary table 12B on which a work as a workpiece is placed is placed on the upper surface and a composite tool 40 is attached. A rotational drive source for rotationally driving the shaft, an X-axis linear drive mechanism 22 for moving the main shaft 17 in the Z-axis direction parallel to the rotational axis (C-axis) of the rotary table 12B and the X-axis direction orthogonal thereto, and the Z-axis Although the portal type processing machine provided with the linear drive mechanism 23 was used, it is not restricted to this.

例えば、ワークを載置するテーブルについては回転しない構造とし、このテーブルと複合工具40,40Aを取り付けた主軸17とをX軸方向、Y軸方向、および、Z軸方向へ移動させる相対移動機構を備えた工作機械であっても、下孔加工から裏座ぐり加工を連続的に行うことができる。
逆に、主軸17は回転しない構造として、回転テーブル12Bのみが回転する構造で、主軸17と回転テーブルとが、回転テーブルの回転軸線と平行な軸方向およびそれと直交する少なくとも1軸方向(例えば、X軸方向)へのみ移動できる構造の工作機械であってもよい。
For example, a table on which a workpiece is placed is structured so as not to rotate, and a relative movement mechanism that moves the table and the main shaft 17 to which the composite tools 40 and 40A are attached in the X-axis direction, the Y-axis direction, and the Z-axis direction. Even with a machine tool provided, it is possible to continuously perform the counterbore processing from the prepared hole processing.
On the contrary, the main shaft 17 does not rotate, and only the rotary table 12B rotates. The main shaft 17 and the rotary table have an axial direction parallel to the rotation axis of the rotary table and at least one axial direction perpendicular thereto (for example, It may be a machine tool having a structure that can move only in the X-axis direction).

更に、本発明の複合工具や加工方法を、主軸が水平な横中ぐり盤や、横型マシニングセンタに適用し、これらの横中ぐり盤や、横型マシニングセンタにおいて、横下孔および裏座ぐりを加工するようにすることもできる。   Furthermore, the composite tool and the machining method of the present invention are applied to a horizontal boring machine and a horizontal machining center with a horizontal main spindle, and a horizontal pilot hole and a back counterbore are machined in the horizontal boring machine and the horizontal machining center. It can also be done.

本発明は、孔加工および座ぐり加工を必要とするワークの加工に利用することができる。   The present invention can be used for machining a workpiece that requires hole machining and counterbore machining.

10…工作機械本体、
12…回転テーブル、
17…主軸(工具取付部)
21…回転駆動機構、
22…X軸直線駆動機構、
23…Z軸直線駆動機構、
40A、40B,40C…複合工具、
41…工具本体、
42…装着部、
43…延長シャフト、
44…刃部取付部、
51…第1刃部、
52…第2刃部、
53…第3刃部、あ
H1,H2,H3,H4,H5…下孔、
Z1,Z3,Z6,Z8…裏座ぐり穴、
Z4,Z5,Z7…表座ぐり穴、
C1,C11,C12,C3,C4,C5,C6,C7…面取り。
10 ... Machine tool body,
12 ... rotary table,
17 ... Spindle (tool mounting part)
21 ... Rotation drive mechanism,
22 ... X-axis linear drive mechanism,
23 ... Z-axis linear drive mechanism,
40A, 40B, 40C ... Composite tool,
41 ... Tool body,
42 ... mounting part,
43 ... Extension shaft,
44 ... Blade mounting part,
51 ... 1st blade part,
52 ... the second blade,
53 ... 3rd blade part, ah H1, H2, H3, H4, H5 ... pilot hole,
Z1, Z3, Z6, Z8 ...
Z4, Z5, Z7 ... face counterbore,
C1, C11, C12, C3, C4, C5, C6, C7 ... Chamfering.

Claims (8)

軸線方向の一端側に形成され工作機械の工具取付部に差し込み可能な装着部、および、前記軸線方向の他端側に形成された刃部取付部を含んで構成された工具本体と、
前記工具本体の刃部取付部において、前記装着部とは反対側に取り付けられた第1刃部と、
前記工具本体の刃部取付部において、前記装着部側に取り付けられた第2刃部とを備え、
前記軸線から前記第1刃部の先端までの寸法に対して、前記軸線から前記第2刃部の先端までの寸法が小さい、ことを特徴とする複合工具。
A tool main body configured to include a mounting portion formed on one end side in the axial direction and insertable into a tool mounting portion of a machine tool, and a blade portion mounting portion formed on the other end side in the axial direction;
In the blade attachment portion of the tool body, a first blade attached to the opposite side of the mounting portion;
In the blade attachment portion of the tool body, comprising a second blade attached to the mounting portion side,
The composite tool, wherein a dimension from the axis to the tip of the second blade part is smaller than a dimension from the axis to the tip of the first blade part.
請求項1に記載の複合工具において、
前記工具本体は、前記装着部と、基端に前記装着部を有する延長シャフトと、この延長シャフトの先端に設けられた前記刃部取付部とを含んで構成され、
前記刃部取付部は、前記軸線方向に対して直交する方向から見て幅方向両端側が前記装着部に向かうに従って次第に幅方向寸法が狭くなった台形形状に形成され、
前記台形形状の角部に前記第1刃部および第2刃部が取り付けられている、ことを特徴とする複合工具。
The composite tool according to claim 1,
The tool body includes the mounting portion, an extension shaft having the mounting portion at a base end, and the blade portion mounting portion provided at a distal end of the extension shaft.
The blade portion mounting portion is formed in a trapezoidal shape in which the width direction dimension is gradually narrowed toward the mounting portion as viewed from the direction orthogonal to the axial direction.
The composite tool, wherein the first blade portion and the second blade portion are attached to corners of the trapezoidal shape.
請求項1に記載の複合工具において、
前記第1刃部および前記第2刃部は、前記軸線に対して直交する線上に沿って配置されている、ことを特徴とする複合工具。
The composite tool according to claim 1,
The said 1st blade part and the said 2nd blade part are arrange | positioned along the line orthogonal to the said axis line, The composite tool characterized by the above-mentioned.
請求項1〜請求項3のいずれかに記載の複合工具において、
前記工具本体の刃部取付部において、前記装着部とは反対側に取り付けられた第3刃部を備え、
前記第3刃部は、前記第1刃部に対して、前記軸線方向へ突出して取り付けられているとともに、前記軸線から前記第1刃部の先端までの寸法に対して、前記軸線から前記第3刃部の先端までの寸法が小さい、ことを特徴とする複合工具。
In the composite tool according to any one of claims 1 to 3,
In the blade attachment portion of the tool body, the third blade portion attached to the opposite side of the mounting portion,
The third blade portion is attached to the first blade portion so as to protrude in the axial direction, and from the axis to the first edge with respect to the dimension from the axis to the tip of the first blade portion. A composite tool having a small size up to the tip of the three blade portions.
請求項1〜請求項3のいずれかに記載の複合工具を用いて、被加工物を加工する加工方法において、
前記複合工具および被加工物の一方を回転軸線を中心として回転させるとともに、前記複合工具および被加工物を前記回転軸線と平行な軸方向へ相対移動させながら、前記複合工具の第1刃部によって被加工物に下孔を加工する孔加工工程と、
前記下孔を加工した前記被加工物の裏面に前記複合工具の第2刃部を突出させた状態において、前記複合工具および被加工物の一方を回転させるとともに、前記複合工具および被加工物を、前記回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させながら、前記複合工具の第2刃部によって被加工物の裏面に裏座ぐり穴を加工する裏座ぐり加工工程と、
を備えることを特徴とする加工方法。
In the processing method which processes a work piece using the composite tool according to any one of claims 1 to 3,
While rotating one of the composite tool and the workpiece about the rotation axis and relatively moving the composite tool and the workpiece in the axial direction parallel to the rotation axis, the first blade portion of the composite tool A hole machining step for machining a pilot hole in a workpiece;
In a state where the second blade portion of the composite tool is protruded from the back surface of the workpiece processed with the prepared hole, one of the composite tool and the workpiece is rotated, and the composite tool and the workpiece are A back seat for machining a back counter bore on the back surface of the workpiece by the second blade portion of the composite tool while relatively moving in an axial direction parallel to the rotational axis and an axial direction perpendicular to the rotational axis. Drilling process,
A processing method characterized by comprising:
請求項5に記載の加工方法において、
前記下孔を加工した前記被加工物の表面に前記複合工具の第1刃部を突出させた状態において、前記複合工具および被加工物の一方を回転させるとともに、前記複合工具および被加工物を、前記回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させながら、前記複合工具の第1刃部によって被加工物の表面に表座ぐり穴を加工する表座ぐり加工工程と、
を備えることを特徴とする加工方法。
In the processing method of Claim 5,
In a state where the first blade portion of the composite tool is protruded from the surface of the workpiece that has processed the prepared hole, one of the composite tool and the workpiece is rotated, and the composite tool and the workpiece are A front seat for machining a front counterbore on the surface of the workpiece by the first blade portion of the composite tool while relatively moving in an axial direction parallel to the rotational axis and in an axial direction perpendicular to the rotational axis Drilling process,
A processing method characterized by comprising:
請求項5または請求項6に記載の加工方法において、
前記下孔と前記裏座ぐり穴または表座ぐり穴との角部に前記複合工具の第2刃部または第1刃部を接触させた状態において、前記複合工具および被加工物の一方を回転させるとともに、前記複合工具および被加工物を、前記回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させながら、前記複合工具の第2刃部または第1刃部によって前記角部に面取り加工を行う面取り加工工程と、
を備えることを特徴とする加工方法。
In the processing method according to claim 5 or 6,
One of the composite tool and the workpiece is rotated in a state where the second blade portion or the first blade portion of the composite tool is in contact with the corner portion of the pilot hole and the back counterbore or the front counterbore. The second tool portion or the first blade portion of the composite tool while relatively moving the composite tool and the workpiece in an axial direction parallel to the rotational axis and an axial direction perpendicular to the rotational axis. A chamfering process for chamfering the corner by
A processing method characterized by comprising:
被加工物を載置するテーブル、主軸、前記テーブルおよび前記主軸の少なくとも一方を回転駆動させる回転駆動機構、並びに、前記テーブルおよび前記主軸を前記回転駆動機構の回転軸線と平行な軸方向および前記回転軸線に対して直交する軸方向へ相対移動させる直線駆動機構を備えた工作機械本体と、
前記回転駆動機構および直線駆動機構を加工プログラムに従って駆動制御する制御装置と、
前記主軸に装着される複合工具とを備え、
前記複合工具は、前記請求項1〜請求項4のいずれかに記載の複合工具が用いられている、
ことを特徴とする工作機械。
A table on which a workpiece is placed, a main shaft, a rotation drive mechanism that rotationally drives at least one of the table and the main shaft, and an axial direction and rotation of the table and the main shaft that are parallel to the rotation axis of the rotation drive mechanism A machine tool body provided with a linear drive mechanism that moves relative to an axial direction perpendicular to the axis;
A control device that drives and controls the rotation drive mechanism and the linear drive mechanism according to a machining program;
A composite tool mounted on the spindle,
The composite tool according to any one of claims 1 to 4, wherein the composite tool is used.
A machine tool characterized by that.
JP2011111181A 2011-01-18 2011-05-18 Composite tool, machining method, and machine tool Pending JP2012161904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011111181A JP2012161904A (en) 2011-01-18 2011-05-18 Composite tool, machining method, and machine tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011007846 2011-01-18
JP2011007846 2011-01-18
JP2011111181A JP2012161904A (en) 2011-01-18 2011-05-18 Composite tool, machining method, and machine tool

Publications (1)

Publication Number Publication Date
JP2012161904A true JP2012161904A (en) 2012-08-30

Family

ID=46841835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011111181A Pending JP2012161904A (en) 2011-01-18 2011-05-18 Composite tool, machining method, and machine tool

Country Status (1)

Country Link
JP (1) JP2012161904A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104924132A (en) * 2014-03-17 2015-09-23 东芝机械株式会社 Offset tool attachment and machine tool
JP2016043467A (en) * 2014-08-26 2016-04-04 住友電工焼結合金株式会社 Method for manufacturing sintered component having through hole, sintered component and drilling tool
JP2017159389A (en) * 2016-03-08 2017-09-14 トーヨーエイテック株式会社 Hole processing method with use of end mill

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173013A (en) * 1992-02-28 1992-12-22 Eaton Corporation Combined hole cutting and chamfering tool
US5944462A (en) * 1998-04-23 1999-08-31 Kennametal Inc. Hole cutting tool for chamfering and grooving

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173013A (en) * 1992-02-28 1992-12-22 Eaton Corporation Combined hole cutting and chamfering tool
US5944462A (en) * 1998-04-23 1999-08-31 Kennametal Inc. Hole cutting tool for chamfering and grooving

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104924132A (en) * 2014-03-17 2015-09-23 东芝机械株式会社 Offset tool attachment and machine tool
JP2016043467A (en) * 2014-08-26 2016-04-04 住友電工焼結合金株式会社 Method for manufacturing sintered component having through hole, sintered component and drilling tool
JP2017159389A (en) * 2016-03-08 2017-09-14 トーヨーエイテック株式会社 Hole processing method with use of end mill

Similar Documents

Publication Publication Date Title
US7448304B2 (en) Lathe
JP5094465B2 (en) Machine tool and method of machining inner surface of workpiece using the machine tool
CN103223504B (en) Knife rest and combination machining lathe
JP4997240B2 (en) Automatic lathe with multiple turrets
JPS60207746A (en) Multiface machine tool
JP6105255B2 (en) Lathe and workpiece machining method
WO2015178096A1 (en) Machine tool
TWI555606B (en) Working machine
JP2012161904A (en) Composite tool, machining method, and machine tool
KR101257568B1 (en) Cutting machine available of back boring
WO2014068714A1 (en) Workpiece machining device
US8206276B2 (en) Machine tool
JPH06285751A (en) Numerically-controlled three-spindle machine tool with turn head
JP2013158855A (en) Machining tool and machine tool
JP4426407B2 (en) Cutting device
JP5474266B1 (en) Internal turning attachment for machine tools
JP2010076048A (en) Compound working machine tool
JP2005125483A (en) Lathe
JP2019076974A (en) Tool holder for lathe and lathe comprising the same
US20240075632A1 (en) Assembly, apparatus and method for machining mechanical part
JP5787690B2 (en) Machine tool and processing method
KR20100094407A (en) Drilling machine for processing holes
JP5918542B2 (en) Machining tool, machining method and machine tool
JP2552608B2 (en) Machine Tools
KR100235341B1 (en) Pitch control device of drilling machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150915