JP2007301701A - Surface machining tool and machining method using the same - Google Patents

Surface machining tool and machining method using the same Download PDF

Info

Publication number
JP2007301701A
JP2007301701A JP2006134808A JP2006134808A JP2007301701A JP 2007301701 A JP2007301701 A JP 2007301701A JP 2006134808 A JP2006134808 A JP 2006134808A JP 2006134808 A JP2006134808 A JP 2006134808A JP 2007301701 A JP2007301701 A JP 2007301701A
Authority
JP
Japan
Prior art keywords
hole
processing
tool
workpiece
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006134808A
Other languages
Japanese (ja)
Inventor
Hiroki Sawada
洋樹 澤田
Yoshiaki Ezaki
芳明 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006134808A priority Critical patent/JP2007301701A/en
Publication of JP2007301701A publication Critical patent/JP2007301701A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface machining tool having high accuracy and superior in productivity and a machining method using the same. <P>SOLUTION: The surface machining tool 1 is mounted to a rotary shaft of a machining device and machines the both surfaces of a workpiece simultaneously. The surface machining tool is equipped with a cylindrical upper side tool body part 2 having a mounting part 3 mounted to the rotary shaft, a spacer 5 which is jointed to the upper side tool body part 2 at the opposite side of the mounting part 3 and has a length corresponding to the machining size of the workpiece, and a cylindrical lower side tool body part 4 which is jointed to the spacer 5 so as to be parallel to the upper side tool body part 2. A plurality of cutting blades 6a are disposed at a predetermined interval on the respective inner surface outer edges 2a, 4a facing to the upper side tool body part 2 and the lower side tool body part 4 or the respective outer peripheral surfaces 2b, 4b of the upper side tool body part 2 and the lower side tool body part 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、被加工物、例えば、サスペンションアーム、ナックル等の自動車足回部品の連結部に面加工を行うための面加工工具およびそれを用いた加工方法に関するものである。   The present invention relates to a surface processing tool for performing surface processing on a connecting portion of a workpiece such as a suspension arm, a knuckle, or the like, and a processing method using the surface processing tool.

一般に、サスペンションアーム等の自動車足回部品は、鋳造または鍛造により形成され、その後、機械加工されることで作製される。例えば、サスペンションアームは、はじめに鋳造または鍛造により粗形状が形成され、そして、サスペンションメンバー等の構造材と連結される連結部においては、高い寸法精度が要求されることから、連結部は、鋳造または鍛造のままの表面状態(通常、黒皮の表面状態)で使用されることなく、機械加工(面加工、孔加工)して寸法が整えられている。例えば、特許文献1では、多方向から機械加工が行われる部品の代表例として、ナックルの例が記載されている。   In general, an automobile undercarriage part such as a suspension arm is formed by casting or forging and then machined. For example, the suspension arm is first formed into a rough shape by casting or forging, and a connecting portion connected to a structural member such as a suspension member requires high dimensional accuracy. Without being used in a forged surface state (usually a black skin surface state), the dimensions are adjusted by machining (surface processing, hole processing). For example, Patent Document 1 describes an example of a knuckle as a representative example of a component that is machined from multiple directions.

従来、面加工工具として、図7(a)に示すように、本体部21の被加工物側の外周面21aに切刃23を有するカートリッジ22を所定間隔で配置した正面フライス20が用いられていた。そして、面加工方法として、図7(b)に示すように、正面フライス20で被加工物(図では被加工物の連結部であるブッシュ部11またはボールジョイント部13)の表面11a(13a)を面加工し、続いて、被加工物を反転して裏面11b(13b)を面加工する方法が行われていた。   Conventionally, as a surface machining tool, as shown in FIG. 7A, a front milling machine 20 is used in which cartridges 22 having cutting edges 23 are arranged at predetermined intervals on the outer peripheral surface 21a of the main body 21 on the workpiece side. It was. Then, as a surface processing method, as shown in FIG. 7B, the surface 11a (13a) of the workpiece (the bush portion 11 or the ball joint portion 13 which is a connecting portion of the workpiece in the figure) by the front milling machine 20. Then, the method of reversing the workpiece and surface-treating the back surface 11b (13b) has been performed.

図8(a)に示すように、面加工工具として、外周面および先端面に切刃を有するエンドミル30を用いることもあった。そして、図8(b)に示すように、エンドミル30のZ軸方向(工具出入方向)に被加工物(図では被加工物の連結部であるブッシュ部11またはボールジョイント部13)をセッティングして、エンドミル30の外周面の切刃で被加工物の表面11a(13a)を面加工(S101)、続いて、エンドミルを移動(S102〜S104)して、被加工物の裏面11b(13b)を面加工(S105)する加工方法も行われていた。   As shown in FIG. 8A, an end mill 30 having cutting edges on the outer peripheral surface and the tip surface may be used as a surface machining tool. Then, as shown in FIG. 8B, the workpiece (the bush portion 11 or the ball joint portion 13 which is the connecting portion of the workpieces) is set in the Z-axis direction (tool entry / exit direction) of the end mill 30. Then, the surface 11a (13a) of the work piece is surface-finished with the cutting edge on the outer peripheral surface of the end mill 30 (S101), then the end mill is moved (S102 to S104), and the back surface 11b (13b) of the work piece There has also been a processing method of surface processing (S105).

また、孔加工では、ドリル加工により加工孔を形成していた。この際、1回目の加工から外径の大きなドリルを使用すると大きなトルクが発生し、加工機が停止することがあり、孔加工工具のブレも生じることがある。このため、図9(a)に示すように、通常は、まず外径の小さいドリル40で被加工物(図では被加工物の連結部であるブッシュ部11またはボールジョイント部13)に下孔加工を施し、図9(b)に示すように、さらに大きい外径のドリル41で仕上げ加工を施していた。また、図9(c)に示すように、細いドリルで下孔加工を施した後に、ボーリングバー42で仕上げ加工を施すこともあった。このボーリングバー42での仕上げ加工は、例えば、特許文献2にも記載されている。
特開2002−301626号公報(段落0002〜0003、図10) 特開2005−246500号公報(段落0002、0003)
Further, in the hole processing, a hole is formed by drilling. At this time, if a drill having a large outer diameter is used from the first machining, a large torque is generated, the processing machine may stop, and the drilling tool may be shaken. For this reason, as shown in FIG. 9 (a), generally, first, a drill 40 having a small outer diameter is used to prepare a pilot hole in a workpiece (bush portion 11 or ball joint portion 13 which is a connecting portion of the workpiece). As shown in FIG. 9B, finishing was performed with a drill 41 having a larger outer diameter. In addition, as shown in FIG. 9C, after drilling a pilot hole with a thin drill, a finishing process may be performed with a boring bar 42. The finishing process by the boring bar 42 is also described in Patent Document 2, for example.
JP 2002-301626 (paragraphs 0002 to 0003, FIG. 10) Japanese Patent Laying-Open No. 2005-246500 (paragraphs 0002 and 0003)

しかしながら、被加工物の表裏の加工において、従来の面加工工具および面加工方法では、被加工物を反転する工程または面加工工具を移動する工程が必要なため、工程数が増えることにより手間がかかり、生産性が低かった。また、被加工物に対する面加工工具の芯出が難しく、高い加工精度を得ることができないという問題があった。また、孔加工方法においても、下孔加工を行った後に孔加工を行っている。したがって、工程数が増え、さらに1つの加工孔を開けるのに複数の孔加工工具を用いていたため、孔加工工具のセッティング等の段取りに手間がかかり、生産性が低かった。また、各工具の被加工物に対する芯出が難しく、高い加工精度を得ることができないという問題があった。   However, in the processing of the front and back of the workpiece, the conventional surface machining tool and the surface machining method require a step of inverting the workpiece or a step of moving the surface machining tool. The productivity was low. In addition, there is a problem that it is difficult to center the surface machining tool on the workpiece, and high machining accuracy cannot be obtained. Also in the hole drilling method, the hole drilling is performed after the pilot hole drilling is performed. Therefore, the number of processes is increased, and a plurality of drilling tools are used to open one drilling hole. Therefore, it takes time to set up the drilling tool and the productivity is low. In addition, there is a problem that it is difficult to center each tool with respect to the workpiece, and high machining accuracy cannot be obtained.

本発明は前記問題に鑑みてなされたものであり、高い加工精度を有し、生産性に優れた面加工工具およびそれを用いた加工方法を提供することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to provide a surface machining tool having high machining accuracy and excellent productivity, and a machining method using the same.

前記課題を解決するため、請求項1に係る面加工工具は、加工機の回転軸に装着して被加工物の両面を同時に加工する面加工工具であって、前記回転軸に装着される装着部が設けられた円柱状の上側工具本体部と、前記装着部の反対側で前記上側工具本体部に接合され、前記被加工物の加工寸法に合わせた長さを有するスペーサと、前記上側工具本体部と平行となるように前記スペーサに接合される円柱状の下側工具本体部とを備え、前記上側工具本体部および前記下側工具本体部の対面するそれぞれの内面外縁、または、前記上側工具本体部および前記下側工具本体部のそれぞれの外周面に複数の切刃が所定間隔に配置される面加工工具として構成したものである。   In order to solve the above-mentioned problem, a surface processing tool according to claim 1 is a surface processing tool that is mounted on a rotating shaft of a processing machine and simultaneously processes both surfaces of a workpiece, and is mounted on the rotating shaft. A cylindrical upper tool main body provided with a portion, a spacer bonded to the upper tool main body on the opposite side of the mounting portion, and having a length according to the machining dimension of the workpiece, and the upper tool A cylindrical lower tool main body portion joined to the spacer so as to be parallel to the main body portion, and an outer edge of each inner surface facing the upper tool main body portion and the lower tool main body portion, or the upper side This is configured as a surface machining tool in which a plurality of cutting blades are arranged at predetermined intervals on the outer peripheral surfaces of the tool body and the lower tool body.

このように構成すれば、上側工具本体部と下側工具本体部とが、被加工物の加工寸法に合わせた長さを有するスペーサを介して隔離される。これにより、上側工具本体部および下側工具本体部に配置された切刃の加工量の調整が容易となる。また、上側工具本体部および下側工具本体部の被加工物に対する芯出が容易となると共に、上側工具本体部および下側工具本体部に配置された切刃が対面するように一体的に配置される。その結果、加工精度および生産性が向上する。   If comprised in this way, an upper tool main-body part and a lower tool main-body part will be isolated via the spacer which has the length matched with the process dimension of the to-be-processed object. Thereby, adjustment of the processing amount of the cutting blade arrange | positioned at an upper tool main-body part and a lower tool main-body part becomes easy. In addition, the upper tool body and the lower tool body can be easily centered with respect to the work piece, and the cutting blades disposed in the upper tool body and the lower tool body are arranged so as to face each other. Is done. As a result, processing accuracy and productivity are improved.

請求項2に係る加工方法は、請求項1に記載の面加工工具を用いて被加工物に面加工を行う第1ステップと、前記第1ステップで面加工された被加工物に孔加工を行う第2ステップとを含む手順としたものである。   According to a second aspect of the present invention, there is provided a machining method comprising: a first step of performing surface machining on a workpiece using the surface machining tool according to claim 1; and a hole machining in the workpiece surface-machined in the first step. The procedure includes a second step to be performed.

このような手順によれば、第1ステップにおいて請求項1に記載の面加工工具を用いることによって、被加工物の表裏が同時に面加工される。これにより、従来の加工方法のように1回目の面加工、被加工物の反転、2回目の面加工という複数の工程、または、1回目の面加工、工具の移動、2回目の面加工という複数の工程をとることがなく、1回の工程で面加工ができ、しかも、被加工物の加工量のバラツキも少なくなる。その結果、加工精度および生産性が向上する。   According to such a procedure, the front and back of the workpiece are simultaneously machined by using the surface machining tool according to claim 1 in the first step. Thus, as in the conventional machining method, a plurality of processes such as first surface machining, workpiece reversal, and second surface machining, or first surface machining, tool movement, and second surface machining. Surface processing can be performed in one step without taking a plurality of steps, and the variation in the processing amount of the workpiece is reduced. As a result, processing accuracy and productivity are improved.

請求項3に係る加工方法は、被加工物に孔加工を行う第1ステップと、前記第1ステップで孔加工された被加工物に請求項1に記載の面加工工具を用いて面加工を行う第2ステップとを含む手順としたものである。   According to a third aspect of the present invention, there is provided a first method for performing a hole machining on a workpiece, and performing a surface machining on the workpiece drilled in the first step using the surface machining tool according to the first aspect. The procedure includes a second step to be performed.

このような手順によれば、請求項2に係る加工方法と同様に、第2ステップにおいて請求項1に記載の面加工工具を用いることによって、被加工物の表裏が1回の工程で同時に面加工ができ、しかも、被加工物の加工量のバラツキも少なくなる。その結果、加工精度および生産性が向上する。   According to such a procedure, similarly to the machining method according to claim 2, by using the surface machining tool according to claim 1 in the second step, the front and back of the workpiece are simultaneously surfaced in one step. Processing can be performed, and variation in the processing amount of the workpiece is also reduced. As a result, processing accuracy and productivity are improved.

請求項4に係る加工方法は、前記孔加工が外周面および先端面に切刃を有する孔加工工具を用いて所定内径(D)の加工孔を形成するものであって、前記孔加工工具の外径(d)が前記加工孔の内径(D)より小さく、当該孔加工工具を(内径(D)−外径(d))のらせん軌道で前記被加工物の厚み方向へ送る手順としたものである。   According to a fourth aspect of the present invention, there is provided a processing method in which the hole processing forms a processing hole having a predetermined inner diameter (D) using a hole processing tool having cutting edges on an outer peripheral surface and a front end surface. The outer diameter (d) is smaller than the inner diameter (D) of the processing hole, and the hole processing tool is sent in the thickness direction of the workpiece by a spiral track of (inner diameter (D) −outer diameter (d)). Is.

このような手順によれば、形成された加工孔の内径よりも小さい外径を有する孔加工工具を用いて、被加工物の厚み方向へらせん軌道で送ることによって、被加工物と工具の接触面積が小さく、従来の大径のドリル加工を行う場合に比べて摩擦抵抗が著しく少なくなる。また、従来のように下孔加工行う必要がなく、複数の工具を用いずに1つの工具を1回送ることで孔加工を行うことが可能となる。その結果、加工精度および生産性がより一層向上する。   According to such a procedure, contact between the workpiece and the tool is achieved by using a drilling tool having an outer diameter smaller than the inner diameter of the formed hole to be fed in a spiral path in the thickness direction of the workpiece. The area is small, and the frictional resistance is remarkably reduced as compared with the conventional large diameter drilling. Further, it is not necessary to perform the pilot hole machining as in the prior art, and it is possible to perform the hole machining by sending one tool once without using a plurality of tools. As a result, processing accuracy and productivity are further improved.

請求項5に係る加工方法は、前記孔加工が外周面および先端面に切刃を有する孔加工工具を用いて所定内径(D)の加工孔を形成するものであって、前記孔加工工具の外径(d)が前記加工孔の内径(D)より小さく、当該孔加工工具を前記被加工物の加工面に対して(内径(D)−外径(d))の円軌道で送ると共に、当該被加工物の厚み方向へ段階的に送る手順としたものである。   According to a fifth aspect of the present invention, there is provided a processing method in which the hole processing forms a processing hole having a predetermined inner diameter (D) using a hole processing tool having cutting edges on an outer peripheral surface and a front end surface. The outer diameter (d) is smaller than the inner diameter (D) of the processing hole, and the hole processing tool is sent to the processing surface of the workpiece by a circular path of (inner diameter (D) −outer diameter (d)). , And a stepwise feeding procedure in the thickness direction of the workpiece.

このような手順によれば、形成された加工孔の内径よりも小さい外径を有する孔加工工具を用いて、被加工物の加工面に対して円軌道で送ると共に、被加工物の厚み方向へ段階的に送ることによって、請求項4と同様に、摩擦抵抗が著しく少なくなる。また、複数の工具を用いずに1つの工具を1回送ることで孔加工を行うことが可能となる。その結果、加工精度および生産性がより一層向上する。   According to such a procedure, using a hole processing tool having an outer diameter smaller than the inner diameter of the formed hole, the circular direction is sent to the processing surface of the workpiece, and the thickness direction of the workpiece By stepwise feeding, the frictional resistance is remarkably reduced as in the fourth aspect. Moreover, it becomes possible to perform hole processing by sending one tool once without using a plurality of tools. As a result, processing accuracy and productivity are further improved.

請求項6に係る加工方法は、前記孔加工が外周面および先端面に切刃を有する孔加工工具を用いて所定内径(D)の加工孔を形成するものであって、前記孔加工工具の外径(d)が前記加工孔の内径(D)より小さく、当該孔加工工具を前記被加工物の加工面に対して(内径(D)−外径(d))の最大径を有する渦巻軌道で送ると共に、当該被加工物の厚み方向へ段階的に送る手順としたものである。   According to a sixth aspect of the present invention, there is provided a machining method in which the hole machining forms a machining hole having a predetermined inner diameter (D) using a hole machining tool having cutting edges on an outer peripheral surface and a tip surface. A spiral having an outer diameter (d) smaller than the inner diameter (D) of the machining hole, and the hole machining tool having a maximum diameter of (inner diameter (D) −outer diameter (d)) with respect to the machining surface of the workpiece. This is a procedure of sending in a trajectory and stepwise in the thickness direction of the workpiece.

このような手順によれば、形成された加工孔の内径よりも小さい外径を有する孔加工工具を用いて、被加工物の加工面に対して渦巻軌道で送ると共に、被加工物の厚み方向へ段階的に送ることによって、請求項4、5と同様に、摩擦抵抗が著しく少なくなる。また、複数の工具を用いずに1つの工具を1回送ることで孔加工を行うことが可能となる。その結果、加工精度および生産性がより一層向上する。   According to such a procedure, using a drilling tool having an outer diameter smaller than the inner diameter of the formed hole, the tool is fed in a spiral path to the processing surface of the workpiece, and the thickness direction of the workpiece By stepwise feeding, as in claims 4 and 5, the frictional resistance is significantly reduced. Moreover, it becomes possible to perform hole processing by sending one tool once without using a plurality of tools. As a result, processing accuracy and productivity are further improved.

本発明の面加工工具およびそれを用いた加工方法によれば、加工精度が高く、生産性が優れたものとなる。また、加工精度の向上によって、被加工物(鋳造材または鍛造材)において、加工代を見込んでつける余肉も減らすことができるため、材料歩留まりも向上する。   According to the surface machining tool and the machining method using the same according to the present invention, the machining accuracy is high and the productivity is excellent. Further, by improving the processing accuracy, it is possible to reduce the surplus of the workpiece (casting material or forging material) to allow for the processing cost, so that the material yield is also improved.

<面加工工具>
まず、本発明の面加工工具の実施形態について図面を参照して説明する。図1は面加工工具の構成を示す斜視図、図2はサスペンションアームの平面図である。
<Surface machining tool>
First, an embodiment of the surface machining tool of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing a configuration of a surface machining tool, and FIG. 2 is a plan view of a suspension arm.

本発明の面加工工具は、加工機の回転軸に装着して被加工物の両面を同時に加工するものである。ここで、被加工物とは、サスペンションアーム、ナックル等の自動車足回部品であって、特に、サスペンションメンバー等の構造材と連結する連結部をいう。図2にサスペンションアームの代表的な例を示す。図2に示すように、サスペンションアーム10は、車輪に連なるナックル(図示せず)に連結するための連結部(ボールジョイント部13)と、車体側のブラケット(図示せず)に連結するための連結部(ブッシュ部11、11)とを有し、これがアーム部12で連結されたものである。そして、サスペンションアーム10は、通常、アルミニウムまたはアルミニウム合金(JIS規定の4000系、6000系またはその改善材等)から構成される。   The surface machining tool of the present invention is mounted on a rotating shaft of a processing machine to simultaneously process both surfaces of a workpiece. Here, the workpiece is an automobile undercarriage part such as a suspension arm or a knuckle, and particularly a connecting part that is connected to a structural member such as a suspension member. FIG. 2 shows a typical example of a suspension arm. As shown in FIG. 2, the suspension arm 10 is connected to a connecting portion (ball joint portion 13) for connecting to a knuckle (not shown) connected to the wheel and a bracket (not shown) on the vehicle body side. It has a connecting part (bush parts 11, 11) and is connected by an arm part 12. The suspension arm 10 is usually made of aluminum or an aluminum alloy (JIS-defined 4000 series, 6000 series, or an improved material thereof).

図1に示すように、面加工工具1Aは、上側工具本体部2と、スペーサ5と、下側工具本体部4とを備える。以下、各構成について説明する。   As shown in FIG. 1, the surface machining tool 1 </ b> A includes an upper tool body 2, a spacer 5, and a lower tool body 4. Each configuration will be described below.

(上側工具本体部)
上側工具本体部2は、円柱状の形態をなし、加工機(図示せず)の回転軸(図示せず)に装着される装着部3が設けられている。装着部3は、上側工具本体部2の外面中央から略円柱状に突出して形成され、その中央に回転軸への装着のためのキー溝が設けられている。このキー溝(装着部3)を介して上側工具本体部2(面加工工具1A)が回転軸に装着されるが、回転軸の回転が上側工具本体部2(面加工工具1A)に伝達できれば、キー溝以外の手段を装着部3に設けても構わない。
(Upper tool body)
The upper tool body 2 has a cylindrical shape, and is provided with a mounting portion 3 that is mounted on a rotating shaft (not shown) of a processing machine (not shown). The mounting portion 3 is formed so as to protrude from the center of the outer surface of the upper tool body portion 2 in a substantially cylindrical shape, and a key groove for mounting to the rotating shaft is provided at the center. The upper tool body 2 (surface machining tool 1A) is attached to the rotary shaft via the keyway (mounting portion 3). If the rotation of the rotation shaft can be transmitted to the upper tool body 2 (surface machining tool 1A). A means other than the keyway may be provided in the mounting portion 3.

また、上側工具本体部2は、装着部3が形成された面と反対側の面にスペーサ5を接合して、当該スペーサ5を介して下側工具本体部4と対面するように配置される。そして、下側工具本体部4と対面する上側工具本体部2の内面外縁2aまたは外周面2bには、複数の切刃6aが所定間隔に配置されている。   Further, the upper tool main body 2 is disposed so as to face the lower tool main body 4 through the spacer 5 by joining a spacer 5 to a surface opposite to the surface on which the mounting portion 3 is formed. . A plurality of cutting blades 6a are arranged at predetermined intervals on the inner surface outer edge 2a or the outer peripheral surface 2b of the upper tool main body 2 facing the lower tool main body 4.

切刃6aは、例えば、WC−Coを主成分とする超硬合金等の基台にPCD(焼結ダイヤモンド)またはCBN(立方晶窒化硼素焼結体)がロウ付けされたものが使用される。そして、上側工具本体部2の周方向における切刃6aの間隔は、上側工具本体部2の軸線中心と切刃6a、6aとがなす角度で設定され、上側工具本体部2の外径200mm程度の場合には、10〜45°が好ましい。また、上側工具本体部2の外径は、被加工物の厚みによって設定され、例えば、被加工物の厚みが35mm程度の場合には、外径165mm程度が好ましい。   As the cutting edge 6a, for example, a base made of cemented carbide or the like mainly composed of WC-Co and brazed with PCD (sintered diamond) or CBN (cubic boron nitride sintered body) is used. . And the space | interval of the cutting blade 6a in the circumferential direction of the upper tool main-body part 2 is set by the angle which the axis line center of the upper tool main-body part 2 and the cutting blades 6a and 6a make, and the outer diameter of the upper tool main-body part 2 is about 200 mm. In this case, 10 to 45 ° is preferable. The outer diameter of the upper tool body 2 is set according to the thickness of the workpiece. For example, when the thickness of the workpiece is about 35 mm, the outer diameter is preferably about 165 mm.

切刃6aは、被加工物と当接する方向に数mm突出するように上側工具本体部2に固定される。その固定方法は、図示しないが、上側工具本体部2の内面外縁2aまたは外周面2bに切刃6aをロウ付け、ネジ等で固定する。また、図1に示すように、上側工具本体部2の内面外縁2aまたは外周面2bに所定間隔で切欠部2cを形成し、その切欠部2cに切刃6aを有するカートリッジ6をネジ等で固定してもよい。これにより、カートリッジ6を交換することで、切刃6aを取り替えることが可能となる。なお、切欠部2cの間隔も、切刃6aと同様に、軸線中心と切欠部2c、2cとがなす角度で設定され、上側工具本体部2の外径200mm程度の場合には、10〜45°が好ましい。   The cutting edge 6a is fixed to the upper tool main body 2 so as to protrude several mm in a direction in contact with the workpiece. Although the fixing method is not shown, the cutting blade 6a is brazed to the inner surface outer edge 2a or the outer peripheral surface 2b of the upper tool body 2 and fixed with screws or the like. Further, as shown in FIG. 1, notches 2c are formed at predetermined intervals on the inner surface outer edge 2a or outer peripheral surface 2b of the upper tool body 2, and a cartridge 6 having a cutting edge 6a is fixed to the notch 2c with a screw or the like. May be. Accordingly, the cutting blade 6a can be replaced by replacing the cartridge 6. Similarly to the cutting edge 6a, the interval between the notches 2c is set at an angle formed by the center of the axis and the notches 2c and 2c. When the upper tool body 2 has an outer diameter of about 200 mm, it is 10 to 45. ° is preferred.

上側工具本体部2は、アルミニウムまたはアルミニウム合金からなることが好ましく、JIS規定の7000系合金がより好ましい。これにより、面加工工具1Aが軽量化すると共に、動バランスが良好となり、面加工の際、加工面のビビリ、切刃6aの欠け等が発生せず、面加工工具1Aが装着される加工機の回転軸に悪影響を与えることがない。   The upper tool body 2 is preferably made of aluminum or an aluminum alloy, and more preferably a JIS-defined 7000 series alloy. As a result, the surface processing tool 1A is reduced in weight, the dynamic balance is improved, and there is no chattering of the processing surface, chipping of the cutting edge 6a, etc. during surface processing, and the surface processing tool 1A is mounted. There is no adverse effect on the rotating shaft.

(スペーサ)
スペーサ5は、円柱状の形態をなし、その一端に上側工具本体部2が溶接、ロウ付け等で接合され、他端に下側工具本体部4が上側工具本体部2と平行になるよう溶接、ロウ付け等で接合されている。そして、スペーサ5は、上側工具本体部2(内面外縁2a)と下側工具本体部4(内面外縁4a)との間の距離を規定するもので、被加工物の加工寸法に合わせた長さ、すなわち、加工物(製品)の設定厚さと同一の長さを有する。このように、スペーサの長さ(工具本体部間の距離)が設定されることによって、被加工物の加工量が調整され、高い加工精度(厚み精度±0.2mm)が得られ、生産性も優れたものとなる。
(Spacer)
The spacer 5 has a cylindrical shape, and the upper tool body 2 is joined to one end thereof by welding, brazing or the like, and the lower tool body 4 is welded to the other end in parallel with the upper tool body 2. Are joined by brazing or the like. And the spacer 5 prescribes | regulates the distance between the upper tool main-body part 2 (inner surface outer edge 2a) and the lower tool main-body part 4 (inner surface outer edge 4a), and is the length match | combined with the processing dimension of the workpiece. That is, it has the same length as the set thickness of the workpiece (product). Thus, by setting the length of the spacer (distance between the tool body parts), the processing amount of the work piece is adjusted, and high processing accuracy (thickness accuracy ± 0.2 mm) is obtained. Will also be excellent.

スペーサ5の外径は、上側工具本体部2の外径の15〜40%が好ましい。15%未満であると、面加工工具1Aの強度、動バランスが低下しやすい。また、40%を超えると加工の際の面加工工具1Aまたは被加工物の移動スペースが小さくなり、生産性が低下しやすい。なお、スペーサ5の軸線直交断面における断面形状は、円形状に限定されず、多角形状であってもよい。   The outer diameter of the spacer 5 is preferably 15 to 40% of the outer diameter of the upper tool body 2. If it is less than 15%, the strength and dynamic balance of the surface machining tool 1A tend to be lowered. On the other hand, if it exceeds 40%, the space for moving the surface machining tool 1A or the workpiece during machining becomes small, and the productivity tends to decrease. In addition, the cross-sectional shape in the axis orthogonal cross section of the spacer 5 is not limited to a circular shape, and may be a polygonal shape.

スペーサ5は、面加工工具1Aの軽量化および動バランス、上側工具本体部2および下側工具本体部4への接合性の観点から、上側工具本体部2および下側工具本体部4と同材質のアルミニウまたはアルミニウム合金で構成されることが好ましい。   The spacer 5 is made of the same material as the upper tool main body 2 and the lower tool main body 4 from the viewpoint of weight reduction and dynamic balance of the surface machining tool 1A, and bonding properties to the upper tool main body 2 and the lower tool main body 4. It is preferable to be made of aluminum or an aluminum alloy.

(下側工具本体部)
下側工具本体部4は、装着部3が設けられていないこと以外は、上側工具本体部2と同一の構成である。すなわち、下側工具本体部4は、円柱状の形態をなし、上側工具本体部2と平行となるようにスペーサ5に接合されている。これにより、下側工具本体部4は、スペーサ5を介して上側工具本体部2と対面する配置となる。
(Lower tool body)
The lower tool body 4 has the same configuration as the upper tool body 2 except that the mounting portion 3 is not provided. That is, the lower tool body 4 has a cylindrical shape and is joined to the spacer 5 so as to be parallel to the upper tool body 2. Thereby, the lower tool body 4 is arranged to face the upper tool body 2 through the spacer 5.

上側工具本体部2と対面する下側工具本体部4の内面外縁4aまたは外周面4bには、複数の切刃6a(切欠部4c)が所定間隔に配置されている。なお、切刃6a(切欠部4c)の配置は、面加工工具1Aの動バランスの観点から上側工具本体部2に配置された切刃6a(切欠部2c)の配置と同一であることが好ましいが、同一配置に限定されず、下側工具本体部4の周方向に所定角度ずれていてもよい。
なお、下側工具本体部4の外径および材質、切刃6a(切欠部4c)については、前記上側工具本体部2と同一である。
A plurality of cutting blades 6a (notches 4c) are arranged at predetermined intervals on the inner surface outer edge 4a or the outer peripheral surface 4b of the lower tool body 4 facing the upper tool body 2. In addition, it is preferable that arrangement | positioning of the cutting blade 6a (cutout part 4c) is the same as arrangement | positioning of the cutting blade 6a (cutout part 2c) arrange | positioned at the upper tool main-body part 2 from a viewpoint of the dynamic balance of the surface processing tool 1A. However, it is not limited to the same arrangement, and may be shifted by a predetermined angle in the circumferential direction of the lower tool body 4.
The outer diameter and material of the lower tool body 4 and the cutting edge 6a (notch 4c) are the same as those of the upper tool body 2.

<加工方法>
次に、本発明の加工方法の実施形態について図面を参照して説明する。図3は面加工方法の概要を示す側面図、図4(a)は孔加工方法の概要を示す斜視図、(b)は(a)の平面図、図5(a)は孔加工方法の他の形態の概要を示す斜視図、(b)は(a)平面図、図6(a)は孔加工方法の他の形態の概要を示す斜視図、(b)は(a)平面図である。
<Processing method>
Next, an embodiment of the processing method of the present invention will be described with reference to the drawings. 3 is a side view showing the outline of the surface machining method, FIG. 4A is a perspective view showing the outline of the hole machining method, FIG. 3B is a plan view of FIG. 5A, and FIG. The perspective view which shows the outline | summary of another form, (b) is (a) top view, FIG.6 (a) is the perspective view which shows the outline | summary of the other form of the hole processing method, (b) is (a) top view. is there.

本発明の加工方法は、被加工物に面加工を行う第1ステップと、面加工された被加工物に孔加工を行う第2ステップとを含むものである。また、第1ステップとして被加工物に孔加工を行い、第2ステップとして孔加工された被加工物に面加工を行う加工方法であってもよい。以下、面加工、孔加工について詳細に説明する。   The processing method of the present invention includes a first step of performing surface processing on a workpiece and a second step of performing hole processing on the surface processed workpiece. Alternatively, a machining method may be used in which hole machining is performed as the first step and surface machining is performed as the second step. Hereinafter, surface processing and hole processing will be described in detail.

(面加工)
図3に示すように、前記した面加工工具1Aを用いて、以下の手順で被加工物(ブッシュ部11またはボールジョイント部13)、または、後記する孔加工された被加工物に面加工を行う。
(Surface processing)
As shown in FIG. 3, by using the surface processing tool 1 </ b> A described above, surface processing is performed on a workpiece (bush portion 11 or ball joint portion 13) or a hole-machined workpiece described later according to the following procedure. Do.

(1)面加工工具1Aの装着部3を、加工機の回転軸に装着された治具(図示せず)に嵌合し、加工機の回転軸に面加工工具1Aを装着する。また、被加工物を加工機のテーブル(図示せず)にセッティングする。そして、テーブルを水平および/または鉛直方向に移動して、被加工物を面加工工具1Aの上側工具本体部2と下側工具本体部4との間に位置させる。なお、テーブルの移動に代えて面加工工具1A(加工機の回転軸)を移動させてもよい。 (1) The mounting portion 3 of the surface processing tool 1A is fitted into a jig (not shown) mounted on the rotating shaft of the processing machine, and the surface processing tool 1A is mounted on the rotating shaft of the processing machine. Further, the workpiece is set on a table (not shown) of the processing machine. Then, the table is moved in the horizontal and / or vertical direction so that the workpiece is positioned between the upper tool body 2 and the lower tool body 4 of the surface machining tool 1A. Instead of moving the table, the surface processing tool 1A (rotating shaft of the processing machine) may be moved.

(2)加工機の駆動により面加工工具1Aを回転させ、被加工物が上側工具本体部2と下側工具本体部4との間を移動するように、面加工工具1Aを被加工物側に所定速度で水平移動させることにより、被加工物の両面を同時に面加工する。これにより、加工精度および生産性が向上する。なお、面加工工具1Aの移動に代えてテーブル(被加工物)を移動させてもよい。
なお、孔加工された被加工物に面加工を行う場合も、前記と同様な手順で行う。
(2) The surface machining tool 1A is rotated by driving the processing machine, and the surface machining tool 1A is moved to the workpiece side so that the workpiece moves between the upper tool body 2 and the lower tool body 4. By horizontally moving the workpiece at a predetermined speed, both surfaces of the workpiece are simultaneously machined. Thereby, processing accuracy and productivity are improved. Note that the table (workpiece) may be moved instead of the movement of the surface machining tool 1A.
It should be noted that the same procedure as described above is performed when surface machining is performed on a hole-machined workpiece.

(孔加工)
図4(a)、(b)に示すように、外周面および先端面に切刃を有する、所謂、エンドミルと称される孔加工工具1Bを用いて、以下の手順で被加工物、または、面加工された被加工物の所定位置に所定内径(D)の加工孔を形成させることが好ましい。なお、孔加工工具1Bは、形成される加工孔の内径(D)よりも小さい外径(d)を有する工具を使用する。
(Drilling)
As shown in FIGS. 4 (a) and 4 (b), using a drilling tool 1B called a so-called end mill having cutting edges on the outer peripheral surface and the front end surface, the workpiece or It is preferable to form a processing hole having a predetermined inner diameter (D) at a predetermined position of the surface processed workpiece. As the hole machining tool 1B, a tool having an outer diameter (d) smaller than the inner diameter (D) of the formed hole is used.

(1)孔加工工具1Bを、加工機の回転軸に装着された治具(図示せず)に嵌合し、加工機の回転軸に孔加工工具1Bを装着する。また、被加工物を加工機のテーブル(図示せず)にセッティングする。そして、テーブルを水平および/または鉛直方向に移動して、孔加工工具1Bを被加工物の加工面の所定位置(加工孔を形成する位置)に位置させる。なお、テーブルの移動に代えて孔加工工具1B(加工機の回転軸)を移動させてもよい。 (1) The hole machining tool 1B is fitted into a jig (not shown) mounted on the rotating shaft of the processing machine, and the hole machining tool 1B is mounted on the rotating shaft of the processing machine. Further, the workpiece is set on a table (not shown) of the processing machine. Then, the table is moved in the horizontal and / or vertical direction, and the hole machining tool 1B is positioned at a predetermined position (position where a machining hole is formed) on the machining surface of the workpiece. Instead of moving the table, the hole drilling tool 1B (rotating shaft of the processing machine) may be moved.

(2a)加工機の駆動により孔加工工具1Bを回転させ、孔加工工具1Bを(内径(D)−外径(d))のらせん軌道で被加工物の厚み方向へ送ることによって、被加工物の所定位置に孔加工を行う。これにより、加工精度および生産性が向上する。 (2a) The drilling tool 1B is rotated by driving the processing machine, and the drilling tool 1B is sent in the thickness direction of the workpiece by a spiral track of (inner diameter (D) −outer diameter (d)). A hole is drilled at a predetermined position of the object. Thereby, processing accuracy and productivity are improved.

孔加工工具1Bの外径(d)は、形成される加工孔の内径(D)の60〜85%であることがより好ましい。外径(d)が60%未満であると、工具の剛性が低下しやすくなると共に、孔加工の際の加工屑が孔加工工具1Bに絡みつきやすくなり、加工精度および生産性が低下しやすい。また、外径(d)が85%を超えると、孔加工の際の摩擦抵抗が大きくなりやすく、加工精度および生産性が低下しやすい。   The outer diameter (d) of the hole machining tool 1B is more preferably 60 to 85% of the inner diameter (D) of the formed hole. When the outer diameter (d) is less than 60%, the rigidity of the tool is liable to be lowered, and the machining waste at the time of drilling is easily entangled with the hole machining tool 1B, so that the machining accuracy and productivity are likely to be lowered. On the other hand, if the outer diameter (d) exceeds 85%, the frictional resistance at the time of drilling tends to increase, and the processing accuracy and productivity tend to decrease.

図5(a)、(b)に示すように、孔加工の前記手順(2a)を以下の手順(2b)で行ってもよい。
(2b)加工機の駆動により孔加工工具1Bを回転させ、孔加工工具1Bを被加工物の加工面に対して(内径(D)−外径(d))の円軌道で送ると共に、被加工物の厚み方向へ段階的に送ることによって、被加工物の所定位置に孔加工を行う。
As shown in FIGS. 5A and 5B, the procedure (2a) of drilling may be performed by the following procedure (2b).
(2b) The drilling tool 1B is rotated by driving the processing machine, and the drilling tool 1B is sent along a circular path of (inner diameter (D) −outer diameter (d)) to the processing surface of the workpiece, By feeding in a stepwise manner in the thickness direction of the workpiece, hole machining is performed at a predetermined position of the workpiece.

より詳細には、
(2b−1)孔加工工具1Bを被加工物の厚み方向に所定量送ることによって、領域D1に内径(d)の加工孔を形成する。続いて、孔加工工具1Bの厚み方向への送りを停止して、孔加工工具1Bを被加工物の加工面に対して(内径(D)−外径(d))の円軌道で1周送ることによって、領域D1に内径(D)の加工孔を形成する。
More specifically,
(2b-1) A hole having an inner diameter (d) is formed in the region D1 by feeding a predetermined amount of the hole machining tool 1B in the thickness direction of the workpiece. Subsequently, the feed of the hole drilling tool 1B in the thickness direction is stopped, and the hole drilling tool 1B is rotated once in a circular path of (inner diameter (D) −outer diameter (d)) with respect to the processing surface of the workpiece. By processing, a processing hole having an inner diameter (D) is formed in the region D1.

(2b−2)次に、孔加工工具1Bを被加工物の厚み方向に所定量送ることによって、領域D2に内径(d)の加工孔を形成する。続いて、孔加工工具1Bの厚み方向への送りを停止して、孔加工工具1Bを被加工物の加工面に対して(内径(D)−外径(d))の円軌道で1周送ることによって、領域D2に内径(D)の加工孔を形成する。 (2b-2) Next, the hole machining tool 1B is fed by a predetermined amount in the thickness direction of the workpiece, thereby forming a machining hole having an inner diameter (d) in the region D2. Subsequently, the feed of the hole drilling tool 1B in the thickness direction is stopped, and the hole drilling tool 1B is rotated once in a circular path of (inner diameter (D) −outer diameter (d)) with respect to the processing surface of the workpiece. By processing, a processing hole having an inner diameter (D) is formed in the region D2.

(2b−3)同様の手順で領域D3、D4に内径(D)の加工孔を形成することによって、被加工物の所定位置に厚み方向に貫通した内径(D)の加工孔が形成される。 (2b-3) By forming a processing hole having an inner diameter (D) in the regions D3 and D4 in the same procedure, a processing hole having an inner diameter (D) penetrating in the thickness direction is formed at a predetermined position of the workpiece. .

なお、前記手順(2b)で用いられる孔加工工具1Bの外径(d)は、形成される加工孔の内径(D)の60〜85%であることが好ましい。また、外径(d)の数値範囲の限定理由は前記手順(2a)と同様である。   In addition, it is preferable that the outer diameter (d) of the drilling tool 1B used in the procedure (2b) is 60 to 85% of the inner diameter (D) of the drilled hole to be formed. The reason for limiting the numerical range of the outer diameter (d) is the same as in the procedure (2a).

図6(a)、(b)に示すように、孔加工の前記手順(2a)を以下の手順(2c)で行ってもよい。
(2c)加工機の駆動により孔加工工具1Bを回転させ、孔加工工具1Bを被加工物の加工面に対して(内径(D)−外径(d))の最大径の渦巻軌道で送ると共に、被加工物の厚み方向へ段階的に送ることによって、被加工物の所定位置に孔加工を行う。
As shown in FIGS. 6A and 6B, the procedure (2a) for drilling may be performed by the following procedure (2c).
(2c) The drilling tool 1B is rotated by driving the processing machine, and the drilling tool 1B is sent by a spiral track having a maximum diameter of (inner diameter (D) −outer diameter (d)) with respect to the processing surface of the workpiece. At the same time, a hole is drilled at a predetermined position of the workpiece by sending it stepwise in the thickness direction of the workpiece.

より詳細には、
(2c−1)孔加工工具1Bを被加工物の厚み方向に所定量送ることによって、領域D1に内径(d)の加工孔を形成する。続いて、孔加工工具1Bの厚み方向への移動を停止して、孔加工工具1Bを被加工物の加工面に対して(内径(D)−外径(d))の最大径の渦巻軌道で1周送ることによって、領域D1に内径(D)の加工孔を形成する。
More specifically,
(2c-1) A hole having an inner diameter (d) is formed in the region D1 by feeding a predetermined amount of the hole machining tool 1B in the thickness direction of the workpiece. Subsequently, the movement of the hole drilling tool 1B in the thickness direction is stopped, and the hole drilling tool 1B is a spiral track having the maximum diameter (inner diameter (D) −outer diameter (d)) with respect to the processing surface of the workpiece. In this case, a processing hole having an inner diameter (D) is formed in the region D1.

(2c−2)次に、孔加工工具1Bを被加工物の厚み方向に所定量送ることによって、領域D2に内径(d)の加工孔を形成する。続いて、孔加工工具1Bの厚み方向への移動を停止して、孔加工工具1Bを被加工物の加工面に対して(内径(D)−外径(d))の最大径の渦巻軌道で送ることによって、領域D2に内径(D)の加工孔を形成する。 (2c-2) Next, the hole machining tool 1B is fed by a predetermined amount in the thickness direction of the workpiece, thereby forming a machining hole having an inner diameter (d) in the region D2. Subsequently, the movement of the hole drilling tool 1B in the thickness direction is stopped, and the hole drilling tool 1B is a spiral track having the maximum diameter (inner diameter (D) −outer diameter (d)) with respect to the processing surface of the workpiece. To form a processing hole having an inner diameter (D) in the region D2.

(2c−3)同様の手順で領域D3、D4に内径(D)の加工孔を形成することによって、被加工物の所定位置に厚み方向に貫通した内径(D)の加工孔が形成される。 (2c-3) By forming a processing hole having an inner diameter (D) in the regions D3 and D4 in the same procedure, a processing hole having an inner diameter (D) penetrating in the thickness direction is formed at a predetermined position of the workpiece. .

なお、前記手順(2c)で用いられる孔加工工具1Bの外径(d)は、形成される加工孔の内径(D)の60%未満であることが好ましい。孔加工工具1Bの外径(d)が60%以上であると、孔加工の際の摩擦抵抗が大きくなり、加工精度および生産性が低下しやすい。   In addition, it is preferable that the outer diameter (d) of the hole drilling tool 1B used in the procedure (2c) is less than 60% of the inner diameter (D) of the hole to be formed. When the outer diameter (d) of the drilling tool 1B is 60% or more, the frictional resistance at the time of drilling is increased, and the processing accuracy and productivity are likely to be lowered.

また、面加工された被加工物に孔加工を行う場合も、前記した手順(2a)、手順(2b)または手順(2c)と同様な手順で行う。
また、本発明の孔加工は、図9(a)〜(c)に示すように、小径のドリル40で下穴加工を行い、続いて、下穴に大径のドリル41またはボーリングバー42で孔加工を行う従来方法で行ってもよい。
さらに、加工機として複数の工具のセッティングが可能なマシニングセンターを利用してもよい。これによって、前記面加工および孔加工を効率よく行なうことができる。
Further, when drilling a surface processed workpiece, the same procedure as the procedure (2a), the procedure (2b) or the procedure (2c) described above is performed.
Further, in the drilling of the present invention, as shown in FIGS. 9 (a) to 9 (c), a pilot hole is drilled with a small-diameter drill 40, and subsequently, the pilot hole is drilled with a large-diameter drill 41 or a boring bar 42. You may carry out by the conventional method which performs hole processing.
Further, a machining center capable of setting a plurality of tools may be used as a processing machine. Thereby, the surface processing and hole processing can be performed efficiently.

以上の通り、本発明の実施形態について説明したが、本発明は前記した実施形態に限定されず、本発明の特許請求の範囲を逸脱しない範囲で適宜変更してもよい。
例えば、面加工工具として、スペーサの両端部に、上側工具本体部および下側工具本体部をスペーサの軸線上で上下移動させる手段を設け、面加工の際に上側工具本体部または/および下側工具本体部を、適宜、上下移動させることによって、工具本体部間の距離を加工物(製品)の設定厚さに調製することが可能なものであってもよい。また、長さの異なる数種のスペーサを準備して、加工物(製品)の設定厚さによって面加工の際に適宜取り替えることが可能なものであってもよい。さらに、スペーサ、上側工具本体部および下側工具本体部を一体物として作製したものであってもよい。
As mentioned above, although embodiment of this invention was described, this invention is not limited to above-described embodiment, You may change suitably in the range which does not deviate from the claim of this invention.
For example, as a surface machining tool, means for vertically moving the upper tool body and the lower tool body on the spacer axis are provided at both ends of the spacer, and the upper tool body or / and the lower side are provided during surface machining. It may be possible to adjust the distance between the tool body parts to the set thickness of the workpiece (product) by appropriately moving the tool body part up and down. Further, it may be possible to prepare several kinds of spacers having different lengths and appropriately replace them during surface processing depending on the set thickness of the workpiece (product). Further, the spacer, the upper tool main body, and the lower tool main body may be produced as an integrated object.

本発明に係る面加工工具の構成を示す斜視図である。It is a perspective view which shows the structure of the surface processing tool which concerns on this invention. サスペンションアームの平面図である。It is a top view of a suspension arm. 本発明に係る面加工方法の概要を示す側面図である。It is a side view which shows the outline | summary of the surface processing method which concerns on this invention. (a)は孔加工方法の概要を示す斜視図、(b)は(a)の平面図である。(A) is a perspective view which shows the outline | summary of the hole processing method, (b) is a top view of (a). (a)は孔加工方法の他の形態の概要を示す斜視図、(b)は(a)平面図である。(A) is a perspective view which shows the outline | summary of the other form of the hole processing method, (b) is (a) top view. (a)は孔加工方法の他の形態の概要を示す斜視図、(b)は(a)平面図である。(A) is a perspective view which shows the outline | summary of the other form of the hole processing method, (b) is (a) top view. (a)従来の面加工工具の構成を示す斜視図、(b)は(a)の工具を用いた面加工方法の概要を示す側面図である。(A) The perspective view which shows the structure of the conventional surface processing tool, (b) is a side view which shows the outline | summary of the surface processing method using the tool of (a). (a)従来の面加工工具の他の構成を示す斜視図、(b)は(a)の工具を用いた面加工方法の概要を示す平面図である。(A) The perspective view which shows the other structure of the conventional surface processing tool, (b) is a top view which shows the outline | summary of the surface processing method using the tool of (a). (a)〜(c)は従来の孔加工方法の概要を示す斜視図である。(A)-(c) is a perspective view which shows the outline | summary of the conventional drilling method.

符号の説明Explanation of symbols

1A 面加工工具
1B 孔加工工具
2 上側工具本体部
2a、4a 内面外縁
2b、4b 外周面
3 装着部
4 下側工具本体部
5 スペーサ
6a 切刃
d 外径
D 内径
1A Surface machining tool 1B Hole machining tool 2 Upper tool body 2a, 4a Inner outer edge 2b, 4b Outer peripheral surface 3 Mounting portion 4 Lower tool body 5 Spacer 6a Cutting edge d Outer diameter D Inner diameter

Claims (6)

加工機の回転軸に装着して被加工物の両面を同時に加工する面加工工具であって、
前記回転軸に装着される装着部が設けられた円柱状の上側工具本体部と、
前記装着部の反対側で前記上側工具本体部に接合され、前記被加工物の加工寸法に合わせた長さを有するスペーサと、
前記上側工具本体部と平行となるように前記スペーサに接合される円柱状の下側工具本体部とを備え、
前記上側工具本体部および前記下側工具本体部の対面するそれぞれの内面外縁、または、前記上側工具本体部および前記下側工具本体部のそれぞれの外周面に複数の切刃が所定間隔に配置されることを特徴とする面加工工具。
A surface processing tool that is mounted on a rotating shaft of a processing machine and simultaneously processes both surfaces of a workpiece,
A cylindrical upper tool body provided with a mounting portion to be mounted on the rotating shaft;
A spacer joined to the upper tool body on the opposite side of the mounting part and having a length according to the processing dimension of the workpiece;
A columnar lower tool body joined to the spacer so as to be parallel to the upper tool body,
A plurality of cutting blades are arranged at predetermined intervals on the outer peripheral surfaces of the inner surfaces of the upper tool body and the lower tool body, or on the outer peripheral surfaces of the upper tool body and the lower tool body, respectively. A surface machining tool characterized by that.
請求項1に記載の面加工工具を用いて被加工物に面加工を行う第1ステップと、
前記第1ステップで面加工された被加工物に孔加工を行う第2ステップとを含むことを特徴とする加工方法。
A first step of performing surface machining on the workpiece using the surface machining tool according to claim 1;
And a second step of drilling the workpiece surface-finished in the first step.
被加工物に孔加工を行う第1ステップと、
前記第1ステップで孔加工された被加工物に請求項1に記載の面加工工具を用いて面加工を行う第2ステップとを含むことを特徴とする加工方法。
A first step of drilling a workpiece;
A processing method comprising: a second step of performing surface processing using the surface processing tool according to claim 1 on the workpiece drilled in the first step.
前記孔加工が外周面および先端面に切刃を有する孔加工工具を用いて所定内径(D)の加工孔を形成するものであって、
前記孔加工工具の外径(d)が前記加工孔の内径(D)より小さく、当該孔加工工具を(内径(D)−外径(d))のらせん軌道で前記被加工物の厚み方向へ送ることを特徴とする請求項2または請求項3に記載の加工方法。
The hole processing is to form a processing hole having a predetermined inner diameter (D) using a hole processing tool having a cutting edge on the outer peripheral surface and the tip surface,
The outer diameter (d) of the hole machining tool is smaller than the inner diameter (D) of the machining hole, and the hole machining tool is moved in the thickness direction of the workpiece on a spiral track of (inner diameter (D) −outer diameter (d)). The processing method according to claim 2, wherein the processing method is sent to:
前記孔加工が外周面および先端面に切刃を有する孔加工工具を用いて所定内径(D)の加工孔を形成するものであって、
前記孔加工工具の外径(d)が前記加工孔の内径(D)より小さく、当該孔加工工具を前記被加工物の加工面に対して(内径(D)−外径(d))の円軌道で送ると共に、当該被加工物の厚み方向へ段階的に送ることを特徴とする請求項2または請求項3に記載の加工方法。
The hole processing is to form a processing hole having a predetermined inner diameter (D) using a hole processing tool having a cutting edge on the outer peripheral surface and the tip surface,
The outer diameter (d) of the hole drilling tool is smaller than the inner diameter (D) of the hole, and the hole drilling tool is (inner diameter (D) -outer diameter (d)) with respect to the machining surface of the workpiece. The processing method according to claim 2, wherein the processing method is sent in a circular orbit and stepwise in the thickness direction of the workpiece.
前記孔加工が外周面および先端面に切刃を有する孔加工工具を用いて所定内径(D)の加工孔を形成するものであって、
前記孔加工工具の外径(d)が前記加工孔の内径(D)より小さく、当該孔加工工具を前記被加工物の加工面に対して(内径(D)−外径(d))の最大径を有する渦巻軌道で送ると共に、当該被加工物の厚み方向へ段階的に送ることを特徴とする請求項2または請求項3に記載の加工方法。
The hole processing is to form a processing hole having a predetermined inner diameter (D) using a hole processing tool having a cutting edge on the outer peripheral surface and the tip surface,
The outer diameter (d) of the hole drilling tool is smaller than the inner diameter (D) of the hole, and the hole drilling tool is (inner diameter (D) -outer diameter (d)) with respect to the machining surface of the workpiece. 4. The processing method according to claim 2, wherein the workpiece is fed in a spiral orbit having a maximum diameter and is sent stepwise in the thickness direction of the workpiece.
JP2006134808A 2006-05-15 2006-05-15 Surface machining tool and machining method using the same Pending JP2007301701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006134808A JP2007301701A (en) 2006-05-15 2006-05-15 Surface machining tool and machining method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134808A JP2007301701A (en) 2006-05-15 2006-05-15 Surface machining tool and machining method using the same

Publications (1)

Publication Number Publication Date
JP2007301701A true JP2007301701A (en) 2007-11-22

Family

ID=38836083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134808A Pending JP2007301701A (en) 2006-05-15 2006-05-15 Surface machining tool and machining method using the same

Country Status (1)

Country Link
JP (1) JP2007301701A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109719332A (en) * 2018-11-28 2019-05-07 中铁宝桥集团有限公司 Medium-and low-speed maglev F rail magnetic pole strength and aluminium sheet mounting surface simultaneous processing cutter and method
JP7338339B2 (en) 2019-09-11 2023-09-05 株式会社ニデック Spectacle lens processing device, spectacle lens processing method, and spectacle lens processing program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06126519A (en) * 1992-10-13 1994-05-10 Ishikawajima Harima Heavy Ind Co Ltd Boring method by end mill
JPH06134648A (en) * 1992-06-17 1994-05-17 Makino Milling Mach Co Ltd Cutting method and device
JP2000246529A (en) * 1999-02-26 2000-09-12 Mitsuboshi Belting Ltd Cutter for belt cutting and manufacture of transmission belt using it
JP2001334408A (en) * 2000-05-25 2001-12-04 Fujikura Ltd Cutting device
JP2002052413A (en) * 2000-08-07 2002-02-19 Hitachi Ltd Rail machining apparatus and rail machining method
JP2002301626A (en) * 2001-04-02 2002-10-15 Toyota Motor Corp Machining method for nuckle and nc finishing machine
JP2003285216A (en) * 2002-03-27 2003-10-07 Mitsubishi Electric Corp Elevator guide-rail machining machine and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06134648A (en) * 1992-06-17 1994-05-17 Makino Milling Mach Co Ltd Cutting method and device
JPH06126519A (en) * 1992-10-13 1994-05-10 Ishikawajima Harima Heavy Ind Co Ltd Boring method by end mill
JP2000246529A (en) * 1999-02-26 2000-09-12 Mitsuboshi Belting Ltd Cutter for belt cutting and manufacture of transmission belt using it
JP2001334408A (en) * 2000-05-25 2001-12-04 Fujikura Ltd Cutting device
JP2002052413A (en) * 2000-08-07 2002-02-19 Hitachi Ltd Rail machining apparatus and rail machining method
JP2002301626A (en) * 2001-04-02 2002-10-15 Toyota Motor Corp Machining method for nuckle and nc finishing machine
JP2003285216A (en) * 2002-03-27 2003-10-07 Mitsubishi Electric Corp Elevator guide-rail machining machine and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109719332A (en) * 2018-11-28 2019-05-07 中铁宝桥集团有限公司 Medium-and low-speed maglev F rail magnetic pole strength and aluminium sheet mounting surface simultaneous processing cutter and method
JP7338339B2 (en) 2019-09-11 2023-09-05 株式会社ニデック Spectacle lens processing device, spectacle lens processing method, and spectacle lens processing program

Similar Documents

Publication Publication Date Title
JP7292203B2 (en) Skiving tool and method for carbide precision machining of pre-toothed workpieces
CN105873701B (en) Cutting tool and its manufacture method
EP2121224B1 (en) Cutter for drilling and reaming
WO2014068710A1 (en) T-shaped cutter, rib-machining method and airplane part
US6901642B2 (en) Cutting tool, insert holder and machining method
JP6524590B2 (en) Cutting tool and tool body
CN101758275A (en) Rotational cutting tool and combined machining method
JP2011530415A (en) Milling and cutting tips therefor
RU2544720C2 (en) Single-piece cutter from two materials
JP4816496B2 (en) Drilling tool
JP2002292515A (en) End mill for cutting contour line
CN106573314B (en) Cutting tool and method of making a cutting tool
JP2009061587A (en) Insert
JP2007301701A (en) Surface machining tool and machining method using the same
JP5266372B2 (en) Cutting tool, cutting apparatus, and cutting method
CN101837477A (en) Boring cutter and boring method by adopting same
JPH064205B2 (en) Drilling method
KR102316725B1 (en) End mill Having Cutting Tooth Made of Polycrystalline Diamond
WO2017170407A1 (en) Tip and drill
JP2000158220A (en) Throwaway drill and shank thereof
JP2012115970A (en) Main spindle of machine tool, and the machine tool using the same
JP2020203353A (en) Rotary cutting tool
JP4621569B2 (en) Machining method of spindle crossing inner circumference in lathe
JP4483200B2 (en) Throw-away reamer
JP2015223654A (en) Fine tool manufacturing method, and fine tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Effective date: 20101117

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110104

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A02 Decision of refusal

Effective date: 20110809

Free format text: JAPANESE INTERMEDIATE CODE: A02