JP5751177B2 - Ruthenium-containing compound and method for producing the same - Google Patents

Ruthenium-containing compound and method for producing the same Download PDF

Info

Publication number
JP5751177B2
JP5751177B2 JP2012009984A JP2012009984A JP5751177B2 JP 5751177 B2 JP5751177 B2 JP 5751177B2 JP 2012009984 A JP2012009984 A JP 2012009984A JP 2012009984 A JP2012009984 A JP 2012009984A JP 5751177 B2 JP5751177 B2 JP 5751177B2
Authority
JP
Japan
Prior art keywords
dye
ppm
hydrogen
aromatic ring
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012009984A
Other languages
Japanese (ja)
Other versions
JP2013147465A (en
Inventor
岩沢 晴生
晴生 岩沢
知弘 小畑
知弘 小畑
彰基 伊藤
彰基 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2012009984A priority Critical patent/JP5751177B2/en
Publication of JP2013147465A publication Critical patent/JP2013147465A/en
Application granted granted Critical
Publication of JP5751177B2 publication Critical patent/JP5751177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Description

本発明はルテニウム含有化合物に関する。詳しくは、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池の構成材料となる色素として有用なルテニウム含有化合物に関する。   The present invention relates to ruthenium-containing compounds. More specifically, the present invention relates to a ruthenium-containing compound useful as a dye that is a constituent material of a dye-sensitized solar cell that exhibits high conversion efficiency and excellent durability such as weather resistance and heat resistance.

近年、エネルギー問題に対する関心が高まるとともに、光、特に太陽光を効率よく電気に変換することができる太陽電池の研究が盛んになってきた。例えば、アモルファスシリコンや多結晶シリコンを利用したシリコン系の太陽電池が普及し始めている。   In recent years, with increasing interest in energy problems, research on solar cells that can efficiently convert light, particularly sunlight, into electricity has become active. For example, silicon-based solar cells using amorphous silicon or polycrystalline silicon have begun to spread.

しかし、シリコン系太陽電池には、製造コストが高いという問題がある。特に、高純度シリコンを安価かつ大量に供給することが困難であるために、シリコン系太陽電池を一般に広く普及するには限界があるといわれている。
そこで、近年、色素増感太陽電池が関心を集めている。色素増感太陽電池は、発電効率が高いこと、製造コストが比較的低いこと、酸化チタン等の安価な酸化物半導体を高純度に精製することなく原料として使用できること、製造に際して使用する設備が安価で済むこと等、シリコン系太陽電池と比較して多くの利点を有している。従って、次世代の太陽電池として期待されている(特許文献1及び2)。
However, silicon solar cells have a problem of high manufacturing costs. In particular, since it is difficult to supply high-purity silicon at a low cost and in large quantities, it is said that there is a limit to the widespread use of silicon-based solar cells in general.
In recent years, therefore, dye-sensitized solar cells have attracted attention. Dye-sensitized solar cells have high power generation efficiency, relatively low manufacturing costs, inexpensive oxide semiconductors such as titanium oxide can be used as raw materials without being purified to high purity, and equipment used for manufacturing is inexpensive This has many advantages over silicon-based solar cells. Therefore, it is expected as a next-generation solar cell (Patent Documents 1 and 2).

色素増感太陽電池は、通常の電池と同様に、陽極と陰極と電解質とを備えている。しかし、色素増感太陽電池は、陰極が、透明導電性ガラスからなる基材と、この基材の表面に形成された酸化物薄膜電極とを有しており、この酸化物薄膜電極に特定の色素が吸着されている構造を有する点に特徴がある。   The dye-sensitized solar cell includes an anode, a cathode, and an electrolyte as in a normal battery. However, in the dye-sensitized solar cell, the cathode has a base material made of transparent conductive glass and an oxide thin film electrode formed on the surface of the base material. It is characterized in that it has a structure in which a dye is adsorbed.

酸化物薄膜電極に吸着させる色素としては、非特許文献1及び2に記載の色素が知られている。   As dyes adsorbed on the oxide thin film electrode, dyes described in Non-Patent Documents 1 and 2 are known.

米国特許第4927721号明細書US Pat. No. 4,927,721 国際公開第98/50393号パンフレットInternational Publication No. 98/50393 Pamphlet

J.Am.Chem.Soc.,115,6382−6390(1993)J. et al. Am. Chem. Soc. 115, 6382-6390 (1993) J.Am.Chem.Soc.,123,1613−1624(2001)J. et al. Am. Chem. Soc. , 123, 1613-1624 (2001)

本発明は上記事情に鑑みてなされたものであり、その目的は、可視光領域の光の吸収率が大きく、色素増感太陽電池に使用した場合に、高い変換効率を示す色素増感太陽電池が得られることが期待される、色素として有用な新規化合物を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dye-sensitized solar cell that has a high light absorption rate in the visible light region and exhibits high conversion efficiency when used in a dye-sensitized solar cell. To provide a novel compound useful as a dye, which is expected to be obtained.

上記課題は、下記の手段により解決された。
下記の式(1)で表されるルテニウム含有化合物。

Figure 0005751177
(式(1)中、Rは−CF、−CN、−OCH及び−SCHからなる群より選ばれる基である。) The above problems have been solved by the following means.
A ruthenium-containing compound represented by the following formula (1).
Figure 0005751177
(In formula (1), R is a group selected from the group consisting of —CF 3 , —CN, —OCH 3 and —SCH 3 ).

本発明のルテニウム含有化合物は可視光領域の光の吸収率が大きい。この化合物を色素増感太陽電池の色素として使用した場合に、この色素増感太陽電池は高い変換効率を示すことが期待される。
この色素は高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れるという効果を奏することが期待される。
The ruthenium-containing compound of the present invention has a large light absorption rate in the visible light region. When this compound is used as a dye for a dye-sensitized solar cell, the dye-sensitized solar cell is expected to exhibit high conversion efficiency.
This dye is expected to exhibit an effect of exhibiting high conversion efficiency and excellent durability such as weather resistance and heat resistance.

以下、本発明を実施するための形態について説明するが、本発明は以下の実施の形態に限定されるものではない。   Hereinafter, although the form for implementing this invention is demonstrated, this invention is not limited to the following embodiment.

[1]ルテニウム含有化合物(ルテニウム錯体):
本発明のルテニウム含有化合物(以下、本発明の化合物ともいう。)の一実施形態は、式(1)で表されるものである。このような化合物を含む色素は高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れた色素増感太陽電池の構成材料となるものである。

Figure 0005751177
(式(1)中、Rは−CF、−CN、−OCH、及び、−SCHからなる群より選ばれる基である。) [1] Ruthenium-containing compound (ruthenium complex):
One embodiment of the ruthenium-containing compound of the present invention (hereinafter also referred to as the compound of the present invention) is represented by the formula (1). A dye containing such a compound exhibits a high conversion efficiency and is a constituent material of a dye-sensitized solar cell excellent in durability such as weather resistance and heat resistance.
Figure 0005751177
(In Formula (1), R is a group selected from the group consisting of —CF 3 , —CN, —OCH 3 , and —SCH 3 ).

[2]色素増感太陽電池:
本発明の化合物を含む色素は、公知の構造を有する色素増感太陽電池に用いられる。これら色素増感太陽電池は、陽極と、陰極と、電解質と、を備えている。陰極は、透明導電性ガラスからなる基材と、この基材の表面に形成された酸化物薄膜電極と、を有している。このような公知の色素増感太陽電池の酸化物薄膜電極に、本発明の化合物を含む色素を吸着させることで、高い変換効率を示し、耐候性及び耐熱性等の耐久性にも優れる色素増感太陽電池が得られる。陽極、陰極及び電解質の材料は、いずれも公知のものを好適に用いることができる。
[2] Dye-sensitized solar cell:
The pigment | dye containing the compound of this invention is used for the dye-sensitized solar cell which has a well-known structure. These dye-sensitized solar cells include an anode, a cathode, and an electrolyte. The cathode has a base material made of transparent conductive glass and an oxide thin film electrode formed on the surface of the base material. By adsorbing the dye containing the compound of the present invention to the oxide thin film electrode of such a known dye-sensitized solar cell, the dye sensitization exhibits high conversion efficiency and excellent durability such as weather resistance and heat resistance. A solar cell is obtained. Known materials can be preferably used for the anode, cathode, and electrolyte.

[3]色素の吸着:
酸化物薄膜電極に本発明の化合物を含む色素を吸着させる方法は、周知の方法を適用することができる。たとえば、酸化物薄膜電極を有する陰極用部材に対して、本発明の化合物を含む色素と塩基とを含有する色素溶液を接触させることにより行うことができる。
[3] Adsorption of dye:
As a method for adsorbing the dye containing the compound of the present invention to the oxide thin film electrode, a known method can be applied. For example, it can carry out by making the pigment | dye solution containing the pigment | dye containing the compound of this invention, and a base contact the member for cathodes which has an oxide thin film electrode.

「色素溶液」は、本発明の化合物を含む色素、即ち、上記一般式(1)で表される化合物と塩基とを含有する溶液である。色素溶液は、色素を0.1〜10mmol/Lの濃度で含有するものが好ましい。色素の濃度を0.1mmol/L以上とすることによって、酸化物薄膜電極に十分な量の色素を吸着させることが可能となる。一方、10mmol以下とすることによって、色素同士が会合してしまう不具合を抑制することができる。このような効果を、より確実に発揮させるためには、色素の濃度を0.2〜5mmol/Lとすることが更に好ましく、0.5〜2mmol/Lとすることが特に好ましい。   “Dye solution” is a dye containing the compound of the present invention, that is, a solution containing the compound represented by formula (1) and a base. The dye solution preferably contains a dye at a concentration of 0.1 to 10 mmol / L. By setting the concentration of the dye to 0.1 mmol / L or more, a sufficient amount of the dye can be adsorbed to the oxide thin film electrode. On the other hand, when the amount is 10 mmol or less, it is possible to suppress a problem that the dyes are associated with each other. In order to exhibit such an effect more reliably, the concentration of the dye is more preferably 0.2 to 5 mmol / L, and particularly preferably 0.5 to 2 mmol / L.

「色素溶液」が含有する塩基は、無機塩基であってもよいし、有機塩基であってもよい。   The base contained in the “dye solution” may be an inorganic base or an organic base.

「無機塩基」としては、例えば、アルカリ金属の水酸化物、アルカリ金属の炭酸塩、アルカリ金属の硫化物、アルカリ土類金属の水酸化物等を挙げることができる。   Examples of the “inorganic base” include alkali metal hydroxides, alkali metal carbonates, alkali metal sulfides, alkaline earth metal hydroxides, and the like.

「アルカリ金属の水酸化物」としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等を挙げることができる。「アルカリ金属の炭酸塩」としては、例えば、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等を挙げることができる。「アルカリ金属の硫化物」としては、例えば、硫化リチウム、硫化ナトリウム、硫化カリウム等を挙げることができる。「アルカリ土類金属の水酸化物」としては、例えば、水酸化カルシウム、水酸化マグネシウム等を挙げることができる。   Examples of the “alkali metal hydroxide” include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like. Examples of the “alkali metal carbonate” include lithium carbonate, sodium carbonate, potassium carbonate and the like. Examples of the “alkali metal sulfide” include lithium sulfide, sodium sulfide, potassium sulfide and the like. Examples of the “alkaline earth metal hydroxide” include calcium hydroxide and magnesium hydroxide.

「有機塩基」としては、例えば、一級〜三級アミン化合物、四級アンモニウムの水酸化物、四級アンモニウムの炭酸塩、四級アンモニウムの硫化物、四級ホスホニウムの水酸化物、四級ホスホニウムの炭酸塩、四級ホスホニウムの硫化物、芳香環中に窒素原子を有する含窒素ヘテロ芳香族化合物、芳香族アミン化合物等を挙げることができる。   Examples of the “organic base” include primary to tertiary amine compounds, quaternary ammonium hydroxides, quaternary ammonium carbonates, quaternary ammonium sulfides, quaternary phosphonium hydroxides, and quaternary phosphonium compounds. Examples thereof include carbonates, quaternary phosphonium sulfides, nitrogen-containing heteroaromatic compounds having a nitrogen atom in the aromatic ring, and aromatic amine compounds.

「一級〜三級アミン化合物」としては、例えば、メチルアミン、エチルアミン等の一級アミン;ジメチルアミン、ジエチルアミン等の二級アミン;トリメチルアミン、トリエチルアミン等の三級アミン等を挙げることができる。   Examples of the “primary to tertiary amine compound” include primary amines such as methylamine and ethylamine; secondary amines such as dimethylamine and diethylamine; tertiary amines such as trimethylamine and triethylamine.

「四級アンモニウムの水酸化物」としては、例えば、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等を挙げることができる。「四級アンモニウムの炭酸塩」としては、例えば、テトラメチルアンモニウムカルボネート、テトラブチルアンモニウムカルボネート等を挙げることができる。「四級アンモニウムの硫化物」としては、例えば、テトラメチルアンモニウムスルフェート、テトラブチルアンモニウムスルフェート等を挙げることができる。   Examples of the “quaternary ammonium hydroxide” include tetraethylammonium hydroxide and tetrabutylammonium hydroxide. Examples of the “quaternary ammonium carbonate” include tetramethylammonium carbonate and tetrabutylammonium carbonate. Examples of the “quaternary ammonium sulfide” include tetramethylammonium sulfate and tetrabutylammonium sulfate.

「四級ホスホニウムの水酸化物」としては、例えば、テトラメチルホスホニウムヒドロキシド、テトラブチルホスホニウムヒドロキシド等を挙げることができる。「四級ホスホニウムの炭酸塩」としては、例えば、テトラメチルホスホニウムカルボネート、テトラブチルホスホニウムカルボネート等を挙げることができる。「四級ホスホニウムの硫化物」としては、例えば、テトラメチルホスホニウムスルフェート、テトラブチルホスホニウムスルフェート等を挙げることができる。   Examples of the “quaternary phosphonium hydroxide” include tetramethylphosphonium hydroxide and tetrabutylphosphonium hydroxide. Examples of the “quaternary phosphonium carbonate” include tetramethylphosphonium carbonate, tetrabutylphosphonium carbonate, and the like. Examples of the “quaternary phosphonium sulfide” include tetramethylphosphonium sulfate, tetrabutylphosphonium sulfate, and the like.

「含窒素ヘテロ芳香族化合物」としては、例えば、ピリジン、ピロール、ルチジン等を挙げることができる。「芳香族アミン化合物」としては、例えば、アニリン、メチルアニリン、ジメチルアニリン等を挙げることができる。   Examples of the “nitrogen-containing heteroaromatic compound” include pyridine, pyrrole, lutidine and the like. Examples of the “aromatic amine compound” include aniline, methylaniline, dimethylaniline and the like.

色素溶液が含有する塩基としてはブレンステッド塩基が好ましい。上述した塩基の中でも、有機塩基を用いることがより好ましく、四級アンモニウムの水酸化物、四級アンモニウムの炭酸塩を用いることが更に好ましく、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、テトラメチルアンモニウムカルボネート、テトラブチルアンモニウムカルボネートを用いることが最も好ましい。最も好ましいものの中でも、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドが好ましい。   The base contained in the dye solution is preferably a Bronsted base. Among the above-mentioned bases, it is more preferable to use an organic base, and it is more preferable to use a quaternary ammonium hydroxide or a quaternary ammonium carbonate, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, tetramethylammonium. Most preferably, carbonate and tetrabutylammonium carbonate are used. Among the most preferable ones, tetraethylammonium hydroxide and tetrabutylammonium hydroxide are preferable.

色素溶液は、上記塩基を0.0001〜50mNの濃度で含有するものが好ましく、0.001〜20mNの濃度で含有するものが更に好ましく、0.01〜10mNの濃度で含有するものが特に好ましい。   The dye solution preferably contains the above base at a concentration of 0.0001 to 50 mN, more preferably contains 0.001 to 20 mN, and particularly preferably contains 0.01 to 10 mN. .

色素溶液の溶媒としては、例えば、水、極性有機溶媒、またはこれらの混合溶媒を用いることが好ましい。極性有機溶媒としては、例えば、エーテル、アルコール、ニトリル、アミド、スルホキシド等を挙げることができる。   As a solvent for the dye solution, for example, water, a polar organic solvent, or a mixed solvent thereof is preferably used. Examples of the polar organic solvent include ether, alcohol, nitrile, amide, sulfoxide and the like.

「エーテル」としては、例えば、ジエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等を挙げることができる。「アルコール」としては、例えば、エタノール、メタノール、イソプロピルアルコール、ブタノール等を挙げることができる。「ニトリル」としては、例えば、アセトニトリル、ベンゾニトリル、プロピオノニトリル等を挙げることができる。「アミド」としては、例えば、ジメチルホルムアミド、ジメチルアセトアミド等を挙げることができる。「スルホキシド」としては、例えば、ジメチルスルホキシド等を挙げることができる。   Examples of the “ether” include diethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and the like. Examples of the “alcohol” include ethanol, methanol, isopropyl alcohol, butanol and the like. Examples of “nitrile” include acetonitrile, benzonitrile, propiononitrile, and the like. Examples of “amide” include dimethylformamide, dimethylacetamide and the like. Examples of the “sulfoxide” include dimethyl sulfoxide.

これらの溶媒の中でも、アルコール、ニトリル、またはアミドを用いることが好ましく、エタノール、メタノール、ブタノール、またはアセトニトリルを用いることが更に好ましい。また、溶媒の混合溶媒としては、アルコールとニトリルとの混合溶媒を用いることが好ましく、ブタノールとアセトニトリルとの混合溶媒を用いることが更に好ましい。   Among these solvents, alcohol, nitrile, or amide is preferably used, and ethanol, methanol, butanol, or acetonitrile is more preferably used. Moreover, as a mixed solvent of a solvent, it is preferable to use the mixed solvent of alcohol and nitrile, and it is still more preferable to use the mixed solvent of butanol and acetonitrile.

陰極用部材と色素溶液とを接触させる方法については、特に制限はないが、陰極用部材を色素溶液に浸漬する方法などを挙げることができる。   The method for bringing the cathode member into contact with the dye solution is not particularly limited, and examples thereof include a method of immersing the cathode member in the dye solution.

陰極用部材を色素溶液に浸漬する場合、浸漬時間は、0.5〜100時間とすることが好ましく、2〜50時間とすることが更に好ましく、12〜24時間とすることが特に好ましい。また、浸漬の際の温度は、0〜100℃とすることが好ましく、温度を10〜50℃とすることが更に好ましい。   When the cathode member is immersed in the dye solution, the immersion time is preferably 0.5 to 100 hours, more preferably 2 to 50 hours, and particularly preferably 12 to 24 hours. Moreover, it is preferable that the temperature in the case of immersion shall be 0-100 degreeC, and it is still more preferable that temperature shall be 10-50 degreeC.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。各種物性値の測定方法、及び諸特性の評価方法を以下に示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. A method for measuring various physical properties and a method for evaluating various properties are shown below.

(実施例1)
cis−Dichloro−bis(4,4’−dicarboxy−2,2’−bipyridine)Ruthenium(シス−ジクロロ−ビス(4,4’−ジカルボキシ−2,2’−ビピリジン)ルテニウム)の合成
ジムロート冷却管を装着した500mL三口フラスコに、2,2’−Bipyridine−4,4’−dicarboxylic Acid 5.0g(20.5mmol)、Dichloro(p−cymene)−ruthenium(II) dimer 3.14g (5.1mmol)、ジメチルホルムアミド240mLを加え、窒素雰囲気下において、170℃で1.5時間攪拌を行なった。反応容器を空冷した後、反応液をろ過した。ろ液を90℃で減圧濃縮し、目的物の粗生成物を得た。次いで、この粗生成物にアセトン200mLを加えた。この作業により析出した成分を吸引ろ過により分取した。更にこの結晶をアセトンで洗浄後、真空乾燥することにより、下記の化学式で表されるcis−Dichloro−bis(4,4’−dicarboxy−2,2’−bipyridine)Ruthenium 6.61g(収率98%)を得た。
本化合物について、この化合物のH−NMR測定、IR測定を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。
Example 1
Synthesis of cis-Dichroro-bis (4,4′-dicarboxy-2,2′-bipyridine) Ruthenium (cis-dichloro-bis (4,4′-dicarboxy-2,2′-bipyridine) ruthenium) Dimroth condenser Into a 500 mL three-necked flask equipped with 2,2′-Bipyridine-4,4′-dicarboxylic Acid 5.0 g (20.5 mmol), Dichroro (p-cymene) -ruthenium (II) dimer 3.14 g (5.1 mmol) ), Dimethylformamide (240 mL) was added, and the mixture was stirred at 170 ° C. for 1.5 hours under a nitrogen atmosphere. After the reaction vessel was air-cooled, the reaction solution was filtered. The filtrate was concentrated under reduced pressure at 90 ° C. to obtain a target crude product. Next, 200 mL of acetone was added to the crude product. The components deposited by this work were collected by suction filtration. Further, the crystals were washed with acetone and then vacuum-dried to obtain 6.61 g (yield 98) of cis-Dichloro-bis (4,4′-dicboxy-2,2′-bipyridine) Ruthenium represented by the following chemical formula. %).
The present compound, 1 H-NMR measurement of this compound performs IR measurement confirmed that the compound of interest is obtained. The analysis results were as follows.

H−NMR(溶媒:d6−DMSO) 化学シフトσ: 10.08ppm(ピリジン環上水素、2H)、9.03ppm(ピリジン環上水素、2H)、8.86ppm(ピリジン環上水素、2H)、8.21ppm(ピリジン環上水素、2H)、7.73ppm(ピリジン環上水素、2H)、7.47ppm(ピリジン環上水素、2H) 1 H-NMR (solvent: d6-DMSO) chemical shift σ: 10.08 ppm (hydrogen on pyridine ring, 2H), 9.03 ppm (hydrogen on pyridine ring, 2H), 8.86 ppm (hydrogen on pyridine ring, 2H) 8.21 ppm (hydrogen on pyridine ring, 2H), 7.73 ppm (hydrogen on pyridine ring, 2H), 7.47 ppm (hydrogen on pyridine ring, 2H)

Figure 0005751177
Figure 0005751177

(実施例2)
Bis(4,4’−dicarboxy−2,2’−bipyridine) 2−(4−trifluoromethylphenyl)pyridine Ruthenium(II)(ビス(4,4’−ジカルボキシ−2,2’−ビピリジン) 2−(4−トリフルオロメチルフェニル)ピリジン ルテニウム(II))の合成
500mL三口フラスコにcis−Dichloro−bis(4,4’−dicarboxy−2,2’−bipyridine)Ruthenium 1.32g(2.00mmol)、2−[4−(Trifluoromethyl)phenyl]pyridine 0.92g(4.1mmol)を量り取った。エチレングリコール250mLを加え、窒素雰囲気下において、170℃で1.5時間攪拌した。反応溶液を室温まで冷却した後、この反応溶液に、37%テトラブチルアンモニウムヒドロキシド−メタノール溶液8.8mLを加え、窒素雰囲気下、170℃で7時間撹拌した。反応容器を空冷し、反応液をろ過した。得られたろ液を90℃、2mmHgで減圧濃縮し、溶媒を留去した。この溶媒留去後の残渣に蒸留水100mLを加えて撹拌した後、0.5N硝酸水溶液を加えてpH=1.8とした。この溶液を室温で12時間静置し、析出した結晶を吸引ろ過により分取した。得られた結晶を蒸留水と酢酸エチルで洗浄し、真空乾燥することによって粗結晶1.11gを得た。次いで、この粗結晶をセファデックス(登録商標)カラムで精製した。具体的には、まず蒸留水を溶離液として用い流出する成分を除去した後、1N水酸化ナトリウム水溶液を溶離液として用い、流出する成分を分取した。この成分を減圧留去して溶媒を除いた後、残渣を蒸留水60mLに溶解した。溶解した残渣に0.5N硝酸水溶液を加え、pH=1.8とした。この溶液を室温で12時間、静置し、析出した結晶を吸引ろ過により分取した。結晶を蒸留水で洗浄し、真空乾燥することによって、下記の化学式で表される目的物の化合物の結晶0.51gを得た。
(Example 2)
Bis (4,4′-dicboxy-2,2′-bipyridine) 2- (4-trifluoromethyl) pyridine Ruthenium (II) (bis (4,4′-dicarboxy-2,2′-bipyridine) 2- (4 Synthesis of -trifluoromethylphenyl) pyridine ruthenium (II)) In a 500 mL three-necked flask, cis-Dichloro-bis (4,4'-dicboxy-2,2'-bipyridine) Ruthenium 1.32 g (2.00 mmol), 2- 0.92-g (4.1 mmol) of [4- (Trifluoromethyl) phenyl] pyridine was weighed out. Ethylene glycol (250 mL) was added, and the mixture was stirred at 170 ° C. for 1.5 hours under a nitrogen atmosphere. After cooling the reaction solution to room temperature, 8.8 mL of 37% tetrabutylammonium hydroxide-methanol solution was added to the reaction solution, and the mixture was stirred at 170 ° C. for 7 hours under a nitrogen atmosphere. The reaction vessel was air-cooled and the reaction solution was filtered. The obtained filtrate was concentrated under reduced pressure at 90 ° C. and 2 mmHg, and the solvent was distilled off. Distilled water (100 mL) was added to the residue after evaporation of the solvent and stirred, and then 0.5N nitric acid aqueous solution was added to adjust the pH to 1.8. This solution was allowed to stand at room temperature for 12 hours, and the precipitated crystals were collected by suction filtration. The obtained crystals were washed with distilled water and ethyl acetate and dried in vacuo to obtain 1.11 g of crude crystals. The crude crystals were then purified on a Sephadex (registered trademark) column. Specifically, first, components that flowed out were removed using distilled water as an eluent, and then the components that flowed out were collected using a 1N aqueous sodium hydroxide solution as an eluent. This component was distilled off under reduced pressure to remove the solvent, and the residue was dissolved in 60 mL of distilled water. A 0.5N aqueous nitric acid solution was added to the dissolved residue to adjust pH = 1.8. This solution was allowed to stand at room temperature for 12 hours, and the precipitated crystals were collected by suction filtration. The crystal was washed with distilled water and vacuum dried to obtain 0.51 g of the target compound crystal represented by the following chemical formula.

本化合物について、この化合物のH−NMR測定、19F−NMR測定、IR測定、LC−MSを行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 This compound was subjected to 1 H-NMR measurement, 19 F-NMR measurement, IR measurement, and LC-MS to confirm that the target compound was obtained. The analysis results were as follows.

H−NMR(溶媒:d4−MeOH−MeONa)化学シフトσ: 9.02ppm(芳香環上水素、1H)、8.95ppm(芳香環上水素、1H)、8.92ppm(芳香環上水素、1H)、8.89ppm(芳香環上水素、1H)、8.19ppm(芳香環上水素、1H)、8.04ppm(芳香環上水素、1H)、8.00ppm(芳香環上水素、1H)、7.86ppm(芳香環上水素、2H)、7.78ppm(芳香環上水素、3H)、7.71ppm(芳香環上水素、1H)、7.67ppm(芳香環上水素、1H)、7.63ppm(芳香環上水素、2H)、7.13ppm(芳香環上水素、1H)、7.05ppm(芳香環上水素、1H)、6.66ppm(芳香環上水素、1H) 1 H-NMR (solvent: d4-MeOH-MeONa) chemical shift σ: 9.02 ppm (hydrogen on aromatic ring, 1H), 8.95 ppm (hydrogen on aromatic ring, 1H), 8.92 ppm (hydrogen on aromatic ring, 1H), 8.89 ppm (hydrogen on aromatic ring, 1H), 8.19 ppm (hydrogen on aromatic ring, 1H), 8.04 ppm (hydrogen on aromatic ring, 1H), 8.00 ppm (hydrogen on aromatic ring, 1H) 7.86 ppm (hydrogen on aromatic ring, 2H), 7.78 ppm (hydrogen on aromatic ring, 3H), 7.71 ppm (hydrogen on aromatic ring, 1H), 7.67 ppm (hydrogen on aromatic ring, 1H), 7 .63 ppm (hydrogen on aromatic ring, 2H), 7.13 ppm (hydrogen on aromatic ring, 1H), 7.05 ppm (hydrogen on aromatic ring, 1H), 6.66 ppm (hydrogen on aromatic ring, 1H)

19F−NMR(溶媒:d4−MeOH−MeONa)化学シフトσ: −64.3ppm 19 F-NMR (solvent: d4-MeOH-MeONa) chemical shift σ: -64.3 ppm

IR (KBr錠): 3090cm−1、2879cm−1、2821cm−1、1941cm−1、1716cm−1、1604cm−1、1540cm−1、1471cm−1、1405cm−1、1375cm−1、1317cm−1、1255cm−1、1230cm−1、1159cm−1、1116cm−1、1072cm−1、1006cm−1、894cm−1、769cm−1、682cm−1IR (KBr tablet): 3090cm -1, 2879cm -1, 2821cm -1, 1941cm -1, 1716cm -1, 1604cm -1, 1540cm -1, 1471cm -1, 1405cm -1, 1375cm -1, 1317cm -1, 1255 cm −1 , 1230 cm −1 , 1159 cm −1 , 1116 cm −1 , 1072 cm −1 , 1006 cm −1 , 894 cm −1 , 769 cm −1 , 682 cm −1 .

Figure 0005751177
Figure 0005751177

(実施例3)
Bis(4,4’−dicarboxy−2,2’−bipyridine) 2−(4−trifluoromethylphenyl)pyridine Ruthenium(II)(ビス(4,4’−ジカルボキシ−2,2’−ビピリジン) 2−(4−トリフルオロメチルフェニル)ピリジン ルテニウム(II))のTBA(テトラブチルアンモニウム)塩の作製
実施例2で合成したBis(4,4’−dicarboxy−2,2’−bipyridine) 2−(4−trifluoromethylphenyl)pyridine 240mg(0.30mmol))にメタノール50mLを加え、更にここに10%テトラブチルアンモニウムヒドロキシド−メタノール溶液 3.8mL(1.50mol)を加え、均一溶液とした。この溶液に0.5N硝酸水溶液を加え、pH=3.8とした後、5℃で12時間保管した。析出した結晶を吸引ろ過により分取し、この結晶を蒸留水、ジエチルエーテルで洗浄した。洗浄後の結晶を真空乾燥し、236mgの結晶を得た。
(Example 3)
Bis (4,4′-dicboxy-2,2′-bipyridine) 2- (4-trifluoromethyl) pyridine Ruthenium (II) (bis (4,4′-dicarboxy-2,2′-bipyridine) 2- (4 Preparation of TBA (tetrabutylammonium) salt of -trifluoromethylphenyl) pyridine ruthenium (II)) Bis (4,4′-dicboxy-2,2′-bipyridine) synthesized in Example 2 2- (4-trifluoromethylphenyl) ) Pyridine (240 mg (0.30 mmol)), 50 mL of methanol was added, and 3.8 mL (1.50 mol) of a 10% tetrabutylammonium hydroxide-methanol solution was further added to obtain a homogeneous solution. 0.5N nitric acid aqueous solution was added to this solution to adjust the pH to 3.8, and the solution was stored at 5 ° C. for 12 hours. The precipitated crystals were collected by suction filtration, and the crystals were washed with distilled water and diethyl ether. The crystal after washing was vacuum-dried to obtain 236 mg of crystal.

本化合物(結晶)について、この化合物のH−NMR測定、19F−NMR測定を行い、目的の化合物が得られていることを確認した。分析結果は以下の通りであった。 This compound (crystal) was subjected to 1 H-NMR measurement and 19 F-NMR measurement of this compound to confirm that the target compound was obtained. The analysis results were as follows.

H−NMR(溶媒:d4−MeOH−MeONa)化学シフトσ: 9.07ppm(芳香環上水素、1H)、8.99ppm(芳香環上水素、1H)、8.96ppm(芳香環上水素、1H)、8.94ppm(芳香環上水素、1H)、8.21ppm(芳香環上水素、1H)、8.10ppm(芳香環上水素、1H)、8.02ppm(芳香環上水素、1H)、7.96〜7.90ppm(芳香環上水素、4H)、7.81ppm(芳香環上水素、1H)、7.78ppm(芳香環上水素、1H)、7.73ppm(芳香環上水素、1H)、7.69ppm(芳香環上水素、1H)、7.60ppm(芳香環上水素、1H)、7.14ppm(芳香環上水素、1H)、7.08ppm(芳香環上水素、1H)、6.62ppm(芳香環上水素、1H)、3.23ppm(N−CH −CH−CH−CH、8H)、1.67ppm(N−CHCH −CH−CH、8H)、1.42ppm(N−CH−CHCH −CH、8H)、1.02ppm(N−CH−CH−CHCH 、12H) 1 H-NMR (solvent: d4-MeOH-MeONa) chemical shift σ: 9.07 ppm (hydrogen on aromatic ring, 1H), 8.99 ppm (hydrogen on aromatic ring, 1H), 8.96 ppm (hydrogen on aromatic ring, 1H), 8.94 ppm (hydrogen on aromatic ring, 1H), 8.21 ppm (hydrogen on aromatic ring, 1H), 8.10 ppm (hydrogen on aromatic ring, 1H), 8.02 ppm (hydrogen on aromatic ring, 1H) 7.96-7.90 ppm (hydrogen on aromatic ring, 4H), 7.81 ppm (hydrogen on aromatic ring, 1H), 7.78 ppm (hydrogen on aromatic ring, 1H), 7.73 ppm (hydrogen on aromatic ring, 1H), 7.69 ppm (hydrogen on the aromatic ring, 1H), 7.60 ppm (hydrogen on the aromatic ring, 1H), 7.14 ppm (hydrogen on the aromatic ring, 1H), 7.08 ppm (hydrogen on the aromatic ring, 1H) 6.62 ppm (on aromatic ring Hydrogen, 1H), 3.23ppm (N- CH 2 -CH 2 -CH 2 -CH 3, 8H), 1.67ppm (N-CH 2 - CH 2 -CH 2 -CH 3, 8H), 1.42ppm (N-CH 2 -CH 2 - CH 2 -CH 3, 8H), 1.02ppm (N-CH 2 -CH 2 -CH 2 - CH 3, 12H)

19F−NMR(溶媒:d4−MeOH−MeONa)化学シフトσ: −64.5ppm 19 F-NMR (solvent: d4-MeOH-MeONa) chemical shift σ: −64.5 ppm

本発明の化合物は、色素増感太陽電池の色素として好適に用いることができる。   The compound of this invention can be used suitably as a pigment | dye of a dye-sensitized solar cell.

Claims (1)

下記の式(1)で表されるルテニウム含有化合物。
Figure 0005751177
(式(1)中、Rは−CF、−CN、−OCH及び−SCHからなる群より選ばれる基である。)
A ruthenium-containing compound represented by the following formula (1).
Figure 0005751177
(In formula (1), R is a group selected from the group consisting of —CF 3 , —CN, —OCH 3 and —SCH 3 ).
JP2012009984A 2012-01-20 2012-01-20 Ruthenium-containing compound and method for producing the same Active JP5751177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012009984A JP5751177B2 (en) 2012-01-20 2012-01-20 Ruthenium-containing compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012009984A JP5751177B2 (en) 2012-01-20 2012-01-20 Ruthenium-containing compound and method for producing the same

Publications (2)

Publication Number Publication Date
JP2013147465A JP2013147465A (en) 2013-08-01
JP5751177B2 true JP5751177B2 (en) 2015-07-22

Family

ID=49045342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012009984A Active JP5751177B2 (en) 2012-01-20 2012-01-20 Ruthenium-containing compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP5751177B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5770115B2 (en) * 2012-01-20 2015-08-26 シャープ株式会社 Photoelectric conversion element and dye-sensitized solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2036955B1 (en) * 2007-09-17 2012-05-16 JSR Corporation Dyestuff, dye-sensitized solar cell, and method for manufacturing same
JP2009184954A (en) * 2008-02-05 2009-08-20 Sagami Chem Res Center Ruthenium complex and its production method, and dye-sensitized oxide semiconductor electrode
US8734963B2 (en) * 2008-10-02 2014-05-27 Basf Se Complex salts
US20120305070A1 (en) * 2009-09-16 2012-12-06 Uti Limited Partnership Cylometalated dye complexes and their use in dye-sensitized solar cells
AU2010309019A1 (en) * 2009-10-20 2012-05-31 Ube Industries, Ltd. Photoelectric conversion device wherein dye consisting of binuclear ruthenium complex having substituted bipyridyl groups is used, and photochemical cell
JP5770115B2 (en) * 2012-01-20 2015-08-26 シャープ株式会社 Photoelectric conversion element and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2013147465A (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5281863B2 (en) Dye, dye-sensitized solar cell and method for producing the same
JP2009067976A (en) Dyestuff, dye-sensitized solar cell, and method for manufacturing the same
JP5086807B2 (en) Novel amino group-containing heterocyclic derivative and sensitizing dye for photoelectric conversion containing the heterocyclic derivative
JP6523335B2 (en) Porphyrin molecular catalysts for selective electrochemical reduction of CO2 to CO
US8580961B2 (en) 2-phenyl-6-azolylpyridine-based ligand and group VIII transition metal complex
JP5898725B2 (en) Photosensitizer and photoelectric conversion element
JP5751177B2 (en) Ruthenium-containing compound and method for producing the same
JP4953658B2 (en) Phthalocyanine derivative and method for producing the same
KR101838389B1 (en) Carbazole based on Novel Hole Transporting Materials for Solid State Dye-sensitized and Organic/Inorganic Hybrid Solar Cells
JPWO2009113511A1 (en) Liquid porphyrin derivative and method for producing the same
JP2006347912A (en) Ruthenium complex, dye sensitizing metal oxide semiconductor electrode including the same and solar battery equipped with the semiconductor electrode
US9627633B2 (en) Perylene functionalized porphyrin dyes for dye-sensitized solar cells
KR101499476B1 (en) Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
JP2011037788A (en) Transition metal complex, photosensitizer dye, and oxide semiconductor electrode and dye-sensitized solar cell containing the dye
KR101760493B1 (en) Benzobisoxazole derivatives, method of preparation thereof and organic solar cell comprising the same
US20180114919A1 (en) Dye-sensitized solar cell and electrolysis solution for dye-sensitized solar cell
WO2016136164A1 (en) Photosensitizer and photoelectric conversion element
KR101433826B1 (en) Dual-Channel Anchorable Heterocyclic Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
KR101453553B1 (en) Dual-Channel Anchorable Amine Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
US8722905B2 (en) Dyes and photoelectric conversion devices containing the same
JP6966775B2 (en) Aromatic amine derivative with organic cation moiety and perovskite solar cell using it
JP2014101464A (en) Photosensitizer and photoelectric conversion element
KR101722003B1 (en) Novel Porphyrin Derivatives, Organic Dye Sensitizers Containing The Same for Highly Efficient Dye-sensitized Solar Cells And Dye-sensitized Solar Cells Containing The Same
KR101778292B1 (en) Triphenylene derivatives, method of preparation thereof and organic solar cell comprising the same
JP2011219577A (en) Novel compound and novel pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R150 Certificate of patent or registration of utility model

Ref document number: 5751177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250