JP5751011B2 - Organic EL lighting device and driving method thereof - Google Patents

Organic EL lighting device and driving method thereof Download PDF

Info

Publication number
JP5751011B2
JP5751011B2 JP2011115317A JP2011115317A JP5751011B2 JP 5751011 B2 JP5751011 B2 JP 5751011B2 JP 2011115317 A JP2011115317 A JP 2011115317A JP 2011115317 A JP2011115317 A JP 2011115317A JP 5751011 B2 JP5751011 B2 JP 5751011B2
Authority
JP
Japan
Prior art keywords
organic
anode
cathode
lighting device
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011115317A
Other languages
Japanese (ja)
Other versions
JP2012244078A (en
Inventor
有章 志田
有章 志田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Seiki Co Ltd
Original Assignee
Nippon Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Seiki Co Ltd filed Critical Nippon Seiki Co Ltd
Priority to JP2011115317A priority Critical patent/JP5751011B2/en
Publication of JP2012244078A publication Critical patent/JP2012244078A/en
Application granted granted Critical
Publication of JP5751011B2 publication Critical patent/JP5751011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Description

本発明は、有機ELパネルを用いた照明装置において、特に表示素子の欠陥部を自己修復しつつ、ちらつきや視認者の目の疲労を軽減する有機EL照明装置およびその駆動方法に関するものである。   The present invention relates to an organic EL lighting device using an organic EL panel, and particularly to an organic EL lighting device that reduces flickering and eye fatigue of a viewer while self-repairing a defective portion of a display element, and a driving method thereof.

近年有機ELは自己発光表示装置として脚光を浴びており、液晶表示装置に比べ視野角依存性が少ない、コントラスト比が高い、薄膜化が可能、などの利点からディスプレイ用途として市場投入が進み、最近では有機ELパネルを使用した薄型テレビも市場投入されている。
さらに近年では有機ELは、LED照明のような点発光ではなく面発光である点や、薄くて軽い素子であり、形状に制約がないことから照明としての用途としても注目されている。
有機ELパネルを照明用途として、大面積のパネル構造にしようとすると、陽極電極と離れた位置では陽極層(ITO)の配線抵抗による電圧降下により、輝度が低くなるため、表示パネルが大きくなるに従い、同じ表示素子内であっても陽極電極に近い位置と遠い位置では発光の強さが異なり、輝度ムラが生ずる。
In recent years, organic EL has been in the spotlight as a self-luminous display device, and has been put on the market as a display application due to advantages such as less viewing angle dependency, higher contrast ratio, and thinner film compared to liquid crystal display devices. In the market, flat-screen TVs using organic EL panels are also on the market.
Furthermore, in recent years, organic EL has been attracting attention as a lighting application because it is not a point light emission like LED lighting but a surface light emission, is a thin and light element, and has no restriction in shape.
When an organic EL panel is used for lighting and has a large-area panel structure, the brightness decreases due to the voltage drop due to the wiring resistance of the anode layer (ITO) at a position away from the anode electrode. Even within the same display element, the intensity of light emission differs between a position close to and far from the anode electrode, resulting in uneven brightness.

そこで、有機EL照明装置においては、そのパネル内において輝度ムラが現れない程度の面積の有機ELパネルを複数枚使用して、それらを複数行・複数列に配置して大面積とする構造が特許文献1のように開示されている。   Therefore, in the organic EL lighting device, there is a patented structure in which a plurality of organic EL panels having an area where luminance unevenness does not appear in the panel are used and arranged in a plurality of rows and a plurality of columns to increase the area. It is disclosed as document 1.

有機EL素子の製造工程において、発光層の厚みに薄い箇所または発光層が存在せず陽極層と陰極層とが接触する箇所等の欠陥により、陽極層と陰極層とが短絡してリーク電流が発生し、発光不良を来すという問題があり、これら発光層の薄い箇所は他と比べて電気的抵抗が小さく駆動電流がその箇所に集中するので、他の正常な発光層に流れる駆動電流が減少し発光輝度が低下するのである。短絡による影響は、同一陰極線上の他の表示画素に対しても及ぼされるため、輝度ムラが生ずる。   In the manufacturing process of the organic EL element, the anode layer and the cathode layer are short-circuited due to a defect such as a thin portion of the light emitting layer or a portion where the light emitting layer is not present and the anode layer and the cathode layer are in contact with each other. There is a problem that light emission failure occurs, and the thin portions of these light emitting layers have a smaller electrical resistance than the others, and the drive current concentrates on those portions, so that the drive current flowing through other normal light emitting layers is reduced. It decreases and the light emission luminance decreases. Since the effect of the short circuit is exerted on other display pixels on the same cathode line, luminance unevenness occurs.

有機ELパネルを照明用途として使用する際、画像などの表示はしないため、そのパネル内においては均一な輝度で発光させることが重要とされ、上記のような原因により輝度ムラが生じることは、非常に避けたい事象である。   When an organic EL panel is used as a lighting application, images are not displayed. Therefore, it is important to emit light with uniform brightness within the panel, and uneven brightness due to the above causes is extremely This is an event that you want to avoid.

これらの欠陥箇所を逆バイアスを印加することで排除する方法が特許文献2に開示されている。
図6は、パッシブマトリクス駆動方式の有機EL表示装置における逆バイアス印加時の駆動回路を示したものであり、このようなパッシブマトリクス有機EL表示装置1000は、有機EL素子100と、陰極線側駆動回路200と、陽極線側駆動回路300と、表示コントローラ400と、により構成される。
Patent Document 2 discloses a method for eliminating these defective portions by applying a reverse bias.
FIG. 6 shows a drive circuit when a reverse bias is applied in an organic EL display device of a passive matrix drive system. Such a passive matrix organic EL display device 1000 includes an organic EL element 100 and a cathode line side drive circuit. 200, an anode line side drive circuit 300, and a display controller 400.

陰極線側駆動回路200は、全ての走査スイッチ201〜20mを逆バイアスVr側に切り替えると共に、陽極線側駆動回路300は、全てのドライブスイッチ301〜30nをアース電位(0V)に切り替えて、全ての表示画素eに逆バイアスVrを印加する期間(逆バイアス期間(リセット期間))を設ける。   The cathode line side drive circuit 200 switches all the scanning switches 201 to 20m to the reverse bias Vr side, and the anode line side drive circuit 300 switches all the drive switches 301 to 30n to the ground potential (0 V), A period for applying the reverse bias Vr to the display pixel e (reverse bias period (reset period)) is provided.

例えば、図6の表示画素e33が不良箇所とすると、この逆バイアス期間において、上記不良箇所e33に逆バイアスVrによるリーク電流I33が集中して流れ、発光層が気化した膨張圧により陰極線aが湾曲したり、さらに陰極線aが破断屈曲する。このような陰極線部分は、発光はしないもののリーク電流も発生しないため、他の正常な発光層における発光不良を防止することができる。 Cathode ray For example, when the display pixel e 33 in FIG. 6 is a defective portion, in the reverse bias period, flow concentrates leakage current I 33 due to the reverse bias Vr to the defective portion e 33 is, by the expansion pressure luminous layer is vaporized a bends, and further, the cathode line a breaks and bends. Such a cathode ray portion does not emit light, but does not generate a leakage current, so that it is possible to prevent light emission defects in other normal light emitting layers.

このように、有機EL素子100の不良箇所を破壊し、他の正常な発光層における発光不良を防止することは自己修復といわれる。   Thus, destroying a defective portion of the organic EL element 100 and preventing a light emitting failure in another normal light emitting layer is called self-repair.

図3は、フレーム周波数Fとリセット期間Trの関係による有機ELパネルの見栄えの違いについて説明した図である。
有機ELパネルは、自己修復を行うために逆バイアス印加時は非発光となるため、領域Pのようにフレーム周波数Fを50Hz以下にすると、発光/非発光(明暗のちらつき)が連続して視認されるフリッカーが生じる。
FIG. 3 is a diagram illustrating the difference in appearance of the organic EL panel due to the relationship between the frame frequency F and the reset period Tr.
Since the organic EL panel does not emit light when reverse bias is applied in order to perform self-repair, when the frame frequency F is 50 Hz or less as in the region P, light emission / non-light emission (bright / dark flicker) is continuously visible. Flicker is generated.

よって、領域Qのように、有機ELパネルのフレーム周波数Fをヒトがフリッカーを感じない臨界融合周波数50〜70Hz以上にすることで、フリッカーを防止している。   Therefore, as in the region Q, flicker is prevented by setting the frame frequency F of the organic EL panel to a critical fusion frequency of 50 to 70 Hz or higher at which humans do not feel flicker.

特開2004−69774号公報JP 2004-69774 A 特開平11−305727号公報JP-A-11-305727

しかしながら、図3に示す領域Qのような、例えば50Hzから200Hz程度の高いフレーム周波数で逆バイアスを印加すると、逆バイアス期間(非発光期間)も同じく短い周期で発生する(頻繁に非発光が生じる)ので、照明等の用途で長時間使っていると、疲れやすい等の問題があった。   However, when a reverse bias is applied at a high frame frequency of, for example, about 50 Hz to 200 Hz as in the region Q shown in FIG. 3, the reverse bias period (non-light emission period) also occurs with a short cycle (non-light emission frequently occurs). Therefore, when used for a long time in applications such as lighting, there was a problem that it was easy to get tired.

本発明は、このような問題に鑑みなされ、逆バイアスを印加することで有機EL素子の不良箇所を自己修復し、かつ視認者の眼疲労等を軽減することができる有機EL照明装置およびその駆動方法を提供する事を目的とする。   The present invention has been made in view of such problems, and an organic EL lighting device capable of self-repairing a defective portion of an organic EL element by applying a reverse bias and reducing eye fatigue of a viewer, and driving thereof The purpose is to provide a method.

本発明は、前述した課題を解決するため、請求項1では、透明基板上に陽極と、発光層と、陰極と、を順次積層してなる有機ELパネルと、前記陽極に第一電流を供給する陽極駆動回路と、前記陰極に第二電流を供給する陰極駆動回路と、前記陽極駆動回路と前記陰極駆動回路とを制御する制御部と、を備える有機EL照明装置において、前記制御部は、前記陽極駆動回路及び前記陰極駆動回路の制御において、フレーム毎に、前記陽極駆動回路を介して前記陽極に第一電流を供給し、前記陰極駆動回路を介して前記陰極をアース電位に接続させる発光期間と、前記陽極駆動回路を介して前記陽極をアース電位に接続し、前記陰極駆動回路を介して前記陰極に第二電流を供給する非発光期間と、を設定し、前記非発光期間は、前記フレームの周期に対して0.05%以下であり、かつ前記有機ELパネルの素子容量と配線抵抗の積である時定数以上に設定されているものであり、斯かる構成により、有機EL素子の不良箇所を自己修復しつつ、ちらつきや視認者の目の疲労を軽減する有機EL照明装置を提供することができる。
The present invention is to solve the problems described above, in claim 1, and an anode on a transparent substrate, a light emitting layer, an organic EL panel obtained by laminating a cathode, sequentially, a first current before Symbol anode an anode drive circuit for supplying, in the organic EL lighting device comprising a cathode driving circuit for supplying a second current to the prior SL cathode, and a control unit for controlling said cathode driving circuit and the anode driving circuit, wherein the control unit In the control of the anode driving circuit and the cathode driving circuit, a first current is supplied to the anode via the anode driving circuit for each frame, and the cathode is connected to the ground potential via the cathode driving circuit. A non-emission period, and a non-emission period, and a non-emission period in which the anode is connected to the ground potential via the anode drive circuit and a second current is supplied to the cathode via the cathode drive circuit. It is, of the frame And 0.05% or less with respect to the period, and the are those which are set to at least the time constant is the product of the device capacitance and the wiring resistance of the organic EL panel, by such a configuration, a defective portion of the organic EL device It is possible to provide an organic EL lighting device that reduces flickering and eye fatigue of the viewer while self-healing.

また、請求項2では、前記第一電流は定電流源より供給され、前記第二電流は定電圧源より供給されるように構成したものであり、有機ELパネルを発光させる際に、定電流駆動させることで、安定した輝度で有機ELパネルを発光させることができる。   According to a second aspect of the present invention, the first current is supplied from a constant current source, and the second current is supplied from a constant voltage source. When the organic EL panel emits light, the constant current is supplied. By driving, the organic EL panel can emit light with stable luminance.

また、請求項3では、前記制御は前記陽極駆動回路及び前記陰極駆動回路の制御において、前記フレーム周波数が1Hz以下であり、かつ前記フレーム内の前記非発光期間が0.5msec以下に設定されているものであり、請求項1の有機EL照明装置に対し、非常に低い周波数で駆動させることで、リセット(非発光)の頻度を少なくし、有機EL素子の不良箇所を自己修復しつつ、ちらつきや視認者の目の疲労をさらに軽減する有機EL照明装置を提供することができる。
Further, in claim 3, wherein the control is in the control of the anode driving circuit and the cathode driving circuit, wherein the frequency of the frame is less than or equal to 1 Hz, and the non-emission period in said frame below 0.5msec The organic EL lighting device according to claim 1 is driven at a very low frequency to reduce the frequency of reset (non-light emission) and to self-repair defective portions of the organic EL element. On the other hand, it is possible to provide an organic EL lighting device that further reduces flickering and eye fatigue of the viewer.

また、請求項4では、前記非発光期間は、前記フレームの最終尾に設定されたものであり、各フレームにリセット期間を設け、不良箇所を確実に破壊することができる。
Further, in claim 4, wherein the non-light emitting period has been set to the last tail of the frame, the reset period is provided in each frame, it is possible to reliably destroy the defective portion.

また、請求項5では、前記有機ELパネルを複数備えるものであり、有機ELパネルを輝度ムラが発生しない大きさで使用つつも、大面積の照明装置として使用することができる。   According to a fifth aspect of the present invention, a plurality of the organic EL panels are provided, and the organic EL panel can be used as a large-area lighting device while being used in a size that does not cause luminance unevenness.

また、請求項6では、前記陽極駆動回路は、複数の前記有機ELパネルの前記陽極に並列に接続され、前記陰極駆動回路は、複数の前記有機ELパネルの前記陰極に並列に接続されているものであり、駆動回路を有機ELパネル毎に設けず、装置を簡素化でき、コスト削減することができる。   According to a sixth aspect of the present invention, the anode driving circuit is connected in parallel to the anodes of the plurality of organic EL panels, and the cathode driving circuit is connected in parallel to the cathodes of the plurality of organic EL panels. Therefore, the drive circuit is not provided for each organic EL panel, and the apparatus can be simplified and the cost can be reduced.

また、請求項7では、透明基板上に陽極と、発光層と、陰極と、を順次積層してなる有機EL照明装置の駆動方法であって、フレーム毎に、前記陽極に第一電流を供給し、前記陰極をアース電位に接続させる発光期間と、前記陽極をアース電位に接続し、前記陰極に第二電流を供給し、逆バイアスを印加する非発光期間とを備え、前記フレームの周期に対する前記逆バイアス印加時間の割合が0.05%以下であり、さらに前記逆バイアス印加時間が前記有機EL照明装置の素子容量と配線抵抗の積である時定数以上である有機EL照明装置の駆動方法であり、有機EL素子の不良箇所を自己修復しつつ、ちらつきや視認者の目の疲労を軽減する有機EL照明装置の駆動方法を提供することができる。
According to a seventh aspect of the invention , there is provided a driving method for an organic EL lighting device in which an anode, a light emitting layer, and a cathode are sequentially laminated on a transparent substrate, and a first current is supplied to the anode for each frame. A non-light-emitting period in which the cathode is connected to the ground potential, a non-light-emitting period in which the anode is connected to the ground potential, a second current is supplied to the cathode, and a reverse bias is applied . the ratio of the application time of the reverse bias is not more than 0.05%, further application time of the reverse bias of the organic EL lighting device is constant or when the the product of the device capacitance and the wiring resistance of the organic EL lighting device It is a driving method, and it is possible to provide a driving method of an organic EL lighting device that reduces flickering and eye fatigue of a viewer while self-repairing a defective portion of the organic EL element.

また、請求項8では、透明基板上に陽極と、発光層と、陰極と、を順次積層してなる有機EL照明装置の駆動方法であって、フレーム毎に、前記陽極に第一電流を供給し、前記陰極をアース電位に接続させる発光期間と、前記陽極をアース電位に接続し、前記陰極に第二電流を供給し、逆バイアスを印加する非発光期間とを備え、前記フレームの周波数が1Hz以下であり、さらに前記逆バイアス印加時間が0.5msec以下かつ前記有機EL照明装置の素子容量と配線抵抗の積である時定数以上である有機EL照明装置の駆動方法であり、請求項7の有機EL照明装置の駆動方法に対し、非常に低い周波数で駆動させることで、リセット(非発光)の頻度を少なくし、有機EL素子の不良箇所を自己修復しつつ、ちらつきや視認者の目の疲労をさらに軽減する有機EL照明装置の駆動方法を提供することができる。
According to another aspect of the present invention , there is provided a driving method for an organic EL lighting device in which an anode, a light emitting layer, and a cathode are sequentially laminated on a transparent substrate, and a first current is supplied to the anode for each frame. A non-emission period in which the cathode is connected to the ground potential, a non-emission period in which the anode is connected to the ground potential, a second current is supplied to the cathode, and a reverse bias is applied. and at 1Hz or less, a further method for driving an organic EL lighting device is constant over time the application time of the reverse bias is a product of the device capacitance and the wiring resistance of less and the organic EL lighting device 0.5 msec, claim 7 is driven at a very low frequency to reduce the frequency of reset (non-light emission), self-repair the defective portion of the organic EL element, Eye The driving method of the organic EL lighting device further reduce the fatigue can be provided.

本発明は、有機EL照明装置において、有機EL素子の不良箇所を自己修復し、ちらつきや視認者の目の疲労を軽減する有機EL照明装置およびその駆動方法を提供する。   The present invention provides an organic EL lighting device and a driving method thereof for self-repairing a defective portion of an organic EL element in an organic EL lighting device to reduce flickering and eye fatigue of a viewer.

本発明の一実施形態における有機EL照明装置の概略図であるIt is the schematic of the organic electroluminescent illuminating device in one Embodiment of this invention. 上記発明の有機EL照明装置およびその駆動方法における電圧の波形図であるIt is a wave form diagram of a voltage in the organic EL lighting device of the above-mentioned invention, and its drive method. 有機ELパネルのフレーム周波数とリセット期間の関係による有機ELパネルの見栄えの違いについての説明図であるIt is explanatory drawing about the difference in the appearance of the organic electroluminescent panel by the relationship between the frame frequency of an organic electroluminescent panel, and a reset period. 本発明の実施例により駆動した有機EL照明装置の『見えやすさ』を主観評価した結果であり、表4をグラフ化したものであるFIG. 4 is a result of subjective evaluation of “ease of viewing” of an organic EL lighting device driven according to an embodiment of the present invention, and is a graph of Table 4. 上記実施例により駆動した有機EL照明装置の『疲れにくさ』を主観評価した結果であり、表3をグラフ化したものであるFIG. 3 is a result of subjective evaluation of “hardness to fatigue” of the organic EL lighting device driven by the above embodiment, and is a graph of Table 3. パッシブマトリクス駆動方式の有機EL表示装置のリセット期間における駆動回路図であるIt is a drive circuit diagram in the reset period of the organic EL display device of a passive matrix drive system.

以下、図面を用いて、本発明の有機EL照明装置1の駆動方法について説明する。
図1は、有機EL照明装置1の概略図である。有機EL照明装置1は、複数の有機ELパネル10と、陽極線20と、陰極線30と、陽極駆動回路41と、陰極駆動回路42とを有する矩形波生成用駆動回路40と、により構成されている。
有機ELパネル10は、陽極電極10aと、陰極電極10bとを備え、素子内において輝度ムラが現れない程度の面積で形成され、この有機ELパネル10を複数行・複数列に配置して有機EL照明装置1を大面積化する。
Hereinafter, the driving method of the organic EL lighting device 1 of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of an organic EL lighting device 1. The organic EL lighting device 1 includes a plurality of organic EL panels 10, an anode line 20, a cathode line 30, an anode drive circuit 41, and a rectangular wave generation drive circuit 40 having a cathode drive circuit 42. Yes.
The organic EL panel 10 includes an anode electrode 10a and a cathode electrode 10b. The organic EL panel 10 is formed with an area where luminance unevenness does not appear in the element, and the organic EL panel 10 is arranged in a plurality of rows and a plurality of columns. The lighting device 1 is increased in area.

陽極線20は、陽極駆動回路41と陽極電極10aとの間の配線であり、有機ELパネル10の発光時には、陽極駆動回路41は陽極線20を定電流源に接続し、順バイアスVcによる第一電流(定電流0.3A)を供給する。また、非発光時には、陽極駆動回路41は陽極線20をアース電位(0V)に接続する。   The anode line 20 is a wiring between the anode drive circuit 41 and the anode electrode 10a. When the organic EL panel 10 emits light, the anode drive circuit 41 connects the anode line 20 to a constant current source, and the forward bias Vc is used. One current (constant current 0.3 A) is supplied. When no light is emitted, the anode drive circuit 41 connects the anode line 20 to the ground potential (0 V).

陰極線30は、陰極駆動回路42と陰極電極10bとの間の配線であり、有機ELパネル10の発光時には、陰極駆動回路42は陽極線30をアース電位(0V)に接続する。また、非発光時には、陰極駆動回路42は陰極線30を定電圧源に接続し、逆バイアスVrによる第二電流を供給する。   The cathode line 30 is a wiring between the cathode drive circuit 42 and the cathode electrode 10b. When the organic EL panel 10 emits light, the cathode drive circuit 42 connects the anode line 30 to the ground potential (0 V). Further, when no light is emitted, the cathode drive circuit 42 connects the cathode line 30 to a constant voltage source and supplies a second current with a reverse bias Vr.

これより、本願発明の有機EL照明装置1の駆動方法について説明する。
矩形波生成用駆動回路40は、制御部2からの照明信号に基づき、オン(有機ELパネル10発光)時には陽極駆動回路41を介し陽極線20に+電位を印加し、陰極駆動回路42を介し陰極線30にアース電位(0V)を印加する。オフ(有機ELパネル10リセット)時には陽極線20へアース電位(0V)を印加し、陰極線30に−電位を印加する。
矩形波生成用駆動回路40は、フレーム周波数Fを1Hz以下(フレーム周期Tfを1sec以上)とし、フレーム内のリセット制御を行うリセット期間Trを0.5msec以下(フレーム周期Tfに対するリセット期間Trの割合0.05%以下)とし、さらに有機EL照明装置1の素子容量C(450nF)と配線抵抗R(9Ω)から求められる時定数T(450nF×9Ω≒4μsec)以上とする。また、有機EL照明装置1の調光は、PWM制御もしくはPAM制御等により行われる。
From this, the drive method of the organic electroluminescent illuminating device 1 of this invention is demonstrated.
Based on the illumination signal from the control unit 2, the rectangular wave generating drive circuit 40 applies a positive potential to the anode line 20 via the anode drive circuit 41 when turned on (light emission from the organic EL panel 10), and via the cathode drive circuit 42. A ground potential (0 V) is applied to the cathode line 30. When OFF (the organic EL panel 10 is reset), a ground potential (0 V) is applied to the anode wire 20, and a negative potential is applied to the cathode wire 30.
The rectangular wave generating drive circuit 40 sets the frame frequency F to 1 Hz or less (the frame period Tf is 1 sec or more), and sets the reset period Tr for performing the reset control in the frame to 0.5 msec or less (ratio of the reset period Tr to the frame period Tf) 0.05% or less) and a time constant T (450 nF × 9Ω≈4 μsec) obtained from the element capacitance C (450 nF) and the wiring resistance R (9Ω) of the organic EL lighting device 1. The light control of the organic EL lighting device 1 is performed by PWM control or PAM control.

斯かる構成により、上記で述べたように製造工程等で発生する有機EL照明装置1の不良箇所にリーク電流が集中して流れ、発光層が気化した膨張圧により陰極線が湾曲したり、さらに陰極線が破断屈曲し、他の正常な発光層における発光不良を確実に防止しつつ、視認者の眼疲労等を軽減することができる。   With such a configuration, as described above, leakage current concentrates on the defective portion of the organic EL lighting device 1 generated in the manufacturing process and the like, and the cathode line is bent due to the expansion pressure evaporated from the light emitting layer. Can be bent and bent, and it is possible to reduce eye fatigue and the like of the viewer while reliably preventing light emission defects in other normal light emitting layers.

本発明においては、有機ELパネル10を照明用途で使用するため、ダイナミック駆動ではなく、スタティック駆動を行っている。
これは、図6のようなダイナミック駆動方式の場合、走査ライン1ラインあたりの発光時間はフレーム期間Tfを走査ライン数で割った時間になる。走査ラインの本数が多いほど走査ライン当たりの発光期間が短くなり、発光輝度が低下してしまい、この短い発光期間において所望の発光輝度を得るためには、有機ELパネル10の個々の表示画素eをより高い輝度で発光させる必要があるため、スタティック駆動方式の場合に比べて数倍(走査ライン数倍)の電流を流す必要がある。
すなわち、ダイナミック駆動方式は、有機ELパネル10の個々の表示画素eに瞬間的に大電流を流す必要があり、このことが電力ロスおよび有機ELパネル10の寿命低下の要因となるため、常に発光させる照明用途としての有機EL照明装置1は、本発明の一実施形態として、スタティック駆動方式を用いている。
In the present invention, since the organic EL panel 10 is used for illumination, static driving is performed instead of dynamic driving.
In the case of the dynamic drive method as shown in FIG. 6, the light emission time per scanning line is a time obtained by dividing the frame period Tf by the number of scanning lines. As the number of scanning lines increases, the light emission period per scanning line becomes shorter and the light emission luminance decreases. In order to obtain a desired light emission luminance in this short light emission period, each display pixel e of the organic EL panel 10 is displayed. Therefore, it is necessary to flow a current several times (several times the number of scanning lines) as compared with the case of the static drive method.
That is, in the dynamic drive method, it is necessary to instantaneously flow a large current to each display pixel e of the organic EL panel 10, which causes power loss and a decrease in the lifetime of the organic EL panel 10. The organic EL lighting device 1 as a lighting application uses a static drive system as an embodiment of the present invention.

これより、有機EL照明装置1の駆動方法のうち、フレーム周波数Fと、リセット期間Trの設定方法について実施例1,2と比較例1乃至6を用いて説明する。
本発明において、有機EL照明装置1は順方向に定電流波形を0.3A(順バイアスVc)を印加し、逆方向に定電圧波形を−5V印加して3000cd/m2で色温度2000Kに発光するよう外部回路を作成した。
From this, among the driving methods of the organic EL lighting device 1, the setting method of the frame frequency F and the reset period Tr will be described using Examples 1 and 2 and Comparative Examples 1 to 6.
In the present invention, the organic EL lighting device 1 applies a constant current waveform of 0.3 A (forward bias Vc) in the forward direction, applies a constant voltage waveform of −5 V in the reverse direction, and emits light at a color temperature of 2000 K at 3000 cd / m 2. An external circuit was created to do this.

フレーム周波数Fを1Hz、リセット期間Trを0.5msec(フレーム周期Tfに対するリセット期間Trの割合Xを0.05%)とした。
以下、実施例1,2と比較例1乃至6のフレーム周波数Fと、リセット期間Trと、フレーム周期Tfに対するリセット期間Trの割合Xとを表1に整理した。

Figure 0005751011
The frame frequency F was 1 Hz and the reset period Tr was 0.5 msec (the ratio X of the reset period Tr to the frame period Tf was 0.05%).
Table 1 below summarizes the frame frequency F, the reset period Tr, and the ratio X of the reset period Tr to the frame period Tf in Examples 1 and 2 and Comparative Examples 1 to 6.
Figure 0005751011

<見えやすさ評価>
有機EL照明装置1を各実施例、比較例の駆動方法別に10台ずつ暗室にて点灯させ、見えやすさを5段階(5:見やすい、1:見にくい)で主観評価を行い、以下の表2に評価結果を整理した。

Figure 0005751011
<Ease of visibility evaluation>
Ten organic EL lighting devices 1 are turned on in the dark room for each of the driving methods of the examples and comparative examples, and subjectivity is evaluated in five stages (5: easy to see, 1: difficult to see). The evaluation results were organized.
Figure 0005751011

図4は上記表2の結果をグラフに表したものであり、従来例1(F=100Hz、Tr=0sec)、従来例5(F=2Hz、Tr=0.5sec)、実施例1(F=1Hz、Tr=0.5sec)、実施例2(f=0.1Hz、Tr=0.5sec)において、見やすいことが確認された。   FIG. 4 is a graph showing the results of Table 2 above. Conventional Example 1 (F = 100 Hz, Tr = 0 sec), Conventional Example 5 (F = 2 Hz, Tr = 0.5 sec), Example 1 (F = 1 Hz, Tr = 0.5 sec) and Example 2 (f = 0.1 Hz, Tr = 0.5 sec) were confirmed to be easy to see.

<疲れにくさ評価>
有機EL照明装置1を各実施例、比較例の駆動方法別に10台ずつ暗室にて点灯させ、疲れにくさを5段階(5:疲れにくい、1:疲れやすい)で主観評価を行い、以下の表3に評価結果を整理した。

Figure 0005751011
<Evaluation of fatigue resistance>
The organic EL lighting device 1 is turned on in the dark room by 10 units for each of the driving methods of the examples and comparative examples, and subjectivity is evaluated in five stages (5: less fatigue, 1: easy to fatigue). Table 3 summarizes the evaluation results.
Figure 0005751011

図5は上記表3の結果をグラフに表したものであり、従来例1(F=100Hz、Tr=0sec)、実施例1(F=1Hz、Tr=0.5sec)、実施例2(F=0.1Hz、Tr=0.5sec)において、疲れにくいことが確認された。   FIG. 5 is a graph showing the results of Table 3 above. Conventional example 1 (F = 100 Hz, Tr = 0 sec), Example 1 (F = 1 Hz, Tr = 0.5 sec), Example 2 (F = 0.1 Hz, Tr = 0.5 sec), it was confirmed that it was less fatigued.

<短絡評価>
有機EL照明装置1を80℃の環境下で450h点灯状態させ、短絡発生の有無を評価し、以下の表4に評価結果を整理した。また、見えやすさ、疲れにくさの評価結果の平均値も同様に整理した。

Figure 0005751011
<Short-circuit evaluation>
The organic EL lighting device 1 was turned on for 450 hours in an environment of 80 ° C., the presence or absence of occurrence of a short circuit was evaluated, and the evaluation results are summarized in Table 4 below. In addition, the average values of the evaluation results of visibility and fatigue resistance were arranged in the same manner.
Figure 0005751011

上記の表4より、従来例1(F=100Hz、Tr=0sec)において短絡が確認された。
図3における領域P(従来例3乃至6)はフレーム周波数Fが臨界融合周波数以下であるのでフリッカーが発生し、それにより見にくく、目が疲れやすい領域であり、
領域Q(従来例1,2)は、フレーム周波数Fが臨界融合周波数以上であるので、フリッカーは発生しないが、リセット(非発光)が短い周期で発生する(頻繁に非発光が生じる)ので、目が疲れやすい等の問題がある。
領域Rにおいては、有機ELパネル10の時定数T以下であり、本来の目的である自己修復を達成することができない。
領域S1は、リセット期間割合Xが0.05%以下であり、目の疲れが抑制される。また、領域S2は、リセット期間割合Xが0.05%以下と十分に短いので、フリッカーが視認されず、さらにフレーム周波数Fが低いことにより、リセットによる非発光の頻度が少ないため、目の疲れが抑制される。
From Table 4 above, a short circuit was confirmed in Conventional Example 1 (F = 100 Hz, Tr = 0 sec).
The region P (conventional examples 3 to 6) in FIG. 3 is a region where the frame frequency F is lower than the critical fusion frequency and thus flicker occurs, which makes it difficult to see and eye fatigue.
In the region Q (conventional examples 1 and 2), since the frame frequency F is equal to or higher than the critical fusion frequency, flicker does not occur, but reset (non-light emission) occurs in a short period (non-light emission frequently occurs). There are problems such as easy eye fatigue.
In the region R, the time constant T is equal to or less than the time constant T of the organic EL panel 10, and the original purpose of self-repair cannot be achieved.
In the region S1, the reset period ratio X is 0.05% or less, and eye fatigue is suppressed. In the region S2, since the reset period ratio X is sufficiently short as 0.05% or less, flicker is not visually recognized, and furthermore, since the frame frequency F is low, the frequency of non-light emission due to reset is low, and thus eye fatigue is caused. Is suppressed.

斯かる有機EL照明装置およびその駆動方法によって、逆バイアスを印加することで有機EL素子の不良箇所を自己修復し、かつ視認者の眼疲労等を軽減することができる。   With such an organic EL lighting device and its driving method, a defective portion of the organic EL element can be self-repaired by applying a reverse bias, and eye fatigue of a viewer can be reduced.

1 有機EL照明装置
2 制御部
10 有機ELパネル
10a 陽極電極
10b 陰極電極
20 陽極線
30 陰極線
40 矩形波生成用駆動回路
41 陽極駆動回路
42 陰極駆動回路
Vc 順バイアス
Vr リセット電圧(逆バイアス)
Tf フレーム周期
Tr リセット周期(リセット期間)
F フレーム周波数
X リセット期間割合
1000 パッシブマトリクス有機EL表示装置
100 有機ELパネル
200 陰極線走査回路
300 陽極線走査回路
400 表示コントローラ
a 陰極線
b 陽極線
e 表示画素
DESCRIPTION OF SYMBOLS 1 Organic EL lighting device 2 Control part 10 Organic EL panel 10a Anode electrode 10b Cathode electrode 20 Anode line 30 Cathode line 40 Rectangular wave generation drive circuit 41 Anode drive circuit 42 Cathode drive circuit Vc Forward bias Vr Reset voltage (reverse bias)
Tf Frame period Tr Reset period (reset period)
F Frame frequency X Reset period ratio 1000 Passive matrix organic EL display device 100 Organic EL panel 200 Cathode line scanning circuit 300 Anode line scanning circuit 400 Display controller a Cathode line b Anode line e Display pixel

Claims (8)

透明基板上に陽極と、発光層と、陰極と、を順次積層してなる有機ELパネルと、
記陽極に第一電流を供給する陽極駆動回路と、前記陰極に第二電流を供給する陰極駆動回路と、前記陽極駆動回路と前記陰極駆動回路とを制御する制御部と、を備える有機EL照明装置において、
前記制御部は、前記陽極駆動回路及び前記陰極駆動回路の制御において、フレーム毎に、前記陽極駆動回路を介して前記陽極に第一電流を供給し、前記陰極駆動回路を介して前記陰極をアース電位に接続させる発光期間と、前記陽極駆動回路を介して前記陽極をアース電位に接続し、前記陰極駆動回路を介して前記陰極に第二電流を供給する非発光期間と、を設定し、
前記非発光期間は、前記フレームの周期に対して0.05%以下であり、かつ前記有機ELパネルの素子容量と配線抵抗の積である時定数以上に設定されていること、を特徴とする有機EL照明装置。
An organic EL panel in which an anode, a light emitting layer, and a cathode are sequentially laminated on a transparent substrate;
Organic comprising an anode drive circuit for supplying a first current to the prior SL anode, a cathode drive circuit for supplying a second current to the prior SL cathode, and a control unit for controlling said anode driving circuit and the cathode driving circuit In an EL lighting device,
In the control of the anode driving circuit and the cathode driving circuit, the control unit supplies a first current to the anode via the anode driving circuit and grounds the cathode via the cathode driving circuit for each frame. A light emission period to be connected to the potential, and a non-light emission period in which the anode is connected to the ground potential via the anode drive circuit and a second current is supplied to the cathode via the cathode drive circuit , and
The non-light emitting period is 0.05% or less with respect to the cycle of the frame , and is set to a time constant that is a product of the element capacitance and the wiring resistance of the organic EL panel. Organic EL lighting device.
前記第一電流は定電流源より供給され、前記第二電流は定電圧源より供給されるように構成したことを特徴とする請求項1に記載の有機EL照明装置。   The organic EL lighting device according to claim 1, wherein the first current is supplied from a constant current source, and the second current is supplied from a constant voltage source. 前記制御部は前記陽極駆動回路及び前記陰極駆動回路の制御において、前記フレーム周波数が1Hz以下であり、かつ前記フレーム内の前記非発光期間が0.5msec以下に設定されていること、を特徴とする請求項1または請求項2に記載の有機EL照明装置。 In the control of the anode driving circuit and the cathode driving circuit , the control unit is configured such that the frequency of the frame is 1 Hz or less and the non-light emission period in the frame is set to 0.5 msec or less. The organic EL lighting device according to claim 1 or 2, characterized in that 前記非発光期間は、前記フレームの最終尾に設定されていること、を特徴とする請求項1乃至3のいずれかに記載の有機EL照明装置。 The non-light emitting period, the organic EL lighting device according to any one of claims 1 to 3, characterized in that, set in the final tail of the frame. 前記有機ELパネルを複数備えること、を特徴とする請求項1乃至4のいずれかに記載の有機EL照明装置。   The organic EL lighting device according to claim 1, comprising a plurality of the organic EL panels. 前記陽極駆動回路は、複数の前記有機ELパネルの前記陽極に並列に接続され、前記陰極駆動回路は、複数の前記有機ELパネルの前記陰極に並列に接続されていること、を特徴とする請求項5に記載の有機EL照明装置。   The anode drive circuit is connected in parallel to the anodes of the plurality of organic EL panels, and the cathode drive circuit is connected in parallel to the cathodes of the plurality of organic EL panels. Item 6. The organic EL lighting device according to Item 5. 透明基板上に陽極と、発光層と、陰極と、を順次積層してなる有機EL照明装置の駆動方法であって、フレーム毎に、前記陽極に第一電流を供給し、前記陰極をアース電位に接続させる発光期間と、前記陽極をアース電位に接続し、前記陰極に第二電流を供給し、逆バイアスを印加する非発光期間とを備え、前記フレームの周期に対する前記逆バイアス印加時間の割合が0.05%以下であり、さらに前記逆バイアス印加時間が前記有機EL照明装置の素子容量と配線抵抗の積である時定数以上である、ことを特徴とする有機EL照明装置の駆動方法。 A driving method of an organic EL lighting device in which an anode, a light emitting layer, and a cathode are sequentially laminated on a transparent substrate , wherein a first current is supplied to the anode for each frame, and the cathode is grounded. a light emitting period to connect to, then connect the anode to the ground potential, the second current is supplied to the cathode, and a non-emission period for applying the reverse bias, the reverse bias application time to the period of the frame The driving of the organic EL lighting device, wherein the ratio is 0.05% or less, and the application time of the reverse bias is a time constant that is a product of the element capacitance and the wiring resistance of the organic EL lighting device Method. 透明基板上に陽極と、発光層と、陰極と、を順次積層してなる有機EL照明装置の駆動方法であって、フレーム毎に、前記陽極に第一電流を供給し、前記陰極をアース電位に接続させる発光期間と、前記陽極をアース電位に接続し、前記陰極に第二電流を供給し、逆バイアスを印加する非発光期間とを備え、前記フレームの周波数が1Hz以下であり、さらに前記逆バイアス印加時間が0.5msec以下かつ前記有機EL照明装置の素子容量と配線抵抗の積である時定数以上である、ことを特徴とする有機EL照明装置の駆動方法。
A driving method of an organic EL lighting device in which an anode, a light emitting layer, and a cathode are sequentially laminated on a transparent substrate , wherein a first current is supplied to the anode for each frame, and the cathode is grounded. a light emitting period to connect to, then connect the anode to the ground potential, the second current is supplied to the cathode, and a non-emission period for applying a reverse bias, the frequency of the frame is equal to or less than 1 Hz, further wherein the application time of the reverse bias is constant over time is the product of the device capacitance and the wiring resistance of less and the organic EL lighting device 0.5 msec, the driving method of the organic EL lighting device, characterized in that.
JP2011115317A 2011-05-24 2011-05-24 Organic EL lighting device and driving method thereof Expired - Fee Related JP5751011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011115317A JP5751011B2 (en) 2011-05-24 2011-05-24 Organic EL lighting device and driving method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011115317A JP5751011B2 (en) 2011-05-24 2011-05-24 Organic EL lighting device and driving method thereof

Publications (2)

Publication Number Publication Date
JP2012244078A JP2012244078A (en) 2012-12-10
JP5751011B2 true JP5751011B2 (en) 2015-07-22

Family

ID=47465421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011115317A Expired - Fee Related JP5751011B2 (en) 2011-05-24 2011-05-24 Organic EL lighting device and driving method thereof

Country Status (1)

Country Link
JP (1) JP5751011B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366088B2 (en) * 2014-03-28 2018-08-01 Necライティング株式会社 Organic EL element repair method, organic EL panel manufacturing method, and light emitting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613181A (en) * 1992-06-29 1994-01-21 Fuji Electric Co Ltd Emission method of organic thin film light emitting element
JP4139467B2 (en) * 1998-04-21 2008-08-27 パイオニア株式会社 Driving method of light emitting display
JP2001296837A (en) * 2000-04-13 2001-10-26 Toray Ind Inc Driving method for current controlled type display device
JP2002123216A (en) * 2000-10-12 2002-04-26 Toray Ind Inc Driving method for light emission display device
JP4362684B2 (en) * 2002-09-26 2009-11-11 セイコーエプソン株式会社 Image forming apparatus
JP3953996B2 (en) * 2003-09-17 2007-08-08 株式会社デンソー Display device and display panel driving method
JP2005301084A (en) * 2004-04-15 2005-10-27 Hitachi Ltd Organic light emitting element and display device using the same, and driving method thereof

Also Published As

Publication number Publication date
JP2012244078A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
CN101809644B (en) Tiled passive matrix electro-luminescent display
JP6579669B2 (en) AMOLED power supply voltage drop compensation method
JP4145737B2 (en) Organic electroluminescent device and driving method thereof
JP4897349B2 (en) Organic light-emitting display device
KR101898695B1 (en) Organic Light Emitting Display Device and Driving Method Thereof
EP1737275A2 (en) Light emitting device using organic electroluminescent element
JP4139467B2 (en) Driving method of light emitting display
CN1816839A (en) Electroluminescent display device with duty cycle control
KR100618574B1 (en) Drive circuit organic electro luminescent display
JP2001196191A (en) Organic thin film luminous display and its manufacturing method
JP5751011B2 (en) Organic EL lighting device and driving method thereof
JP2015133251A (en) Dimmer, liquid crystal display device, and multi-display device
WO2013088874A1 (en) Light emitting device and organic el element driving method
US8519618B2 (en) Display
KR20060077044A (en) Electro-luminescence display device and driving method thereof
JP4909677B2 (en) Display device
JP5446506B2 (en) Manufacturing method of organic EL element
KR20020068938A (en) Driving circuit of organic electro luminescence display element
JP2004146212A (en) Method of manufacturing organic el display device and substrate for organic el display device
US9733515B2 (en) Backlight unit
JP2011107290A (en) Device and method for driving organic el panel
US20080150413A1 (en) Back light unit using an electron emission device and display including the same
KR100600397B1 (en) Light emitting display
US7750928B2 (en) Light source apparatus and method for driving the same
JP4410186B2 (en) Driving method of light emitting display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150504

R150 Certificate of patent or registration of utility model

Ref document number: 5751011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees