JP5749555B2 - Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device - Google Patents

Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device Download PDF

Info

Publication number
JP5749555B2
JP5749555B2 JP2011098499A JP2011098499A JP5749555B2 JP 5749555 B2 JP5749555 B2 JP 5749555B2 JP 2011098499 A JP2011098499 A JP 2011098499A JP 2011098499 A JP2011098499 A JP 2011098499A JP 5749555 B2 JP5749555 B2 JP 5749555B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
incident
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011098499A
Other languages
Japanese (ja)
Other versions
JP2012231023A (en
Inventor
洋 ▲高▼鳥
洋 ▲高▼鳥
山口 昌男
昌男 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enplas Corp
Original Assignee
Enplas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enplas Corp filed Critical Enplas Corp
Priority to JP2011098499A priority Critical patent/JP5749555B2/en
Publication of JP2012231023A publication Critical patent/JP2012231023A/en
Application granted granted Critical
Publication of JP5749555B2 publication Critical patent/JP5749555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Planar Illumination Modules (AREA)
  • Led Device Packages (AREA)

Description

本発明は、光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた面光源装置に係り、特に、発光素子から出射された光の進行方向を制御するのに好適な光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた面光源装置に関する。   The present invention relates to a light flux controlling member, a light emitting device including the light flux controlling member, and a surface light source device including the light emitting device, and particularly suitable for controlling a traveling direction of light emitted from a light emitting element. The present invention relates to a control member, a light emitting device including the light flux controlling member, and a surface light source device including the light emitting device.

従来から、液晶表示装置のバックライト、内照式の看板等の用途には、エッジライト方式または直下型方式の面光源装置が用いられていた。   Conventionally, edge light type or direct type surface light source devices have been used for applications such as backlights for liquid crystal display devices and internally illuminated signboards.

ここで、エッジライト方式の面光源装置は、導光板の側端面に配置した光源からの光を導光板によって側端面と直交する表面側(視認側)に取り出す方式として知られている。一方、直下型方式は、複数の点状光源を光拡散板の裏側(直下)に配置し、各光源からの光を光拡散板によって拡散させて表側に取り出す方式として知られている(特許文献1参照)。   Here, the edge light type surface light source device is known as a method for extracting light from a light source disposed on a side end surface of a light guide plate to a surface side (viewing side) orthogonal to the side end surface by the light guide plate. On the other hand, the direct type is known as a system in which a plurality of point light sources are arranged on the back side (directly below) of the light diffusion plate, and the light from each light source is diffused by the light diffusion plate and taken out to the front side (Patent Literature). 1).

これら各方式のうち、直下型方式は、輝度の高さの点で有利であり、とりわけ、大面積の画像表示や発光を行う用途においては、この方式が採用される場合が多い。   Among these methods, the direct type method is advantageous in terms of high brightness, and this method is often employed particularly in applications where large area image display and light emission are performed.

近年、このような直下型方式において、少ない点状光源で大面積の照明を可能にする面光源装置が開発されている(特許文献2参照)。   In recent years, in such a direct type, a surface light source device has been developed that enables illumination of a large area with a small number of point light sources (see Patent Document 2).

特許文献2の図5および図6に示される面光源装置にはサイドビューLEDが用いられており、主としてLED実装面と平行に出射されるLEDからの出射光が、傾斜面(曲面)状に形成された光反射面部材で反射されることによって、発光面部材の全面をむらなく照射するようになっている。   Side-view LEDs are used in the surface light source device shown in FIGS. 5 and 6 of Patent Document 2, and light emitted from the LEDs emitted mainly in parallel with the LED mounting surface is inclined (curved). By being reflected by the formed light reflecting surface member, the entire surface of the light emitting surface member is uniformly irradiated.

このサイドビューLEDに代えて、LED実装面に対して直交方向に光を出射するトップビューLEDを用いる場合には、光の進行方向をLED実装面と平行方向に変えるための光束制御部材を用いることが高品位な発光面の面光源装置を得るために有効である。   When a top view LED that emits light in a direction orthogonal to the LED mounting surface is used instead of the side view LED, a light flux controlling member for changing the traveling direction of the light to a direction parallel to the LED mounting surface is used. This is effective for obtaining a high-quality surface light source device having a light emitting surface.

図18は、この種の直下型方式の面光源装置の従来例を示す平面図である。また、図19は、図18のA−A断面図であり、図20は、図18のB−B断面図である。   FIG. 18 is a plan view showing a conventional example of this type of direct-type surface light source device. 19 is a cross-sectional view taken along the line AA in FIG. 18, and FIG. 20 is a cross-sectional view taken along the line BB in FIG.

図18〜図20に示すように、面光源装置1は、平面図において矩形状の筐体2を有しており、この筐体2の内面は、Y軸方向(図18における縦方向)における中央部に位置するX軸方向(図18における横方向)に長尺な底面3と、この底面3のX軸方向における両端部に垂直に連接された側面4、5と、底面3のY軸方向における両端部に連接された反射面6、7とによって構成されている。   As shown in FIGS. 18 to 20, the surface light source device 1 has a rectangular housing 2 in plan view, and the inner surface of the housing 2 is in the Y-axis direction (vertical direction in FIG. 18). A bottom surface 3 that is long in the X-axis direction (lateral direction in FIG. 18) located in the center, side surfaces 4 and 5 that are vertically connected to both ends of the bottom surface 3 in the X-axis direction, and the Y-axis of the bottom surface 3 It is comprised by the reflective surfaces 6 and 7 connected to the both ends in the direction.

図19に示すように、底面3上には、点状光源として、発光ダイオード(LED)等からなる複数(9つ)の発光素子12が、X軸方向に等間隔で整列配置されている。なお、各発光素子12は、これらに対する電気信号の印加を行うリードや制御回路(図示せず)等を備えた基板13上に実装された状態で、底面3上に配置されている。各発光素子12は、前方(図19、図20における上方)に向けて、ある程度の指向性を有する所定の配光分布(LEDの場合にはランバーシアン分布)にしたがった光を出射するようになっている。このとき、発光素子12は、各発光素子12の出射光の中心軸(中心光)が、Z軸方向に平行な状態となるように、筺体2のY軸方向の中央に配置されている。   As shown in FIG. 19, on the bottom surface 3, a plurality (nine) of light emitting elements 12 made up of light emitting diodes (LEDs) or the like are arranged in a line at equal intervals in the X-axis direction as point light sources. In addition, each light emitting element 12 is arrange | positioned on the bottom face 3 in the state mounted on the board | substrate 13 provided with the lead and control circuit (not shown) etc. which apply the electrical signal with respect to these. Each light emitting element 12 emits light according to a predetermined light distribution with a certain degree of directivity (Lambertian distribution in the case of LED) toward the front (upward in FIGS. 19 and 20). It has become. At this time, the light emitting element 12 is arranged at the center in the Y axis direction of the housing 2 so that the central axis (center light) of the emitted light of each light emitting element 12 is in a state parallel to the Z axis direction.

また、図20に示すように、反射面6、7は、発光素子12から離れるにしたがってZ軸方向(図20における縦方向)に傾く上り傾斜面に形成されている。さらに、図20に示すように、反射面6、7は、底面3をY軸方向において二等分する底面3に垂直な仮想平面Sを対称面とした面対称な形状に形成されている。すなわち、両反射面6、7の底面3に対する傾斜角は互いに一致している。そして、これら両反射面6、7は、反射部材によって形成されている。なお、反射部材としては、例えば、UXSP188(帝人デュポン社製)等が用いられる。   As shown in FIG. 20, the reflecting surfaces 6 and 7 are formed as upward inclined surfaces that are inclined in the Z-axis direction (vertical direction in FIG. 20) as they are separated from the light emitting element 12. Furthermore, as shown in FIG. 20, the reflecting surfaces 6 and 7 are formed in a plane-symmetric shape with a virtual plane S perpendicular to the bottom surface 3 that bisects the bottom surface 3 in the Y-axis direction as a symmetry plane. That is, the inclination angles of the reflecting surfaces 6 and 7 with respect to the bottom surface 3 are the same. And both these reflective surfaces 6 and 7 are formed of the reflective member. As the reflecting member, for example, UXSP188 (manufactured by Teijin DuPont) or the like is used.

さらに、図18〜図20に示すように、各発光素子12上には、各発光素子12の出射光の進行方向を制御する複数の光束制御部材14がそれぞれ配置されている。これらの光束制御部材14は、例えば、PMMA(ポリメタクリル酸メチル)、PC(ポリカーボネート)およびEP(エポキシ樹脂)などの樹脂材料やガラス等の透光性材料によって形成されている。   Further, as shown in FIGS. 18 to 20, a plurality of light flux control members 14 for controlling the traveling direction of the emitted light of each light emitting element 12 are arranged on each light emitting element 12. These light flux controlling members 14 are made of, for example, a resin material such as PMMA (polymethyl methacrylate), PC (polycarbonate) and EP (epoxy resin), or a translucent material such as glass.

ここで、図21は、光束制御部材14を示す平面図である。また、図22は、図21の下面図である。さらに、図23は、図21のA−A断面図であり、図24は、図21のB−B断面図である。   Here, FIG. 21 is a plan view showing the light flux controlling member 14. FIG. 22 is a bottom view of FIG. 23 is a cross-sectional view taken along the line AA in FIG. 21, and FIG. 24 is a cross-sectional view taken along the line BB in FIG.

図22〜図24に示すように、光束制御部材14は、発光素子12に対してZ軸方向(光の出射方向)において対向して配置される発光素子対向面部15を有している。また、同各図に示すように、光束制御部材14は、発光素子対向面部15に対してZ軸方向における発光素子12と反対側に形成された反発光素子対向面部16を有している。さらに、同各図に示すように、光束制御部材14は、発光素子対向面部15の外周端部から発光素子12と反対側へ向かって延設された外周面17を有している。さらにまた、同各図に示すように、光束制御部材14は、外周面17に対してZ軸方向における発光素子12と反対側であって反発光素子対向面部16に対してY軸方向における外側に形成された出射面18を有している。   As shown in FIGS. 22 to 24, the light flux controlling member 14 has a light emitting element facing surface portion 15 disposed to face the light emitting element 12 in the Z-axis direction (light emission direction). Further, as shown in the respective drawings, the light flux controlling member 14 has an anti-light emitting element facing surface portion 16 formed on the opposite side of the light emitting element 12 in the Z-axis direction with respect to the light emitting element facing surface portion 15. Furthermore, as shown in each drawing, the light flux controlling member 14 has an outer peripheral surface 17 extending from the outer peripheral end of the light emitting element facing surface portion 15 toward the side opposite to the light emitting element 12. Furthermore, as shown in the drawings, the light flux controlling member 14 is on the opposite side of the outer peripheral surface 17 from the light emitting element 12 in the Z-axis direction and on the outer side in the Y-axis direction with respect to the counter-light emitting element facing surface portion 16. It has the output surface 18 formed in this.

具体的には、図23および図24に示すように、発光素子対向面部15は、発光素子12(図示せず)から出射された光を入射させるための略円錐台形状の凹部15とされている。ここで、図22〜図24に示すように、凹部15は、光軸OAに直交する平面として形成された下面図において光軸OAと同心円形を呈する第1入射面19を有している。この第1入射面19には、図23に示すように、発光素子12(図示せず)から出射された光(光束)のうちの光軸OAに対して小さい角度側の第1の光(光束)Lが入射する。ただし、図23においては、第1の光Lを、これに含まれる1本の光線として代表的に図示している。そして、第1入射面19に入射した第1の光Lは、第1入射面19においてスネルの法則にしたがって全体的に光軸OAに対する角度が小さくなるように屈折(垂直入射の中心光は除く)された上で、光束制御部材14の内部の光路上を反発光素子対向面部16に向かって進行する。また、図22〜図24に示すように、凹部15は、第1入射面19の外周端部から発光素子12側に向かって延設された第2入射面20を有しており、この第2入射面20は、発光素子12側に向かうにしたがって内径が漸増するような光軸OAと同心のテーパ面に形成されている。この第2入射面20には、図23に示すように、発光素子12(図示せず)から出射された光(光束)のうちの第1の光Lの外側の第2の光(光束)Lが入射する。ただし、図23においては、第2の光Lを、これに含まれる1本の光線として代表的に図示している。そして、第2入射面20に入射した第2の光Lは、第2入射面20において屈折された上で、光束制御部材14の内部の光路上を外周面17側に向かって進行する。 Specifically, as shown in FIGS. 23 and 24, the light emitting element facing surface portion 15 is formed as a substantially truncated cone-shaped concave portion 15 for allowing light emitted from the light emitting element 12 (not shown) to enter. Yes. Here, as shown in FIGS. 22-24, the recessed part 15 has the 1st entrance plane 19 which exhibits the concentric circle with the optical axis OA in the bottom view formed as a plane orthogonal to the optical axis OA. As shown in FIG. 23, the first incident surface 19 has a first light (light beam) emitted from the light emitting element 12 (not shown) on the smaller angle side with respect to the optical axis OA (light beam). light beam) L 1 is incident. However, in FIG. 23, the first light L 1, is representatively shown as a single beam contained therein. Then, the first light L 1 incident on the first incident surface 19 is refracted so that the angle with respect to the optical axis OA is generally reduced on the first incident surface 19 in accordance with Snell's law (the central light for normal incidence is Then, the light travels on the optical path inside the light flux controlling member 14 toward the counter light emitting element facing surface portion 16. Further, as shown in FIGS. 22 to 24, the recess 15 has a second incident surface 20 extending from the outer peripheral end of the first incident surface 19 toward the light emitting element 12 side. The two incident surfaces 20 are formed on a tapered surface concentric with the optical axis OA so that the inner diameter gradually increases toward the light emitting element 12 side. As shown in FIG. 23, the second incident surface 20 has second light (light flux) outside the first light L 1 out of light (light flux) emitted from the light emitting element 12 (not shown). ) L 2 is incident. However, in FIG. 23, the second light L 2, are representatively shown as one light beam contained therein. The second light L 2 incident on the second incident surface 20 is refracted on the second incident surface 20 and travels on the optical path inside the light flux controlling member 14 toward the outer peripheral surface 17.

また、図23に示すように、外周面17は、発光素子12と反対側に向かって外径が漸増するとともに、径方向の外方にわずかに膨出するような光軸OAと同心の曲線テーパ面に形成されており、この外周面17は、第1全反射面17とされている。すなわち、図23に示すように、第1全反射面17には、第2入射面20に入射した後に光束制御部材14の内部の光路上を進行した第2の光Lが、臨界角よりも大きな入射角で内部入射する。そして、この内部入射した第2の光Lは、第1全反射面17によって全体的に光軸OAに対する角度が小さくなる方向に全反射された後に、光束制御部材14の内部の光路上を反発光素子対向面部16に向かって進行する。 Further, as shown in FIG. 23, the outer peripheral surface 17 has a concentric curve with the optical axis OA so that the outer diameter gradually increases toward the side opposite to the light emitting element 12 and slightly bulges outward in the radial direction. The outer peripheral surface 17 is formed as a first total reflection surface 17. That is, as shown in FIG. 23, the first total reflection surface 17, the second light L 2 which advances within the optical path of the light flux controlling member 14 after entering the second incident surface 20, than the critical angle Is incident at a large incident angle. Then, the second light L 2 incident inside is totally reflected by the first total reflection surface 17 in a direction in which the angle with respect to the optical axis OA is reduced as a whole, and then on the optical path inside the light flux controlling member 14. It proceeds toward the counter light emitting element facing surface portion 16.

さらに、図23に示すように、反発光素子対向面部16は、前述した仮想平面S(光軸OAを含む所定の平面)を対称面とした面対称形状に形成されるとともに仮想平面Sに平行かつ光軸OAに直交する方向から見た場合(側面視した場合)に、発光素子12と反対側に向かうにしたがって仮想平面Sと直交する方向に拡開するような形状を呈するようになっている。より具体的には、反発光素子対向面部16は、平面図において円形状を呈するとともに仮想平面Sに直交する任意の断面(例えば、図23)において、仮想平面Sとの交点位置が谷となるV字状を呈するような面に形成されている。このような反光学素子対向面部16は、第2全反射面16とされている。すなわち、図23に示すように、第2全反射面16には、第1入射面19に入射した後に光束制御部材14の内部の光路上を進行した(第1入射面19側から到達した)第1の光Lが、臨界角よりも大きな入射角で内部入射する。また、このとき、第2全反射面16には、第1全反射面17によって全反射された後に光束制御部材14の内部の光路上を進行した第2の光Lが、臨界角よりも大きな入射角で内部入射する。そして、第2全反射面16は、これらの内部入射した第1の光Lおよび第2の光Lを、仮想平面Sを対称面とした互いに面対称な(相対する)両側方(図23における左右方向)に向けて全反射させ、光軸OAに略直交するように光路変換する。より具体的には、第2全反射面16のうちの図23における左半部に内部入射した光L、Lは左側方に向けて全反射され、第2全反射面16のうちの図23における右半部に内部入射した光L、L(図示せず)は右側方に向けて全反射される。 Furthermore, as shown in FIG. 23, the anti-light emitting element facing surface portion 16 is formed in a plane-symmetric shape with the above-described virtual plane S (a predetermined plane including the optical axis OA) as a plane of symmetry and is parallel to the virtual plane S. When viewed from a direction orthogonal to the optical axis OA (when viewed from the side), the shape expands in a direction orthogonal to the virtual plane S toward the opposite side of the light emitting element 12. Yes. More specifically, the anti-light-emitting element facing surface portion 16 has a circular shape in the plan view and an intersection position with the virtual plane S is a valley in an arbitrary cross section (for example, FIG. 23) orthogonal to the virtual plane S. It is formed on a surface that exhibits a V-shape. Such an anti-optical element facing surface portion 16 is a second total reflection surface 16. That is, as shown in FIG. 23, the second total reflection surface 16 travels on the optical path inside the light flux controlling member 14 after entering the first incident surface 19 (arrived from the first incident surface 19 side). first light L 1 is internally incident at a large incident angle than the critical angle. At this time, the second total reflection surface 16 has the second light L 2 that has traveled on the optical path inside the light flux controlling member 14 after being totally reflected by the first total reflection surface 17, more than the critical angle. Internal incidence with a large incident angle. The second total reflection surface 16 has both the first incident light L 1 and the second light L 2 incident on the inside thereof in plane symmetry with each other with the virtual plane S as a symmetry plane (opposite sides) (see FIG. 23 in the horizontal direction), and the optical path is changed so as to be substantially orthogonal to the optical axis OA. More specifically, the light L 1 and L 2 that are internally incident on the left half of FIG. 23 of the second total reflection surface 16 are totally reflected toward the left side, Lights L 1 and L 2 (not shown) internally incident on the right half in FIG. 23 are totally reflected toward the right side.

さらにまた、図21〜図23に示すように、出射面18は、光軸OAと同心の円筒面に形成されており、この出射面18には、第2全反射面16によって両側方に向けて全反射された第1の光Lおよび第2の光Lがそれぞれ内部入射する。そして、出射面18は、内部入射した第1の光Lおよび第2の光L を光束制御部材14の左右両側方に出射させる。図25は、このとき出射される第1の光Lおよび第2の光Lの進行方向を、互いに異なる3本の光線を光束制御部材14の平面図とともに示したものである。 Furthermore, as shown in FIGS. 21 to 23, the exit surface 18 is formed in a cylindrical surface concentric with the optical axis OA, and the exit surface 18 is directed to both sides by the second total reflection surface 16. first light L 1 and the second light L 2, which is totally reflected Te is internally incident respectively. The exit surface 18 to emit first light L 1 and the second light L 2 which is internally incident on the left and right both sides of the light flux controlling member 14. FIG. 25 shows the traveling directions of the first light L 1 and the second light L 2 emitted at this time, and three different light beams together with a plan view of the light flux controlling member 14.

そして、このようにして出射面18から出射された第1の光Lおよび第2の光Lは、図20に示すように、傾斜反射面10によって反射されて面光源装置1の発光面(図20における上方)に向かって進行する。 Then, the first light L 1 and the second light L 2 emitted from the emission surface 18 in this manner are reflected by the inclined reflection surface 10 and are emitted from the surface light source device 1 as shown in FIG. Proceed toward (upward in FIG. 20).

また、図23に示すように、光束制御部材14は、出射面18の下端部から発光素子12側に向かって延出された光軸OAと同心の円筒形状のホルダ22を有しており、このホルダ22は、第1全反射面17を径方向における外側から包囲している。   Further, as shown in FIG. 23, the light flux controlling member 14 has a cylindrical holder 22 concentric with the optical axis OA extended from the lower end portion of the emission surface 18 toward the light emitting element 12 side. The holder 22 surrounds the first total reflection surface 17 from the outside in the radial direction.

図18〜図20に戻って、面光源装置1は、筐体2の前部開口を遮蔽する光学シート25を有しており、この光学シート25は、各光束制御部材14の光軸OAに直交するようにして各光束制御部材14および傾斜反射面10に対向配置されている。この光学シート25には、主に、傾斜反射面10によって反射された第1の光Lおよび第2の光Lが後方(図20における下方)から入射する。そして、光学シート25は、入射した光を、平面視した場合に矩形の広がりを持った光として出射させる。光学シート25としては、DBEF(3M社製)、拡散シート、拡散板、プリズムシート等が用いられる。 Returning to FIGS. 18 to 20, the surface light source device 1 has an optical sheet 25 that shields the front opening of the housing 2, and this optical sheet 25 is arranged on the optical axis OA of each light flux controlling member 14. The light flux controlling members 14 and the inclined reflecting surface 10 are disposed so as to be orthogonal to each other. The first light L 1 and the second light L 2 reflected by the inclined reflecting surface 10 are incident on the optical sheet 25 from the rear (downward in FIG. 20). Then, the optical sheet 25 emits the incident light as light having a rectangular spread when viewed in plan. As the optical sheet 25, DBEF (manufactured by 3M), a diffusion sheet, a diffusion plate, a prism sheet, or the like is used.

特表2009−542017号公報Special table 2009-542017 特開2010−9785号公報JP 2010-9785 A

しかしながら、従来は、平面図上における出射面8の形状が正のパワーを有する円筒面形状に形成されていたため、図18に示すように、出射面8からの出射光L、L がX軸方向において集束光となっていた。 However, conventionally, since the shape of the emission surface 8 on the plan view is a cylindrical surface having a positive power, the emitted lights L 1 and L 2 from the emission surface 8 are X as shown in FIG. It was focused light in the axial direction.

このため、傾斜反射面10上における各光束制御部材14の出射光の照射面積がX軸方向において狭くなることによって、傾斜反射面10上における各光束制御部材14の出射光の照射部分(明部)同士の間に到達する光が不足するため、面光源として用いる場合における発光面上の輝度が不均一となるといった問題が生じていた。   For this reason, when the irradiation area of the emitted light of each light flux controlling member 14 on the inclined reflecting surface 10 becomes narrow in the X-axis direction, the irradiated portion (bright part) of the emitted light of each light flux controlling member 14 on the inclined reflecting surface 10 ) Since the light reaching between them is insufficient, there is a problem that the luminance on the light emitting surface becomes non-uniform when used as a surface light source.

そこで、本発明は、このような問題点に鑑みなされたものであり、出射光の光束径を大きくすることによって、面光源として用いる際における輝度の均一性を向上させることができる光束制御部材、この光束制御部材を備えた発光装置およびこの発光装置を備えた面光源装置を提供することを目的とするものである。   Therefore, the present invention has been made in view of such problems, and a light flux controlling member that can improve the uniformity of luminance when used as a surface light source by increasing the light flux diameter of the emitted light, It is an object of the present invention to provide a light emitting device including the light flux controlling member and a surface light source device including the light emitting device.

前述した目的を達成するため、本発明の請求項1に係る光束制御部材の特徴は、発光素子から出射された光の進行方向を制御する光束制御部材であって、前記発光素子に対向して配置される発光素子対向面部と、この発光素子対向面部に対して前記発光素子と反対側に形成された反発光素子対向面部と、前記発光素子対向面部の外周端部から前記発光素子と反対側に向かって延設された外周面と、この外周面に対して前記発光素子と反対側であって前記反発光素子対向面部の外側に形成された出射面とを備え、前記発光素子対向面部は、前記発光素子から出射された光を入射させるための凹部を有し、前記凹部は、光軸に直交する平面に形成され、前記発光素子から出射された光のうちの中心側の第1の光が入射する第1入射面と、この第1入射面の外周端部から前記発光素子側に向かって延設され、前記発光素子から出射された光のうちの前記第1の光の外側の第2の光が入射する第2入射面とを有し、前記外周面は、前記発光素子と反対側に向かうにしたがって外径が漸増するように形成され、前記第2入射面に入射した前記第2の光を前記反発光素子対向面部に向けて全反射させる第1全反射面を有し、前記反発光素子対向面部は、前記光軸を含む所定の平面を対称面とした面対称形状に形成されるとともに、前記所定の平面に直交する任意の断面において、前記所定の平面との交点位置が谷となるV字形状を呈し、前記第1の光および前記第2の光を全反射させる第2全反射面を有し、前記出射面は、前記所定の平面を対称面とした互いに面対称な形状に形成され、前記第2全反射面によって全反射された前記第1および第2の光を出射させる第1出射面および第2出射面を有し、前記第1出射面および前記第2出射面は、前記第2全反射面によって全反射された前記第1および第2の光を前記谷の長手方向に広がるように屈折して発散させた状態で出射させる形状に形成されている点にある。 In order to achieve the above-mentioned object, a light flux controlling member according to claim 1 of the present invention is a light flux controlling member that controls the traveling direction of light emitted from a light emitting element, and is opposed to the light emitting element. A light emitting element facing surface portion to be disposed; an anti-light emitting element facing surface portion formed on the opposite side of the light emitting element with respect to the light emitting element facing surface portion; and an outer peripheral end of the light emitting element facing surface portion opposite to the light emitting element An outer peripheral surface extending toward the outer peripheral surface, and an emission surface formed on the opposite side of the outer peripheral surface to the light emitting element and outside the counter light emitting element opposing surface portion, , A recess for allowing the light emitted from the light emitting element to enter, the recess being formed in a plane perpendicular to the optical axis, and a first one on the center side of the light emitted from the light emitting element. A first incident surface on which light is incident and the first incident surface; A second incident surface that extends from the outer peripheral end of the incident surface toward the light emitting element side and on which the second light outside the first light of the light emitted from the light emitting element is incident. And the outer peripheral surface is formed such that an outer diameter gradually increases toward the opposite side of the light emitting element, and the second light incident on the second incident surface is directed toward the counter light emitting element facing surface portion. The anti-light-emitting element facing surface portion is formed in a plane-symmetric shape with a predetermined plane including the optical axis as a symmetry plane and is orthogonal to the predetermined plane. In an arbitrary cross section, the cross-section position with the predetermined plane has a V shape having a valley, and has a second total reflection surface that totally reflects the first light and the second light, and the emission surface Are formed in plane symmetry with the predetermined plane as a plane of symmetry. A first emission surface and a second emission surface for emitting the first and second lights totally reflected by the total reflection surface, wherein the first emission surface and the second emission surface are the second total reflection; The first and second lights totally reflected by the surface are refracted so as to spread in the longitudinal direction of the valley and are emitted in a diverged state.

そして、この請求項1に係る発明によれば、第1出射面および第2出射面によって、第2全反射面において全反射された第1および第2の光を谷の長手方向に広がるように屈折して出射させることができるので、照射範囲を大きくすることができ、ひいては、面光源として用いる際における輝度の均一性を向上させることが可能となる。 According to the first aspect of the present invention, the first and second light beams totally reflected on the second total reflection surface are spread in the longitudinal direction of the valley by the first emission surface and the second emission surface. Since the light can be refracted and emitted, the irradiation range can be increased, and as a result, the luminance uniformity when used as a surface light source can be improved.

また、請求項2に係る光束制御部材の特徴は、発光素子から出射された光の進行方向を制御する光束制御部材であって、前記発光素子に対向して配置される発光素子対向面部と、この発光素子対向面部に対して前記発光素子と反対側に形成された反発光素子対向面部と、前記反発光素子対向面部の外側に形成された出射面とを備え、前記発光素子対向面部は、前記発光素子から出射された光を入射させるための入射領域を有し、前記入射領域は、光軸方向から見た場合に光軸を中心とした同心円環状を呈するとともに前記光軸を含む断面が鋸刃状を呈するような径方向において互いに隣接する複数の突起部を有し、前記突起部は、前記発光素子から出射された光が入射し、この入射した光を屈折させる入射面と、この入射面に対して前記光軸を基準とした径方向の外側位置に形成され、前記入射面から入射した光を前記反発光素子対向面部に向けて全反射させる第1全反射面とを有し、前記反発光素子対向面部は、前記光軸を含む所定の平面を対称面とした面対称形状に形成されるとともに前記所定の平面に直交する任意の断面において、前記所定の平面との交点位置が谷となるV字形状を呈し、前記第1全反射面によって全反射された光を更に全反射させる第2全反射面を有し、前記出射面は、前記所定の平面を対称面とした互いに面対称な形状に形成され、前記第2全反射面によって全反射された光を出射させる第1出射面および第2出射面を有し、前記第1出射面および前記第2出射面は、前記第2全反射面によって全反射された光を前記谷の長手方向に広がるように屈折して発散させた状態で出射させる形状に形成されている点にある。 A feature of the light flux controlling member according to claim 2 is a light flux controlling member that controls a traveling direction of light emitted from the light emitting element, the light emitting element facing surface portion disposed to face the light emitting element, The light emitting element facing surface portion includes a counter light emitting element facing surface portion formed on the opposite side of the light emitting element, and an emission surface formed outside the counter light emitting element facing surface portion. An incident region for allowing light emitted from the light emitting element to enter, and the incident region has a concentric annular shape centered on the optical axis when viewed from the optical axis direction, and a cross section including the optical axis; A plurality of protrusions that are adjacent to each other in the radial direction so as to have a saw blade shape, and the protrusions receive light emitted from the light emitting element, and incident surfaces that refract the incident light; and The optical axis with respect to the incident surface A first total reflection surface that is formed at a reference radial outer position and totally reflects light incident from the incident surface toward the anti-light emitting element facing surface portion; and the anti-light emitting element facing surface portion is It is formed in a plane-symmetric shape with a predetermined plane including the optical axis as a plane of symmetry, and in an arbitrary cross section orthogonal to the predetermined plane, it exhibits a V shape in which the intersection point with the predetermined plane is a valley. A second total reflection surface that further totally reflects the light totally reflected by the first total reflection surface, and the emission surface is formed in plane symmetry with the predetermined plane as a symmetry plane, The first and second emission surfaces for emitting light totally reflected by the second total reflection surface, and the first and second emission surfaces are totally reflected by the second total reflection surface. refracted been light so as to spread in the longitudinal direction of the trough In that it is formed in a shape to be emitted in a state of being diverged.

そして、この請求項2に係る発明によれば、第1出射面および第2出射面によって、第2全反射面によって全反射された光を谷の長手方向に広がるように屈折して出射させることができるので、照射範囲を大きくすることができ、ひいては、面光源として用いる際における輝度の均一性を向上させることができる。 According to the second aspect of the invention, the light totally reflected by the second total reflection surface is refracted and emitted so as to spread in the longitudinal direction of the valley by the first emission surface and the second emission surface. Therefore, the irradiation range can be increased, and as a result, the luminance uniformity when used as a surface light source can be improved.

さらに、請求項3に係る光束制御部材の特徴は、請求項1または2において、更に、前記第1出射面および前記第2出射面は、前記所定の平面に対して平行に形成されている点にある。   Further, the light beam control member according to claim 3 is characterized in that, in claim 1 or 2, the first emission surface and the second emission surface are formed in parallel to the predetermined plane. It is in.

そして、この請求項3に係る発明によれば、第1出射面および第2出射面が、簡易な面形状によって発散光を適切に出射させることが可能となる。   According to the third aspect of the invention, the first emission surface and the second emission surface can appropriately emit divergent light with a simple surface shape.

さらにまた、請求項4に係る光束制御部材の特徴は、請求項1または2において、更に、前記第1出射面および前記第2出射面は、光軸方向から見た場合に前記所定の平面側に凹入するように湾曲された形状を呈する凹曲面に形成されている点にある。   Still further, the light flux controlling member according to claim 4 is characterized in that, in claim 1 or 2, the first emission surface and the second emission surface are on the predetermined plane side when viewed from the optical axis direction. It is in the point formed in the concave curved surface which exhibits the shape curved so that it may dent into.

そして、この請求項4に係る発明によれば、第1出射面および第2出射面が、簡易な面形状によって発散光を適切に出射させることが可能となる。   According to the fourth aspect of the invention, the first emission surface and the second emission surface can appropriately emit divergent light with a simple surface shape.

また、請求項5に係る発光装置の特徴は、請求項1〜4のいずれか1項に記載の光束制御部材および発光素子を備えた点にある。   The light emitting device according to claim 5 is characterized in that the light flux controlling member and the light emitting element according to any one of claims 1 to 4 are provided.

そして、この請求項5に係る発明によれば、光束制御部材からの出射光の照射範囲を大きくすることによって、面光源として用いる際における輝度の均一性を向上させることができる。   According to the fifth aspect of the present invention, the uniformity of luminance when used as a surface light source can be improved by increasing the irradiation range of the emitted light from the light flux controlling member.

さらに、請求項6に係る面光源装置の特徴は、請求項5に記載の発光装置が、請求項1〜4に記載の所定の平面に平行かつ光軸に直交する整列方向に所定の間隔を設けて複数整列配置され、前記複数の発光装置に対してこれらの光束制御部材の第1出射面および第2出射面からの光の出射側の位置に、前記第1出射面および前記第2出射面からの出射光を反射および/または拡散させる反射/拡散手段を備えた点にある。   Furthermore, the surface light source device according to claim 6 is characterized in that the light emitting device according to claim 5 has a predetermined interval in an alignment direction parallel to the predetermined plane and orthogonal to the optical axis according to claims 1-4. A plurality of light emitting devices are arranged and arranged, and the first light emitting surface and the second light emitting device are disposed at positions on the light emitting side of the light beam control members from the first light emitting surface and the second light emitting surface with respect to the light emitting devices. This is in that a reflection / diffusion means for reflecting and / or diffusing light emitted from the surface is provided.

そして、この請求項6に係る発明によれば、出射光の照射範囲が大きい光束制御部材を整列配置することによって、輝度ムラが低減された良好な面光源を実現することが可能となる。   According to the sixth aspect of the present invention, it is possible to realize a good surface light source with reduced luminance unevenness by arranging and arranging the light beam control members having a large irradiation range of the emitted light.

本発明に係る光束制御部材によれば、発光装置からの出射光による被照射面積を大きくすることができ、この発光装置を面光源装置に用いることにより、面光源装置の発光面おける輝度の均一性を向上させることができる。   According to the light flux controlling member according to the present invention, it is possible to increase the area to be irradiated by the light emitted from the light emitting device. By using this light emitting device for the surface light source device, the luminance on the light emitting surface of the surface light source device is uniform. Can be improved.

本発明に係る光束制御部材の実施形態を示す平面図The top view which shows embodiment of the light beam control member which concerns on this invention 図1の下面図Bottom view of FIG. 図1のA−A断面図AA sectional view of FIG. 図1のB−B断面BB cross section of FIG. 本発明に係る光束制御部材の実施形態において、出射面からの出射光を、3本の代表的な光線として示す模式図In embodiment of the light beam control member which concerns on this invention, the schematic diagram which shows the emitted light from an output surface as three typical light rays 本発明に係る面光源装置の実施形態を示す平面図The top view which shows embodiment of the surface light source device which concerns on this invention 図6のA−A断面図AA sectional view of FIG. 図6のB−B断面図BB sectional view of FIG. 光束制御部材の第1変形例を示す平面図The top view which shows the 1st modification of a light beam control member 図9の下面図Bottom view of FIG. 図9のA−A断面図AA sectional view of FIG. 図9のB−B断面図BB sectional view of FIG. 光束制御部材の第2変形例を示す下面図Bottom view showing a second modification of the light flux controlling member 図13のA−A断面図AA sectional view of FIG. 図13のB−B断面図BB sectional view of FIG. 本発明の実施例を示す構成図Configuration diagram showing an embodiment of the present invention 本発明の実施例において、輝度の測定結果を示すグラフIn an embodiment of the present invention, a graph showing the measurement result of luminance 従来の面光源装置の一例を示す平面図A plan view showing an example of a conventional surface light source device 図18のA−A断面図AA sectional view of FIG. 図18のB−B断面図BB sectional view of FIG. 従来の光束制御部材の一例を示す平面図A plan view showing an example of a conventional light flux controlling member 図21の下面図21 is a bottom view of FIG. 図21のA−A断面図AA sectional view of FIG. 図21のB−B断面図BB sectional view of FIG. 従来の光束制御部材において、出射面からの出射光を、3本の代表的な光線として示す模式図In the conventional light flux controlling member, the schematic diagram showing the outgoing light from the outgoing surface as three representative light beams

以下、本発明に係る光束制御部材、発光装置および面光源装置の実施形態について、図1〜図17を参照して説明する。   Embodiments of a light flux controlling member, a light emitting device, and a surface light source device according to the present invention will be described below with reference to FIGS.

なお、従来と基本的構成が同一もしくはこれに類する箇所については、同一の符号を用いて説明する。   Note that portions having the same or similar basic configuration as those in the related art will be described using the same reference numerals.

図1は、本実施形態における光束制御部材30を示す平面図である。また、図2は、図1の下面図である。さらに、図3は、図1のA−A断面図、図4は、図1のB−B断面図である。   FIG. 1 is a plan view showing a light flux controlling member 30 in the present embodiment. FIG. 2 is a bottom view of FIG. 3 is a cross-sectional view taken along the line AA in FIG. 1, and FIG. 4 is a cross-sectional view taken along the line BB in FIG.

図1〜図4に示すように、本実施形態における光束制御部材30は、従来の光束制御部材14と同様に、発光素子対向面部としての第1入射面19および第2入射面20からなる凹部15と、外周面としての第1全反射面17と、反発光素子対向面部としての平面図において矩形状の第2全反射面16とを備えている。これら各構成部の光学的な機能については、従来と同様であるので詳細は省略する。   As shown in FIGS. 1 to 4, the light flux controlling member 30 in the present embodiment is a concave portion formed of a first incident surface 19 and a second incident surface 20 as light emitting element facing surface portions, similarly to the conventional light flux controlling member 14. 15, a first total reflection surface 17 as an outer peripheral surface, and a second total reflection surface 16 having a rectangular shape in a plan view as an anti-light emitting element facing surface portion. Since the optical functions of these components are the same as those in the prior art, the details are omitted.

一方、本実施形態における光束制御部材30は、その出射面の構成が従来とは異なっている。   On the other hand, the configuration of the light exit surface of the light flux controlling member 30 in the present embodiment is different from the conventional one.

すなわち、図1に示すように、本実施形態における出射面は、前述した仮想平面Sを対称面とした面対称形状に形成された第1出射面31と第2出射面32とによって構成されている。これら第1出射面31および第2出射面32は、仮想平面Sに平行な平面に形成されている。   That is, as shown in FIG. 1, the emission surface in the present embodiment is configured by a first emission surface 31 and a second emission surface 32 that are formed in a plane-symmetric shape with the above-described virtual plane S as a symmetry surface. Yes. The first emission surface 31 and the second emission surface 32 are formed in a plane parallel to the virtual plane S.

図3に示すように、第1出射面31および第2出射面32には、第2全反射面16において仮想平面Sを対称面とした互いに面対称な両側方に向かって全反射された第1の光Lおよび第2の光Lが入射する。但し、図3においては、各出射面31、32に、これらに入射する第1の光Lおよび第2の光Lを1本の光線として代表的に図示している。そして、各出射面31、32に入射した第1の光Lおよび第2の光Lは、各出射面31、32から発散された状態で出射される。図5は、このような出射面31、32からの出射光を、3本の代表的な光線として光束制御部材30の平面図とともに示したものである。 As shown in FIG. 3, the first exit surface 31 and the second exit surface 32 are totally reflected on the second total reflection surface 16 toward both sides symmetrical with respect to the virtual plane S. The first light L 1 and the second light L 2 are incident. However, in FIG. 3, the first light L 1 and the second light L 2 incident on each of the emission surfaces 31 and 32 are representatively illustrated as one light beam. Then, the first light L 1 and the second light L 2 incident on the emission surfaces 31 and 32 are emitted in a state of being diverged from the emission surfaces 31 and 32. FIG. 5 shows the light emitted from the light exit surfaces 31 and 32 as three representative light beams together with a plan view of the light flux controlling member 30.

このような本実施形態における光束制御部材30は、従来と同様の発光素子12上に対向配置されることによって本実施形態における発光装置を構成し、また、従来と同様の筐体2内に配置されることによって、本実施形態における面光源装置を構成するようになっている。   Such a light flux controlling member 30 in the present embodiment constitutes a light emitting device in the present embodiment by being opposed to the light emitting element 12 similar to the conventional one, and is disposed in the casing 2 similar to the conventional one. By doing so, the surface light source device in the present embodiment is configured.

ここで、図6は、本実施形態における面光源装置34を示す平面図である。また、図7は、図6のA−A断面図であり、図8は、図6のB−B断面図である。   Here, FIG. 6 is a plan view showing the surface light source device 34 in the present embodiment. 7 is a cross-sectional view taken along the line AA in FIG. 6, and FIG. 8 is a cross-sectional view taken along the line BB in FIG.

図6に示すように、本実施形態においては、仮想平面SをY座標の原点を通るXZ平面と定義した場合に、+Y方向および−Y方向に向かって従来の集束光(図18参照)と比較して照射範囲の大きな発散光を出射することのできる光束制御部材30が、X軸方向に等間隔に配置されている。各光束制御部材30からの出射光は、それぞれが、X軸方向に照射面積が広げられた状態として傾斜反射面10に照射されることになる。この結果、傾斜反射面10上における隣接する光束制御部材30による照射部分(明部)同士のX軸方向の間隔を詰めることができるので、従来と比較して、面光源装置34の発光面上における明部間の暗部を低減(X軸方向の幅を縮小)または除去することができる。   As shown in FIG. 6, in this embodiment, when the virtual plane S is defined as an XZ plane passing through the origin of the Y coordinate, the conventional focused light (see FIG. 18) in the + Y direction and the −Y direction is used. In comparison, light flux controlling members 30 capable of emitting divergent light having a large irradiation range are arranged at equal intervals in the X-axis direction. The emitted light from each light flux controlling member 30 is irradiated onto the inclined reflecting surface 10 in a state where the irradiation area is expanded in the X-axis direction. As a result, the interval in the X-axis direction between the irradiated portions (bright portions) by the adjacent light flux controlling members 30 on the inclined reflecting surface 10 can be reduced, so that the light emitting surface of the surface light source device 34 is compared with the conventional case. The dark part between the bright parts can be reduced (the width in the X-axis direction is reduced) or removed.

また、このような作用効果を発揮する出射面31、32を簡易な平面として容易に形成することができるので、コストを抑えることができる。   Moreover, since the output surfaces 31 and 32 which exhibit such an effect can be easily formed as a simple plane, cost can be suppressed.

なお、本発明は、以下に示すような種々の変形例を適用することができる。   The present invention can be applied to various modifications as shown below.

(第1の変形例)
すなわち、図9は、光束制御部材30の第1の変形例を示す平面図である。また、図10は、図9の下面図である。さらに、図11は、図9のA−A断面図、図12は、図9のB−B断面図である。
(First modification)
That is, FIG. 9 is a plan view showing a first modification of the light flux controlling member 30. FIG. 10 is a bottom view of FIG. 11 is a cross-sectional view taken along the line AA in FIG. 9, and FIG. 12 is a cross-sectional view taken along the line BB in FIG.

図9に示すように、本変形例においては、第1出射面31および第2出射面32が、仮想平面Sを対称面とした面対称形状であって、光軸OA方向から見た場合に仮想平面S側に円弧状に湾曲された凹入面に形成されている。両出射面31、32間寸法が最小となる位置は、仮想平面Sに直交し光軸OAを含む断面(図11)上と一致している。ただし、凹入面の湾曲形状は、円弧(球面)に限る必要はなく、非球面であってもよい。   As shown in FIG. 9, in the present modification, the first emission surface 31 and the second emission surface 32 have a plane-symmetric shape with the imaginary plane S as the symmetry plane, and are viewed from the direction of the optical axis OA. It is formed on a concave surface curved in an arc shape on the virtual plane S side. The position where the dimension between the two exit surfaces 31 and 32 is the minimum is coincident with the cross section (FIG. 11) perpendicular to the virtual plane S and including the optical axis OA. However, the curved shape of the concave surface need not be limited to an arc (spherical surface), and may be an aspherical surface.

このような本変形例における第1出射面31および第2出射面32も、図11に示すように、第2全反射面16によって両側方に全反射された光L、Lを、発散光として出射させることができる。このとき、各出射面31、32は、負のパワーを有していることによって、平面の出射面(図1参照)の場合よりも広い面積を照射可能な発散光を出射させることができる。したがって、本変形例によれば、各出射面31、32が平面の場合に比べて、より有効に暗部を低減または除去することができる。 As shown in FIG. 11, the first emission surface 31 and the second emission surface 32 in this modification also diverge light L 1 and L 2 totally reflected on both sides by the second total reflection surface 16. It can be emitted as light. At this time, since each of the emission surfaces 31 and 32 has negative power, it is possible to emit divergent light that can irradiate a wider area than in the case of a planar emission surface (see FIG. 1). Therefore, according to the present modification, it is possible to reduce or remove the dark part more effectively than when each of the emission surfaces 31 and 32 is a plane.

(第2の変形例)
次に、図13は、光束制御部材30の第2変形例を示す下面図である。また、図14は、図13のA−A断面図であり、図15は、図13のB−B断面図である。
(Second modification)
Next, FIG. 13 is a bottom view showing a second modification of the light flux controlling member 30. 14 is a cross-sectional view taken along the line AA in FIG. 13, and FIG. 15 is a cross-sectional view taken along the line BB in FIG.

図13〜図15に示すように、本変形例における光束制御部材30は、発光素子対向面部が、凹部15の代わりに、フレネル面形状の入射領域35を有している。すなわち、入射領域35は、光軸OA方向から見た場合に光軸OAを中心とした同心円環状を呈するとともに光軸OAを含む断面が鋸刃状を呈するような径方向において互いに隣接する複数の突起部36を有している。図14(部分拡大図)に示すように、各突起部36は、発光素子12から出射された光が入射し、この入射した光を屈折させる入射面36aと、この入射面36aに対して光軸OAを基準とした径方向の外側位置に形成され、入射面36aから入射した光を第2全反射面16(反発光素子対向面部)に向けて全反射させる第1全反射面36bとを有している。ただし、入射面36aは、平面に限る必要はなく、その先端部側が基端部側よりも光軸OAに対する径方向外方への傾きが大きくなるような屈曲面に形成してもよい。このようにすれば、突起部36の先端部が尖鋭過ぎることによる製造上のデメリット(例えば、金型を用いて成形する場合における先端部の転写面への樹脂材料の充填不足)を回避することができる。なお、入射領域35における中央部35aは、光軸OAに直交する平坦面に形成されているが、この中央部35aは、発光素子12からの光を第2全反射面16側に向けて入射させるようになっている。このとき、中央部35aから光束制御部材30内に入射する光は、光軸OA上を通る中心光を除いて光軸OAに対する角度が小さくなる方向に屈折される。   As shown in FIGS. 13 to 15, in the light flux controlling member 30 in the present modification, the light emitting element facing surface portion has a Fresnel surface-shaped incident region 35 instead of the recessed portion 15. That is, the incident region 35 has a concentric annular shape centered on the optical axis OA when viewed from the optical axis OA direction, and a plurality of adjacent regions in the radial direction such that a cross section including the optical axis OA has a sawtooth shape. A protrusion 36 is provided. As shown in FIG. 14 (partially enlarged view), each protrusion 36 receives light emitted from the light emitting element 12, and enters the incident surface 36a that refracts the incident light, and light with respect to the incident surface 36a. A first total reflection surface b that is formed at a radially outer position with respect to the axis OA and that totally reflects light incident from the incident surface a toward the second total reflection surface 16 (opposite surface of the light-emitting element). Have. However, the incident surface 36a is not necessarily limited to a flat surface, and may be formed on a bent surface such that the distal end side has a greater radial outward inclination with respect to the optical axis OA than the proximal end side. By doing so, it is possible to avoid manufacturing disadvantages (for example, insufficient filling of the resin material on the transfer surface of the tip when molding using a mold) due to the tip of the protrusion 36 being too sharp. Can do. In addition, although the center part 35a in the incident area | region 35 is formed in the flat surface orthogonal to the optical axis OA, this center part 35a injects the light from the light emitting element 12 toward the 2nd total reflection surface 16 side. It is supposed to let you. At this time, the light that enters the light flux controlling member 30 from the central portion 35a is refracted in a direction in which the angle with respect to the optical axis OA is reduced except for the central light passing on the optical axis OA.

このような本変形例における光束制御部材30は、入射領域35に入射した発光素子12の出射光を、フレネル形状の第1全反射面36bによる全反射または中央部35aの透過によって、第2全反射面16側に適切に進行させることができる。   The light flux controlling member 30 in this modification has the second total light reflected by the Fresnel-shaped first total reflection surface 36b or transmitted through the central portion 35a by the light emitted from the light emitting element 12 incident on the incident region 35. It can be appropriately advanced toward the reflecting surface 16 side.

そして、入射領域35側から到達した光を、第2全反射面16によって仮想平面Sを対称面とした互いに面対称な両側方に向かって全反射させ、第1出射面31および第2出射面32から発散光として出射させることができる。   Then, the light that has arrived from the incident region 35 side is totally reflected by the second total reflection surface 16 toward both sides that are symmetrical with respect to the virtual plane S, and the first emission surface 31 and the second emission surface. 32 can be emitted as diverging light.

これにより、図1〜図8の構成と同様に、傾斜反射面10上における隣接する光束制御部材30による照射部分(明部)同士の間の光量不足を補うことができる。   Thereby, the shortage of the light quantity between the irradiation parts (bright part) by the adjacent light beam control member 30 on the inclined reflective surface 10 can be compensated similarly to the structure of FIGS.

この他にも、本変形例における入射領域35を、第1変形例における凹曲面状の第1出射面31および第2出射面32と組み合わせるようにしてもよい。   In addition to this, the incident area 35 in the present modification may be combined with the concavely-curved first exit surface 31 and second exit surface 32 in the first modification.

次に、本発明の実施例として、図1〜図8に示した構成についての光線追跡シミュレーションおよび輝度測定の結果を、従来の光束制御部材14を用いた構成との比較によって説明する。   Next, as an embodiment of the present invention, the results of ray tracing simulation and luminance measurement for the configuration shown in FIGS. 1 to 8 will be described by comparison with a configuration using a conventional light flux controlling member 14.

本実施例においては、前述のように、発光素子12(光束制御部材30、14)の整列方向をX軸方向、仮想平面Sおよび光軸OAに直交する方向をY軸方向、光軸OA方向(面光源装置34、1の厚み方向)をZ軸方向としたXYZ直交座標系を定義した。より具体的には、図16および図18に示すように、X軸方向に沿って整列配置された9つの発光素子12のうちの最も中央に配置された1つの発光素子12の発光面の中心点を、(X,Y,Z)=(0,0,1)(単位はmm、以下同様)とし、原点(0,0,0)を、当該発光面の中心点にZ軸方向において対向する基板13の表面上の位置とした。   In the present embodiment, as described above, the alignment direction of the light emitting elements 12 (light flux control members 30 and 14) is the X-axis direction, the direction orthogonal to the virtual plane S and the optical axis OA is the Y-axis direction, and the optical axis OA direction. An XYZ orthogonal coordinate system in which the (thickness direction of the surface light source devices 34, 1) was defined as the Z-axis direction was defined. More specifically, as shown in FIGS. 16 and 18, the center of the light emitting surface of one light emitting element 12 arranged at the center of the nine light emitting elements 12 arranged along the X-axis direction. The point is (X, Y, Z) = (0, 0, 1) (unit is mm, the same applies hereinafter), and the origin (0, 0, 0) is opposed to the center point of the light emitting surface in the Z-axis direction. It was set as the position on the surface of the substrate 13 to be used.

まず、本実施例においては、中央の1つの発光素子12から出射された光束のうちの1本の代表光線を追跡し、この代表光線の各測定ポイントにおけるXYZ座標を測定した。なお、面光源装置の具体的な寸法は、図16に示す通りである。そして、各測定ポイントにおける測定結果は、以下の表1および表2に示すものとなった。なお、表1は、本発明の構成についての測定結果であり、表2は、従来の構成についての測定結果である。   First, in this example, one representative light beam of the light beams emitted from one light emitting element 12 at the center was traced, and the XYZ coordinates at each measurement point of this representative light beam were measured. The specific dimensions of the surface light source device are as shown in FIG. And the measurement result in each measurement point became what is shown in the following Table 1 and Table 2. Table 1 shows the measurement results for the configuration of the present invention, and Table 2 shows the measurement results for the conventional configuration.

Figure 0005749555
Figure 0005749555

Figure 0005749555
Figure 0005749555

表1および表2に示すように、本発明の構成と従来の構成とでは、発光素子12からの代表光線のXYZ座標は、出射点(発光素子)、第2入射面(光束制御部材)、第1全反射面(光束制御部材)および第2全反射面(光束制御部材)の各測定ポイントにおいて互いに一致している。一方、出射面の形状の相違により、本発明の構成と従来の構成とは、出射面およびY=100mmの位置の各測定ポイントにおける代表光線のXYZ座標が互いに異なっている。   As shown in Table 1 and Table 2, in the configuration of the present invention and the conventional configuration, the XYZ coordinates of the representative light beam from the light emitting element 12 are the emission point (light emitting element), the second incident surface (light flux controlling member), The measurement points on the first total reflection surface (light flux control member) and the second total reflection surface (light flux control member) coincide with each other. On the other hand, due to the difference in the shape of the exit surface, the XYZ coordinates of the representative rays of the configuration of the present invention and the conventional configuration are different from each other at each measurement point at the exit surface and Y = 100 mm.

ここで、測定ポイント(Y=100mm)におけるX座標に着目すると、従来の構成ではX=4.79mmであるのに対して、本発明の構成ではX=−20.04mmとなることが分かる。この結果は、本発明の構成の方が、従来の構成よりも出射面からの出射光の発散に適していることを示していると言える。   Here, paying attention to the X coordinate at the measurement point (Y = 100 mm), it can be seen that X = 4.79 mm in the conventional configuration, whereas X = −20.04 mm in the configuration of the present invention. It can be said that this result shows that the configuration of the present invention is more suitable for divergence of outgoing light from the outgoing surface than the conventional configuration.

次に、本発明の構成および従来の構成についての輝度測定は、図16に示すように、X値を可変とし、Y=100mm(一定)の測定位置において面光源装置1の発光面上の輝度測定を行った。その測定結果は図17に示すものとなった。なお、図17における横軸は、各測定位置(Y=100mm)におけるX座標である。また、同図における縦軸は、測定点における輝度ムラ(無次元量)である。なお、各測定点の輝度ムラは、次式によって求めることができる。   Next, in the luminance measurement for the configuration of the present invention and the conventional configuration, as shown in FIG. 16, the X value is variable, and the luminance on the light emitting surface of the surface light source device 1 is measured at a measurement position of Y = 100 mm (constant). Measurements were made. The measurement results are shown in FIG. The horizontal axis in FIG. 17 is the X coordinate at each measurement position (Y = 100 mm). Moreover, the vertical axis | shaft in the same figure is the brightness nonuniformity (dimensionalless amount) in a measurement point. The luminance unevenness at each measurement point can be obtained by the following equation.

輝度ムラ=(測定点の輝度−A)/A (1)
但し、(1)式におけるAは、測定点の周囲約55mm四方の平均輝度(cd/mm)である。
Brightness unevenness = (Brightness of measurement point−A) / A (1)
However, A in the formula (1) is an average luminance (cd / mm 2 ) of about 55 mm square around the measurement point.

ここで、図17に本発明の構成による輝度むらを実線、従来の構成による輝度むらを破線で示す。これより本発明の構成の方が、従来の構成に比べて広い範囲にわたって輝度ムラが低減されていることが分かる。   Here, in FIG. 17, the luminance unevenness according to the configuration of the present invention is indicated by a solid line, and the luminance unevenness according to the conventional configuration is indicated by a broken line. From this, it can be seen that the luminance unevenness is reduced over a wider range in the configuration of the present invention than in the conventional configuration.

したがって、本実施例によれば、本発明の構成の方が、従来の構成に比べて輝度の均一性に優れていると言える。   Therefore, according to this example, it can be said that the configuration of the present invention is superior in luminance uniformity as compared with the conventional configuration.

なお、本発明は、前述した実施の形態に限定されるものではなく、本発明の特徴を損なわない限度において種々変更することができる。   In addition, this invention is not limited to embodiment mentioned above, A various change can be made in the limit which does not impair the characteristic of this invention.

例えば、ホルダ22は、必要に応じて設けるようにしてもよい。また、反射/拡散手段としては、傾斜反射面10の代わりまたは傾斜反射面10とともに、光束制御部材からの出射光を拡散させる公知の拡散面を備えてもよい。   For example, the holder 22 may be provided as necessary. Further, as the reflection / diffusion means, a known diffusion surface that diffuses the emitted light from the light flux controlling member may be provided in place of or along with the inclined reflection surface 10.

12 発光素子
15 凹部(発光素子対向面部)
16 第2全反射面
17 第1全反射面(外周面)
19 第1入射面
20 第2入射面
30 光束制御部材
31 第1出射面
32 第2出射面
12 Light emitting element 15 Recessed part (light emitting element facing surface part)
16 2nd total reflection surface 17 1st total reflection surface (outer peripheral surface)
19 First entrance surface 20 Second entrance surface 30 Light flux controlling member 31 First exit surface 32 Second exit surface

Claims (6)

発光素子から出射された光の進行方向を制御する光束制御部材であって、
前記発光素子に対向して配置される発光素子対向面部と、
この発光素子対向面部に対して前記発光素子と反対側に形成された反発光素子対向面部と、
前記発光素子対向面部の外周端部から前記発光素子と反対側に向かって延設された外周面と、
この外周面に対して前記発光素子と反対側であって前記反発光素子対向面部の外側に形成された出射面と
を備え、
前記発光素子対向面部は、
前記発光素子から出射された光を入射させるための凹部を有し、
前記凹部は、
光軸に直交する平面に形成され、前記発光素子から出射された光のうちの中心側の第1の光が入射する第1入射面と、
この第1入射面の外周端部から前記発光素子側に向かって延設され、前記発光素子から出射された光のうちの前記第1の光の外側の第2の光が入射する第2入射面と
を有し、
前記外周面は、
前記発光素子と反対側に向かうにしたがって外径が漸増するように形成され、前記第2入射面に入射した前記第2の光を前記反発光素子対向面部に向けて全反射させる第1全反射面を有し、
前記反発光素子対向面部は、
前記光軸を含む所定の平面を対称面とした面対称形状に形成されるとともに、前記所定の平面に直交する任意の断面において、前記所定の平面との交点位置が谷となるV字形状を呈し、前記第1の光および前記第2の光を全反射させる第2全反射面を有し、
前記出射面は、
前記所定の平面を対称面とした互いに面対称な形状に形成され、前記第2全反射面によって全反射された前記第1および第2の光を出射させる第1出射面および第2出射面を有し、
前記第1出射面および前記第2出射面は、
前記第2全反射面によって全反射された前記第1および第2の光を前記谷の長手方向に広がるように屈折して発散させた状態で出射させる形状に形成されていること
を特徴とする光束制御部材。
A light flux controlling member for controlling the traveling direction of light emitted from the light emitting element,
A light emitting element facing surface portion disposed to face the light emitting element;
An anti-light emitting element facing surface portion formed on the side opposite to the light emitting element with respect to the light emitting element facing surface portion;
An outer peripheral surface extending from the outer peripheral end of the light emitting element facing surface portion toward the side opposite to the light emitting element;
An emission surface that is opposite to the light emitting element with respect to the outer peripheral surface and is formed outside the counter light emitting element facing surface portion;
The light emitting element facing surface portion is
Having a recess for allowing the light emitted from the light emitting element to enter;
The recess is
A first incident surface that is formed on a plane orthogonal to the optical axis and on which the first light on the center side of the light emitted from the light emitting element is incident;
A second incident that extends from the outer peripheral edge of the first incident surface toward the light emitting element side, and second light outside the first light out of the light emitted from the light emitting element is incident. Having a surface and
The outer peripheral surface is
The first total reflection is formed such that the outer diameter gradually increases toward the side opposite to the light emitting element, and totally reflects the second light incident on the second incident surface toward the counter light emitting element facing surface portion. Has a surface,
The anti-light emitting element facing surface portion is
A V-shape that is formed in a plane-symmetric shape with a predetermined plane including the optical axis as a plane of symmetry and that has an intersection point with the predetermined plane as a trough in an arbitrary cross section orthogonal to the predetermined plane. Presenting a second total reflection surface that totally reflects the first light and the second light;
The exit surface is
A first emission surface and a second emission surface that are formed in plane symmetry with the predetermined plane as a symmetry surface and emit the first and second light beams that are totally reflected by the second total reflection surface. Have
The first emission surface and the second emission surface are:
The first and second light beams totally reflected by the second total reflection surface are formed in a shape that refracts and spreads so as to spread in the longitudinal direction of the valley. Luminous flux control member.
発光素子から出射された光の進行方向を制御する光束制御部材であって、
前記発光素子に対向して配置される発光素子対向面部と、
この発光素子対向面部に対して前記発光素子と反対側に形成された反発光素子対向面部と、
前記反発光素子対向面部の外側に形成された出射面と
を備え、
前記発光素子対向面部は、
前記発光素子から出射された光を入射させるための入射領域を有し、
前記入射領域は、
光軸方向から見た場合に光軸を中心とした同心円環状を呈するとともに前記光軸を含む断面が鋸刃状を呈するような径方向において互いに隣接する複数の突起部を有し、
前記突起部は、
前記発光素子から出射された光が入射し、この入射した光を屈折させる入射面と、
この入射面に対して前記光軸を基準とした径方向の外側位置に形成され、前記入射面から入射した光を前記反発光素子対向面部に向けて全反射させる第1全反射面と
を有し、
前記反発光素子対向面部は、
前記光軸を含む所定の平面を対称面とした面対称形状に形成されるとともに前記所定の平面に直交する任意の断面において、前記所定の平面との交点位置が谷となるV字形状を呈し、前記第1全反射面によって全反射された光を更に全反射させる第2全反射面を有し、
前記出射面は、
前記所定の平面を対称面とした互いに面対称な形状に形成され、前記第2全反射面によって全反射された光を出射させる第1出射面および第2出射面を有し、
前記第1出射面および前記第2出射面は、
前記第2全反射面によって全反射された光を前記谷の長手方向に広がるように屈折して発散させた状態で出射させる形状に形成されていること
を特徴とする光束制御部材。
A light flux controlling member for controlling the traveling direction of light emitted from the light emitting element,
A light emitting element facing surface portion disposed to face the light emitting element;
An anti-light emitting element facing surface portion formed on the side opposite to the light emitting element with respect to the light emitting element facing surface portion;
An emission surface formed outside the counter-light-emitting element facing surface portion,
The light emitting element facing surface portion is
An incident region for entering the light emitted from the light emitting element;
The incident area is
When viewed from the optical axis direction, it has a plurality of protrusions adjacent to each other in the radial direction so as to exhibit a concentric ring centered on the optical axis and the cross section including the optical axis has a saw-tooth shape,
The protrusion is
An incident surface on which light emitted from the light emitting element is incident and refracts the incident light; and
A first total reflection surface that is formed at a radially outer position relative to the incident surface with respect to the optical axis and that totally reflects light incident from the incident surface toward the surface facing the anti-light-emitting element. And
The anti-light emitting element facing surface portion is
It is formed in a plane-symmetric shape with a predetermined plane including the optical axis as a plane of symmetry, and in an arbitrary cross section orthogonal to the predetermined plane, it exhibits a V shape in which the intersection point with the predetermined plane is a valley. And a second total reflection surface that further totally reflects the light totally reflected by the first total reflection surface,
The exit surface is
A first emission surface and a second emission surface that are formed in plane symmetry with the predetermined plane as a symmetry plane, and emit light totally reflected by the second total reflection surface;
The first emission surface and the second emission surface are:
The light flux controlling member, wherein the light beam control member is formed into a shape that emits the light totally reflected by the second total reflection surface in a state of being refracted and diverged so as to spread in the longitudinal direction of the valley .
前記第1出射面および前記第2出射面は、
前記所定の平面に対して平行に形成されていること
を特徴とする請求項1または2に記載の光束制御部材。
The first emission surface and the second emission surface are:
The light flux controlling member according to claim 1, wherein the light flux controlling member is formed in parallel to the predetermined plane.
前記第1出射面および前記第2出射面は、
光軸方向から見た場合に前記所定の平面側に凹入するように湾曲された形状を呈する凹曲面に形成されていること
を特徴とする請求項1または2に記載の光束制御部材。
The first emission surface and the second emission surface are:
3. The light flux controlling member according to claim 1, wherein the light flux controlling member is formed into a concave curved surface having a curved shape so as to be recessed into the predetermined plane side when viewed from the optical axis direction.
請求項1〜4のいずれか1項に記載の光束制御部材および発光素子を備えたこと
を特徴とする発光装置。
A light emitting device comprising the light flux controlling member according to claim 1 and a light emitting element.
請求項5に記載の発光装置が、請求項1〜4に記載の所定の平面に平行かつ光軸に直交する整列方向に所定の間隔を設けて複数整列配置され、
前記複数の発光装置に対してこれらの光束制御部材の第1出射面および第2出射面からの光の出射側の位置に、前記第1出射面および前記第2出射面からの出射光を反射および/または拡散させる反射/拡散手段を備えたこと
を特徴とする面光源装置。
A plurality of light-emitting devices according to claim 5 are arranged in a line at a predetermined interval in an alignment direction parallel to the predetermined plane according to claims 1 to 4 and perpendicular to the optical axis,
The light emitted from the first emission surface and the second emission surface is reflected at positions on the light emission side from the first emission surface and the second emission surface of these light flux control members with respect to the plurality of light emitting devices. A surface light source device comprising a reflection / diffusion means for diffusing.
JP2011098499A 2011-04-26 2011-04-26 Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device Active JP5749555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011098499A JP5749555B2 (en) 2011-04-26 2011-04-26 Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011098499A JP5749555B2 (en) 2011-04-26 2011-04-26 Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device

Publications (2)

Publication Number Publication Date
JP2012231023A JP2012231023A (en) 2012-11-22
JP5749555B2 true JP5749555B2 (en) 2015-07-15

Family

ID=47432346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011098499A Active JP5749555B2 (en) 2011-04-26 2011-04-26 Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device

Country Status (1)

Country Link
JP (1) JP5749555B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557716A (en) * 2017-09-26 2019-04-02 恩普乐股份有限公司 Planar light source device and display device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015212792A (en) * 2014-05-07 2015-11-26 株式会社エンプラス Luminous flux control member, light-emitting device, surface light source device, and display device
KR102294163B1 (en) 2014-12-05 2021-08-27 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting module
WO2018061407A1 (en) * 2016-09-30 2018-04-05 シャープ株式会社 Light source and backlight device
JP2018061024A (en) * 2016-10-04 2018-04-12 株式会社エンプラス Light beam control member, light-emitting device and illuminating device
WO2018066418A1 (en) * 2016-10-04 2018-04-12 株式会社エンプラス Light bundle control member, light emitting device, and illuminating device
JP7409921B2 (en) * 2020-03-18 2024-01-09 株式会社エンプラス Light flux control member, light emitting device, surface light source device, and display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5977249U (en) * 1982-11-16 1984-05-25 日本電気株式会社 Lateral output light emitting diode device
JPS61147585A (en) * 1984-12-21 1986-07-05 Stanley Electric Co Ltd Light-emitting diode
JPH0918058A (en) * 1995-06-29 1997-01-17 Sharp Corp Semiconductor light-emitting device
JP2000299500A (en) * 1999-04-15 2000-10-24 Mayumi Ishida Light emitting diode
JP4292641B2 (en) * 1999-08-27 2009-07-08 パナソニック株式会社 Surface emitting device
JP4239565B2 (en) * 2002-03-20 2009-03-18 豊田合成株式会社 Light emitters and lights
KR100586968B1 (en) * 2004-05-28 2006-06-08 삼성전기주식회사 Led package and backlight assembly for lcd device comprising the same
KR100649640B1 (en) * 2005-02-03 2006-11-27 삼성전기주식회사 Side emission type led package
JP4799341B2 (en) * 2005-10-14 2011-10-26 株式会社東芝 Lighting device
JP4799433B2 (en) * 2007-01-31 2011-10-26 株式会社小糸製作所 Vehicle lighting
KR101488448B1 (en) * 2007-12-06 2015-02-02 서울반도체 주식회사 Led package and method for fabricating the same
JP2010009785A (en) * 2008-06-24 2010-01-14 Harison Toshiba Lighting Corp Hollow type surface lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109557716A (en) * 2017-09-26 2019-04-02 恩普乐股份有限公司 Planar light source device and display device

Also Published As

Publication number Publication date
JP2012231023A (en) 2012-11-22

Similar Documents

Publication Publication Date Title
US8251547B2 (en) Emission device, surface light source device and display
JP5749555B2 (en) Luminous flux control member, light emitting device including the luminous flux control member, and surface light source device including the light emitting device
KR20190042718A (en) A light guide plate, a surface light source device, a display device, and an electronic device
WO2011007733A1 (en) Light emitting device, luminous flux control member, and illuminating device provided with light emitting device
JP6356997B2 (en) Light flux controlling member, light emitting device, surface light source device, and display device
JP2011014831A (en) Light emitting device, surface light source, and liquid crystal display device
US9169991B2 (en) Lens and backlight module having the lens
WO2018194118A1 (en) Light flux control member, light-emitting device, surface light source device and display device
US20150292712A1 (en) Display Device
TW201411033A (en) Direct-type backlight module
TWI605224B (en) Illumination device
US10473977B2 (en) Surface light source apparatus comprising a light-distribution control element having a diffusion part and liquid crystal display having the same
JP6085105B2 (en) Luminous flux control member, light emitting device, lighting device, and display device
WO2016194798A1 (en) Planar light source device and liquid crystal display device
JP2018037257A (en) Surface light source device and liquid crystal display device
US10539825B2 (en) Planar light source apparatus, display apparatus, and method of manufacturing planar light source apparatus
TW202001380A (en) Planar lighting device
WO2019044968A1 (en) Light emitting device, area light source device, and display device
US20200233269A1 (en) Surface light source device and liquid crystal display apparatus
JP6298986B2 (en) Lighting device
JP2013105076A (en) Luminous flux control component, light-emitting device, surface light source device, and display unit
JP6821449B2 (en) Luminous flux control member, light emitting device, surface light source device and display device
JP2019169420A (en) Surface light source device and liquid crystal display unit
JP6277416B2 (en) Lighting device
US11231619B2 (en) Light bundle control member, light emitting device, area light source device, and display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150514

R150 Certificate of patent or registration of utility model

Ref document number: 5749555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250