JP5749203B2 - Temperature reduction tower - Google Patents

Temperature reduction tower Download PDF

Info

Publication number
JP5749203B2
JP5749203B2 JP2012060742A JP2012060742A JP5749203B2 JP 5749203 B2 JP5749203 B2 JP 5749203B2 JP 2012060742 A JP2012060742 A JP 2012060742A JP 2012060742 A JP2012060742 A JP 2012060742A JP 5749203 B2 JP5749203 B2 JP 5749203B2
Authority
JP
Japan
Prior art keywords
introduction
tower
temperature reducing
reducing tower
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012060742A
Other languages
Japanese (ja)
Other versions
JP2013194953A (en
Inventor
定典 石原
定典 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2012060742A priority Critical patent/JP5749203B2/en
Publication of JP2013194953A publication Critical patent/JP2013194953A/en
Application granted granted Critical
Publication of JP5749203B2 publication Critical patent/JP5749203B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Description

本発明は、減温塔に関する。   The present invention relates to a temperature reducing tower.

従来、例えば廃棄物焼却施設等において、ダイオキシンの生成の防止を目的として、ガスを冷却するための減温塔が用いられている。減温塔では、塔内を流れるガスに対して液滴を噴霧することによって液滴を蒸発させることにより、温度を低下させている(例えば、特許文献1参照)。   Conventionally, for example, in a waste incineration facility, a temperature reducing tower for cooling gas is used for the purpose of preventing the production of dioxins. In the temperature reducing tower, the temperature is lowered by evaporating the droplets by spraying the droplets on the gas flowing in the tower (see, for example, Patent Document 1).

特開2001−343115号公報JP 2001-343115 A

しかしながら、上記の減温塔では、その内部へのガスを供給する際のガスの流路等に起因して、偏流が発生する可能性が増大する。例えば偏流が発生すると、ガス流速の偏りに応じてガス冷却を十分に行うことができない領域が形成されるおそれがある。また、減温塔内部におけるガスの主流から外れた領域で形成される渦流が原因となって、ノズルから噴霧される液滴の蒸発が不十分となり、液滴が塔内のダストと混合して減温塔の内壁等に付着し、減温塔の冷却性能が低下するおそれがある。   However, in the above-described temperature reducing tower, there is an increased possibility of drift due to the gas flow path when the gas is supplied to the inside. For example, when uneven flow occurs, there may be a region where gas cooling cannot be sufficiently performed according to the uneven gas flow rate. Also, due to the vortex formed in the region outside the main flow of gas inside the temperature-decreasing tower, the droplet sprayed from the nozzle is insufficiently evaporated, and the droplet mixes with the dust in the tower. There is a risk that the cooling performance of the temperature reducing tower will deteriorate due to adhesion to the inner wall of the temperature reducing tower.

本発明は上記を鑑みてなされたものであり、冷却性能の低下を抑制できる減温塔の提供を目的とする。   This invention is made | formed in view of the above, and aims at provision of the temperature reduction tower which can suppress the fall of cooling performance.

上記目的を達成するため、本発明に係る減温塔は、筒状形状を有し、導入管から当該内部に流入するガスを冷却するための減温塔であって、側面に導入管が接続された導入部と、導入部よりも下流側に設けられ、減温塔の軸線方向に垂直な平面における流路面積が導入部よりも大きい胴部と、導入部と胴部との間に設けられ、導入部から胴部に向かうにつれて流路面積が大きくなるように拡がる拡大部と、胴部に設けられ、ガスに対して液滴を噴霧するノズルと、を備え、拡大部の内面と減温塔の軸線とのなす角は、導入部において導入管が設けられた側面の側よりも導入管が設けられた側面に対向する側面の側のほうが大きいことを特徴とする。   In order to achieve the above object, a temperature reducing tower according to the present invention has a cylindrical shape and is a temperature reducing tower for cooling the gas flowing into the interior from the introduction pipe, and the introduction pipe is connected to the side surface. Provided between the introduction part and the trunk part provided on the downstream side of the introduction part, the trunk part having a channel area larger than the introduction part in a plane perpendicular to the axial direction of the temperature reducing tower. An enlarged portion that expands so that the flow path area increases as it goes from the introduction portion to the trunk portion, and a nozzle that is provided in the trunk portion and sprays liquid droplets on the gas, and reduces the inner surface of the enlarged portion. The angle formed with the axis of the warm tower is characterized in that the side of the side facing the side where the introduction pipe is provided is larger than the side of the introduction where the introduction pipe is provided.

上記の減温塔では、導入管から導入部内部に導入されたガスは、減温塔の軸線に対して導入管とは反対側にガス流の主流を形成して下流側へ流れる。このとき、導入管側の拡大部の内面とガス流の主流との間に渦流が形成され、この渦流が液滴の蒸発を妨げ減温塔における冷却性能の低下を導いていることを本発明者らは発見した。そこで、上記の減温塔のように、導入管が設けられた側面の側における拡大部の内面と軸線とがなす角を、導入管が設けられた側面に対向する側面の側の拡大部の内面と軸線とがなす角よりも大きくすることで、導入管側の拡大部の内面近傍での渦流の発生を抑制することができる。この結果、偏流により形成される大きな渦流に由来する冷却性能の低下を抑制することができる。   In the above-described temperature reducing tower, the gas introduced from the introduction pipe into the introduction portion flows downstream by forming a main flow of the gas flow on the opposite side of the introduction pipe with respect to the axis of the temperature reduction tower. At this time, it is the present invention that a vortex is formed between the inner surface of the enlarged portion on the introduction pipe side and the main flow of the gas flow, and this vortex prevents evaporation of droplets and leads to a decrease in cooling performance in the temperature reducing tower. They discovered. Therefore, as in the above-described temperature reducing tower, the angle formed by the inner surface of the enlarged portion and the axis on the side surface provided with the introduction tube is the angle of the enlarged portion on the side surface facing the side surface provided with the introduction tube. By making it larger than the angle formed by the inner surface and the axis, it is possible to suppress the generation of vortex near the inner surface of the enlarged portion on the introduction tube side. As a result, it is possible to suppress a decrease in cooling performance due to a large vortex formed by the drift.

ここで、上記実施形態を効果的に奏する構成として、具体的には、前記拡大部の内面は、導入部側に設けられた第1傾斜部と、第1傾斜部の下流側に連続するように設けられた第2傾斜部と、を備え、第1傾斜部と減温塔の軸線とのなす角は、第2傾斜部と減温塔の軸線とのなす角よりも小さい態様が挙げられる。   Here, as an effective configuration of the above embodiment, specifically, the inner surface of the enlarged portion is continuous with the first inclined portion provided on the introduction portion side and the downstream side of the first inclined portion. And an angle formed between the first inclined portion and the axis of the temperature reducing tower is smaller than an angle formed between the second inclined portion and the axis of the temperature reducing tower. .

本発明によれば、冷却性能の低下を抑制できる減温塔が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the temperature reduction tower which can suppress the fall of cooling performance is provided.

減温塔について説明する概略構成図である。It is a schematic block diagram explaining a temperature reduction tower. 本実施形態に係る減温塔の軸線Xに沿った断面図である。It is sectional drawing along the axis line X of the temperature reduction tower which concerns on this embodiment. 変形例に係る減温塔の図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 of the temperature reduction tower which concerns on a modification. 図3の減温塔のIV-IV断面図である。It is IV-IV sectional drawing of the temperature reduction tower of FIG. 減温塔の内面の形状を変更した例を説明する図4に対応する断面図である。It is sectional drawing corresponding to FIG. 4 explaining the example which changed the shape of the inner surface of a temperature reduction tower.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は減温塔について説明する概略構成図である。図2は、本実施形態に係る減温塔の軸線Xに沿った断面図である。   FIG. 1 is a schematic configuration diagram illustrating a temperature reduction tower. FIG. 2 is a cross-sectional view along the axis X of the temperature reducing tower according to the present embodiment.

図1に示す減温塔1は、塔内を流通する高温ガスを急速に冷却することでダイオキシンの発生を抑制するものであり、主に廃棄物焼却施設等において焼却炉の後段に設けられ、焼却炉からの排ガスの処理等に運用される。減温塔1は、筒状形状であってその軸線Xが垂直方向に伸びるように竪型に設置される。この減温塔1は導入部10、導入管11、拡大部20、胴部30、ノズル31、排ガス出口管32、排出管33を備えている。このうち、導入部10、拡大部20及び胴部30は減温塔1の内部のガスの流路を形成するものであり、導入管11は減温塔1の内部へガスを供給するための配管である。また、排ガス出口管32は、減温塔1の内部を流通したガスを排出するための配管であって、排出管33は、減温塔1のダスト等の残渣を適宜排出するための配管である。なお、減温塔1においてガスが流れる領域の内面は高温になるため、耐火キャスタ等の所謂耐火物によって形成されている。   The temperature-decreasing tower 1 shown in FIG. 1 suppresses the generation of dioxins by rapidly cooling the high-temperature gas flowing through the tower, and is mainly provided at the rear stage of the incinerator in a waste incineration facility or the like. It is used for the treatment of exhaust gas from incinerators. The temperature reducing tower 1 has a cylindrical shape and is installed in a bowl shape so that its axis X extends in the vertical direction. The temperature reducing tower 1 includes an introduction part 10, an introduction pipe 11, an enlarged part 20, a body part 30, a nozzle 31, an exhaust gas outlet pipe 32, and a discharge pipe 33. Among these, the introduction part 10, the enlargement part 20, and the body part 30 form a gas flow path inside the temperature-decreasing tower 1, and the introduction pipe 11 is used for supplying gas to the inside of the temperature-decreasing tower 1. It is piping. The exhaust gas outlet pipe 32 is a pipe for discharging the gas that has circulated inside the temperature reducing tower 1, and the discharge pipe 33 is a pipe for discharging residues such as dust from the temperature reducing tower 1 as appropriate. is there. In addition, since the inner surface of the region where the gas flows in the temperature reducing tower 1 becomes high temperature, it is formed of a so-called refractory material such as a refractory caster.

減温塔1の上方に設けられる導入部10は、筒状形状を有し、減温塔1の内部のガス流路において最も上流となる。導入部10はその上端部が閉じていて、所謂有底円筒形状をなしている。   The introduction part 10 provided above the temperature reducing tower 1 has a cylindrical shape and is the most upstream in the gas flow path inside the temperature reducing tower 1. The introduction part 10 is closed at the upper end and has a so-called bottomed cylindrical shape.

導入部10の側面には、ガスを導入部10の内部に導入させる導入管11が設けられている。導入管11はその内部が導入部10の内部と連通するとともに、減温塔1の軸線Xに対して交差する方向に延びている。   An introduction pipe 11 that introduces gas into the introduction unit 10 is provided on a side surface of the introduction unit 10. The introduction pipe 11 communicates with the inside of the introduction section 10 and extends in a direction intersecting the axis X of the temperature reducing tower 1.

拡大部20は、導入部10の下方、すなわち導入部10の下流側において導入部10に連続するように設けられる。図2に示すように、拡大部20は、上流側の端部の内径は導入部10と同じである。したがって、拡大部20の上流側端部における軸線Xに垂直な面での流路面積は導入部10と同じである。そして、導入部10と接続する部分から下流側に進むにつれて軸線Xを中心として内径が徐々に大きくなり、軸線Xに垂直な面における流路面積が徐々に大きくなるように拡がる形状を有している。   The expansion part 20 is provided below the introduction part 10, that is, downstream from the introduction part 10 so as to be continuous with the introduction part 10. As shown in FIG. 2, the enlarged portion 20 has the same inner diameter as that of the introduction portion 10 at the upstream end. Therefore, the flow passage area on the surface perpendicular to the axis X at the upstream end of the enlarged portion 20 is the same as that of the introduction portion 10. And as it progresses from the portion connected to the introduction part 10 to the downstream side, the inner diameter gradually increases with the axis X as the center, and the flow passage area in the plane perpendicular to the axis X expands gradually. Yes.

胴部30は、拡大部20の下方、すなわち拡大部20の下流側には、拡大部20に連続して設けられ、下流側の端部となる底面が閉じている所謂有底円筒状形状をなしている。胴部30は、筒状形状を有していて、内径及び軸線Xに垂直な面における断面積は、拡大部20の下流側の端部と同じである。   The trunk portion 30 has a so-called bottomed cylindrical shape that is provided continuously to the enlarged portion 20 below the enlarged portion 20, that is, on the downstream side of the enlarged portion 20, and has a closed bottom surface serving as an end portion on the downstream side. There is no. The trunk portion 30 has a cylindrical shape, and the cross-sectional area in a plane perpendicular to the inner diameter and the axis X is the same as the downstream end portion of the enlarged portion 20.

胴部30の下端、すなわち、減温塔1の内部のガス流路の下流側端部には排ガス出口管32及び排出管33が設けられる。排ガス出口管32は、減温塔1の内部と連通し、減温塔1の内部を通過したガスを排出する管である。また、排出管33は、減温塔1の胴部30の底部に設けられ、ダスト等の残渣を適宜排出するために接続されている。   An exhaust gas outlet pipe 32 and a discharge pipe 33 are provided at the lower end of the body 30, that is, at the downstream end of the gas flow path inside the temperature-decreasing tower 1. The exhaust gas outlet pipe 32 is a pipe that communicates with the inside of the temperature reducing tower 1 and discharges the gas that has passed through the inside of the temperature reducing tower 1. Moreover, the discharge pipe 33 is provided in the bottom part of the trunk | drum 30 of the temperature decreasing tower 1, and is connected in order to discharge | emit residues, such as dust, suitably.

ノズル31は、減温塔1の胴部30内を流通するガスに対して液滴を噴霧する機能を有する。ノズル31は、拡大部20よりも下方側であって胴部30の上端近傍の内面に取り付けられ、胴部30の内側方向に液滴を噴霧可能に複数取り付けられている。ノズル31からは、例えば冷却水の微小粒が噴霧される。   The nozzle 31 has a function of spraying droplets on the gas flowing through the body 30 of the temperature reducing tower 1. A plurality of nozzles 31 are attached to the inner surface near the upper end of the body part 30 below the enlarged part 20 and are attached to the inside of the body part 30 so as to spray droplets. From the nozzle 31, for example, fine particles of cooling water are sprayed.

ここで、本実施形態の減温塔1において特徴をなす拡大部20の形状についてさらに説明する。拡大部20は、減温塔1の軸線Xに沿った断面において、その内面が非対称となっている。具体的には、図2に示すように、減温塔1の軸線Xと導入部10への接続位置での導入管11の軸線Yとが含まれる断面において、導入管11が設けられた側面の側の内面21と軸線Xとのなす角(傾斜角)を角Aとし、導入管11が設けられた側面に対向する側面の側(対向面側)の内面22と軸線Xとのなす角(傾斜角)を角Bとすると、「A<B」の関係を有している。すなわち、導入管11側の内面21の傾斜角が対向面側の内面22の傾斜角よりも小さい。   Here, the shape of the enlarged portion 20 that characterizes the temperature reducing tower 1 of the present embodiment will be further described. The enlarged portion 20 has an asymmetric inner surface in the cross section along the axis X of the temperature reducing tower 1. Specifically, as shown in FIG. 2, the side surface on which the introduction pipe 11 is provided in a cross section including the axis X of the temperature reducing tower 1 and the axis Y of the introduction pipe 11 at the connection position to the introduction section 10. An angle (inclination angle) formed between the inner surface 21 on the side and the axis X is an angle A, and an angle formed between the inner surface 22 on the side (opposite surface side) facing the side surface on which the introduction tube 11 is provided and the axis X. Assuming that the (tilt angle) is an angle B, a relationship of “A <B” is established. That is, the inclination angle of the inner surface 21 on the introduction tube 11 side is smaller than the inclination angle of the inner surface 22 on the opposite surface side.

上記の減温塔1では、高温のガスが導入部10の側面に設けられた導入管11から導入部10の内部へ導入される。そして、減温塔1内の導入部10内でガスの流れが図示横方向から下方向へと変えられ、導入部10、拡大部20、胴部30を通過する。ここで、ノズル31から減温塔1の内部へ液滴が噴霧される。このとき、ノズル31から噴霧された液滴が減温塔1の内部で蒸発することによって、気化熱により内部のガス温度が急速に低下し、所定温度以下まで低下したガスが排ガス出口管32より減温塔1の外部へ排出される。   In the above-described temperature reducing tower 1, high-temperature gas is introduced into the introduction unit 10 from the introduction pipe 11 provided on the side surface of the introduction unit 10. Then, the gas flow is changed from the lateral direction in the drawing to the downward direction in the introduction part 10 in the temperature reducing tower 1 and passes through the introduction part 10, the expansion part 20, and the trunk part 30. Here, droplets are sprayed from the nozzle 31 into the temperature reducing tower 1. At this time, the droplet sprayed from the nozzle 31 evaporates inside the temperature-decreasing tower 1, whereby the internal gas temperature rapidly decreases due to the heat of vaporization, and the gas that has decreased to a predetermined temperature or less is discharged from the exhaust gas outlet pipe 32. It is discharged outside the temperature reducing tower 1.

このとき、本実施形態に係る減温塔1では、導入部10におけるガスの流れ方向の変化に由来して、ガス偏流が発生する。具体的には、図1に示すように、導入管11から導入部10内に供給されたガスの主流Lは軸線Xに沿って垂直に下方に向かうのではなく、減温塔1の軸線Xに対して導入管11とは反対側に流れる。この偏流は、導入管11からのガス流量が大きいときほど顕著であり、導入管11とは反対側の内面近傍に主流が向かう。   At this time, in the temperature reducing tower 1 according to the present embodiment, a gas drift occurs due to a change in the gas flow direction in the introduction unit 10. Specifically, as shown in FIG. 1, the main flow L of the gas supplied from the introduction pipe 11 into the introduction section 10 does not go vertically downward along the axis X, but the axis X of the temperature reducing tower 1. On the other hand, it flows on the opposite side to the introduction pipe 11. This drift is more conspicuous as the gas flow rate from the introduction pipe 11 is larger, and the main flow is directed to the vicinity of the inner surface on the side opposite to the introduction pipe 11.

また、導入部10の下方に設けられた拡大部20は、下流である下方に向かうにつれてその内径が大きく外方へ拡がる形状を有しているため、拡大部20の下方側の内面付近及びその下方の胴部30の上方側の内面付近、すなわち、ノズル31が設けられる位置の近傍において、主流Lから外れたガスによる渦流(図1における渦流P,Q)が形成される。   Further, since the enlarged portion 20 provided below the introduction portion 10 has a shape in which the inner diameter increases outward as it goes downstream, the vicinity of the inner surface on the lower side of the enlarged portion 20 and its In the vicinity of the upper inner surface of the lower body portion 30, that is, in the vicinity of the position where the nozzle 31 is provided, vortex flows (vortex flows P and Q in FIG. 1) due to the gas deviating from the main flow L are formed.

ここで、導入部10においてガスの偏流が発生している場合、導入管11側とその対向面側とにおいて、拡大部20の下方で形成される渦流の大きさが異なってくる。具体的には、ガスの主流Lが導入管11側とは反対側において下方に流れている場合、導入管11側とは反対側の対向面側に設けられたノズル31付近に形成される渦流Pは小さくさり、導入管11側のノズル31付近に形成される渦流Qは大きくなる。このようなガスの流れが形成されている状態で、ノズル31から液滴を噴霧すると、液滴の一部は渦流P,Qに乗って減温塔1内を移動する。   Here, when a gas drift occurs in the introduction portion 10, the magnitude of the vortex formed below the enlarged portion 20 differs between the introduction tube 11 side and the opposite surface side. Specifically, when the main flow L of gas flows downward on the side opposite to the introduction pipe 11 side, the vortex flow formed in the vicinity of the nozzle 31 provided on the opposite surface side opposite to the introduction pipe 11 side. P is reduced, and the vortex Q formed near the nozzle 31 on the introduction pipe 11 side is increased. When a droplet is sprayed from the nozzle 31 in a state where such a gas flow is formed, a part of the droplet moves on the vortex P and Q and moves in the temperature reducing tower 1.

このとき、渦流P,Qは胴部30上方と拡大部20との間で循環する流れであるため、この渦流に乗っている液滴は蒸発しづらい。特に、導入管11側のノズル31付近に形成される渦流Qは大きな流れであるため、渦流Qに乗って減温塔1内を移動する液滴の割合が高くなる。また、渦流は拡大部20及び胴部30の内面際に形成されるため、この渦流に乗っている液滴が減温塔1の内面に付着する可能性も高い。仮に液滴が減温塔1の内面に付着すると、その近傍の温度が低下することから、液滴の蒸発が阻害される。さらに、上記のような液滴が蒸発しづらい状況においてダストと混合すると、ノズル31やその近傍の内面にも付着しやすくなる。このように、導入管11側の内面近傍で形成される大きな渦流は、ノズル31からの液滴の蒸発を阻害し、この結果、減温塔1内のガスの冷却性能を低下させるおそれがあった。   At this time, since the vortex flows P and Q circulate between the upper portion of the trunk portion 30 and the enlarged portion 20, the droplets riding on the vortex flows are difficult to evaporate. In particular, since the vortex Q formed in the vicinity of the nozzle 31 on the introduction pipe 11 side is a large flow, the ratio of the droplets that move on the vortex Q in the temperature reducing tower 1 increases. In addition, since the vortex is formed on the inner surfaces of the enlarged portion 20 and the body portion 30, there is a high possibility that the droplets riding on the vortex flow adhere to the inner surface of the temperature reducing tower 1. If a droplet adheres to the inner surface of the temperature-decreasing tower 1, the temperature in the vicinity of the droplet drops, so that evaporation of the droplet is inhibited. Further, when the droplets are difficult to evaporate and mixed with dust, they easily adhere to the nozzle 31 and the inner surface in the vicinity thereof. Thus, the large eddy current formed near the inner surface on the introduction pipe 11 side hinders the evaporation of droplets from the nozzle 31, and as a result, the cooling performance of the gas in the temperature reducing tower 1 may be lowered. It was.

そこで、本実施形態の減温塔1では、図2に示すように、拡大部20において、偏流が生じている側とは反対側である導入管11側の内面21の傾斜角Aを、対向面側の内面22の傾斜角Bよりも小さくすることで、主流から分岐して形成される渦流を小さくする。渦流を小さくすることで、渦流に乗って循環する液滴を減らすことができ、この結果、ノズル31及びその近傍へのダストの付着を抑制することができるという効果を奏する。   Therefore, in the temperature reducing tower 1 of the present embodiment, as shown in FIG. 2, in the enlarged portion 20, the inclination angle A of the inner surface 21 on the introduction pipe 11 side opposite to the side where the drift is generated is opposed to By making it smaller than the inclination angle B of the inner surface 22 on the surface side, the vortex formed by branching from the main flow is reduced. By reducing the eddy current, it is possible to reduce the number of droplets circulating on the eddy current, and as a result, it is possible to suppress the adhesion of dust to the nozzle 31 and its vicinity.

渦流を抑制するための導入管11側の内面21及び対向面側の内面22の傾斜角の関係については、減温塔1の大きさ、導入管11からのガスの流量、導入部10、拡大部20及び胴部30の形状等に依存するので、ガス流の流体シミュレーション等を用いて適宜選択することが好ましい。   Regarding the relationship between the inclination angle of the inner surface 21 on the introduction tube 11 side and the inner surface 22 on the opposite surface side for suppressing vortex flow, the size of the temperature reducing tower 1, the flow rate of gas from the introduction tube 11, the introduction unit 10, and the expansion Since it depends on the shape and the like of the part 20 and the body part 30, it is preferable to select appropriately using a fluid flow simulation of the gas flow.

次に、本実施形態に係る減温塔の変形例について説明する。上述したように、本実施形態に係る減温塔では、拡大部20のうち導入管11側の内面の傾斜角を反対側(対向する側面側)の傾斜角よりも小さくすることで、ガスの主流から分岐した渦流の形成を抑制する構造とした。すなわち、拡大部20のうち導入管11側の内面近傍において大きな渦流が形成されないように、導入管11側の内面の形状を変更することが重要である。ここでは、変形例として、減温塔1の軸線Xと導入管11の軸線Yとが含まれる断面において、導入管11側の拡大部20の内面が第1傾斜部23と第2傾斜部24とにより形成されている構成について説明する。図3は、変形例に係る減温塔の図2に対応する断面図であり、図4は、図3に示す減温塔のIV-IV線に沿った断面図である。また、図5は、減温塔の内面の形状を変更した例を示す図4に対応する断面図である。   Next, a modified example of the temperature reducing tower according to the present embodiment will be described. As described above, in the temperature reducing tower according to the present embodiment, the inclination angle of the inner surface on the introduction tube 11 side in the enlarged portion 20 is made smaller than the inclination angle on the opposite side (opposite side surface side), thereby A structure that suppresses the formation of vortex flow diverging from the mainstream. That is, it is important to change the shape of the inner surface on the introduction tube 11 side so that a large vortex is not formed near the inner surface on the introduction tube 11 side in the enlarged portion 20. Here, as a modification, in the cross section including the axis X of the temperature reducing tower 1 and the axis Y of the introduction pipe 11, the inner surface of the enlarged portion 20 on the introduction pipe 11 side is the first inclined portion 23 and the second inclined portion 24. The structure formed by the above will be described. FIG. 3 is a cross-sectional view corresponding to FIG. 2 of the temperature reducing tower according to the modification, and FIG. 4 is a cross-sectional view taken along the line IV-IV of the temperature reducing tower shown in FIG. Moreover, FIG. 5 is sectional drawing corresponding to FIG. 4 which shows the example which changed the shape of the inner surface of a temperature reduction tower.

図3に示すように、変形例に係る減温塔では、導入管11側の拡大部20の内面は、導入部10側に設けられた第1傾斜部23と、第1傾斜部23の下流側に連続するように設けられた第2傾斜部24とにより形成された張り出し部25により構成される。このとき、第1傾斜部23と第2傾斜部24との接続部は内面の軸線方向に向かって張り出した形状となっている。第1傾斜部23と軸線Xとのなす角をCとし、第2傾斜部24と軸線Xとのなす角をDとすると、「C<D」の関係となっている。このような構成とすることで、拡大部20における導入管11側の内面が軸線X側に近付けられ、導入管11の下方における大きな渦流の形成を抑制することができる。   As shown in FIG. 3, in the temperature reducing tower according to the modification, the inner surface of the enlarged portion 20 on the introduction pipe 11 side is provided with a first inclined portion 23 provided on the introduction portion 10 side and a downstream of the first inclined portion 23. It is comprised by the overhang | projection part 25 formed with the 2nd inclination part 24 provided so that it might continue in a side. At this time, the connection part of the 1st inclination part 23 and the 2nd inclination part 24 becomes the shape which protruded toward the axial direction of the inner surface. When the angle formed between the first inclined portion 23 and the axis X is C and the angle formed between the second inclined portion 24 and the axis X is D, the relationship of “C <D” is established. By setting it as such a structure, the inner surface by the side of the introductory pipe 11 in the expansion part 20 is brought close to the axis X side, and formation of the big eddy current below the introductory pipe 11 can be suppressed.

変形例として示した第1傾斜部23及び第2傾斜部24により形成される張り出し部25は、図3に示すように、従来の減温塔の拡大部を形成する内面上に張り出し部25を形成するための耐火物を固定することにより形成することができる。したがって、拡大部20の内面の形状が導入管11の位置に関係なく対称であった従来の減温塔からの改造も容易である。   As shown in FIG. 3, the overhanging portion 25 formed by the first inclined portion 23 and the second inclined portion 24 shown as a modified example is provided with an overhanging portion 25 on the inner surface forming the enlarged portion of the conventional temperature reducing tower. It can be formed by fixing a refractory for forming. Therefore, it is easy to modify the conventional temperature reduction tower in which the shape of the inner surface of the enlarged portion 20 is symmetrical regardless of the position of the introduction pipe 11.

図4は、図3のIV-IV断面図である。軸線Xに沿って上方から見た場合、図4に示すように、拡大部20の内周のうち導入管11に対応する側の一部を切り欠くように直線状に張り出し部25を形成してもよいし、図5に示すように、導入管11側の内周を弓形に区切るように曲線状に形成することもできる。   4 is a cross-sectional view taken along the line IV-IV in FIG. When viewed from above along the axis X, as shown in FIG. 4, a linearly projecting portion 25 is formed so as to cut out a part of the inner periphery of the enlarged portion 20 corresponding to the introduction tube 11. Alternatively, as shown in FIG. 5, the inner periphery on the introduction tube 11 side may be formed in a curved shape so as to be divided into arcuate shapes.

以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限られるものではなく種々の変更を行うことができる。   As mentioned above, although embodiment of this invention was described, this invention is not restricted to the said embodiment, A various change can be performed.

例えば、上記実施形態では、導入管11側の拡大部の内面が連続するように設けられた2つの傾斜部によって形成された張り出し部について説明したが、張り出し部の形状は、流路面積が大きくなるように拡がる形状の範囲で適宜変更することができる。   For example, in the above-described embodiment, the overhang portion formed by two inclined portions provided so that the inner surface of the enlarged portion on the introduction pipe 11 side is continuous has been described. However, the shape of the overhang portion has a large channel area. It can change suitably in the range of the shape expanded so that it may become.

1…減温塔、10…導入部、11…導入管、20…拡大部、21,22…内面、23…第1傾斜部、24…第2傾斜部、30…胴部、31…ノズル。
DESCRIPTION OF SYMBOLS 1 ... Temperature reduction tower, 10 ... Introduction part, 11 ... Introduction pipe, 20 ... Expansion part, 21,22 ... Inner surface, 23 ... 1st inclination part, 24 ... 2nd inclination part, 30 ... Body part, 31 ... Nozzle.

Claims (2)

筒状形状を有し、導入管から当該内部に流入するガスを冷却するための減温塔であって、
側面に前記導入管が接続された導入部と、
前記導入部よりも下流側に設けられ、前記減温塔の軸線方向に垂直な平面における流路面積が前記導入部よりも大きい胴部と、
前記導入部と前記胴部との間に設けられ、前記導入部から前記胴部に向かうにつれて前記流路面積が大きくなるように拡がる拡大部と、
前記胴部に設けられ、前記ガスに対して液滴を噴霧するノズルと、
を備え、
前記拡大部の内面と前記減温塔の軸線とのなす角は、前記導入部において前記導入管が設けられた側面の側よりも前記導入管が設けられた側面に対向する側面の側のほうが大きい
ことを特徴とする減温塔。
A temperature reducing tower for cooling the gas flowing into the interior from the introduction pipe having a cylindrical shape,
An introduction part having the introduction pipe connected to a side surface;
A trunk portion provided on the downstream side of the introduction portion, and having a flow passage area in a plane perpendicular to the axial direction of the temperature reducing tower, which is larger than the introduction portion;
An enlarged portion that is provided between the introduction portion and the trunk portion and expands so that the flow area increases as it goes from the introduction portion to the trunk portion,
A nozzle that is provided in the body and sprays droplets on the gas;
With
The angle formed between the inner surface of the enlarged portion and the axis of the temperature-decreasing tower is greater on the side surface facing the side surface on which the introduction pipe is provided than on the side surface on which the introduction tube is provided in the introduction portion. A cooling tower characterized by its large size.
前記拡大部の内面は、前記導入部側に設けられた第1傾斜部と、前記第1傾斜部の下流側に連続するように設けられた第2傾斜部と、を備え、
前記第1傾斜部と前記減温塔の軸線とのなす角は、前記第2傾斜部と前記減温塔の軸線とのなす角よりも小さいことを特徴とする請求項1記載の減温塔。
The inner surface of the enlarged portion includes a first inclined portion provided on the introduction portion side, and a second inclined portion provided to be continuous with the downstream side of the first inclined portion,
2. The temperature reducing tower according to claim 1, wherein an angle formed between the first inclined portion and the axis of the temperature reducing tower is smaller than an angle formed between the second inclined portion and the axis of the temperature reducing tower. .
JP2012060742A 2012-03-16 2012-03-16 Temperature reduction tower Active JP5749203B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060742A JP5749203B2 (en) 2012-03-16 2012-03-16 Temperature reduction tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060742A JP5749203B2 (en) 2012-03-16 2012-03-16 Temperature reduction tower

Publications (2)

Publication Number Publication Date
JP2013194953A JP2013194953A (en) 2013-09-30
JP5749203B2 true JP5749203B2 (en) 2015-07-15

Family

ID=49394150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060742A Active JP5749203B2 (en) 2012-03-16 2012-03-16 Temperature reduction tower

Country Status (1)

Country Link
JP (1) JP5749203B2 (en)

Also Published As

Publication number Publication date
JP2013194953A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
JP2009047091A (en) Exhaust system of internal combustion engine
JP2008280999A (en) Device for distributing flowable additive in exhaust gas system of internal combustion engine
JP2017534443A (en) Atomizer nozzle
JP2005218937A (en) Method and apparatus for manufacturing fine particles
CN105650677A (en) Integrally-designed flame stabilizer with novel cooling structure
EP2924356B1 (en) Water spray type desuperheater and desuperheating method
JP5749203B2 (en) Temperature reduction tower
JP2010084957A (en) Exhaust gas cooling tower
CN206329360U (en) A kind of pass structure of raising downstream cooling effect
JP6545846B1 (en) Shower nozzle
JP2010090411A (en) Metal powder production apparatus
JP2005111575A (en) Co2 snow jetting device and co2 snow jetting method
JP5633784B2 (en) Shower equipment
JP2008014601A (en) Exhaust gas cooling facility, and control method therefor
JP2008114189A (en) Temperature reduction tower
JP2011067781A (en) Deflector, and jetting nozzle using the same
JP2017056401A (en) nozzle
WO2022065082A1 (en) Spray piping structure for flue gas desulfurization apparatus
CN204247064U (en) A kind of smoke absorption tower of gas-liquid bidirectional guide
JPH0315493B2 (en)
JP2009047416A (en) Temperature lowering tower
JP5633785B2 (en) Shower equipment
CN205199245U (en) Desulfurization oxidation air subtracts warm water spray set
JP6099492B2 (en) Dry cooling device and exhaust gas cooling method using the same
JP2009168381A (en) Exhaust gas cooling accelerating apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5749203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150