JP2009168381A - Exhaust gas cooling accelerating apparatus - Google Patents

Exhaust gas cooling accelerating apparatus Download PDF

Info

Publication number
JP2009168381A
JP2009168381A JP2008008572A JP2008008572A JP2009168381A JP 2009168381 A JP2009168381 A JP 2009168381A JP 2008008572 A JP2008008572 A JP 2008008572A JP 2008008572 A JP2008008572 A JP 2008008572A JP 2009168381 A JP2009168381 A JP 2009168381A
Authority
JP
Japan
Prior art keywords
duct
exhaust gas
guide
guide plate
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008008572A
Other languages
Japanese (ja)
Inventor
Yuichiro Kimura
雄一郎 木村
Hirotoshi Yanagi
浩敏 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2008008572A priority Critical patent/JP2009168381A/en
Publication of JP2009168381A publication Critical patent/JP2009168381A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chimneys And Flues (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve evaporation efficiency by shortening a distance required for evaporation while preventing dust in exhaust gas from sticking and accumulating on the inner surface of a duct by sprayed liquid drops. <P>SOLUTION: The exhaust gas cooling accelerating apparatus cools exhaust gas by spraying liquid drops from a jet nozzle 12 arranged on a duct axis O, into high temperature exhaust gas flowing into the duct 11, wherein the inner peripheral surface of the duct 11 upstream of the jet nozzle 12 is protrusively provided with a pair of spiral guide plates 13 mounted in symmetrical positions with respect to the duct axis O over 180°, and when the inner diameter of the duct is set to D, the guide length L of the guide plate 13 is to be within a range of (0.62-0.85)×D, and the guide height H of the guide plate 13 projected from the inner surface of the duct 11 is to be within a range of (0.11-0.27)×D. No liquid drop thereby sticks to the inner surface of the duct. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、ダクト内を流送される高温排ガス中に冷却水を噴射して冷却する排ガス冷却促進装置に関する。   The present invention relates to an exhaust gas cooling acceleration device that cools by injecting cooling water into high temperature exhaust gas that is flowed through a duct.

蒸気流中に液滴を噴射して蒸気の温度を低下させるための「蒸気温度低減器」が特許文献1に開示されている。
この「蒸気温度低減器」は、管に設置されたスプレーノズルの下流側内周面に保護筒を内接配置するとともに、保護筒の内面に螺旋状突起を管軸に対して30°の捻り角で取り付け、螺旋状突起により蒸気流に旋回力を付与してスプレーノズルから供給された液滴を保護管の内面に分散付着させ、液滴を螺旋方向に流すことにより保護管を均一な温度分布とし、蒸気を冷却するものである。
特開平8−178209号公報
Patent Document 1 discloses a “steam temperature reducer” for lowering the temperature of steam by injecting droplets into a steam flow.
This “steam temperature reducer” has a protective cylinder inscribed on the inner peripheral surface of the downstream side of the spray nozzle installed in the pipe, and a helical projection on the inner face of the protective cylinder with a twist of 30 ° with respect to the pipe axis. At the corner, the spiral projection gives a swirling force to the steam flow, the droplets supplied from the spray nozzle are dispersed and adhered to the inner surface of the protection tube, and the droplets flow in the spiral direction to keep the protection tube at a uniform temperature. The distribution is to cool the steam.
JP-A-8-178209

ところで、特許文献1では、螺旋状突起により蒸気流に強い旋回力を与えて液滴を保護管内面に分散付着させ、保護管内面の特定個所に集中して液滴が付着し冷却されるのを防止している。しかしながら、高温気流が気体中に多くのダストを含む排ガスである場合、スプレーノズルから噴射された液滴により濡れた管内面に、ダストが捕捉されて堆積固化し、成長して高温気流の流れを阻害するおそれがあった。   By the way, in Patent Document 1, the spiral projection gives a strong swirling force to the vapor flow to disperse and adhere the droplets on the inner surface of the protective tube, and the droplets adhere to a specific location on the inner surface of the protective tube and are cooled. Is preventing. However, when the high-temperature airflow is exhaust gas containing a lot of dust in the gas, the dust is trapped and solidified on the inner surface of the tube wetted by the droplets ejected from the spray nozzle, and grows to flow the high-temperature airflow. There was a risk of obstruction.

本発明は上記問題点を解決して、排ガスに含まれるダストがダクト内面に付着堆積するのを防止することができ、かつ蒸発に必要とする距離を短縮して蒸発効率を向上できる排ガス冷却促進装置を提供することを目的とする。   The present invention solves the above problems and can prevent dust contained in the exhaust gas from adhering and accumulating on the inner surface of the duct, and can reduce the distance required for evaporation to improve the evaporation efficiency and promote the exhaust gas cooling. An object is to provide an apparatus.

請求項1記載の発明は、ダクト内に流送される高温排ガス中に、ダクト軸心上に配置された噴射ノズルから冷却用の液滴を噴射して冷却する排ガス冷却促進装置であって、噴射ノズルの上流側のダクト内周面に、ダクト軸心の対称位置に配置されダクト軸心周りに180°にわたって取り付けられた螺旋状の一対のガイド板を突設し、ダクトの内径:Dとすると、ガイド板のダクト軸心方向の長さ:Lを、L=(0.62〜0.85)×Dの範囲内とし、ダクト内面から突出されるガイド板の高さ:Hを、H=(0.11〜0.27)×Dの範囲内としたものである。   The invention according to claim 1 is an exhaust gas cooling promotion device that cools a high temperature exhaust gas fed into a duct by injecting cooling droplets from an injection nozzle arranged on the duct axis, On the inner peripheral surface of the duct on the upstream side of the injection nozzle, a pair of spiral guide plates that are disposed at symmetrical positions of the duct axis and are attached to the circumference of the duct axis over 180 ° are projected, and the inner diameter of the duct: D Then, the length of the guide plate in the axial direction of the duct: L is set in the range of L = (0.62 to 0.85) × D, and the height of the guide plate protruding from the inner surface of the duct: H is set to H. = (0.11 to 0.27) × D.

請求項2記載の発明は、請求項1記載の構成において、ダクトの内径:D=1000〜1600mmとし、排ガスの流量を8000〜22000Nm/hrとし、噴射ノズルの噴射水供給量を200〜1000kg/hrとしたものである。 The invention according to claim 2 is the configuration according to claim 1, wherein the inner diameter of the duct: D = 1000 to 1600 mm, the flow rate of the exhaust gas is set to 8000 to 22000 Nm 3 / hr, and the spray water supply amount of the spray nozzle is 200 to 1000 kg. / Hr.

請求項1記載の発明によれば、噴射ノズルの上流側に、ダクト軸心の対称位置に配置された一対の螺旋状のガイド板の長さ:L=(0.62〜0.85)×Dの範囲内とし、ガイド板の高さ:H=(0.11〜0.27)Dの範囲内とすることにより、排ガス流に適度な旋回力を付与して旋回させ、これにより噴射ノズルから噴射された噴霧液滴がダクト内面に付着することなく、かつ適度な距離で蒸発させて排ガスを効果的に冷却することができる。したがって、排ガスに含まれるダストがダクト内面に付着堆積するのを未然に防止することができ、かつ蒸発に必要とする距離を十分に短縮して蒸発効率を向上することができ、排ガス冷却促進装置を小型化することができる。   According to the first aspect of the present invention, the length of the pair of spiral guide plates arranged at the symmetrical position of the duct axis on the upstream side of the injection nozzle: L = (0.62 to 0.85) × Within the range of D, the guide plate height: H = (0.11 to 0.27) By being within the range of D, an appropriate swirling force is imparted to the exhaust gas flow to cause swirling. The sprayed droplets ejected from the air can be evaporated at an appropriate distance without adhering to the inner surface of the duct, and the exhaust gas can be effectively cooled. Therefore, it is possible to prevent the dust contained in the exhaust gas from adhering and accumulating on the inner surface of the duct, and to sufficiently shorten the distance required for evaporation to improve the evaporation efficiency. Can be miniaturized.

請求項2記載の構成によれば、適正なダクトの内径と排ガスの流量と噴射水供給量の範囲で、排ガスに含まれるダストの付着を効果的に防止しつつ、蒸発効率を向上させることができる。   According to the second aspect of the present invention, it is possible to improve the evaporation efficiency while effectively preventing the adhesion of dust contained in the exhaust gas within the range of the proper inner diameter of the duct, the flow rate of the exhaust gas, and the supply amount of the injection water. it can.

以下、本発明の実施の形態を図面に基づいて説明する。
[実施の形態1]
この排ガス冷却促進装置は、図1に示すように、たとえば金属などを溶融する溶融炉から排出されるダストを含む排ガスを冷却するためのもので、円筒状のダクト11の所定位置でダクト軸心上に、下流方向に向かって冷却水を噴射する噴射ノズル12が配置され、噴射ノズル12の直前の上流側に、排ガスに旋回力を付与する一対の螺旋状のガイド板13を突設している。噴射ノズル12は、ダクト11の内面にできるだけ噴霧液滴を付着させないように、ダクト軸心O上に配置されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Embodiment 1]
As shown in FIG. 1, this exhaust gas cooling promotion device is for cooling exhaust gas containing dust discharged from a melting furnace that melts, for example, metal or the like. An injection nozzle 12 for injecting cooling water in the downstream direction is arranged on the upper side, and a pair of spiral guide plates 13 for projecting a turning force to the exhaust gas are provided on the upstream side immediately before the injection nozzle 12. Yes. The injection nozzle 12 is disposed on the duct axis O so that spray droplets do not adhere to the inner surface of the duct 11 as much as possible.

ガイド板13は、ダクト軸心Oに対する捻り角:θを有し、ダクト軸心O方向の長さ、すなわちガイド長:Lの範囲内に、かつダクト軸心Oを中心として180°の範囲に同一形状のもの一対が、ダクト軸心Oを中心とする点対称位置に取り付けられている。そして、これらガイド板13は、ダクト11の内面から半径方向に突出する一定の高さ、すなわちガイド高:Hに形成されている。   The guide plate 13 has a twist angle: θ with respect to the duct axis O, is in the range of the length in the direction of the duct axis O, that is, the guide length: L, and is in a range of 180 ° about the duct axis O. A pair of the same shape is attached at a point-symmetrical position about the duct axis O. These guide plates 13 are formed at a certain height protruding from the inner surface of the duct 11 in the radial direction, that is, a guide height: H.

ガイド板13は、ダクト11の内径:D、ガイド板13のガイド長:Lとすると、L=(0.62〜0.85)×D…(1)式の範囲となるように形成されている。(1)式により、tanθ=πD/2(0.62〜0.85)×D=2.6〜1.8、捻り角:θが約69°〜61°となる。   The guide plate 13 is formed so as to be in the range of L = (0.62 to 0.85) × D (1) where the inner diameter of the duct 11 is D and the guide length of the guide plate 13 is L. Yes. According to the equation (1), tan θ = πD / 2 (0.62 to 0.85) × D = 2.6 to 1.8, and twist angle: θ is about 69 ° to 61 °.

またガイド高:Hは、H/D=0.11〜0.27…(2)式の範囲となるように形成されている。
図2〜図4に、ガイド長:Lとダクト11の温度変化を解析した結果を示す。すなわち、この排ガス冷却促進装置の場合、噴射ノズル12から噴射された噴霧液滴がダクト11の壁面に付着すると、付着した噴霧液滴が蒸発することによりダクト11の壁面が冷却されるとともに、噴射された液滴が蒸発して冷却された排ガスを介してダクト11の壁面が冷却される。ここで本発明者等は、排ガスを介して冷却されたダクト11の壁面は、緩やかな温度勾配となるが、噴霧液滴が付着して冷却されたダクト11の壁面は、急な温度勾配となることに着目し、壁面の温度勾配から噴霧液滴の付着の有無を判断した。
Further, the guide height: H is formed such that H / D = 0.11 to 0.27 (2).
2 to 4 show the results of analyzing the guide length: L and the temperature change of the duct 11. That is, in the case of this exhaust gas cooling promotion device, when the spray droplets injected from the injection nozzle 12 adhere to the wall surface of the duct 11, the adhered spray droplets evaporate to cool the wall surface of the duct 11 and The wall surface of the duct 11 is cooled through the exhaust gas cooled by evaporation of the droplets. Here, the present inventors show that the wall surface of the duct 11 cooled via the exhaust gas has a gentle temperature gradient, but the wall surface of the duct 11 cooled by adhering spray droplets has a steep temperature gradient. In view of the above, the presence or absence of spray droplets was judged from the temperature gradient of the wall surface.

ここで解析した条件は、ダクト11の内径:Dが1300mm、排ガス流量が8000Nm/hr、噴射ノズル12の噴射水供給量が450kg/hrである。まずここで、ガイド高:H=200mmで一定とし、ガイド板13のガイド長:Lを、300mmから1100mmまで順次変化させた。そして、噴射ノズル12の上流側から高温排ガスを流送し、ダクト11の底面温度(入口排ガス温度の近似値)が330℃から、噴射ノズル12の下流側のダクト11の底面温度(出口排ガス温度の近似値)が250℃まで冷却される冷却距離:Lcを求めた。ここで解析により温度を求めた個所を、ダクト11の底面としたのは、噴射ノズル12から噴射された噴霧液滴が重力により落下して付着しやすいためである。 The conditions analyzed here are the inside diameter D of the duct 11 is 1300 mm, the exhaust gas flow rate is 8000 Nm 3 / hr, and the spray water supply amount of the spray nozzle 12 is 450 kg / hr. First, the guide height: H = 200 mm was made constant, and the guide length: L of the guide plate 13 was sequentially changed from 300 mm to 1100 mm. Then, high-temperature exhaust gas is flowed from the upstream side of the injection nozzle 12, and the bottom surface temperature of the duct 11 (approximate value of the inlet exhaust gas temperature) is 330 ° C., so that the bottom surface temperature of the duct 11 downstream of the injection nozzle 12 (outlet exhaust gas temperature). Approximate value) was cooled to 250 ° C. Cooling distance: Lc was determined. The reason why the temperature obtained by the analysis is set as the bottom surface of the duct 11 is that the spray droplets ejected from the ejection nozzle 12 easily fall and adhere due to gravity.

図2(a)〜(d)に示すように、ガイド板13のガイド長:L=300〜600mm[L=(0.23〜0.46)×D]では、冷却距離:Lcと、ガイド板13のガイド長:Lとが同程度で、急な温度勾配であるのに対して、図2(e)に示すガイド長:L=700mmを越えると、冷却距離:Lcが徐々に長くなり、ダクト11の底面が緩やかな温度勾配になるのが確認できた。したがって、ガイド板13のガイド長:L=600mm以下の図2(a)〜(d)では、噴射ノズル12から噴射された噴霧液滴が直接ダクト11の底面に付着して冷却されたと判断できる。また図2(f)に示すガイド長:L=700mmを越えるケースでは、排ガスを介して間接的にダクト11の底面を冷却していると判断できる。また図3(i)に示すように、ガイド長:L=1100mmを越えると、冷却距離:Lcが2900mmを越えるため、液滴の蒸発に必要とする距離が長くなって、冷却促進装置が大型化するという問題が生じる。   2A to 2D, when the guide length of the guide plate 13 is L = 300 to 600 mm [L = (0.23 to 0.46) × D], the cooling distance is Lc, and the guide The guide length of the plate 13 is about the same as L and has a steep temperature gradient, but if the guide length shown in FIG. 2E exceeds L = 700 mm, the cooling distance Lc gradually increases. It has been confirmed that the bottom surface of the duct 11 has a gentle temperature gradient. Therefore, in FIG. 2A to FIG. 2D where the guide length of the guide plate 13 is L = 600 mm or less, it can be determined that the spray droplets injected from the injection nozzle 12 are directly attached to the bottom surface of the duct 11 and cooled. . In the case where the guide length shown in FIG. 2 (f) exceeds L = 700 mm, it can be determined that the bottom surface of the duct 11 is indirectly cooled through the exhaust gas. Further, as shown in FIG. 3 (i), if the guide length exceeds L = 1100 mm, the cooling distance Lc exceeds 2900 mm, so that the distance required for evaporation of the droplets becomes long, and the cooling promoting device is large. Problem arises.

したがって、ガイド板13は、ガイド長:L=800mm以上、1100mm以下[L=(0.62〜0.85)×D、Lc=(1.3〜2.2)×D、捻り角:θ=69°〜61°]が適正値となる。さらに効果的な冷却を行うことができる最適値は、ガイド板13のガイド長:L=900mm以上、1100mm以下[L=(0.70〜0.85)×D、Lc=(1.6〜2.2)×D、捻り角:θ=67°〜61°]である。   Therefore, the guide plate 13 has a guide length: L = 800 mm or more and 1100 mm or less [L = (0.62-0.85) × D, Lc = (1.3-2.2) × D, twist angle: θ = 69 ° -61 °] is an appropriate value. Further, the optimum values at which effective cooling can be performed are the guide length of the guide plate 13: L = 900 mm or more and 1100 mm or less [L = (0.70 to 0.85) × D, Lc = (1.6 to 2.2) × D, twist angle: θ = 67 ° to 61 °.

また同様の条件で、ガイド板13のガイド高:Hを、100mmから400mmまで順次変化させた解析結果を図5および図6に示す。この解析でのガイド長L=1000mm、捻り角:θ≒63°と一定である。図5(a)(d)に示すように、ガイド板13のガイド高:H=100mm(H/D=0.08)およびH=400mm(H=0.31×D)のケースでは、冷却距離:Lcが1200mm以下と短くて急な温度勾配であるため、噴射ノズル12から噴射された噴霧液滴が直接ダクト11の底面に付着して冷却されたと判断できる。また図5(b)(c)に示すように、ガイド板13のガイド高:H=200〜300mmのケースでは、冷却距離:Lcが2000mm以上で緩やかな温度勾配であるため、排ガスを介して間接的にダクト11の底面を冷却していると判断できる。   Moreover, the analysis result which changed guide height: H of the guide plate 13 from 100 mm to 400 mm sequentially on the same conditions is shown in FIG. 5 and FIG. In this analysis, the guide length L = 1000 mm and the twist angle: θ≈63 ° are constant. As shown in FIGS. 5A and 5D, in the case where the guide height of the guide plate 13 is H = 100 mm (H / D = 0.08) and H = 400 mm (H = 0.31 × D), cooling is performed. Since the distance: Lc is as short as 1200 mm or less and the temperature gradient is steep, it can be determined that the spray droplets injected from the injection nozzle 12 are directly attached to the bottom surface of the duct 11 and cooled. Further, as shown in FIGS. 5B and 5C, in the case where the guide plate 13 has a guide height: H = 200 to 300 mm, the cooling distance: Lc is 2000 mm or more, and the temperature is a gentle temperature gradient. It can be determined that the bottom surface of the duct 11 is indirectly cooled.

したがって、図5に示すように、ガイド長:Lの適正値と同様に、Lc/D=1.3〜2.2に対応して、ガイド板13のガイド高:Hが140mm以上、350mm以下[L=(0.11〜0.27)×D、Lc/D=(1.3〜2.2)×D]を適正値とすることができる。さらに効果的な冷却を行うことができる最適値は、ガイド高:Hが170mm以上、315mm以下[H=(0.13〜0.24)×D、Lc/D=(1.6〜2.2)×D]である。   Therefore, as shown in FIG. 5, the guide height: H of the guide plate 13 is 140 mm or more and 350 mm or less corresponding to Lc / D = 1.3 to 2.2 as well as the appropriate value of the guide length: L. [L = (0.11 to 0.27) × D, Lc / D = (1.3 to 2.2) × D] can be set to appropriate values. The optimum values at which more effective cooling can be performed are as follows: Guide height: H is 170 mm or more and 315 mm or less [H = (0.13-0.24) × D, Lc / D = (1.6-2. 2) xD].

なお、上記解析条件は、ダクト11の内径:D=1300mm、排ガスの流量を8000Nm/hr、噴射ノズル12の噴射水供給量を450kg/hrとしたが、ダクト11の内径:D=1000〜1600mm、排ガスの流量を8000〜22000Nm/hr、噴射ノズル12の噴射水供給量を200〜1000kg/hrの範囲で同様の作用効果を奏することができることを確認している。 The analysis conditions were as follows: the inner diameter of the duct 11: D = 1300 mm, the flow rate of the exhaust gas was 8000 Nm 3 / hr, and the injection water supply amount of the injection nozzle 12 was 450 kg / hr. It has been confirmed that the same effects can be achieved in the range of 1600 mm, the exhaust gas flow rate of 8000 to 22000 Nm 3 / hr, and the spray water supply amount of the spray nozzle 12 of 200 to 1000 kg / hr.

上記実施の形態1によれば、ダクト11の対称位置に配置された一対の螺旋状のガイド板13のガイド長:Lを、(0.62〜0.85)×Dの範囲内とし、ガイド高:Hを、(0.11〜0.27)×Dの範囲内とすることにより、排ガス流に適度な旋回力を付与して旋回させ、これにより噴射ノズル12から噴射された噴霧液滴がダクト11の内面に付着することなく、かつ適度な範囲で蒸発させて排ガスを効果的に冷却することができる。したがって、排ガスに含まれるダストがダクト11の内面に付着堆積するのを未然に防止しつつ、蒸発に必要とする距離を十分に短縮して蒸発効率を向上でき、排ガス冷却促進装置を小型化することができる。   According to the first embodiment, the guide length: L of the pair of spiral guide plates 13 arranged at the symmetrical position of the duct 11 is set within the range of (0.62 to 0.85) × D, and the guide High: By making H within a range of (0.11 to 0.27) × D, an appropriate swirling force is imparted to the exhaust gas flow to cause swirling, and thereby spray droplets ejected from the ejection nozzle 12 Can adhere to the inner surface of the duct 11 and can be evaporated within an appropriate range to effectively cool the exhaust gas. Therefore, the dust contained in the exhaust gas can be prevented from adhering and accumulating on the inner surface of the duct 11, and the evaporation efficiency can be improved by sufficiently shortening the distance required for evaporation, and the exhaust gas cooling promotion device can be downsized. be able to.

また最適値として、ガイド長:Lを(0.70〜0.85)×Dの範囲とし、ガイド高:Hを(0.13〜0.24)×Dの範囲とすることにより、さらに効果的にダストの付着を防止しつつ、蒸発効率を向上させることができる。   Further, as an optimum value, the guide length: L is set in the range of (0.70 to 0.85) × D, and the guide height: H is set in the range of (0.13 to 0.24) × D. In particular, the evaporation efficiency can be improved while preventing the adhesion of dust.

図7は、ガイド板の変形例を示し、(a)のガイド板23は、ガイド板本体23aの先端部の一面側に、所定幅のリブ23bを垂設したものである。また(b)のガイド板33は、ガイド板本体33aの先端部の両面側に、所定幅のフランジ33bを垂設したものである。このように、ガイド板本体23a,33aにリブ23bまたはフランジ33bを設けることにより、リブ23bまたはフランジ33bの作用で、短いガイド長で排ガス流に十分な旋回力を付与することができる。   FIG. 7 shows a modified example of the guide plate. The guide plate 23 in FIG. 7A is configured such that a rib 23b having a predetermined width is vertically provided on one surface side of the distal end portion of the guide plate main body 23a. Further, the guide plate 33 in (b) is one in which flanges 33b having a predetermined width are vertically suspended on both sides of the front end portion of the guide plate main body 33a. As described above, by providing the ribs 23b or the flanges 33b on the guide plate bodies 23a and 33a, a sufficient turning force can be applied to the exhaust gas flow with a short guide length by the action of the ribs 23b or the flanges 33b.

図8は、エルボ41や湾曲ダクトなどの湾曲流路11Rの下流側に設置された排ガス冷却促進装置を示す。湾曲流路11Rの下流側では、湾曲内周側の排ガス流速Viから湾曲外周側の排ガス流速Voほど高速となる。これに対して、一対のガイド板13は対称位置に配置され、旋回力の付与能力が低いガイド板13の両端部が180°対称位置に位置している。したがって、図9に示すように、ガイド板13の両端部の一方が湾曲外周側の高速部に配置されると、排ガスを効果的に旋回させることができない。このため、本発明では、図8に示すように、ガイド板13の両端部がそれぞれ湾曲内外周の中間位置になるように配置している。これにより、湾曲外周側に配置された螺旋状ガイド板13が、湾曲外周側の高速の排ガス流速Voに効果的に作用して十分な旋回力を付与することができる。   FIG. 8 shows an exhaust gas cooling promotion device installed on the downstream side of the curved flow path 11R such as an elbow 41 or a curved duct. On the downstream side of the curved flow path 11R, the exhaust gas flow rate Vi on the curved outer peripheral side becomes higher from the exhaust gas flow rate Vi on the curved inner peripheral side. On the other hand, the pair of guide plates 13 are arranged at symmetrical positions, and both end portions of the guide plate 13 having a low ability to apply the turning force are located at 180 ° symmetrical positions. Therefore, as shown in FIG. 9, if one of both end portions of the guide plate 13 is disposed in the high-speed portion on the curved outer peripheral side, the exhaust gas cannot be effectively swirled. For this reason, in this invention, as shown in FIG. 8, it arrange | positions so that the both ends of the guide plate 13 may become the intermediate position of each curve inner periphery. As a result, the spiral guide plate 13 disposed on the curved outer peripheral side can effectively act on the high-speed exhaust gas flow velocity Vo on the curved outer peripheral side to provide a sufficient turning force.

なお、上記実施の形態では、上記ガイド板13,23,33を噴射ノズル12の直前の上流位置に配置したが、噴射ノズル12の上流側に、ダクト内径:Dの0.2倍の間隔をあけて配置しても、同様の作用効果を奏することができる。   In the above embodiment, the guide plates 13, 23, 33 are arranged at the upstream position immediately before the injection nozzle 12. However, an interval of 0.2 times the inner diameter of the duct: D is provided on the upstream side of the injection nozzle 12. Even if it is arranged open, the same effects can be obtained.

本発明に係る排ガス冷却促進装置の実施の形態1を示し、(a)は中央縦断面図、(b)はガイド板取り付け部のダクトの展開図、(c)は(a)に示すa−a断面図である。1 shows Embodiment 1 of an exhaust gas cooling promotion device according to the present invention, where (a) is a central longitudinal sectional view, (b) is a development view of a duct of a guide plate mounting portion, and (c) is a- FIG. (a)〜(e)はそれぞれガイド板のガイド長と噴霧液滴によるダクトの冷却状態を示す解析図である。(A)-(e) is an analysis figure which shows the cooling state of the duct by the guide length of a guide plate, and a spray droplet, respectively. (f)〜(i)はそれぞれガイド板のガイド長と噴霧液滴によるダクトの冷却状態を示す解析図である。(F)-(i) is an analysis figure which shows the cooling state of the duct by the guide length of a guide plate, and a spray droplet, respectively. 上記解析結果におけるガイド長/ダクト内径と、冷却距離/ダクト内径の関係を示すグラフである。It is a graph which shows the relationship between the guide length / duct internal diameter in the said analysis result, and a cooling distance / duct internal diameter. (a)〜(d)はそれぞれガイド板のガイド高と噴霧液滴によるダクトの冷却状態を示す解析図である。(A)-(d) is an analysis figure which shows the cooling state of the duct by the guide height of a guide plate, and a spray droplet, respectively. 上記解析結果におけるガイド高/ダクト内径と、冷却距離/ダクト内径の関係を示すグラフである。It is a graph which shows the relationship between the guide height / duct internal diameter in the said analysis result, and a cooling distance / duct internal diameter. ガイド板の変形例を示し、(a)はリブを有するガイド板の横断面図、(b)はフランジを有するガイド板の横断面図である。The modification of a guide plate is shown, (a) is a cross-sectional view of the guide plate which has a rib, (b) is a cross-sectional view of the guide plate which has a flange. 湾曲流路の下流側に配置した排ガス冷却促進装置のガイド板の配置を示し、(a)は縦断面図、(b)は(a)に示すb−b断面図である。The arrangement | positioning of the guide plate of the exhaust gas cooling promotion apparatus arrange | positioned in the downstream of a curved flow path is shown, (a) is a longitudinal cross-sectional view, (b) is bb sectional drawing shown to (a). 図8のガイド板の比較例を示し、(a)は縦断面図、(b)は(a)に示すc−c断面図である。The comparative example of the guide plate of FIG. 8 is shown, (a) is a longitudinal cross-sectional view, (b) is a cc cross-sectional view shown in (a).

符号の説明Explanation of symbols

11 ダクト
12 噴射ノズル
13 ガイド板
L ガイド長
D 内径
Lc 冷却距離
23 ガイド板
23b リブ
33 ガイド板
33b フランジ
11 Duct 12 Injection nozzle 13 Guide plate L Guide length D Inner diameter Lc Cooling distance 23 Guide plate 23b Rib 33 Guide plate 33b Flange

Claims (2)

ダクト内に流送される高温排ガス中に、ダクト軸心上に配置された噴射ノズルから冷却用の液滴を噴射して冷却する排ガス冷却促進装置であって、
噴射ノズルの上流側のダクト内周面に、ダクト軸心の対称位置に配置されダクト軸心周りに180°にわたって取り付けられた螺旋状の一対のガイド板を突設し、
ダクトの内径:Dとすると、ガイド板のダクト軸心方向の長さ:Lを、
L=(0.62〜0.85)×Dの範囲内とし、
ダクト内面から突出されるガイド板の高さ:Hを、
H=(0.11〜0.27)×Dの範囲内とした
ことを特徴とする排ガス冷却促進装置。
An exhaust gas cooling promotion device that cools by injecting cooling droplets from an injection nozzle disposed on a duct axis into high-temperature exhaust gas that is fed into a duct,
A pair of spiral guide plates that are arranged at symmetrical positions of the duct shaft center and are attached to the circumference of the duct shaft center over 180 ° on the inner peripheral surface of the duct on the upstream side of the injection nozzle,
If the inner diameter of the duct: D, the length of the guide plate in the axial direction of the duct: L,
L = (0.62-0.85) × D
Height of the guide plate protruding from the inner surface of the duct: H
H = (0.11 to 0.27) × D.
ダクトの内径:D=1000〜1600mmとし、
排ガスの流量を8000〜22000Nm/hrとし、
噴射ノズルの噴射水供給量を200〜1000kg/hrとした
ことを特徴とする請求項1記載の排ガス冷却促進装置。
The inner diameter of the duct: D = 1000 to 1600 mm,
The flow rate of the exhaust gas is set to 8000 to 22000 Nm 3 / hr,
The exhaust gas cooling promotion device according to claim 1, wherein the supply amount of spray water from the spray nozzle is 200 to 1000 kg / hr.
JP2008008572A 2008-01-18 2008-01-18 Exhaust gas cooling accelerating apparatus Pending JP2009168381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008008572A JP2009168381A (en) 2008-01-18 2008-01-18 Exhaust gas cooling accelerating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008008572A JP2009168381A (en) 2008-01-18 2008-01-18 Exhaust gas cooling accelerating apparatus

Publications (1)

Publication Number Publication Date
JP2009168381A true JP2009168381A (en) 2009-07-30

Family

ID=40969760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008008572A Pending JP2009168381A (en) 2008-01-18 2008-01-18 Exhaust gas cooling accelerating apparatus

Country Status (1)

Country Link
JP (1) JP2009168381A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133091A (en) * 2015-01-21 2016-07-25 三菱重工業株式会社 Exhaust gas duct and vessel
KR101817336B1 (en) * 2016-05-25 2018-01-10 두산중공업 주식회사 Duct Line Having Dust Accumulation Preventing Part

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744550U (en) * 1991-02-22 1995-11-21 ニッコー機材株式会社 Exhaust mixing chamber
JPH0842811A (en) * 1994-08-01 1996-02-16 Mitsubishi Heavy Ind Ltd Steam attemperator with mixer
JPH08178209A (en) * 1994-12-27 1996-07-12 Babcock Hitachi Kk Device for lowering steam-temperature
JPH11141856A (en) * 1997-11-13 1999-05-28 Nkk Corp Temperature-reducing tower, and its operating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0744550U (en) * 1991-02-22 1995-11-21 ニッコー機材株式会社 Exhaust mixing chamber
JPH0842811A (en) * 1994-08-01 1996-02-16 Mitsubishi Heavy Ind Ltd Steam attemperator with mixer
JPH08178209A (en) * 1994-12-27 1996-07-12 Babcock Hitachi Kk Device for lowering steam-temperature
JPH11141856A (en) * 1997-11-13 1999-05-28 Nkk Corp Temperature-reducing tower, and its operating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016133091A (en) * 2015-01-21 2016-07-25 三菱重工業株式会社 Exhaust gas duct and vessel
KR101817336B1 (en) * 2016-05-25 2018-01-10 두산중공업 주식회사 Duct Line Having Dust Accumulation Preventing Part

Similar Documents

Publication Publication Date Title
JP4028485B2 (en) Sterilizer with evaporator
US20100163647A1 (en) Two-Component Nozzle With Secondary Air Nozzles Arranged in Circular Form
JP5170974B2 (en) Flue gas denitration equipment
SE1051073A1 (en) Arrangement for introducing a liquid medium into exhaust gases from an internal combustion engine
WO2008040363A2 (en) Nozzel temperature control
CN105772254B (en) Spiral shape spray nozzle device
TWI616536B (en) Granulation installation and blast furnace plant comprising the same
JP6912653B2 (en) Dust remover for cleaning gas
JP2009168381A (en) Exhaust gas cooling accelerating apparatus
JP6912654B2 (en) Dust remover for cleaning gas
JP2008161834A (en) Nozzle and gas-liquid atomizer
JP4427474B2 (en) Temperature reduction tower
WO2018181771A1 (en) Exhaust gas treatment apparatus and exhaust gas treatment method
JP2019074218A (en) Cooling device
JP2002186820A (en) Exhaust gas cooling apparatus
CN103924010B (en) Steel-making roller slag processes discharge venturi type dust arrester
JP5087509B2 (en) Temperature reduction tower
JPH11141856A (en) Temperature-reducing tower, and its operating method
CN107983545A (en) A kind of anti-blocking throttle type nozzle for SCR denitration system ammonia-spraying grid
JP6099492B2 (en) Dry cooling device and exhaust gas cooling method using the same
JP2011092813A (en) Two-fluid spray nozzle
KR102082112B1 (en) Apparatus for disposing an exhaust gas in a converter
JP2013002690A (en) Superheated steam desuperheater
RU2347997C1 (en) Impulse 7 type cooling tower
JP2013174153A (en) Gas cleaning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130108