JP5749190B2 - Water treatment method and water treatment apparatus - Google Patents

Water treatment method and water treatment apparatus Download PDF

Info

Publication number
JP5749190B2
JP5749190B2 JP2012027175A JP2012027175A JP5749190B2 JP 5749190 B2 JP5749190 B2 JP 5749190B2 JP 2012027175 A JP2012027175 A JP 2012027175A JP 2012027175 A JP2012027175 A JP 2012027175A JP 5749190 B2 JP5749190 B2 JP 5749190B2
Authority
JP
Japan
Prior art keywords
water
treated
radicals
amount
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012027175A
Other languages
Japanese (ja)
Other versions
JP2013163147A (en
Inventor
清一 村山
清一 村山
法光 阿部
法光 阿部
健志 出
健志 出
良一 有村
良一 有村
貴恵 久保
貴恵 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012027175A priority Critical patent/JP5749190B2/en
Publication of JP2013163147A publication Critical patent/JP2013163147A/en
Application granted granted Critical
Publication of JP5749190B2 publication Critical patent/JP5749190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Water Treatments (AREA)

Description

本発明の実施形態は、水処理方法、及び水処理装置に関する。   Embodiments described herein relate generally to a water treatment method and a water treatment apparatus.

従来、上水、下水、産業排水、プールなどの分野で、水中の有機物の酸化分解、殺菌、脱臭等の処理のためにオゾンが用いられている。しかしながら、オゾンは酸化力が弱く、親水化、低分子化はできても無機化することはできない。また、ダイオキシンや1,4−ジオキサン等の難分解性有機物は分解できない。   Conventionally, ozone has been used for treatments such as oxidative decomposition, sterilization, and deodorization of organic substances in water in fields such as clean water, sewage, industrial wastewater, and pools. However, ozone has a weak oxidizing power and cannot be mineralized even if it can be made hydrophilic and low molecular. In addition, hardly decomposable organic substances such as dioxin and 1,4-dioxane cannot be decomposed.

したがって、上述のような難分解性有機物を分解するに際しては、オゾンよりも酸化力の強いOHラジカルを用い、酸化分解することが一般的になっている(特許文献1)。一方、OHラジカルは非常に不安定な物質であって、短時間で消滅してしまうために寿命が短く、OHラジカルを用いた有機物の酸化分解は効率が悪いという問題があった。   Therefore, when decomposing a hardly decomposable organic substance as described above, it is common to oxidize and decompose using OH radicals having a stronger oxidizing power than ozone (Patent Document 1). On the other hand, the OH radical is a very unstable substance and disappears in a short time, so that the lifetime is short, and there is a problem that the oxidative decomposition of the organic substance using the OH radical is inefficient.

このような問題に鑑みて、特許文献2には、被処理水をシャワーノズルから水滴化して、反応槽内の円筒状電極と線状電極との間で生じる放電場内に供給するとともに、反応槽内に混合気体供給手段から酸素を25〜90容量%含む混合気体を充満させて被処理水中の有機物を分解処理する技術が開示されている。この技術よれば、上記放電場において生成するOHラジカルを適宜水滴化した被処理水と接触させることができるため、OHラジカルの寿命が短いことを考慮しても、OHラジカルと被処理水との接触効率を向上させることができるため、難分解性有機物の酸化分解を従来に比して向上させることができる。   In view of such a problem, Patent Document 2 discloses that water to be treated is converted into water droplets from a shower nozzle and supplied into a discharge field generated between a cylindrical electrode and a linear electrode in the reaction tank. A technology for decomposing organic matter in water to be treated by filling a mixed gas containing 25 to 90% by volume of oxygen from the mixed gas supply means is disclosed. According to this technique, the OH radicals generated in the discharge field can be brought into contact with the water to be treated appropriately, so that even if the lifetime of the OH radical is short, the OH radical and the water to be treated Since contact efficiency can be improved, the oxidative decomposition of a hardly decomposable organic substance can be improved compared with the past.

しかしながら、上記技術においては、反応槽上部にシャワーノズルを設けたり、円筒状電極及び線状電極を設けたりしなければならず、装置構成が複雑化するとともに、操作方法が複雑化するという問題があった。   However, in the above technique, a shower nozzle or a cylindrical electrode and a linear electrode have to be provided at the upper part of the reaction tank, and there is a problem that the apparatus configuration becomes complicated and the operation method becomes complicated. there were.

特開2000−279977号JP 2000-279977 特開2011−161412号JP 2011-161212 A

本発明は、水中の溶存有機物を酸化分解する水処理において、装置や操作を複雑化することなく、生成したOHラジカルを被処理水に対して長時間安定して供給し、被処理水中の溶存有機物を効率的に酸化分解することを目的とする。   In the water treatment for oxidizing and decomposing dissolved organic matter in water, the present invention stably supplies the generated OH radicals to the treated water for a long time without complicating the apparatus and operation. The objective is to efficiently oxidize and decompose organic matter.

実施形態の水処理方法は、水中の溶存有機物を酸化分解する水処理方法であって、反応槽中に前記溶存有機物を含む被処理水を導入するステップと、前記反応槽内においてOHラジカルを生成するステップとを具える。さらに、前記反応槽中の、前記被処理水の導入側である上流側から下流側の複数の箇所において、前記OHラジカルの生成量を計測するステップを具える。   The water treatment method of the embodiment is a water treatment method for oxidatively decomposing dissolved organic matter in water, the step of introducing treated water containing the dissolved organic matter into a reaction vessel, and generation of OH radicals in the reaction vessel And a step to perform. Furthermore, the method includes the step of measuring the amount of OH radicals generated at a plurality of locations from the upstream side to the downstream side, which is the introduction side of the water to be treated, in the reaction tank.

第1の実施形態における水処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the water treatment apparatus in 1st Embodiment. 第2の実施形態における水処理装置の概略構成を示す図である。It is a figure which shows schematic structure of the water treatment apparatus in 2nd Embodiment.

(第1の実施形態)
図1は、本実施形態における水処理装置の概略構成を示す図である。
図1に示すように、本実施形態における水処理装置10は、反応槽11と、反応槽11内に配設した紫外線光源12とを含む。また、反応槽11の下部には溶存有機物を含む被処理水を導入するための導入口11Aが設けられており、反応槽11の上部には溶存有機物を含む被処理水を外部に排出するための排水口11Bが設けられている。この場合、被処理水は、反応槽11の下方(上流側)から上方(下流側)に向けて流れるようになるので、紫外線光源12は、反応槽11内において、被処理水の上流側から下流側に向けた方向に沿って配置されることになる。
(First embodiment)
FIG. 1 is a diagram showing a schematic configuration of a water treatment apparatus in the present embodiment.
As shown in FIG. 1, the water treatment device 10 in the present embodiment includes a reaction vessel 11 and an ultraviolet light source 12 disposed in the reaction vessel 11. In addition, an inlet 11A for introducing treated water containing dissolved organic matter is provided in the lower part of the reaction tank 11, and the treated water containing dissolved organic substance is discharged to the outside at the upper part of the reaction tank 11. A drain outlet 11B is provided. In this case, since the water to be treated flows from the lower side (upstream side) to the upper side (downstream side) of the reaction tank 11, the ultraviolet light source 12 is supplied from the upstream side of the water to be treated in the reaction tank 11. It will be arranged along the direction toward the downstream side.

なお、紫外線光源12は、図示しない紫外線ランプが防水ケース内に配置されるようにして構成されており、紫外線ランプに対する図示しない配線等も、防水ケースと一体になった配管内を通じて反応槽11の外部に取り出され、図示しない所定の電源と接続されている。   The ultraviolet light source 12 is configured such that an ultraviolet lamp (not shown) is disposed in the waterproof case, and wiring (not shown) for the ultraviolet lamp is also connected to the reaction tank 11 through a pipe integrated with the waterproof case. It is taken out to the outside and connected to a predetermined power source (not shown).

また、反応槽11内の上流、中流及び下流の3箇所、具体的には紫外線光源12の下部、中部及び上部において、OHラジカル生成量の計測手段16,17及び18が設けられている。   Further, OH radical generation amount measuring means 16, 17 and 18 are provided at three locations in the reaction tank 11 upstream, midstream and downstream, specifically at the lower, middle and upper portions of the ultraviolet light source 12.

OHラジカル生成量の第1の計測手段16は、開口部161Aが紫外線光源12側を向いて配置された配管161、配管161に設けられたバルブ162、配管161の端部に設けられた貯留槽163、貯留槽163の下部に設けられた排水管164及び排水管164に設けられたバルブ165を有している。   The first measuring means 16 for the amount of OH radical generation includes a pipe 161 in which the opening 161A is arranged facing the ultraviolet light source 12, the valve 162 provided in the pipe 161, and a storage tank provided at the end of the pipe 161. 163, a drain pipe 164 provided in the lower part of the storage tank 163, and a valve 165 provided in the drain pipe 164.

OHラジカル生成量の第2の計測手段17は、開口部171Aが紫外線光源12側を向いて配置された配管171、配管171に設けられたバルブ172、配管171の端部に設けられた貯留槽173、貯留槽173の下部に設けられた排水管174及び排水管174に設けられたバルブ175を有している。   The second measuring means 17 for the amount of OH radical generation includes a pipe 171 with the opening 171A facing the ultraviolet light source 12 side, a valve 172 provided on the pipe 171 and a storage tank provided at the end of the pipe 171. 173, a drain pipe 174 provided in the lower part of the storage tank 173, and a valve 175 provided in the drain pipe 174.

同様に、OHラジカル生成量の第3の計測手段18は、開口部181Aが紫外線光源12側を向いて配置された配管181、配管181に設けられたバルブ182、配管181の端部に設けられた貯留槽183、貯留槽183の下部に設けられた排水管184及び排水管184に設けられたバルブ185を有している。   Similarly, the third measuring means 18 for the amount of OH radicals generated is provided at the end of the pipe 181, the valve 182 provided in the pipe 181 and the pipe 181 in which the opening 181A is arranged facing the ultraviolet light source 12 side. A storage tank 183, a drain pipe 184 provided in the lower part of the storage tank 183, and a valve 185 provided in the drain pipe 184.

なお、第1の計測手段16、第2の計測手段17及び第3の計測手段18において、OHラジカルの生成量の計測は、貯留槽163、173及び183で試薬や放電等を用いて行う。   In the first measuring unit 16, the second measuring unit 17, and the third measuring unit 18, the amount of OH radicals generated is measured in the storage tanks 163, 173, and 183 using a reagent, a discharge, or the like.

本実施形態では、反応槽11内の3箇所においてOHラジカルの生成量を計測すべく、3つの計測手段を設けているが、計測箇所は多いほど好ましく、4つ以上の計測手段を設けることもできる。   In the present embodiment, three measuring means are provided to measure the amount of OH radicals generated at three locations in the reaction vessel 11, but the more measuring locations, the more preferable, and the provision of four or more measuring means. it can.

また、反応槽11内の紫外線光源12の下方には、配管15を介して反応槽11内にOHラジカルの原料となるオゾンを分散導入するための散気管14が配設されている。あるいは、オゾンの代わりに過酸化水素水を反応槽11の前に加えても良い。   A diffuser tube 14 is provided below the ultraviolet light source 12 in the reaction tank 11 for dispersing and introducing ozone, which is a raw material for OH radicals, into the reaction tank 11 via a pipe 15. Alternatively, hydrogen peroxide water may be added before the reaction tank 11 instead of ozone.

本実施形態では、オゾンあるいは過酸化水素と紫外線との反応によりOHラジカルを形成するので、OHラジカルの生成点は紫外線光源12の表面近傍となる。したがって、生成するOHラジカルの量を正確に計測するには、計測手段16,17及び18の配管161、171及び181それぞれの開口部161A,171A及び181Aが、紫外線光源12の表面から上記範囲内に位置するようにする。   In this embodiment, OH radicals are formed by the reaction between ozone or hydrogen peroxide and ultraviolet rays, so that the generation point of OH radicals is near the surface of the ultraviolet light source 12. Therefore, in order to accurately measure the amount of generated OH radicals, the openings 161A, 171A and 181A of the pipes 161, 171 and 181 of the measuring means 16, 17 and 18 are within the above range from the surface of the ultraviolet light source 12. To be located.

なお、図1に示す水処理装置10の各構成要素は、酸などに対して高い耐性を有するステンレス材やフッ素系樹脂などから構成する。   In addition, each component of the water treatment apparatus 10 shown in FIG. 1 is comprised from the stainless material, fluorine resin, etc. which have high tolerance with respect to an acid.

次に、図1に示す水処理装置10を用いた水処理方法について説明する。
最初に、反応槽11の導入口11Aから反応槽11内に溶存有機物を含む被処理水を導入する。次いで、配管15を介してオゾンあるいは過酸化水素水を導入し、散気管14によって反応槽11内に分散導入する。次いで、反応槽11内に配置された紫外線光源12を点灯し、反応槽11内に導入したオゾンあるいは過酸化水素と紫外線とを反応させ、OHラジカルを生成する。
Next, a water treatment method using the water treatment apparatus 10 shown in FIG. 1 will be described.
First, water to be treated containing dissolved organic matter is introduced into the reaction tank 11 from the inlet 11 </ b> A of the reaction tank 11. Next, ozone or hydrogen peroxide solution is introduced through the pipe 15 and dispersedly introduced into the reaction tank 11 through the air diffuser 14. Next, the ultraviolet light source 12 disposed in the reaction vessel 11 is turned on, and ozone or hydrogen peroxide introduced into the reaction vessel 11 is reacted with ultraviolet rays to generate OH radicals.

なお、オゾンと紫外線との反応によるOHラジカルの生成は、以下の反応式による。
+HO+hv(紫外線)→H+O
+hv(紫外線)→2OH・(OHラジカル)
In addition, the production | generation of OH radical by reaction of ozone and an ultraviolet-ray is based on the following reaction formula.
O 3 + H 2 O + hv (ultraviolet light) → H 2 O 2 + O 2
H 2 O 2 + hv (ultraviolet light) → 2OH · (OH radical)

また、オゾンは汎用の方法、例えば酸素ガスの放電処理等によって得ることができる。   Further, ozone can be obtained by a general-purpose method such as oxygen gas discharge treatment.

一方、過酸化水素と紫外線との反応によるOHラジカルの生成は、以下の反応式による。
+hv(紫外線)→2OH・(OHラジカル)
On the other hand, the generation of OH radicals by the reaction between hydrogen peroxide and ultraviolet rays is based on the following reaction formula.
H 2 O 2 + hv (ultraviolet light) → 2OH · (OH radical)

次いで、反応槽11に対して配備した第1の計測手段16、第2の計測手段17及び第3の計測手段18によって、反応槽11内の、被処理水の上流側から下流側に向けて生成されるOHラジカルの量を計測する。OHラジカルは、自身の濃度の二乗に比例して密度が低下する。すなわち、OHラジカルの密度が高いほど、OHラジカルの消滅速度が速くなるため寿命が短くなり、その寿命は約100μ秒程度であると言われている。   Next, the first measuring means 16, the second measuring means 17 and the third measuring means 18 provided for the reaction tank 11 are directed from the upstream side to the downstream side of the water to be treated in the reaction tank 11. Measure the amount of OH radicals produced. The density of OH radicals decreases in proportion to the square of its concentration. That is, it is said that the higher the density of OH radicals, the faster the OH radical extinction rate, and thus the shorter the lifetime, which is about 100 μsec.

したがって、OHラジカルの生成量を計測するに際しては、第1の計測手段16、第2の計測手段17及び第3の計測手段18のバルブ162,172及び182を開とし、配管161,171及び181、並びに貯留槽163,173及び183を常に反応槽11内の被処理水が充填された状態とする。このため、貯留槽163,173及び183には、上記被処理水が常に充填された状態となっているので、生成量の計測箇所である貯留槽163,173及び183に被処理水を導入する間に、OHラジカルが消滅してしまうようなことがない。結果として、反応槽11内の第1の計測手段16、第2の計測手段17及び第3の計測手段18が配置された位置における、OHラジカルの生成量を正確に計測することができる。   Therefore, when measuring the amount of OH radicals generated, the valves 162, 172 and 182 of the first measuring means 16, the second measuring means 17 and the third measuring means 18 are opened, and the pipes 161, 171 and 181 are opened. In addition, the storage tanks 163, 173, and 183 are always filled with the water to be treated in the reaction tank 11. For this reason, since the storage tanks 163, 173, and 183 are always filled with the water to be treated, the water to be treated is introduced into the storage tanks 163, 173, and 183, which are the measurement points of the generated amount. In the meantime, OH radicals do not disappear. As a result, it is possible to accurately measure the amount of OH radicals generated at the positions where the first measuring means 16, the second measuring means 17, and the third measuring means 18 in the reaction tank 11 are arranged.

OHラジカルの生成量を計測するに際しては、各計測手段のバルブ162,172及び182を閉とした後、直ちに貯留槽163,173及び183に試薬を添加し、その色調を図示しない計測器でモニタリングした後、別途保存している色調データとOHラジカルの生成量との相関グラフに基づいて、OHラジカルの生成量を導出する。また、貯留槽163,173及び183に電圧印加し、その発光度合いを図示しない計測器でモニタリングした後、別途保存している発光強度とOHラジカルの生成量との相関グラフに基づいて、OHラジカル量を導出する。   When measuring the amount of generated OH radicals, the valves 162, 172 and 182 of each measuring means are closed, and then a reagent is immediately added to the storage tanks 163, 173 and 183, and the color tone is monitored by a measuring instrument (not shown). After that, the amount of OH radicals generated is derived based on the correlation graph between the separately stored color tone data and the amount of OH radicals generated. In addition, after applying voltage to the storage tanks 163, 173 and 183 and monitoring the degree of luminescence with a measuring instrument (not shown), based on the correlation graph between the luminescence intensity and the amount of OH radicals generated separately, the OH radical Deriving the quantity.

上記試薬としては、p-ニトロジメチルアニリン、ルミノール等を挙げることができる。   Examples of the reagent include p-nitrodimethylaniline and luminol.

なお、OHラジカルの生成点は、上述したように、紫外線光源12の表面近傍である。したがって、生成するOHラジカルの量を正確に計測するには、計測手段16,17及び18の配管161、171及び181それぞれの開口部161A,171A及び181Aが、紫外線光源12の表面から上記範囲内に位置するようにする。   The generation point of the OH radical is in the vicinity of the surface of the ultraviolet light source 12 as described above. Therefore, in order to accurately measure the amount of generated OH radicals, the openings 161A, 171A and 181A of the pipes 161, 171 and 181 of the measuring means 16, 17 and 18 are within the above range from the surface of the ultraviolet light source 12. To be located.

本実施形態の場合、OHラジカルの原料となるオゾンあるいは過酸化水素は、反応槽11の下方から導入しているので、一般には、紫外線光源12の下方におけるオゾンあるいは過酸化水素の濃度が高く、紫外線光源12の上方におけるオゾンあるいは過酸化水素の濃度は低くなっている。したがって、OHラジカルの生成量も紫外線光源12の下方で多く、紫外線光源12の上方で少なくなっている。   In the case of the present embodiment, ozone or hydrogen peroxide, which is a raw material for the OH radical, is introduced from the lower side of the reaction tank 11, and therefore generally the ozone or hydrogen peroxide concentration under the ultraviolet light source 12 is high. The concentration of ozone or hydrogen peroxide above the ultraviolet light source 12 is low. Therefore, the amount of OH radicals generated is large below the ultraviolet light source 12 and is small above the ultraviolet light source 12.

このため、反応槽11内に導入した被処理水内の溶存有機物を効率的に酸化分解し、被処理水を効率的に処理するためには、計測したOHラジカル生成量の内、最も少ないOHラジカル生成量を基準にして、OHラジカルの生成量を制御する。すなわち、計測した最も少ないOHラジカル生成量が、目的とするOHラジカルの生成量以上となるように、OHラジカルの生成量を制御する。具体的には、紫外線光源12の強度を増大させたり、反応槽11内に導入するオゾンあるいは過酸化水素の量を増大させたりして、計測したOHラジカル生成量が目的とするOHラジカル生成量以上となるようにする。   For this reason, in order to efficiently oxidize and decompose the dissolved organic matter in the water to be treated introduced into the reaction tank 11 and to treat the water to be treated efficiently, the smallest OH radical generation amount among the measured OH radical production amount. The amount of OH radicals generated is controlled based on the amount of radicals generated. That is, the amount of OH radicals generated is controlled so that the smallest measured amount of OH radicals generated is equal to or greater than the amount of OH radicals generated. Specifically, when the intensity of the ultraviolet light source 12 is increased or the amount of ozone or hydrogen peroxide introduced into the reaction tank 11 is increased, the measured OH radical generation amount is the target OH radical generation amount. Try to be above.

なお、第1の計測手段16、第2の計測手段17及び第3の計測手段18における貯留槽163,173及び183でOHラジカルの生成量を計測した後は、これら貯留槽内に溜まっている計測後の被処理水を、バルブ164,174及び184を開とし、排水管165,175及び185から外部に放出する。次いで、これらのバルブを閉とした後、バルブ162,172及び182を開とし、次回のOHラジカル生成量の計測のため、反応槽11内の被処理水を各計測手段の配管161,171及び181、並びに貯留槽163,173及び183内に充填しておく。   In addition, after measuring the production | generation amount of OH radical in the storage tanks 163, 173, and 183 in the 1st measurement means 16, the 2nd measurement means 17, and the 3rd measurement means 18, it has accumulated in these storage tanks. The water to be treated after measurement is discharged from the drain pipes 165, 175 and 185 with the valves 164, 174 and 184 opened. Next, after closing these valves, the valves 162, 172 and 182 are opened, and the water to be treated in the reaction tank 11 is treated with the pipes 161, 171 and 181 and the storage tanks 163, 173 and 183 are filled.

OHラジカルで処理された後の処理水は、反応槽11の排出口11Bから外部に排出され、必要に応じて、浄化処理等が行われ、排水として河川等に放出される。   The treated water that has been treated with OH radicals is discharged to the outside from the discharge port 11B of the reaction tank 11, and is subjected to purification treatment or the like as needed, and is discharged to a river or the like as waste water.

以上の説明から明らかなように、本実施形態においては、水中の溶存有機物を酸化分解する水処理において、装置や操作を複雑化することなく、生成したOHラジカルを被処理水に対して長時間安定して供給し、被処理水中の溶存有機物を効率的に酸化分解して処理することができる。   As is clear from the above description, in the present embodiment, in the water treatment for oxidizing and decomposing dissolved organic matter in water, the generated OH radicals are treated for a long time with respect to the water to be treated without complicating the apparatus and operation. It is possible to supply stably and to efficiently treat the dissolved organic matter in the water to be treated by oxidative decomposition.

(第2の実施形態)
図2は、本実施形態における水処理装置の概略構成を示す図である。
図1に示す水処理装置10においては、被処理水中の溶存有機物を酸化処理するOHラジカルを、オゾンあるいは過酸化水素と紫外線との反応を通じて生成したが、本実施形態では、OHラジカルをオゾン及び過酸化水素の反応を通じて生成する。したがって、本実施形態における水処理装置20は、図2に示すように、反応槽11内に紫外線光源12が配設されておらず、配管15からオゾンを、散気管14を通じて反応槽11内に分散導入するように構成されている。なお、その他の構成については図1に示す水処理装置10と同じであるので説明を省略する。
(Second Embodiment)
FIG. 2 is a diagram showing a schematic configuration of the water treatment apparatus in the present embodiment.
In the water treatment apparatus 10 shown in FIG. 1, OH radicals that oxidize dissolved organic substances in the water to be treated are generated through a reaction between ozone or hydrogen peroxide and ultraviolet rays. It is generated through the reaction of hydrogen peroxide. Therefore, as shown in FIG. 2, the water treatment apparatus 20 in the present embodiment is not provided with the ultraviolet light source 12 in the reaction tank 11, and ozone is supplied from the pipe 15 into the reaction tank 11 through the air diffuser 14. It is configured to be distributed. In addition, since it is the same as that of the water treatment apparatus 10 shown in FIG. 1 about another structure, description is abbreviate | omitted.

図2に示す水処理装置20を用いた水処理方法は次のようにして行う。
最初に、反応槽11の導入口11Aから反応槽11内に溶存有機物を含む被処理水を導入する。次いで、配管15を介してオゾンを導入し、散気管14によって反応槽11内に分散導入する。反応槽11内に導入したオゾン及び過酸化水素は、以下のような反応を通じて、OHラジカルを生成する。

Figure 0005749190
The water treatment method using the water treatment apparatus 20 shown in FIG. 2 is performed as follows.
First, water to be treated containing dissolved organic matter is introduced into the reaction tank 11 from the inlet 11 </ b> A of the reaction tank 11. Next, ozone is introduced through the pipe 15 and dispersedly introduced into the reaction tank 11 by the air diffuser 14. Ozone and hydrogen peroxide introduced into the reaction tank 11 generate OH radicals through the following reaction.
Figure 0005749190

また、オゾンは汎用の方法、例えば酸素ガスの放電処理等によって得ることができる。オゾン自体も不安定な物質であって、放置しておくと、元の酸素に戻ってしまうので、上記放電処理等を行う装置は、オゾンを導入する配管15の途中であって、なるべく反応槽11に近い箇所に配置する。   Further, ozone can be obtained by a general-purpose method such as oxygen gas discharge treatment. Since ozone itself is also an unstable substance and will return to its original oxygen if left unattended, the apparatus for performing the discharge treatment or the like is in the middle of the piping 15 for introducing ozone, and is preferably a reaction vessel. It is arranged at a location close to 11.

次いで、反応槽11に対して配備した第1の計測手段16、第2の計測手段17及び第3の計測手段18によって、反応槽11内の、被処理水の上流側から下流側に向けて生成されるOHラジカルの量を計測する。上述のように、OHラジカルは、自身の濃度の二乗に比例して密度が低下し、OHラジカルの消滅速度が速くなるため寿命が短くなる。   Next, the first measuring means 16, the second measuring means 17 and the third measuring means 18 provided for the reaction tank 11 are directed from the upstream side to the downstream side of the water to be treated in the reaction tank 11. Measure the amount of OH radicals produced. As described above, the density of the OH radical decreases in proportion to the square of its concentration, and the lifetime of the OH radical is shortened because the OH radical disappearance rate is increased.

したがって、OHラジカルの生成量を計測するに際しては、第1の計測手段16、第2の計測手段17及び第3の計測手段18のバルブ162,172及び182を開とし、配管161,171及び181、並びに貯留槽163,173及び183を常に反応槽11内の被処理水が充填された状態とする。このため、貯留槽163,173及び183には、上記被処理水が常に充填された状態となっているので、生成量の計測箇所である貯留槽163,173及び183に被処理水を導入する間に、OHラジカルが消滅してしまうようなことがない。結果として、反応槽11内の第1の計測手段16、第2の計測手段17及び第3の計測手段18が配置された位置における、OHラジカルの生成量を正確に計測することができる。   Therefore, when measuring the amount of OH radicals generated, the valves 162, 172 and 182 of the first measuring means 16, the second measuring means 17 and the third measuring means 18 are opened, and the pipes 161, 171 and 181 are opened. In addition, the storage tanks 163, 173, and 183 are always filled with the water to be treated in the reaction tank 11. For this reason, since the storage tanks 163, 173, and 183 are always filled with the water to be treated, the water to be treated is introduced into the storage tanks 163, 173, and 183, which are the measurement points of the generated amount. In the meantime, OH radicals do not disappear. As a result, it is possible to accurately measure the amount of OH radicals generated at the positions where the first measuring means 16, the second measuring means 17, and the third measuring means 18 in the reaction tank 11 are arranged.

OHラジカルの生成量を計測するに際しては、各計測手段のバルブ162,172及び182を閉とした後、直ちに貯留槽163,173及び183に試薬を添加し、その色調を図示しない計測器でモニタリングした後、別途保存している色調データとOHラジカルの生成量との相関グラフに基づいて、OHラジカルの生成量を導出する。また、貯留槽163,173及び183に電圧印加し、その発光度合いを図示しない計測器でモニタリングした後、別途保存している発光強度とOHラジカルの生成量との相関グラフに基づいて、OHラジカル量を導出する。   When measuring the amount of generated OH radicals, the valves 162, 172 and 182 of each measuring means are closed, and then a reagent is immediately added to the storage tanks 163, 173 and 183, and the color tone is monitored by a measuring instrument (not shown). After that, the amount of OH radicals generated is derived based on the correlation graph between the separately stored color tone data and the amount of OH radicals generated. In addition, after applying voltage to the storage tanks 163, 173 and 183 and monitoring the degree of luminescence with a measuring instrument (not shown), based on the correlation graph between the luminescence intensity and the amount of OH radicals generated separately, the OH radical Deriving the quantity.

上記試薬としては、p-ニトロジメチルアニリン、ルミノール等を挙げることができる。   Examples of the reagent include p-nitrodimethylaniline and luminol.

なお、本実施形態において、OHラジカルの生成点は、反応槽11の全体に亘るので、計測手段16,17及び18の配管161、171及び181それぞれの開口部161A,171A及び181Aは、例えば、反応槽11の中央に位置するようにする。   In this embodiment, since the generation point of OH radicals extends throughout the reaction tank 11, the openings 161A, 171A and 181A of the pipes 161, 171 and 181 of the measuring means 16, 17 and 18 are, for example, It is located in the center of the reaction vessel 11.

本実施形態においても、OHラジカルの原料となるオゾンあるいは過酸化水素は、反応槽11の下方から導入しているので、一般には、反応槽11の下方におけるOHラジカルの濃度が高く、反応槽11の上方におけるOHラジカルの濃度は低くなっている。   Also in this embodiment, ozone or hydrogen peroxide, which is a raw material for OH radicals, is introduced from the lower side of the reaction tank 11, and therefore, generally, the concentration of OH radicals in the lower part of the reaction tank 11 is high. The concentration of OH radicals above is low.

このため、反応槽11内に導入した被処理水内の溶存有機物を効率的に酸化分解し、被処理水を効率的に処理するためには、計測したOHラジカル生成量の内、最も少ないOHラジカル生成量を基準にして、OHラジカルの生成量を制御する。すなわち、計測した最も少ないOHラジカル生成量が、目的とするOHラジカルの生成量以上となるように、OHラジカルの生成量を制御する。具体的には、反応槽11内に導入するオゾン及び過酸化水素の量を増大させて、計測したOHラジカル生成量が目的とするOHラジカル生成量以上となるようにする。なお、その他の操作は、第1の実施形態の場合と同様であるので説明を省略する。   For this reason, in order to efficiently oxidize and decompose the dissolved organic matter in the water to be treated introduced into the reaction tank 11 and to treat the water to be treated efficiently, the smallest OH radical generation amount among the measured OH radical production amount. The amount of OH radicals generated is controlled based on the amount of radicals generated. That is, the amount of OH radicals generated is controlled so that the smallest measured amount of OH radicals generated is equal to or greater than the amount of OH radicals generated. Specifically, the amount of ozone and hydrogen peroxide introduced into the reaction vessel 11 is increased so that the measured OH radical production amount becomes equal to or greater than the target OH radical production amount. Since other operations are the same as those in the first embodiment, description thereof is omitted.

以上の説明から明らかなように、本実施形態においては、水中の溶存有機物を酸化分解する水処理において、装置や操作を複雑化することなく、生成したOHラジカルを被処理水に対して長時間安定して供給し、被処理水中の溶存有機物を効率的に酸化分解して処理することができる。   As is clear from the above description, in the present embodiment, in the water treatment for oxidizing and decomposing dissolved organic matter in water, the generated OH radicals are treated for a long time with respect to the water to be treated without complicating the apparatus and operation. It is possible to supply stably and to efficiently treat the dissolved organic matter in the water to be treated by oxidative decomposition.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として掲示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although several embodiment of this invention was described, these embodiment was posted as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10,20 水処理装置
11 反応槽
12 紫外線光源
14 散気管
15 配管
16 第1の計測手段
17 第2の計測手段
18 第3の計測手段
DESCRIPTION OF SYMBOLS 10,20 Water treatment apparatus 11 Reaction tank 12 Ultraviolet light source 14 Aeration pipe 15 Piping 16 1st measurement means 17 2nd measurement means 18 3rd measurement means

Claims (3)

水中の溶存有機物を酸化分解する水処理方法であって、
反応槽中に前記溶存有機物を含む被処理水を導入するステップと、
前記反応槽内において、オゾン及び過酸化水素の少なくとも一方を供給した後、前記被処理水の導入側である上流側から下流側の方向に沿って配置した紫外線光源から紫外線を照射し、前記紫外線と前記オゾン及び過酸化水素の少なくとも一方とを反応させることによってOHラジカルを生成するステップと、
前記反応槽中の、前記被処理水の導入側である上流側から下流側の複数の箇所において、それぞれ開口部が前記紫外線光源に向くようにして配置した複数の採水管を介して前記被処理水をそれぞれ採水し、前記採水管から採水された前記被処理水中の前記OHラジカルの生成量を計測するステップと、
を具えることを特徴とする、水処理方法。
A water treatment method for oxidative decomposition of dissolved organic matter in water,
Introducing the treated water containing the dissolved organic matter into the reaction vessel;
In the reaction tank, after supplying at least one of ozone and hydrogen peroxide, the ultraviolet light is irradiated from an ultraviolet light source arranged along the direction from the upstream side, which is the introduction side of the water to be treated, to the downstream side. Generating OH radicals by reacting ozone with at least one of ozone and hydrogen peroxide ;
In the reaction tank, at a plurality of locations from the upstream side to the downstream side that is the introduction side of the water to be treated, the water to be treated is provided via a plurality of water sampling tubes arranged so that the openings face the ultraviolet light source. Sampling each of the water, measuring the amount of OH radicals produced in the treated water sampled from the sampling tube ;
A water treatment method comprising the steps of:
前記反応槽内で生成する前記OHラジカルの生成量は、前記複数の箇所で計測された前記OHラジカルの最低量を基準として制御することを特徴とする、請求項1に記載の水処理方法。   2. The water treatment method according to claim 1, wherein the amount of OH radicals generated in the reaction vessel is controlled based on a minimum amount of the OH radicals measured at the plurality of locations. 水中の溶存有機物を酸化分解する水処理装置であって、
前記溶存有機物を含む前記被処理水をOHラジカルによって酸化分解するための反応槽と、
前記反応槽内において、オゾン及び過酸化水素の少なくとも一方を供給する配管と前記被処理水の上流側から下流側の方向に沿って配置した紫外線光源とを有し、前記紫外線光源から発せられる紫外線と前記配管から供給されるオゾン及び過酸化水素の少なくとも一方とを反応させることによって前記OHラジカルを生成するためのOHラジカル生成手段と、
前記反応槽中の、前記被処理水の導入側である上流側から下流側の複数の箇所において、それぞれ開口部が前記紫外線光源に向くようにして配置した複数の採水管及びこれら複数の採水管それぞれに配置された貯留槽を含み、前記OHラジカルの生成量の計測は前記複数の採水管を介して前記複数の貯留槽に導入された前記被処理水中の前記OHラジカルの量を計測することによって前記OHラジカルの生成量を計測するためのOHラジカル生成量計測手段と、
を具えることを特徴とする、水処理装置。
A water treatment device for oxidative decomposition of dissolved organic matter in water,
A reaction vessel for oxidatively decomposing the treated water containing the dissolved organic matter with OH radicals;
An ultraviolet ray emitted from the ultraviolet light source, having a pipe for supplying at least one of ozone and hydrogen peroxide and an ultraviolet light source disposed along the direction from the upstream side to the downstream side of the water to be treated in the reaction tank. OH radical generating means for generating the OH radical by reacting ozone and at least one of hydrogen and hydrogen supplied from the pipe ,
A plurality of water sampling tubes arranged in such a manner that openings are directed to the ultraviolet light source at a plurality of locations from the upstream side to the downstream side, which is the introduction side of the treated water, in the reaction tank, and the plurality of water sampling tubes Each of which includes storage tanks, and the amount of OH radicals generated is measured by measuring the amount of the OH radicals in the water to be treated introduced into the plurality of storage tanks via the plurality of sampling pipes. and OH radical generation amount measuring means for measuring the production amount of the OH radicals by,
A water treatment device characterized by comprising:
JP2012027175A 2012-02-10 2012-02-10 Water treatment method and water treatment apparatus Active JP5749190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012027175A JP5749190B2 (en) 2012-02-10 2012-02-10 Water treatment method and water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012027175A JP5749190B2 (en) 2012-02-10 2012-02-10 Water treatment method and water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2013163147A JP2013163147A (en) 2013-08-22
JP5749190B2 true JP5749190B2 (en) 2015-07-15

Family

ID=49174882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012027175A Active JP5749190B2 (en) 2012-02-10 2012-02-10 Water treatment method and water treatment apparatus

Country Status (1)

Country Link
JP (1) JP5749190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015085297A (en) * 2013-11-01 2015-05-07 国立大学法人東京工業大学 Liquid treatment apparatus and produced water treatment method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180430A (en) * 1998-12-17 2000-06-30 Nippon Steel Corp Measuring method of hydroxy radical in water
JP3697933B2 (en) * 1999-04-07 2005-09-21 富士電機システムズ株式会社 Water treatment method and apparatus using ozone
JP2001259666A (en) * 2000-03-21 2001-09-25 Mitsubishi Electric Corp Device and method for treating water
JP2011075449A (en) * 2009-09-30 2011-04-14 Kurabo Ind Ltd Hydroxyl radical-containing water supply system
JP5404523B2 (en) * 2010-05-14 2014-02-05 倉敷紡績株式会社 Method and apparatus for measuring hydroxyl radical concentration

Also Published As

Publication number Publication date
JP2013163147A (en) 2013-08-22

Similar Documents

Publication Publication Date Title
KR101847055B1 (en) Advanced oxidation process appratus of sewage and the method by using the same
JP3914850B2 (en) Ozone-promoted ozone-oxidized water treatment device and ozone-promoted oxidation module
Chu et al. Enhanced treatment of practical textile wastewater by microbubble ozonation
KR100581746B1 (en) System for treating water
KR20100003553A (en) Water treatment apparatus using advanced oxidation process
KR101585143B1 (en) Method and apparatus for treating 1,4-dioxane in waste water
JP6921503B2 (en) Water treatment equipment, water treatment system and water treatment method
Shajeelammal et al. Treatment of real time textile effluent containing azo reactive dyes via ozonation, modified pulsed low frequency ultrasound cavitation, and integrated reactor
CN104828899B (en) A kind of line plate discharge plasma sewage-treatment plant
JP2006198499A (en) Method for sterilizing water and sterilization apparatus
JP5749190B2 (en) Water treatment method and water treatment apparatus
KR200461827Y1 (en) Apparatus for cleaning waste water
CN111615498A (en) Oxidation-promoting water treatment system and method
KR101843661B1 (en) Hybrid apparatus and method for water treatment using plasma
JP2010179272A (en) Wastewater treatment apparatus and wastewater treatment method
JP2008207122A (en) Apparatus and method for treating organic matter-containing water
KR20190120837A (en) Apparatus for purifying water based on electro-peroxone reaction
JP6911002B2 (en) Water treatment controller and water treatment system
KR20110034830A (en) Apparatus for treating waste water
US20110120957A1 (en) Method for Treating Liquids
CN103951125A (en) EDTA (ethylene diamine tetraacetic acid) cleaning waste liquid processing method and corresponding reaction device
CN110759460A (en) Three-section type UV/O for sewage treatment3/H2O2Advanced oxidation system
JP6178522B2 (en) Wastewater purification system using high voltage discharge and fine bubbles
KR20190084720A (en) Apparatus for treating wastewater
JP2008194558A (en) Water treatment system and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R151 Written notification of patent or utility model registration

Ref document number: 5749190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151