JP5749149B2 - Method for measuring three-dimensional shape of silica glass crucible - Google Patents
Method for measuring three-dimensional shape of silica glass crucible Download PDFInfo
- Publication number
- JP5749149B2 JP5749149B2 JP2011282404A JP2011282404A JP5749149B2 JP 5749149 B2 JP5749149 B2 JP 5749149B2 JP 2011282404 A JP2011282404 A JP 2011282404A JP 2011282404 A JP2011282404 A JP 2011282404A JP 5749149 B2 JP5749149 B2 JP 5749149B2
- Authority
- JP
- Japan
- Prior art keywords
- measuring unit
- distance measuring
- silica glass
- crucible
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 64
- 238000000034 method Methods 0.000 title claims description 20
- 238000005259 measurement Methods 0.000 claims description 53
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000000843 powder Substances 0.000 description 11
- 239000000377 silicon dioxide Substances 0.000 description 11
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 7
- 229910052710 silicon Inorganic materials 0.000 description 7
- 239000010703 silicon Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000010314 arc-melting process Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Glass Melting And Manufacturing (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
本発明は、シリカガラスルツボの三次元形状測定方法に関する。
The present invention relates to a three-dimensional shape measuring method of the silica glass crucible.
シリカガラスルツボの製造方法は、一例では、回転モールドの内表面に平均粒径300μm程度のシリカ粉を堆積させてシリカ粉層を形成するシリカ粉層形成工程と、モールド側からシリカ粉層を減圧しながら、シリカ粉層をアーク熔融させることによってシリカガラス層を形成するアーク熔融工程を備える(この方法を「回転モールド法」と称する)。 The silica glass crucible manufacturing method includes, for example, a silica powder layer forming step of depositing silica powder having an average particle size of about 300 μm on the inner surface of the rotary mold to form a silica powder layer, and reducing the silica powder layer from the mold side. However, an arc melting step of forming a silica glass layer by arc melting the silica powder layer is provided (this method is referred to as “rotary molding method”).
アーク熔融工程の初期にはシリカ粉層を強く減圧することによって気泡を除去して透明シリカガラス層(以下、「透明層」と称する。)を形成し、その後、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(以下、「気泡含有層」と称する。)を形成することによって、内表面側に透明層を有し、外表面側に気泡含有層を有する二層構造のシリカガラスルツボを形成することができる。 At the initial stage of the arc melting process, the silica powder layer is strongly depressurized to remove bubbles to form a transparent silica glass layer (hereinafter referred to as “transparent layer”). By forming a residual bubble-containing silica glass layer (hereinafter referred to as “bubble-containing layer”), a two-layered silica glass having a transparent layer on the inner surface side and a bubble-containing layer on the outer surface side A crucible can be formed.
ルツボの製造に使用されるシリカ粉には、天然石英を粉砕して製造される天然シリカ粉や化学合成によって製造される合成シリカ粉があるが、特に天然シリカ粉は、天然物を原料としているので、物性・形状・サイズがばらつきやすい。物性・形状・サイズが変化すると、シリカ粉の溶融状態が変化するので、同じ条件でアーク熔融を行っても、製造されるルツボの形状、透明層及び気泡含有層の厚さがばらついてしまう。 Silica powder used for crucible production includes natural silica powder produced by pulverizing natural quartz and synthetic silica powder produced by chemical synthesis, but natural silica powder is made from natural products. Therefore, physical properties, shapes, and sizes tend to vary. When the physical properties, shape, and size change, the melting state of the silica powder changes, and thus the shape of the crucible to be manufactured, the thickness of the transparent layer, and the bubble-containing layer vary even when arc melting is performed under the same conditions.
このようなばらつきを低減させるようにアーク熔融を行ったり、このようなばらつきを考慮したシリコン単結晶の引き上げを行うには、全てのルツボについて、その形状、透明層及び気泡含有層の厚さを把握することが必要である。 In order to perform arc melting so as to reduce such variations, or to pull up a silicon single crystal in consideration of such variations, the shape, the transparent layer, and the thickness of the bubble-containing layer must be set for all the crucibles. It is necessary to grasp.
シリカガラスルツボの形状を測定する装置としては、特許文献1〜2に記載のものが知られている。特許文献1〜2に記載の装置では、光電センサを用いて、ルツボの高さ及び外径が測定されている。 As an apparatus for measuring the shape of a silica glass crucible, those described in Patent Documents 1 and 2 are known. In the devices described in Patent Documents 1 and 2, the height and outer diameter of the crucible are measured using a photoelectric sensor.
特許文献1〜2の装置を用いると、ルツボの高さ及び外径を測定することができるものの、この装置は、ルツボの内表面の三次元形状の測定には使えない。 Although the height and outer diameter of the crucible can be measured using the devices of Patent Documents 1 and 2, this device cannot be used for measuring the three-dimensional shape of the inner surface of the crucible.
本発明はこのような事情に鑑みてなされたものであり、非破壊的にルツボの内表面の三次元形状を測定することができるシリカガラスルツボの三次元形状測定方法を提供するものである。 This invention is made | formed in view of such a situation, and provides the three-dimensional shape measuring method of the silica glass crucible which can measure the three-dimensional shape of the inner surface of a crucible nondestructively.
本発明によれば、内表面側に透明シリカガラス層と、外表面側に気泡含有シリカガラス層を有するシリカガラスルツボの内表面に沿って非接触で内部測距部を移動させ、移動経路上の複数の測定点において、内部測距部から前記シリカガラスルツボの内表面に対して斜め方向にレーザー光を照射し、前記内表面からの内表面反射光と、前記透明シリカガラス層と前記気泡含有シリカガラス層の界面からの界面反射光とを検出することによって、内部測距部と前記内表面の間の内表面距離、及び内部測距部と前記界面の間の界面距離を測定し、各測定点の三次元座標と、前記内表面距離及び前記界面距離を関連付けることによって、前記内表面及び界面の三次元形状を求める工程を備える、シリカガラスルツボの三次元形状測定方法が提供される。 According to the present invention, the internal distance measuring unit is moved in a non-contact manner along the inner surface of the silica glass crucible having the transparent silica glass layer on the inner surface side and the bubble-containing silica glass layer on the outer surface side. In the plurality of measurement points, laser light is irradiated in an oblique direction to the inner surface of the silica glass crucible from the internal distance measuring unit, the inner surface reflected light from the inner surface, the transparent silica glass layer, and the bubbles By detecting the interface reflected light from the interface of the containing silica glass layer, the inner surface distance between the inner distance measuring unit and the inner surface, and the interface distance between the inner distance measuring unit and the interface, There is provided a method for measuring a three-dimensional shape of a silica glass crucible, comprising a step of obtaining a three-dimensional shape of the inner surface and the interface by associating the three-dimensional coordinates of each measurement point with the inner surface distance and the interface distance. .
本発明者らは、ルツボの性能向上や品質管理を容易にするには、ルツボの内表面の三次元形状や透明層の厚さの三次元分布のデータを取得することが必須であると考えたが、ルツボが透明体であるので、光学的に三次元形状を測定することは困難であった。ルツボ内表面に光を照射して画像を取得し、その画像を解析する方法も試してみたが、この方法では、画像の解析に非常に長い時間がかかるため、ルツボの内表面全体の三次元形状の測定には到底使えるものではなかった。 The present inventors consider that it is essential to acquire data of the three-dimensional shape of the inner surface of the crucible and the three-dimensional distribution of the thickness of the transparent layer in order to improve the performance and quality control of the crucible. However, since the crucible is a transparent body, it is difficult to optically measure the three-dimensional shape. I tried to illuminate the inner surface of the crucible to acquire an image and analyze the image, but this method takes a very long time to analyze the image. It could not be used to measure the shape.
このような状況において、本発明者らは、ルツボの内表面に対して斜め方向からレーザー光を照射したところ、ルツボ内表面からの反射光(内表面反射光)に加えて、透明層と気泡含有層の界面からの反射光(界面反射光)も検出が可能であることを見出した。透明層と気泡含有層の界面は、気泡含有率が急激に変化する面であるが、空気とガラスの界面のような明確な界面ではないため、透明層と気泡含有層の界面からの反射光が検出可能であることは驚くべき発見であった。 In such a situation, the present inventors irradiated the laser beam from the oblique direction to the inner surface of the crucible, and in addition to the reflected light (inner surface reflected light) from the inner surface of the crucible, the transparent layer and the bubbles It was found that reflected light from the interface of the containing layer (interface reflected light) can also be detected. The interface between the transparent layer and the bubble-containing layer is a surface where the bubble content changes rapidly, but is not a clear interface such as the interface between air and glass. It was a surprising discovery that is detectable.
そして、内表面反射光と界面反射光は、内部測距部に設けられている検出器の異なる位置で検出されるので、三角測量の原理によって内部測距部と内表面の間の内表面距離、及び内部測距部と界面の間の界面距離が測定される。 Since the inner surface reflected light and the interface reflected light are detected at different positions of the detector provided in the inner distance measuring section, the inner surface distance between the inner distance measuring section and the inner surface is determined by the principle of triangulation. And the interface distance between the internal distance measuring unit and the interface is measured.
また、ルツボの内表面に沿った複数の測定点において測定が行われるが、各測定点での内部測距部の座標と、内表面距離及び界面距離を関連付けることによって、各測定点に対応するルツボ内表面座標とルツボ界面座標が得られる。 Measurement is performed at a plurality of measurement points along the inner surface of the crucible. Corresponding to each measurement point by associating the coordinates of the internal distance measuring unit, the inner surface distance, and the interface distance at each measurement point. The crucible inner surface coordinates and the crucible interface coordinates are obtained.
そして、ルツボの内表面に沿って、例えば2mm間隔のメッシュ状に多数の測定点を配置して測定を行うことによって、メッシュ状の内表面座標と界面座標が得られ、これによって、ルツボの内表面及び界面の三次元形状を求めることができる。また、内表面と界面の間の距離を算出することによって、任意の位置での透明層の厚さを算出することができ、従って、透明層の厚さの三次元分布を求めることができる。
本発明の方法が優れているのは、画像解析による方法に比べて、データのサンプリングレートが格段に大きいことであり、予備実験によると、直径1mのルツボで10万点の測定をする場合であっても、10分程度で内表面全体の三次元形状の測定を終えることができた。
また、本発明の方法が優れている点は、ルツボの内表面全体の三次元形状が非破壊で決定できるため、実際の製品の三次元形状が分かることである。従来は、ルツボを切断してサンプルを作成し、このサンプルの三次元形状を測定していたが、この方法では、実際の製品のデータが取得できないこと、サンプル作成に時間とコストがかかるという問題があるので、本発明は、実際の製品の三次元形状を低コストで測定できる点で利点が大きい。また、本発明は、外径28インチ以上の大型ルツボや、40インチ以上の超大型ルツボにおいて特に利点がある。なぜなら、このようなルツボにおいては、サンプル作成にかかる時間とコストが小型ルツボに比べて非常に大きいからである。
Then, along the inner surface of the crucible, for example, by arranging a large number of measurement points in a mesh shape with an interval of 2 mm, the mesh-like inner surface coordinates and interface coordinates are obtained. The three-dimensional shape of the surface and interface can be determined. Further, by calculating the distance between the inner surface and the interface, the thickness of the transparent layer at an arbitrary position can be calculated, and therefore, the three-dimensional distribution of the thickness of the transparent layer can be obtained.
The superiority of the method of the present invention is that the data sampling rate is significantly higher than that of the image analysis method. According to a preliminary experiment, the measurement is performed with 100,000 points using a 1 m diameter crucible. Even in that case, the measurement of the three-dimensional shape of the entire inner surface could be completed in about 10 minutes.
In addition, the advantage of the method of the present invention is that the three-dimensional shape of the actual product can be known because the three-dimensional shape of the entire inner surface of the crucible can be determined nondestructively. Previously, a crucible was cut to create a sample, and the three-dimensional shape of this sample was measured. However, with this method, actual product data could not be obtained, and sample preparation took time and cost. Therefore, the present invention has a great advantage in that the three-dimensional shape of an actual product can be measured at low cost. The present invention is particularly advantageous in a large crucible having an outer diameter of 28 inches or more and a super large crucible having a diameter of 40 inches or more. This is because, in such a crucible, the time and cost required for sample preparation are very large compared to a small crucible.
以下、本発明の種々の実施形態を例示する。以下の実施形態は、互いに組み合わせ可能である。
好ましくは、前記シリカガラスルツボの外表面に沿って外部測距部を移動させ、移動経路上の複数の測定点において、外部測距部からシリカガラスルツボの外表面に対してレーザー光を照射し、前記外表面からの外表面反射光を検出することによって、外部測距部と前記外表面の間の外表面距離を測定し、各測定点の三次元座標と、外表面距離を関連付けることによって、前記シリカガラスルツボの外表面の三次元形状を求める工程をさらに備える。
Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.
Preferably, the external distance measuring unit is moved along the outer surface of the silica glass crucible, and laser light is irradiated from the external distance measuring unit to the outer surface of the silica glass crucible at a plurality of measurement points on the moving path. By detecting the outer surface reflected light from the outer surface, measuring the outer surface distance between the outer distance measuring unit and the outer surface, and associating the three-dimensional coordinates of each measurement point with the outer surface distance And a step of obtaining a three-dimensional shape of the outer surface of the silica glass crucible.
ルツボの内表面及び界面の三次元形状が決定されれば、この形状に基づいてルツボの品質検査を行うことができる。例えば、形状が規定の範囲内であるどうかに従って品質検査を行うことができ、規定の範囲外である場合には形状を修正する工程を行ったり、出荷せずにNG品とする等によって、規格外の製品が出荷されるのを防ぐことができる。 If the three-dimensional shape of the inner surface and the interface of the crucible is determined, the crucible quality inspection can be performed based on this shape. For example, quality inspection can be performed according to whether or not the shape is within a specified range, and if it is out of the specified range, a process for correcting the shape is performed or an NG product is not shipped. It is possible to prevent outside products from being shipped.
また、シリコン単結晶の引き上げ条件を設定する際に、ルツボの三次元形状を考慮して条件設定を行うことができ、シリコン単結晶の引き上げを高精度に行うことができる。 Further, when setting the pulling conditions for the silicon single crystal, the conditions can be set in consideration of the three-dimensional shape of the crucible, and the pulling of the silicon single crystal can be performed with high accuracy.
好ましくは、前記内部測距部からのレーザー光は、前記内表面に対して30〜60度の入射角で照射される。 Preferably, the laser beam from the internal distance measuring unit is irradiated at an incident angle of 30 to 60 degrees with respect to the inner surface.
好ましくは、前記内部測距部は、前記内部測距部を三次元的に移動させることができるように構成された内部ロボットアームに固定され、前記シリカガラスルツボは、前記内部ロボットアームを覆うように配置される。 Preferably, the internal distance measuring unit is fixed to an internal robot arm configured to be able to move the internal distance measuring unit three-dimensionally, and the silica glass crucible covers the internal robot arm. Placed in.
好ましくは、前記外部測距部は、前記外部測距部を三次元的に移動させることができるように構成された外部ロボットアームに固定される。 Preferably, the external distance measuring unit is fixed to an external robot arm configured to be able to move the external distance measuring unit three-dimensionally.
好ましくは、前記シリカガラスルツボ内に保持されたシリコン融液からシリコン単結晶を引き上げる工程を備え、前記シリコン単結晶の引き上げ条件が、前記シリカガラスルツボの三次元形状に基づいて決定され、前記三次元形状は、上記記載の方法によって決定される、シリコン単結晶の製造方法である。 Preferably, the method includes the step of pulling up the silicon single crystal from the silicon melt held in the silica glass crucible, wherein the pulling condition of the silicon single crystal is determined based on the three-dimensional shape of the silica glass crucible, The original shape is a method for producing a silicon single crystal determined by the method described above.
以下、図1〜図4を用いて、本発明の一実施形態のシリカガラスルツボの三次元形状測定方法を説明する。 Hereinafter, the three-dimensional shape measuring method of the silica glass crucible according to the embodiment of the present invention will be described with reference to FIGS.
<シリカガラスルツボ>
測定対象であるシリカガラスルツボ11は、内表面側に透明層13と、外表面側に気泡含有層15を有するものであり、開口部が下向きになるように回転可能な回転台9上に載置されている。シリカガラスルツボ11は、曲率が比較的大きいコーナー部11bと、上面に開口した縁部を有する円筒状の側壁部11aと、直線または曲率が比較的小さい曲線からなるすり鉢状の底部11cを有する。本発明において、コーナー部とは、側壁部11aと底部11cを連接する部分で、コーナー部の曲線の接線がシリカガラスルツボの側壁部11aと重なる点から、底部11cと共通接線を有する点までの部分のことを意味する。言い換えると、シリカガラスルツボ11の側壁部11aが曲がり始める点が側壁部11aとコーナー部11bの境界である。さらに、ルツボの底の曲率が一定の部分が底部11cであり、ルツボの底の中心からの距離が増したときに曲率が変化し始める点が底部11cとコーナー部11bとの境界である。
<Silica glass crucible>
The silica glass crucible 11 to be measured has a transparent layer 13 on the inner surface side and a bubble-containing layer 15 on the outer surface side, and is mounted on a turntable 9 that can be rotated so that the opening portion faces downward. Is placed. The silica glass crucible 11 has a corner portion 11b having a relatively large curvature, a cylindrical side wall portion 11a having an edge opened on the upper surface, and a mortar-shaped bottom portion 11c made of a straight line or a curve having a relatively small curvature. In the present invention, the corner portion is a portion connecting the side wall portion 11a and the bottom portion 11c, from the point where the tangent line of the corner portion curve overlaps the side wall portion 11a of the silica glass crucible to the point having the common tangent line with the bottom portion 11c. Means part. In other words, the point where the side wall portion 11a of the silica glass crucible 11 begins to bend is the boundary between the side wall portion 11a and the corner portion 11b. Further, the portion where the curvature of the bottom of the crucible is constant is the bottom portion 11c, and the point where the curvature starts to change when the distance from the center of the bottom of the crucible increases is the boundary between the bottom portion 11c and the corner portion 11b.
<内部ロボットアーム、内部測距部>
ルツボ11に覆われる位置に設けられた基台1上には、内部ロボットアーム5が設置されている。内部ロボットアーム5は、複数のアーム5aと、これらのアーム5aを回転可能に支持する複数のジョイント5bと、本体部5cを備える。本体部5cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。内部ロボットアーム5の先端にはルツボ11の内表面形状の測定を行う内部測距部17が設けられている。内部測距部17は、ルツボ11の内表面に対してレーザー光を照射し、内表面からの反射光を検出することによって内部測距部17からルツボ11の内表面までの距離を測定する。本体部5c内には、ジョイント5b及び内部測距部17の制御を行う制御部が設けられている。制御部は、本体部5c設けられたプログラム又は外部入力信号に基づいてジョイント5bを回転させてアーム5を動かすことによって、内部測距部17を任意の三次元位置に移動させる。具体的には、内部測距部17をルツボ内表面に沿って非接触で移動させる。従って、制御部には、ルツボ内表面の大まかな形状データを与え、そのデータに従って、内部測距部17の位置を移動させる。より具体的には、例えば、図1(a)に示すようなルツボ11の開口部近傍に近い位置から測定を開始し、図1(b)に示すように、ルツボ11の底部11cに向かって内部測距部17を移動させ、移動経路上の複数の測定点において測定を行う。測定間隔は、例えば、1〜5mmであり、例えば2mmである。測定は、予め内部測距部17内に記憶されたタイミングで行うか、又は外部トリガに従って行う。測定結果は、内部測距部17内の記憶部に格納されて、測定終了後にまとめて本体部5cに送られるか、又は測定の度に、逐次本体部5cに送られるようにする。内部測距部17は、本体部5cとは別に設けられた制御部によって制御するように構成してもよい。
<Internal robot arm, internal ranging unit>
On the base 1 provided at a position covered with the crucible 11, an internal robot arm 5 is installed. The internal robot arm 5 includes a plurality of arms 5a, a plurality of joints 5b that rotatably support these arms 5a, and a main body 5c. The main body 5c is provided with an external terminal (not shown) so that data exchange with the outside is possible. An internal distance measuring unit 17 for measuring the inner surface shape of the crucible 11 is provided at the tip of the internal robot arm 5. The internal distance measuring unit 17 measures the distance from the internal distance measuring unit 17 to the inner surface of the crucible 11 by irradiating the inner surface of the crucible 11 with laser light and detecting reflected light from the inner surface. A control unit that controls the joint 5b and the internal distance measuring unit 17 is provided in the main body 5c. The control unit moves the internal distance measuring unit 17 to an arbitrary three-dimensional position by rotating the joint 5b and moving the arm 5 based on a program provided in the main body 5c or an external input signal. Specifically, the internal distance measuring unit 17 is moved in a non-contact manner along the inner surface of the crucible. Therefore, rough shape data of the inner surface of the crucible is given to the control unit, and the position of the internal distance measuring unit 17 is moved according to the data. More specifically, for example, the measurement is started from a position near the opening of the crucible 11 as shown in FIG. 1A, and toward the bottom 11c of the crucible 11 as shown in FIG. The internal distance measuring unit 17 is moved to perform measurement at a plurality of measurement points on the movement path. The measurement interval is, for example, 1 to 5 mm, for example, 2 mm. The measurement is performed at a timing stored in the internal distance measuring unit 17 in advance or according to an external trigger. The measurement results are stored in the storage unit in the internal distance measuring unit 17, and are sent to the main body unit 5c collectively after the measurement is completed, or are sequentially sent to the main body unit 5c for each measurement. The internal distance measuring unit 17 may be configured to be controlled by a control unit provided separately from the main body 5c.
ルツボの開口部から底部11cまでの測定が終わると、回転台9を少し回転させ、同様の測定行う。この測定は、底部11cから開口部に向かって行ってもよい。回転台9の回転角は、精度と測定時間との考慮して決定されるが、例えば、2〜10度である。回転角が大きすぎると測定精度が十分でなく、小さすぎると測定時間が掛かりすぎる。回転台9の回転は、内蔵プログラム又は外部入力信号に基づいて制御される。回転台9の回転角は、ロータリーエンコーダ等によって検出可能である。回転台9の回転は、内部測距部17及び後述する外部測距部19の移動と連動してすることが好ましく、これによって、内部測距部17及び外部測距部19の三次元座標の算出が容易になる。 When the measurement from the opening of the crucible to the bottom 11c is completed, the turntable 9 is slightly rotated and the same measurement is performed. This measurement may be performed from the bottom 11c toward the opening. The rotation angle of the turntable 9 is determined in consideration of accuracy and measurement time, and is, for example, 2 to 10 degrees. If the rotation angle is too large, the measurement accuracy is not sufficient, and if it is too small, it takes too much measurement time. The rotation of the turntable 9 is controlled based on a built-in program or an external input signal. The rotation angle of the turntable 9 can be detected by a rotary encoder or the like. The rotation of the turntable 9 is preferably interlocked with the movement of the internal distance measuring unit 17 and the external distance measuring unit 19 described later, so that the three-dimensional coordinates of the internal distance measuring unit 17 and the external distance measuring unit 19 can be changed. Calculation becomes easy.
後述するが、内部測距部17は、内部測距部17から内表面までの距離(内表面距離)、及び内部測距部17から透明層13と気泡含有層15の界面までの距離(界面距離)の両方を測定することができる。ジョイント5bの角度はジョイント5bに設けられたロータリーエンコーダ等によって既知であるので、各測定点での内部測距部17の位置の三次元座標及び方向が既知になるので、内表面距離及び界面距離が求まれば、内表面での三次元座標、及び界面での三次元座標が既知となる。そして、ルツボ11の開口部から底部11cまでの測定が、ルツボ11の全周に渡って行われるので、ルツボ11の内表面の三次元形状、及び界面の三次元形状が既知になる。また、内表面と界面の間の距離が既知になるので、透明層13の厚さも既知になり、透明層の厚さの三次元分布が求められる。 As will be described later, the internal distance measuring unit 17 includes a distance from the internal distance measuring unit 17 to the inner surface (inner surface distance) and a distance from the inner distance measuring unit 17 to the interface between the transparent layer 13 and the bubble-containing layer 15 (interface). Both distances can be measured. Since the angle of the joint 5b is known by a rotary encoder or the like provided in the joint 5b, the three-dimensional coordinates and direction of the position of the internal distance measuring unit 17 at each measurement point are known. Is obtained, the three-dimensional coordinates on the inner surface and the three-dimensional coordinates on the interface are known. And since the measurement from the opening part of the crucible 11 to the bottom part 11c is performed over the perimeter of the crucible 11, the three-dimensional shape of the inner surface of the crucible 11 and the three-dimensional shape of the interface become known. Further, since the distance between the inner surface and the interface is known, the thickness of the transparent layer 13 is also known, and a three-dimensional distribution of the thickness of the transparent layer is obtained.
<外部ロボットアーム、外部測距部>
ルツボ11の外部に設けられた基台3上には、外部ロボットアーム7が設置されている。外部ロボットアーム7は、複数のアーム7aと、これらのアームを回転可能に支持する複数のジョイント7bと、本体部7cを備える。本体部7cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。外部ロボットアーム7の先端にはルツボ11の外表面形状の測定を行う外部測距部19が設けられている。外部測距部19は、ルツボ11の外表面に対してレーザー光を照射し、外表面からの反射光を検出することによって外部測距部19からルツボ11の外表面までの距離を測定する。本体部7c内には、ジョイント7b及び外部測距部19の制御を行う制御部が設けられている。制御部は、本体部7c設けられたプログラム又は外部入力信号に基づいてジョイント7bを回転させてアーム7を動かすことによって、外部測距部19を任意の三次元位置に移動させる。具体的には、外部測距部19をルツボ外表面に沿って非接触で移動させる。従って、制御部には、ルツボ外表面の大まかな形状データを与え、そのデータに従って、外部測距部19の位置を移動させる。より具体的には、例えば、図1(a)に示すようなルツボ11の開口部近傍に近い位置から測定を開始し、図1(b)に示すように、ルツボ11の底部11cに向かって外部測距部19を移動させ、移動経路上の複数の測定点において測定を行う。測定間隔は、例えば、1〜5mmであり、例えば2mmである。測定は、予め外部測距部19内に記憶されたタイミングで行うか、又は外部トリガに従って行う。測定結果は、外部測距分19内の記憶部に格納されて、測定終了後にまとめて本体部7cに送られるか、又は測定の度に、逐次本体部7cに送られるようにする。外部測距部19は、本体部7cとは別に設けられた制御部によって制御するように構成してもよい。
<External robot arm, external distance measuring unit>
An external robot arm 7 is installed on a base 3 provided outside the crucible 11. The external robot arm 7 includes a plurality of arms 7a, a plurality of joints 7b that rotatably support these arms, and a main body portion 7c. The main body 7c is provided with an external terminal (not shown) so that data exchange with the outside is possible. An external distance measuring unit 19 that measures the outer surface shape of the crucible 11 is provided at the tip of the external robot arm 7. The external distance measuring unit 19 measures the distance from the external distance measuring unit 19 to the outer surface of the crucible 11 by irradiating the outer surface of the crucible 11 with laser light and detecting the reflected light from the outer surface. A control unit that controls the joint 7b and the external distance measuring unit 19 is provided in the main body 7c. The control unit moves the external distance measuring unit 19 to an arbitrary three-dimensional position by rotating the joint 7b and moving the arm 7 based on a program provided in the main body unit 7c or an external input signal. Specifically, the external distance measuring unit 19 is moved in a non-contact manner along the outer surface of the crucible. Therefore, rough shape data of the outer surface of the crucible is given to the control unit, and the position of the external distance measuring unit 19 is moved according to the data. More specifically, for example, the measurement is started from a position near the opening of the crucible 11 as shown in FIG. 1A, and toward the bottom 11c of the crucible 11 as shown in FIG. The external distance measuring unit 19 is moved to perform measurement at a plurality of measurement points on the movement path. The measurement interval is, for example, 1 to 5 mm, for example, 2 mm. The measurement is performed at a timing stored in advance in the external distance measuring unit 19 or according to an external trigger. The measurement results are stored in the storage unit in the external distance measuring unit 19 and are collectively sent to the main unit 7c after the measurement is completed, or are sequentially sent to the main unit 7c every measurement. The external distance measuring unit 19 may be configured to be controlled by a control unit provided separately from the main body unit 7c.
内部測距部17と外部測距部19は、同期させて移動させてもよいが、内表面形状の測定と外表面形状の測定は独立して行われるので、必ずしも同期させる必要はない。 The internal distance measuring unit 17 and the external distance measuring unit 19 may be moved in synchronization. However, since the measurement of the inner surface shape and the measurement of the outer surface shape are performed independently, it is not always necessary to synchronize.
外部測距部19は、外部測距部19から外表面までの距離(外表面距離)を測定することができる。ジョイント7bの角度はジョイント7bに設けられたロータリーエンコーダ等によって既知であるので、外部測距部19の位置の三次元座標及び方向が既知になるので、外表面距離が求まれば、外表面での三次元座標が既知となる。そして、ルツボ11の開口部から底部11cまでの測定が、ルツボ11の全周に渡って行われるので、ルツボ11の外表面の三次元形状が既知になる。
以上より、ルツボの内表面及び外表面の三次元形状が既知になるので、ルツボの壁厚の三次元分布が求められる。
The external distance measuring unit 19 can measure the distance (outer surface distance) from the external distance measuring unit 19 to the outer surface. Since the angle of the joint 7b is known by a rotary encoder or the like provided in the joint 7b, the three-dimensional coordinates and direction of the position of the external distance measuring unit 19 are known. The three-dimensional coordinates are known. And since the measurement from the opening part of the crucible 11 to the bottom part 11c is performed over the perimeter of the crucible 11, the three-dimensional shape of the outer surface of the crucible 11 becomes known.
From the above, since the three-dimensional shape of the inner surface and the outer surface of the crucible becomes known, a three-dimensional distribution of the wall thickness of the crucible is obtained.
<距離測定の詳細>
次に、図2を用いて、内部測距部17及び外部測距部19による距離測定の詳細を説明する。
図2に示すように、内部測距部17は、ルツボ11の内表面側(透明層13側)に配置され、外部測距部19は、ルツボ11の外表面側(気泡含有層15側)に配置される。内部測距部17は、出射部17a及び検出部17bを備える。外部測距部19は、出射部19a及び検出部19bを備える。また、内部測距部17及び外部測距部19は、図示しない制御部及び外部端子を備える。出射部17a及び19aは、レーザー光を出射するものであり、例えば、半導体レーザーを備えるものである。出射されるレーザー光の波長は、特に限定されないが、例えば、波長600〜700nmの赤色レーザー光である。検出部17b及び19bは、例えばCCDで構成され、光が当たった位置に基づいて三角測量法の原理に基づいてターゲットまでの距離が決定される。
<Details of distance measurement>
Next, details of distance measurement by the internal distance measuring unit 17 and the external distance measuring unit 19 will be described with reference to FIG.
As shown in FIG. 2, the internal distance measuring unit 17 is arranged on the inner surface side (transparent layer 13 side) of the crucible 11, and the external distance measuring unit 19 is arranged on the outer surface side (bubble containing layer 15 side) of the crucible 11. Placed in. The internal distance measuring unit 17 includes an emitting unit 17a and a detecting unit 17b. The external distance measuring unit 19 includes an emitting unit 19a and a detecting unit 19b. The internal distance measuring unit 17 and the external distance measuring unit 19 include a control unit and an external terminal (not shown). The emitting portions 17a and 19a emit laser light, and include, for example, a semiconductor laser. The wavelength of the emitted laser light is not particularly limited, but is, for example, red laser light having a wavelength of 600 to 700 nm. The detectors 17b and 19b are composed of, for example, a CCD, and the distance to the target is determined based on the principle of triangulation based on the position where the light hits.
内部測距部17の出射部17aから出射されたレーザー光は、一部が内表面(透明層13の表面)で反射し、一部が透明層13と気泡含有層15の界面で反射し、これらの反射光(内表面反射光、界面反射光)が検出部17bに当たって検出される。図2から明らかなように、内表面反射光と界面反射光は、検出部17bの異なる位置に当たっており、この位置の違いによって、内部測距部17から内表面までの距離(内表面距離)及び界面までの距離(界面距離)がそれぞれ決定される。好適な入射角θは、内表面の状態、透明層13の厚さ、気泡含有層15の状態等によって、変化しうるが例えば30〜60度である。 A part of the laser light emitted from the emitting part 17a of the internal distance measuring part 17 is reflected by the inner surface (the surface of the transparent layer 13), and partly reflected by the interface between the transparent layer 13 and the bubble-containing layer 15, These reflected lights (inner surface reflected light and interface reflected light) strike the detection unit 17b and are detected. As is clear from FIG. 2, the inner surface reflected light and the interface reflected light hit different positions of the detection unit 17b, and due to this position difference, the distance from the inner distance measuring unit 17 to the inner surface (inner surface distance) and The distance to the interface (interface distance) is determined. A suitable incident angle θ may vary depending on the state of the inner surface, the thickness of the transparent layer 13, the state of the bubble-containing layer 15, etc., but is, for example, 30 to 60 degrees.
図3は、市販のレーザー変位計を用いて測定された実際の測定結果を示す。図3に示すように、2つのピークが観察されており、内表面側のピークが内表面反射光によるピークであり、外表面側のピークが界面反射光によるピークに対応する。このように、透明層13と気泡含有層15の界面からの反射光によるピークもクリアに検出されている。従来は、このような方法で界面の特定がなされたことがなく、この結果は非常に斬新である。 FIG. 3 shows the actual measurement results measured using a commercially available laser displacement meter. As shown in FIG. 3, two peaks are observed, the peak on the inner surface side corresponds to the peak due to the inner surface reflected light, and the peak on the outer surface side corresponds to the peak due to the interface reflected light. Thus, the peak due to the reflected light from the interface between the transparent layer 13 and the bubble-containing layer 15 is also clearly detected. Conventionally, the interface has not been specified in this way, and this result is very novel.
内部測距部17から内表面までの距離が遠すぎる場合や、内表面又は界面が局所的に傾いている場合には、2つのピークが観測されない場合がある。その場合には、内部測距部17を内表面に近づけたり、内部測距部17の傾けてレーザー光の出射方向を変化させて、2つのピークが観測される位置及び角度を探索することが好ましい。また、2つのピークが同時に観測されなくても、ある位置及び角度において内表面反射光によるピークを観測し、別の位置及び角度において界面反射光によるピークを観測するようにしてもよい。また、内部測距部17が内表面に接触することを避けるために、最大近接位置を設定しておいて、ピークが観測されない場合でも、その位置よりも内表面に近づけないようにすることが好ましい。
また、透明層13中に独立した気泡が存在する場合、この気泡からの反射光を内部測距部17が検出してしまい、透明層13と気泡含有層15の界面を適切に検出できない場合がある。従って、ある測定点Aで測定された界面の位置が前後の測定点で測定された界面の位置から大きく(所定の基準値を超えて)ずれている場合には、測定点Aでのデータを除外してもよい。また、その場合、測定点Aからわずかにずれた位置で再度測定を行って、得られたデータを採用してもよい。
If the distance from the internal distance measuring unit 17 to the inner surface is too far, or if the inner surface or interface is locally inclined, two peaks may not be observed. In this case, the position and angle at which two peaks are observed can be searched by moving the internal distance measuring unit 17 closer to the inner surface or by tilting the internal distance measuring unit 17 to change the laser beam emission direction. preferable. Further, even if the two peaks are not observed simultaneously, the peak due to the inner surface reflected light may be observed at a certain position and angle, and the peak due to the interface reflected light may be observed at another position and angle. In order to prevent the internal distance measuring unit 17 from coming into contact with the inner surface, a maximum proximity position is set so that even if no peak is observed, the inner distance measuring unit 17 cannot be closer to the inner surface than that position. preferable.
In addition, when there are independent bubbles in the transparent layer 13, the internal distance measuring unit 17 may detect the reflected light from the bubbles, and the interface between the transparent layer 13 and the bubble-containing layer 15 may not be detected properly. is there. Therefore, when the position of the interface measured at a certain measurement point A is greatly deviated (exceeding a predetermined reference value) from the position of the interface measured at the preceding and following measurement points, the data at the measurement point A is It may be excluded. In that case, data obtained by performing measurement again at a position slightly deviated from the measurement point A may be employed.
また、外部測距部19の出射部19aから出射されたレーザー光は、外表面(気泡含有層15)の表面で反射し、その反射光(外表面反射光)が検出部19bに当たって検出され、検出部19b上での検出位置に基づいて外部測距部19と外表面の間の距離が決定される。図4は、市販のレーザー変位計を用いて測定された実際の測定結果を示す。図4に示すように、1つのピークのみが観察される。ピークが観測されない場合には、外部測距部19を内表面に近づけたり、外部測距部19の傾けてレーザー光の出射方向を変化させて、ピークが観測される位置及び角度を探索することが好ましい。 The laser light emitted from the emitting portion 19a of the external distance measuring section 19 is reflected by the surface of the outer surface (bubble-containing layer 15), and the reflected light (outer surface reflected light) strikes the detecting portion 19b and is detected. The distance between the external distance measuring unit 19 and the outer surface is determined based on the detection position on the detection unit 19b. FIG. 4 shows the actual measurement results measured using a commercially available laser displacement meter. As shown in FIG. 4, only one peak is observed. When the peak is not observed, the external distance measuring unit 19 is brought closer to the inner surface, or the external distance measuring unit 19 is tilted to change the emission direction of the laser light to search for the position and angle at which the peak is observed. Is preferred.
Claims (5)
移動経路上の複数の測定点において、内部測距部から前記シリカガラスルツボの内表面に対して斜め方向にレーザー光を照射し、前記内表面からの内表面反射光と、前記透明シリカガラス層と前記気泡含有シリカガラス層の界面からの界面反射光とを検出することによって、内部測距部と前記内表面の間の内表面距離、及び内部測距部と前記界面の間の界面距離を測定し、
各測定点の三次元座標と、前記内表面距離及び前記界面距離を関連付けることによって、前記内表面及び界面の三次元形状を求める工程を備える、シリカガラスルツボの三次元形状測定方法。 Move the internal distance measuring unit in a non-contact manner along the inner surface of the silica glass crucible having the transparent silica glass layer on the inner surface side and the bubble-containing silica glass layer on the outer surface side,
At a plurality of measurement points on the movement path, laser light is irradiated in an oblique direction to the inner surface of the silica glass crucible from an internal distance measuring unit, the inner surface reflected light from the inner surface, and the transparent silica glass layer And the interface reflected light from the interface of the bubble-containing silica glass layer, the inner surface distance between the internal distance measuring unit and the inner surface, and the interface distance between the inner distance measuring unit and the interface Measure and
A method for measuring a three-dimensional shape of a silica glass crucible, comprising a step of obtaining a three-dimensional shape of the inner surface and the interface by associating the three-dimensional coordinates of each measurement point with the inner surface distance and the interface distance.
移動経路上の複数の測定点において、外部測距部からシリカガラスルツボの外表面に対してレーザー光を照射し、前記外表面からの外表面反射光を検出することによって、前記外部測距部と前記外表面の間の外表面距離を測定し、
各測定点の三次元座標と、前記外表面距離を関連付けることによって、前記シリカガラスルツボの外表面の三次元形状を求める工程をさらに備える、請求項1に記載の方法。 Move the external distance measuring unit along the outer surface of the silica glass crucible,
By irradiating the outer surface of the silica glass crucible from the external distance measuring unit with a laser beam at a plurality of measurement points on the moving path, and detecting the outer surface reflected light from the outer surface, the external distance measuring unit And measuring the outer surface distance between the outer surface and
The method of claim 1, further comprising determining a three-dimensional shape of the outer surface of the silica glass crucible by associating the three-dimensional coordinates of each measurement point with the outer surface distance.
前記シリカガラスルツボは、前記内部ロボットアームを覆うように配置される、請求項1〜3の何れか1つに記載の方法。 The internal distance measuring unit is fixed to an internal robot arm configured to be able to move the internal distance measuring unit three-dimensionally,
The method according to claim 1, wherein the silica glass crucible is arranged so as to cover the internal robot arm.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011282404A JP5749149B2 (en) | 2011-12-22 | 2011-12-22 | Method for measuring three-dimensional shape of silica glass crucible |
EP12859405.8A EP2796595B1 (en) | 2011-12-22 | 2012-10-31 | Method for evaluating silica glass crucible, method for producing silicon single crystals |
US14/365,523 US9809902B2 (en) | 2011-12-22 | 2012-10-31 | Method for evaluating silica glass crucible, method for producing silicon single crystals |
CN201280063279.7A CN104145051B (en) | 2011-12-22 | 2012-10-31 | The evaluation method of silica glass crucible, the manufacturing method of monocrystalline silicon |
KR1020147020091A KR101638584B1 (en) | 2011-12-22 | 2012-10-31 | Method for evaluating silica glass crucible, method for producing silicon single crystals |
PCT/JP2012/078260 WO2013094318A1 (en) | 2011-12-22 | 2012-10-31 | Method for evaluating silica glass crucible, method for producing silicon single crystals |
TW101140627A TWI480505B (en) | 2011-12-22 | 2012-11-01 | Evaluation method of silica glass crucible and manufacture method of silicon single crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011282404A JP5749149B2 (en) | 2011-12-22 | 2011-12-22 | Method for measuring three-dimensional shape of silica glass crucible |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015097792A Division JP5996718B2 (en) | 2015-05-13 | 2015-05-13 | Method for measuring three-dimensional shape of silica glass crucible, method for producing silicon single crystal |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013133226A JP2013133226A (en) | 2013-07-08 |
JP5749149B2 true JP5749149B2 (en) | 2015-07-15 |
Family
ID=48910180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011282404A Active JP5749149B2 (en) | 2011-12-22 | 2011-12-22 | Method for measuring three-dimensional shape of silica glass crucible |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5749149B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6265575B2 (en) * | 2017-03-02 | 2018-01-24 | 株式会社Sumco | Silicon single crystal pulling method |
JP6809400B2 (en) * | 2017-07-10 | 2021-01-06 | 株式会社Sumco | Method for manufacturing silicon single crystal |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3322330B2 (en) * | 1995-02-06 | 2002-09-09 | 三菱マテリアル株式会社 | Work implement attitude control device with respect to work target surface, crucible measuring device and coating device having the same |
JPH09196646A (en) * | 1996-01-23 | 1997-07-31 | Nippon Telegr & Teleph Corp <Ntt> | Method and apparatus for measuring surface nature |
JPH10185545A (en) * | 1996-12-27 | 1998-07-14 | Shinetsu Eng Kk | Shape measuring instrument for quartz crucible |
JP2001048693A (en) * | 1999-08-06 | 2001-02-20 | Hitachi Chem Co Ltd | Glassy carbon crucible having inner face being polygonal form |
JP4157919B2 (en) * | 2003-03-06 | 2008-10-01 | ジャパンスーパークォーツ株式会社 | Method and apparatus for measuring thickness of glass layer |
JP4361452B2 (en) * | 2004-09-29 | 2009-11-11 | コバレントマテリアル株式会社 | Quartz glass crucible removal object removal device |
-
2011
- 2011-12-22 JP JP2011282404A patent/JP5749149B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013133226A (en) | 2013-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5749151B2 (en) | Method for measuring the three-dimensional shape of the Raman spectrum of silica glass crucibles | |
JP6123001B2 (en) | Method for evaluating silica glass crucible, method for producing silicon single crystal | |
JP5749149B2 (en) | Method for measuring three-dimensional shape of silica glass crucible | |
JP5657515B2 (en) | Method for measuring three-dimensional shape of silica glass crucible, method for producing silicon single crystal | |
JP5818675B2 (en) | Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal | |
JP6162870B2 (en) | Method for producing silica glass crucible | |
JP5996718B2 (en) | Method for measuring three-dimensional shape of silica glass crucible, method for producing silicon single crystal | |
JP5773865B2 (en) | Apparatus for supporting setting of manufacturing conditions for silica glass crucible, simulation data generating apparatus, and improved manufacturing condition data generating apparatus | |
JP6162848B2 (en) | Method for producing silicon single crystal | |
JP6123000B2 (en) | Method for evaluating silica glass crucible, method for producing silicon single crystal | |
JP6162847B2 (en) | Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible and method for producing silicon single crystal | |
JP5709737B2 (en) | Method for producing silicon single crystal | |
JP5923644B2 (en) | Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal | |
JP5946560B2 (en) | Method for determining three-dimensional distribution of Raman spectrum of silica glass crucible, method for producing silicon single crystal | |
JP5749150B2 (en) | Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal | |
JP5946561B2 (en) | Method for determining three-dimensional distribution of surface roughness of silica glass crucible, method for producing silicon single crystal | |
JP6114795B2 (en) | Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal | |
JP5749152B2 (en) | Method for measuring three-dimensional shape of surface roughness of silica glass crucible | |
JP5925348B2 (en) | Method for producing silicon single crystal | |
JP2017024980A (en) | Method for manufacturing silicon single crystal | |
JP2017215325A (en) | Measuring method of silica glass crucible | |
JP6142052B2 (en) | Method for producing silica glass crucible | |
JP5968505B2 (en) | Equipment that supports setting of manufacturing conditions for silica glass crucible | |
JP2017138322A (en) | Method for determining three-dimensional arrangement of air bubble of silica grass crucible and method for evaluating silica glass crucible | |
JP5978343B2 (en) | Method for producing silicon single crystal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131213 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20131213 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20141027 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20141121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150116 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150414 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150513 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5749149 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |