JP6123000B2 - Method for evaluating silica glass crucible, method for producing silicon single crystal - Google Patents

Method for evaluating silica glass crucible, method for producing silicon single crystal Download PDF

Info

Publication number
JP6123000B2
JP6123000B2 JP2016108431A JP2016108431A JP6123000B2 JP 6123000 B2 JP6123000 B2 JP 6123000B2 JP 2016108431 A JP2016108431 A JP 2016108431A JP 2016108431 A JP2016108431 A JP 2016108431A JP 6123000 B2 JP6123000 B2 JP 6123000B2
Authority
JP
Japan
Prior art keywords
silica glass
crucible
measuring unit
glass crucible
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016108431A
Other languages
Japanese (ja)
Other versions
JP2016153372A (en
Inventor
俊明 須藤
俊明 須藤
忠広 佐藤
忠広 佐藤
賢 北原
賢 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2016108431A priority Critical patent/JP6123000B2/en
Publication of JP2016153372A publication Critical patent/JP2016153372A/en
Application granted granted Critical
Publication of JP6123000B2 publication Critical patent/JP6123000B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Description

本発明は、シリカガラスルツボの評価方法、及びシリコン単結晶の製造方法に関する。   The present invention relates to a method for evaluating a silica glass crucible and a method for producing a silicon single crystal.

シリコン単結晶の製造にはシリカガラスルツボを用いたチョクラルスキー法(CZ法)が採用されている。具体的には、シリカガラスルツボの内部にシリコン多結晶原料を熔融したシリコン融液を貯留し、シリコン単結晶の種結晶を接触させ、回転させながら徐々に引き上げ、シリコン単結晶の種結晶を核として成長させてシリコン単結晶を製造する。   A Czochralski method (CZ method) using a silica glass crucible is employed for producing a silicon single crystal. Specifically, a silicon melt obtained by melting a silicon polycrystal raw material is stored inside a silica glass crucible, and a silicon single crystal seed crystal is brought into contact with the silicon crystal crucible and is gradually pulled up to rotate the silicon single crystal seed crystal as a nucleus. To produce a silicon single crystal.

シリコン単結晶引き上げに用いるルツボは、一般に、回転モールドの内表面に平均粒径300μm程度のシリカ粉を堆積させてシリカ粉層を形成するシリカ粉層形成工程と、モールド側からシリカ粉層を減圧しながら、シリカ粉層をアーク熔融させることによってシリカガラス層を形成するアーク熔融工程を備える(この方法を「回転モールド法」と称する)。   A crucible used for pulling a silicon single crystal is generally a silica powder layer forming step of forming a silica powder layer by depositing silica powder having an average particle size of about 300 μm on the inner surface of a rotary mold, and reducing the silica powder layer from the mold side. However, an arc melting step of forming a silica glass layer by arc melting the silica powder layer is provided (this method is referred to as “rotary molding method”).

アーク熔融工程の初期にはシリカ粉層を強く減圧することによって気泡を除去して透明シリカガラス層(以下、「透明層」と称する。)を形成し、その後、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(以下、「気泡含有層」と称する。)を形成することによって、内表面側に透明層を有し、外表面側に気泡含有層を有する二層構造のシリカガラスルツボを形成することができる。   At the initial stage of the arc melting process, the silica powder layer is strongly depressurized to remove bubbles to form a transparent silica glass layer (hereinafter referred to as “transparent layer”). By forming a residual bubble-containing silica glass layer (hereinafter referred to as “bubble-containing layer”), a two-layered silica glass having a transparent layer on the inner surface side and a bubble-containing layer on the outer surface side A crucible can be formed.

ルツボの製造に使用されるシリカ粉には、天然石英を粉砕して製造される天然シリカ粉や化学合成によって製造される合成シリカ粉があるが、特に天然シリカ粉は、天然物を原料としているので、物性・形状・サイズがばらつきやすい。物性・形状・サイズが変化すると、シリカ粉の溶融状態が変化するので、同じ条件でアーク熔融を行っても、製造されるルツボの内表面状態は、ルツボ毎に異なり、又は各ルツボにおいても部位毎に異なる場合がある。   Silica powder used for crucible production includes natural silica powder produced by pulverizing natural quartz and synthetic silica powder produced by chemical synthesis, but natural silica powder is made from natural products. Therefore, physical properties, shapes, and sizes tend to vary. As the physical properties, shape, and size change, the melting state of the silica powder changes. Each may be different.

ルツボ内表面は、シリコン融液と接触する部分であるので、ルツボの内表面状態は、製造されるシリコン単結晶の収率や特性に大きな影響を与える。   Since the inner surface of the crucible is a part in contact with the silicon melt, the inner surface state of the crucible greatly affects the yield and characteristics of the silicon single crystal produced.

特開2000―16820号公報JP 2000-16820 A

ルツボの内表面状態を反映するものの1つとしてラマンスペクトルがある。ルツボの内表面のラマンスペクトルは、内表面のガラスの状態(例:OH基密度、内表面の結晶化状態等)によって影響を受けるためである。   One of the reflections of the inner surface state of the crucible is a Raman spectrum. This is because the Raman spectrum of the inner surface of the crucible is affected by the glass state of the inner surface (eg, OH group density, crystallization state of the inner surface, etc.).

特許文献1では、シリカ粉の状態でのラマンスペクトルが測定されているが、ルツボの状態でのラマンスペクトルは測定されていないので、これらの文献の方法では、ラマンスペクトルによって内表面状態を評価することができない。   In Patent Document 1, the Raman spectrum in the silica powder state is measured, but the Raman spectrum in the crucible state is not measured. In these methods, the inner surface state is evaluated by the Raman spectrum. I can't.

本発明はこのような事情に鑑みてなされたものであり、シリカガラスルツボのラマンスペクトルの三次元分布を高精度に決定する方法を提供するものである。   This invention is made | formed in view of such a situation, and provides the method of determining the three-dimensional distribution of the Raman spectrum of a silica glass crucible with high precision.

本発明によれば、シリカガラスルツボの内表面に沿って非接触で内部測距部を移動させ、移動経路上の複数の測定点において、内部測距部から前記シリカガラスルツボの内表面に対して斜め方向にレーザー光を照射し、前記レーザー光の反射光をレーザー変位計で測定して2つのピークが観測されるように前記内部測距部と前記内表面との距離や前記レーザー光の出射方向を変化させて、前記2つのピークのうちの前記内表面側のピークの位置によって前記内部測距部と前記内表面との間の内表面距離を測定し、各測定点の三次元座標と、前記内表面距離を関連付けることによって、前記シリカガラスルツボの内表面の三次元形状を求め、この三次元形状上の複数の測定点において前記内表面のラマンスペクトルを測定することによって、前記内表面のラマンスペクトルの三次元分布を決定する工程を備えるシリカガラスルツボのラマンスペクトルの三次元分布の決定方法が提供される。   According to the present invention, the internal distance measuring unit is moved in a non-contact manner along the inner surface of the silica glass crucible, and the plurality of measurement points on the movement path are moved from the internal distance measuring unit to the inner surface of the silica glass crucible. The laser beam is irradiated obliquely and the reflected light of the laser beam is measured with a laser displacement meter so that two peaks are observed, and the distance between the internal distance measuring unit and the inner surface is measured. By changing the emission direction, the inner surface distance between the inner distance measuring unit and the inner surface is measured according to the position of the peak on the inner surface side of the two peaks, and the three-dimensional coordinates of each measurement point And determining the three-dimensional shape of the inner surface of the silica glass crucible by associating the inner surface distance, and measuring the Raman spectrum of the inner surface at a plurality of measurement points on the three-dimensional shape. Method of determining the three-dimensional distribution of the Raman spectrum of the silica glass crucible comprising a step of determining the three-dimensional distribution of the Raman spectrum of the inner surface is provided.

上記の通り、ルツボ内表面状態を表すラマンスペクトルは、シリコン単結晶引き上げ工程におけるパラメーターであるが、従来技術では、ラマンスペクトルの三次元分布について検討されたことはなかった。本発明では、以下の方法によって、このラマンスペクトルの三次元分布を高精度に決定することを可能にしている。   As described above, the Raman spectrum representing the surface state in the crucible is a parameter in the silicon single crystal pulling process, but in the prior art, the three-dimensional distribution of the Raman spectrum has not been studied. In the present invention, the three-dimensional distribution of the Raman spectrum can be determined with high accuracy by the following method.

本発明者らは、内表面の三次元形状を最初に特定して、その三次元形状上に複数の測定点においてラマンスペクトルを測定することによってラマンスペクトルの三次元分布を決定しようとしたが、通常の三次元レーザースキャナを用いて、内表面の三次元形状を特定しようとしたところ、ルツボが透明体であるので、測定はうまくいかなかった。ルツボ内表面に光を照射して画像を取得し、その画像を解析する方法も試してみたが、この方法では、画像の解析に非常に長い時間がかかるため、ルツボの内表面全体の三次元形状の測定には到底使えるものではなかった。   The present inventors tried to determine the three-dimensional distribution of the Raman spectrum by first specifying the three-dimensional shape of the inner surface and measuring the Raman spectrum at a plurality of measurement points on the three-dimensional shape. When an attempt was made to specify the three-dimensional shape of the inner surface using an ordinary three-dimensional laser scanner, the measurement was not successful because the crucible was a transparent body. I tried to illuminate the inner surface of the crucible to acquire an image and analyze the image, but this method takes a very long time to analyze the image. It could not be used to measure the shape.

このような状況において、本発明者らは、ルツボの内表面に対して斜め方向からレーザー光を照射したところ、ルツボ内表面からの反射光(内表面反射光)の検出が可能であり、この反射光に基づいて内部測距部と内表面の間の内表面距離が測定可能であることを見出した。   In such a situation, the present inventors can detect the reflected light (inner surface reflected light) from the inner surface of the crucible when the inner surface of the crucible is irradiated with laser light from an oblique direction. It was found that the inner surface distance between the inner distance measuring unit and the inner surface can be measured based on the reflected light.

また、ルツボの内表面に沿った複数の測定点において測定が行われるが、各測定点での内部測距部の座標と内表面距離を関連付けることによって、各測定点に対応するルツボ内表面座標が得られる。   In addition, the measurement is performed at a plurality of measurement points along the inner surface of the crucible. By associating the inner surface distance with the coordinates of the internal distance measuring unit at each measurement point, the inner surface coordinates of the crucible corresponding to each measurement point. Is obtained.

そして、ルツボの内表面に沿って、メッシュ状に多数の測定点を配置して測定を行うことによって、メッシュ状の内表面座標が得られ、これによって、ルツボの内表面の三次元形状を求めることができる。
この方法が優れているのは、画像解析による方法に比べて、データのサンプリングレートが格段に大きいことであり、予備実験によると、直径1mのルツボで10万点の測定をする場合であっても、10分程度で内表面全体の三次元形状の測定を終えることができた。
Then, by arranging and measuring a large number of measurement points in a mesh shape along the inner surface of the crucible, mesh-like inner surface coordinates are obtained, thereby obtaining the three-dimensional shape of the inner surface of the crucible. be able to.
The superiority of this method is that the data sampling rate is much higher than that of the image analysis method. According to a preliminary experiment, 100,000 points are measured with a 1 m diameter crucible. However, the measurement of the three-dimensional shape of the entire inner surface was completed in about 10 minutes.

ルツボの内表面の三次元形状が求まった後は、この三次元形状上の複数の測定点で内表面のラマンスペクトルを測定することによって、内表面のラマンスペクトルの三次元分布を決定する。このような方法でラマンスペクトルの三次元分布を決定した場合、内表面の三次元形状が高精度に求まっているので、内表面のラマンスペクトルの三次元分布も高精度に決定することができる。
本発明の方法が優れている点は、ラマンスペクトルの三次元分布が非破壊で決定できるため、実際の製品のラマンスペクトルの三次元分布が分かることである。従来は、ルツボを切断してサンプルを作成し、このサンプルのラマンスペクトルを測定していたが、この方法では、実際の製品のデータが取得できないこと、サンプル作成に時間とコストがかかるという問題があるので、本発明は、実際の製品のラマンスペクトルを低コストで測定できる点で利点が大きい。また、本発明は、外径28インチ以上の大型ルツボや、40インチ以上の超大型ルツボにおいて特に利点がある。なぜなら、このようなルツボにおいては、サンプル作成にかかる時間とコストが小型ルツボに比べて非常に大きいからである。
After obtaining the three-dimensional shape of the inner surface of the crucible, the three-dimensional distribution of the Raman spectrum of the inner surface is determined by measuring the Raman spectrum of the inner surface at a plurality of measurement points on the three-dimensional shape. When the three-dimensional distribution of the Raman spectrum is determined by such a method, since the three-dimensional shape of the inner surface is obtained with high accuracy, the three-dimensional distribution of the Raman spectrum of the inner surface can also be determined with high accuracy.
The advantage of the method of the present invention is that the three-dimensional distribution of the Raman spectrum of an actual product can be known because the three-dimensional distribution of the Raman spectrum can be determined non-destructively. Previously, a crucible was cut to create a sample, and the Raman spectrum of this sample was measured. However, this method has the problems that actual product data cannot be obtained and that sample preparation takes time and money. Therefore, the present invention has a great advantage in that the Raman spectrum of an actual product can be measured at a low cost. The present invention is particularly advantageous in a large crucible having an outer diameter of 28 inches or more and a super large crucible having a diameter of 40 inches or more. This is because, in such a crucible, the time and cost required for sample preparation are very large compared to a small crucible.

内表面のラマンスペクトルの三次元分布が決定されれば、この分布に基づいてルツボの品質検査を行うことができる。例えば、各部位のラマンスペクトルが規定の範囲内に入っているかどうかだけではなく、そのバラツキが規定の範囲内に入っているかどうかに従って品質検査を行うことができ、規定の範囲外である場合には内表面をファイアーポリッシュする等によってラマンスペクトルを調節して規定範囲内に入るようにすることができる。   If the three-dimensional distribution of the Raman spectrum of the inner surface is determined, the crucible quality inspection can be performed based on this distribution. For example, quality inspection can be performed not only based on whether the Raman spectrum of each part is within the specified range, but also whether the variation is within the specified range. Can adjust the Raman spectrum to be within a specified range by, for example, fire polishing the inner surface.

また、シリコン単結晶の引き上げ条件を設定する際に、内表面のラマンスペクトルの三次元分布を考慮して条件設定を行うことができ、シリコン単結晶の引き上げを高精度に行うことができる。   Moreover, when setting the pulling conditions for the silicon single crystal, the conditions can be set in consideration of the three-dimensional distribution of the Raman spectrum of the inner surface, and the pulling of the silicon single crystal can be performed with high accuracy.

さらに、ルツボの使用前に内表面のラマンスペクトルの三次元分布を決定しておくことによって、万が一、シリコン単結晶の引き上げがうまく行かなかった場合、その原因追求を行うことが容易になる。   Further, by determining the three-dimensional distribution of the Raman spectrum of the inner surface before using the crucible, if the silicon single crystal is not pulled up by any chance, the cause can be easily pursued.

以下、本発明の種々の実施形態を例示する。以下の実施形態は、互いに組み合わせ可能である。   Hereinafter, various embodiments of the present invention will be exemplified. The following embodiments can be combined with each other.

好ましくは、内部測距部からのレーザー光は、前記内表面に対して30〜60度の入射角で照射される。   Preferably, the laser beam from the internal distance measuring unit is irradiated at an incident angle of 30 to 60 degrees with respect to the inner surface.

好ましくは、内部測距部は、内部測距部を三次元的に移動させることができるように構成された内部ロボットアームに固定され、前記シリカガラスルツボは、内部ロボットアームを覆うように配置される。   Preferably, the internal distance measuring unit is fixed to an internal robot arm configured to be able to move the internal distance measuring unit three-dimensionally, and the silica glass crucible is disposed so as to cover the internal robot arm. The

好ましくは、前記シリカガラスルツボ内に保持されたシリコン融液からシリコン単結晶を引き上げる工程を備え、前記シリコン単結晶の引き上げ条件が、前記シリカガラスルツボの内表面のラマンスペクトルの三次元分布に基づいて決定され、前記内表面のラマンスペクトルの三次元分布は、上記方法によって決定される。   Preferably, the method includes a step of pulling up the silicon single crystal from the silicon melt held in the silica glass crucible, and the pulling condition of the silicon single crystal is based on the three-dimensional distribution of the Raman spectrum of the inner surface of the silica glass crucible. The three-dimensional distribution of the Raman spectrum of the inner surface is determined by the above method.

図1は、シリカガラスルツボの三次元形状測定方法の説明図である。FIG. 1 is an explanatory diagram of a method for measuring the three-dimensional shape of a silica glass crucible. 図2は、図1の内部測距部及びその近傍のシリカガラスルツボの拡大図である。FIG. 2 is an enlarged view of the internal distance measuring unit of FIG. 1 and a silica glass crucible in the vicinity thereof. 図3は、図1の内部測距部の測定結果を示す。FIG. 3 shows a measurement result of the internal distance measuring unit of FIG. 図4は、図1の外部測距部の測定結果を示す。FIG. 4 shows a measurement result of the external distance measuring unit in FIG.

以下、図1〜図4を用いて、本発明の一実施形態のシリカガラスルツボのラマンスペクトルの三次元分布の決定方法を説明する。   Hereinafter, the determination method of the three-dimensional distribution of the Raman spectrum of the silica glass crucible of one embodiment of the present invention will be described with reference to FIGS.

<1.シリカガラスルツボ>
本実施形態で使用されるシリカガラスルツボ11は、一例では、回転モールドの内表面に平均粒径300μm程度のシリカ粉を堆積させてシリカ粉層を形成するシリカ粉層形成工程と、モールド側からシリカ粉層を減圧しながら、シリカ粉層をアーク熔融させることによってシリカガラス層を形成するアーク熔融工程を備える(この方法を「回転モールド法」と称する)方法によって製造される。
<1. Silica glass crucible>
In one example, the silica glass crucible 11 used in the present embodiment is a silica powder layer forming step of forming a silica powder layer by depositing silica powder having an average particle size of about 300 μm on the inner surface of the rotary mold, and from the mold side. The silica powder layer is manufactured by a method including an arc melting step of forming a silica glass layer by arc melting the silica powder layer while reducing the pressure of the silica powder layer (this method is referred to as “rotary molding method”).

アーク熔融工程の初期にはシリカ粉層を強く減圧することによって気泡を除去して透明シリカガラス層(以下、「透明層」と称する。)13を形成し、その後、減圧を弱くすることによって気泡が残留した気泡含有シリカガラス層(以下、「気泡含有層」と称する。)15を形成することによって、内表面側に透明層13を有し、外表面側に気泡含有層15を有する二層構造のシリカガラスルツボを形成することができる。   At the initial stage of the arc melting process, the silica powder layer is strongly decompressed to remove bubbles to form a transparent silica glass layer (hereinafter referred to as “transparent layer”) 13, and then the decompression is weakened to reduce the bubbles. Forming a bubble-containing silica glass layer 15 (hereinafter referred to as “bubble-containing layer”) 15, thereby having two layers having a transparent layer 13 on the inner surface side and a bubble-containing layer 15 on the outer surface side. A structured silica glass crucible can be formed.

ルツボの製造に使用されるシリカ粉には、天然石英を粉砕して製造される天然シリカ粉や化学合成によって製造される合成シリカ粉があるが、特に天然シリカ粉は、天然物を原料としているので、物性・形状・サイズがばらつきやすい。物性・形状・サイズが変化すると、シリカ粉の溶融状態が変化するので、同じ条件でアーク熔融を行っても、製造されるルツボの内表面のラマンスペクトルは、ルツボ毎にばらついてしまい、また同じルツボ内においても部位毎にばらついてしまう。従って、製造したルツボの一つ一つについて、内表面のラマンスペクトルの三次元分布を決定する必要がある。   Silica powder used for crucible production includes natural silica powder produced by pulverizing natural quartz and synthetic silica powder produced by chemical synthesis, but natural silica powder is made from natural products. Therefore, physical properties, shapes, and sizes tend to vary. As the physical properties, shape, and size change, the melting state of the silica powder changes, so even if arc melting is performed under the same conditions, the Raman spectrum of the inner surface of the crucible produced varies from crucible to crucible. Even within the crucible, it varies from part to part. Therefore, it is necessary to determine the three-dimensional distribution of the Raman spectrum of the inner surface of each manufactured crucible.

シリカガラスルツボ11は、円筒状の側壁部11aと、湾曲した底部11cと、側壁部11aと底部11cを連結し且つ底部11cよりも曲率が大きいコーナー部11bを備える。本発明において、コーナー部11bとは、側壁部11aと底部11cを連接する部分で、コーナー部の曲線の接線がシリカガラスルツボの側壁部11aと重なる点から、底部11cと共通接線を有する点までの部分のことを意味する。言い換えると、シリカガラスルツボ11の側壁部11aが曲がり始める点が側壁部11aとコーナー部11bの境界である。さらに、ルツボの底の曲率が一定の部分が底部11cであり、ルツボの底の中心からの距離が増したときに曲率が変化し始める点が底部11cとコーナー部11bとの境界である。   The silica glass crucible 11 includes a cylindrical side wall part 11a, a curved bottom part 11c, and a corner part 11b that connects the side wall part 11a and the bottom part 11c and has a larger curvature than the bottom part 11c. In the present invention, the corner portion 11b is a portion connecting the side wall portion 11a and the bottom portion 11c, from a point where the tangent line of the corner portion curve overlaps the side wall portion 11a of the silica glass crucible to a point having a common tangent line with the bottom portion 11c. Means the part. In other words, the point where the side wall portion 11a of the silica glass crucible 11 begins to bend is the boundary between the side wall portion 11a and the corner portion 11b. Further, the portion where the curvature of the bottom of the crucible is constant is the bottom portion 11c, and the point where the curvature starts to change when the distance from the center of the bottom of the crucible increases is the boundary between the bottom portion 11c and the corner portion 11b.

<2.ルツボの内表面の三次元形状の測定方法>
以下、図1〜図4を用いて、ルツボの内表面の三次元形状の測定方法について説明する。本実施形態では、レーザー変位計などからなる内部測距部17をルツボ内表面に沿って非接触で移動させ、移動経路上の複数の測定点において、ルツボ内表面に対してレーザー光を斜め方向に照射し、その反射光を検出することによって、ルツボの内表面の三次元形状を測定する。以下、詳細に説明する。また、内表面形状を測定する際に、透明層13と気泡含有層15の界面の三次元形状も同時に測定することができ、また、内部測距部19を用いることによってルツボの外表面の三次元形状も測定することができるので、これらの点についても合わせて説明する。
<2. Method for measuring the three-dimensional shape of the inner surface of the crucible>
Hereinafter, a method for measuring the three-dimensional shape of the inner surface of the crucible will be described with reference to FIGS. In the present embodiment, the internal distance measuring unit 17 including a laser displacement meter is moved in a non-contact manner along the inner surface of the crucible, and laser light is obliquely directed to the inner surface of the crucible at a plurality of measurement points on the movement path. And measuring the three-dimensional shape of the inner surface of the crucible by detecting the reflected light. Details will be described below. Further, when measuring the inner surface shape, the three-dimensional shape of the interface between the transparent layer 13 and the bubble-containing layer 15 can also be measured at the same time, and by using the internal distance measuring unit 19, the tertiary of the outer surface of the crucible can be measured. Since the original shape can also be measured, these points will be described together.

<2−1.シリカガラスルツボの設置、内部ロボットアーム、内部測距部>
測定対象であるシリカガラスルツボ11は、開口部が下向きになるように回転可能な回転台9上に載置されている。ルツボ11に覆われる位置に設けられた基台1上には、内部ロボットアーム5が設置されている。内部ロボットアーム5は、複数のアーム5aと、これらのアーム5aを回転可能に支持する複数のジョイント5bと、本体部5cを備える。本体部5cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。内部ロボットアーム5の先端にはルツボ11の内表面形状の測定を行う内部測距部17が設けられている。内部測距部17は、ルツボ11の内表面に対してレーザー光を照射し、内表面からの反射光を検出することによって内部測距部17からルツボ11の内表面までの距離を測定する。本体部5c内には、ジョイント5b及び内部測距部17の制御を行う制御部が設けられている。制御部は、本体部5c設けられたプログラム又は外部入力信号に基づいてジョイント5bを回転させてアーム5を動かすことによって、内部測距部17を任意の三次元位置に移動させる。具体的には、内部測距部17をルツボ内表面に沿って非接触で移動させる。従って、制御部には、ルツボ内表面の大まかな形状データを与え、そのデータに従って、内部測距部17の位置を移動させる。より具体的には、例えば、図1(a)に示すようなルツボ11の開口部近傍に近い位置から測定を開始し、図1(b)に示すように、ルツボ11の底部11cに向かって内部測距部17を移動させ、移動経路上の複数の測定点において測定を行う。測定間隔は、例えば、1〜5mmであり、例えば2mmである。測定は、予め内部測距部17内に記憶されたタイミングで行うか、又は外部トリガに従って行う。測定結果は、内部測距部17内の記憶部に格納されて、測定終了後にまとめて本体部5cに送られるか、又は測定の度に、逐次本体部5cに送られるようにする。内部測距部17は、本体部5cとは別に設けられた制御部によって制御するように構成してもよい。
<2-1. Installation of silica glass crucible, internal robot arm, internal distance measuring section>
The silica glass crucible 11 to be measured is placed on a turntable 9 that can be rotated so that the opening is directed downward. On the base 1 provided at a position covered with the crucible 11, an internal robot arm 5 is installed. The internal robot arm 5 includes a plurality of arms 5a, a plurality of joints 5b that rotatably support these arms 5a, and a main body 5c. The main body 5c is provided with an external terminal (not shown) so that data exchange with the outside is possible. An internal distance measuring unit 17 for measuring the inner surface shape of the crucible 11 is provided at the tip of the internal robot arm 5. The internal distance measuring unit 17 measures the distance from the internal distance measuring unit 17 to the inner surface of the crucible 11 by irradiating the inner surface of the crucible 11 with laser light and detecting reflected light from the inner surface. A control unit that controls the joint 5b and the internal distance measuring unit 17 is provided in the main body 5c. The control unit moves the internal distance measuring unit 17 to an arbitrary three-dimensional position by rotating the joint 5b and moving the arm 5 based on a program provided in the main body 5c or an external input signal. Specifically, the internal distance measuring unit 17 is moved in a non-contact manner along the inner surface of the crucible. Therefore, rough shape data of the inner surface of the crucible is given to the control unit, and the position of the internal distance measuring unit 17 is moved according to the data. More specifically, for example, the measurement is started from a position near the opening of the crucible 11 as shown in FIG. 1A, and toward the bottom 11c of the crucible 11 as shown in FIG. The internal distance measuring unit 17 is moved to perform measurement at a plurality of measurement points on the movement path. The measurement interval is, for example, 1 to 5 mm, for example, 2 mm. The measurement is performed at a timing stored in the internal distance measuring unit 17 in advance or according to an external trigger. The measurement results are stored in the storage unit in the internal distance measuring unit 17, and are sent to the main body unit 5c collectively after the measurement is completed, or are sequentially sent to the main body unit 5c for each measurement. The internal distance measuring unit 17 may be configured to be controlled by a control unit provided separately from the main body 5c.

ルツボの開口部から底部11cまでの測定が終わると、回転台9を少し回転させ、同様の測定行う。この測定は、底部11cから開口部に向かって行ってもよい。回転台9の回転角は、精度と測定時間との考慮して決定されるが、例えば、2〜10度である。回転角が大きすぎると測定精度が十分でなく、小さすぎると測定時間が掛かりすぎる。回転台9の回転は、内蔵プログラム又は外部入力信号に基づいて制御される。回転台9の回転角は、ロータリーエンコーダ等によって検出可能である。回転台9の回転は、内部測距部17及び後述する外部測距部19の移動と連動してすることが好ましく、これによって、内部測距部17及び外部測距部19の3次元座標の算出が容易になる。   When the measurement from the opening of the crucible to the bottom 11c is completed, the turntable 9 is slightly rotated and the same measurement is performed. This measurement may be performed from the bottom 11c toward the opening. The rotation angle of the turntable 9 is determined in consideration of accuracy and measurement time, and is, for example, 2 to 10 degrees. If the rotation angle is too large, the measurement accuracy is not sufficient, and if it is too small, it takes too much measurement time. The rotation of the turntable 9 is controlled based on a built-in program or an external input signal. The rotation angle of the turntable 9 can be detected by a rotary encoder or the like. It is preferable that the rotation of the turntable 9 be interlocked with the movement of the internal distance measuring unit 17 and the external distance measuring unit 19 which will be described later, whereby the three-dimensional coordinates of the internal distance measuring unit 17 and the external distance measuring unit 19 are changed. Calculation becomes easy.

後述するが、内部測距部17は、内部測距部17から内表面までの距離(内表面距離)、及び内部測距部17から透明層13と気泡含有層15の界面までの距離(界面距離)の両方を測定することができる。ジョイント5bの角度はジョイント5bに設けられたロータリーエンコーダ等によって既知であるので、各測定点での内部測距部17の位置の三次元座標及び方向が既知になるので、内表面距離及び界面距離が求まれば、内表面での三次元座標、及び界面での三次元座標が既知となる。そして、ルツボ11の開口部から底部11cまでの測定が、ルツボ11の全周に渡って行われるので、ルツボ11の内表面の三次元形状、及び界面の三次元形状が既知になる。また、内表面と界面の間の距離が既知になるので、透明層13の厚さも既知になり、透明層の厚さの三次元分布が求められる。   As will be described later, the internal distance measuring unit 17 includes a distance from the internal distance measuring unit 17 to the inner surface (inner surface distance) and a distance from the inner distance measuring unit 17 to the interface between the transparent layer 13 and the bubble-containing layer 15 (interface). Both distances can be measured. Since the angle of the joint 5b is known by a rotary encoder or the like provided in the joint 5b, the three-dimensional coordinates and direction of the position of the internal distance measuring unit 17 at each measurement point are known. Is obtained, the three-dimensional coordinates on the inner surface and the three-dimensional coordinates on the interface are known. And since the measurement from the opening part of the crucible 11 to the bottom part 11c is performed over the perimeter of the crucible 11, the three-dimensional shape of the inner surface of the crucible 11 and the three-dimensional shape of the interface become known. Further, since the distance between the inner surface and the interface is known, the thickness of the transparent layer 13 is also known, and a three-dimensional distribution of the thickness of the transparent layer is obtained.

<2−2.外部ロボットアーム、外部測距部>
ルツボ11の外部に設けられた基台3上には、外部ロボットアーム7が設置されている。外部ロボットアーム7は、複数のアーム7aと、これらのアームを回転可能に支持する複数のジョイント7bと、本体部7cを備える。本体部7cには図示しない外部端子が設けられており、外部とのデータ交換が可能になっている。外部ロボットアーム7の先端にはルツボ11の外表面形状の測定を行う外部測距部19が設けられている。外部測距部19は、ルツボ11の外表面に対してレーザー光を照射し、外表面からの反射光を検出することによって外部測距部19からルツボ11の外表面までの距離を測定する。本体部7c内には、ジョイント7b及び外部測距部19の制御を行う制御部が設けられている。制御部は、本体部7c設けられたプログラム又は外部入力信号に基づいてジョイント7bを回転させてアーム7を動かすことによって、外部測距部19を任意の三次元位置に移動させる。具体的には、外部測距部19をルツボ外表面に沿って非接触で移動させる。従って、制御部には、ルツボ外表面の大まかな形状データを与え、そのデータに従って、外部測距部19の位置を移動させる。より具体的には、例えば、図1(a)に示すようなルツボ11の開口部近傍に近い位置から測定を開始し、図1(b)に示すように、ルツボ11の底部11cに向かって外部測距部19を移動させ、移動経路上の複数の測定点において測定を行う。測定間隔は、例えば、1〜5mmであり、例えば2mmである。測定は、予め外部測距部19内に記憶されたタイミングで行うか、又は外部トリガに従って行う。測定結果は、外部測距分19内の記憶部に格納されて、測定終了後にまとめて本体部7cに送られるか、又は測定の度に、逐次本体部7cに送られるようにする。外部測距部19は、本体部7cとは別に設けられた制御部によって制御するように構成してもよい。
<2-2. External robot arm, external distance measuring unit>
An external robot arm 7 is installed on a base 3 provided outside the crucible 11. The external robot arm 7 includes a plurality of arms 7a, a plurality of joints 7b that rotatably support these arms, and a main body portion 7c. The main body 7c is provided with an external terminal (not shown) so that data exchange with the outside is possible. An external distance measuring unit 19 that measures the outer surface shape of the crucible 11 is provided at the tip of the external robot arm 7. The external distance measuring unit 19 measures the distance from the external distance measuring unit 19 to the outer surface of the crucible 11 by irradiating the outer surface of the crucible 11 with laser light and detecting the reflected light from the outer surface. A control unit that controls the joint 7b and the external distance measuring unit 19 is provided in the main body 7c. The control unit moves the external distance measuring unit 19 to an arbitrary three-dimensional position by rotating the joint 7b and moving the arm 7 based on a program provided in the main body unit 7c or an external input signal. Specifically, the external distance measuring unit 19 is moved in a non-contact manner along the outer surface of the crucible. Therefore, rough shape data of the outer surface of the crucible is given to the control unit, and the position of the external distance measuring unit 19 is moved according to the data. More specifically, for example, the measurement is started from a position near the opening of the crucible 11 as shown in FIG. 1A, and toward the bottom 11c of the crucible 11 as shown in FIG. The external distance measuring unit 19 is moved to perform measurement at a plurality of measurement points on the movement path. The measurement interval is, for example, 1 to 5 mm, for example, 2 mm. The measurement is performed at a timing stored in advance in the external distance measuring unit 19 or according to an external trigger. The measurement results are stored in the storage unit in the external distance measuring unit 19 and are collectively sent to the main unit 7c after the measurement is completed, or are sequentially sent to the main unit 7c every measurement. The external distance measuring unit 19 may be configured to be controlled by a control unit provided separately from the main body unit 7c.

内部測距部17と外部測距部19は、同期させて移動させてもよいが、内表面形状の測定と外表面形状の測定は独立して行われるので、必ずしも同期させる必要はない。   The internal distance measuring unit 17 and the external distance measuring unit 19 may be moved in synchronization. However, since the measurement of the inner surface shape and the measurement of the outer surface shape are performed independently, it is not always necessary to synchronize.

外部測距部19は、外部測距部19から外表面までの距離(外表面距離)を測定することができる。ジョイント7bの角度はジョイント7bに設けられたロータリーエンコーダ等によって既知であるので、外部測距部19の位置の三次元座標及び方向が既知になるので、外表面距離が求まれば、外表面での三次元座標が既知となる。そして、ルツボ11の開口部から底部11cまでの測定が、ルツボ11の全周に渡って行われるので、ルツボ11の外表面の三次元形状が既知になる。
以上より、ルツボの内表面及び外表面の三次元形状が既知になるので、ルツボの壁厚の三次元分布が求められる。
The external distance measuring unit 19 can measure the distance (outer surface distance) from the external distance measuring unit 19 to the outer surface. Since the angle of the joint 7b is known by a rotary encoder or the like provided in the joint 7b, the three-dimensional coordinates and direction of the position of the external distance measuring unit 19 are known. The three-dimensional coordinates are known. And since the measurement from the opening part of the crucible 11 to the bottom part 11c is performed over the perimeter of the crucible 11, the three-dimensional shape of the outer surface of the crucible 11 becomes known.
From the above, since the three-dimensional shape of the inner surface and the outer surface of the crucible becomes known, a three-dimensional distribution of the wall thickness of the crucible is obtained.

<2−3.距離測定の詳細>
次に、図2を用いて、内部測距部17及び外部測距部19による距離測定の詳細を説明する。
図2に示すように、内部測距部17は、ルツボ11の内表面側(透明層13側)に配置され、外部測距部19は、ルツボ11の外表面側(気泡含有層15側)に配置される。内部測距部17は、出射部17a及び検出部17bを備える。外部測距部19は、出射部19a及び検出部19bを備える。また、内部測距部17及び外部測距部19は、図示しない制御部及び外部端子を備える。出射部17a及び19aは、レーザー光を出射するものであり、例えば、半導体レーザーを備えるものである。出射されるレーザー光の波長は、特に限定されないが、例えば、波長600〜700nmの赤色レーザー光である。検出部17b及び19bは、例えばCCDで構成され、光が当たった位置に基づいて三角測量法の原理に基づいてターゲットまでの距離が決定される。
<2-3. Details of distance measurement>
Next, details of distance measurement by the internal distance measuring unit 17 and the external distance measuring unit 19 will be described with reference to FIG.
As shown in FIG. 2, the internal distance measuring unit 17 is arranged on the inner surface side (transparent layer 13 side) of the crucible 11, and the external distance measuring unit 19 is arranged on the outer surface side (bubble-containing layer 15 side) of the crucible 11. Placed in. The internal distance measuring unit 17 includes an emitting unit 17a and a detecting unit 17b. The external distance measuring unit 19 includes an emitting unit 19a and a detecting unit 19b. The internal distance measuring unit 17 and the external distance measuring unit 19 include a control unit and an external terminal (not shown). The emitting portions 17a and 19a emit laser light, and include, for example, a semiconductor laser. The wavelength of the emitted laser light is not particularly limited, but is, for example, red laser light having a wavelength of 600 to 700 nm. The detectors 17b and 19b are composed of, for example, a CCD, and the distance to the target is determined based on the principle of triangulation based on the position where the light hits.

内部測距部17の出射部17aから出射されたレーザー光は、一部が内表面(透明層13の表面)で反射し、一部が透明層13と気泡含有層15の界面で反射し、これらの反射光(内表面反射光、界面反射光)が検出部17bに当たって検出される。図2から明らかなように、内表面反射光と界面反射光は、検出部17bの異なる位置に当たっており、この位置の違いによって、内部測距部17から内表面までの距離(内表面距離)及び界面までの距離(界面距離)がそれぞれ決定される。好適な入射角θは、内表面の状態、透明層13の厚さ、気泡含有層15の状態等によって、変化しうるが例えば30〜60度である。   A part of the laser light emitted from the emitting part 17a of the internal distance measuring part 17 is reflected by the inner surface (the surface of the transparent layer 13), and partly reflected by the interface between the transparent layer 13 and the bubble-containing layer 15, These reflected lights (inner surface reflected light and interface reflected light) strike the detection unit 17b and are detected. As is clear from FIG. 2, the inner surface reflected light and the interface reflected light hit different positions of the detection unit 17b, and due to this position difference, the distance from the inner distance measuring unit 17 to the inner surface (inner surface distance) and The distance to the interface (interface distance) is determined. A suitable incident angle θ may vary depending on the state of the inner surface, the thickness of the transparent layer 13, the state of the bubble-containing layer 15, etc., but is, for example, 30 to 60 degrees.

図3は、市販のレーザー変位計を用いて測定された実際の測定結果を示す。図3に示すように、2つのピークが観察されており、内表面側のピークが内表面反射光によるピークであり、外表面側のピークが界面反射光によるピークに対応する。このように、透明層13と気泡含有層15の界面からの反射光によるピークもクリアに検出されている。従来は、このような方法で界面の特定がなされたことがなく、この結果は非常に斬新である。   FIG. 3 shows the actual measurement results measured using a commercially available laser displacement meter. As shown in FIG. 3, two peaks are observed, the peak on the inner surface side corresponds to the peak due to the inner surface reflected light, and the peak on the outer surface side corresponds to the peak due to the interface reflected light. Thus, the peak due to the reflected light from the interface between the transparent layer 13 and the bubble-containing layer 15 is also clearly detected. Conventionally, the interface has not been specified in this way, and this result is very novel.

内部測距部17から内表面までの距離が遠すぎる場合や、内表面又は界面が局所的に傾いている場合には、2つのピークが観測されない場合がある。その場合には、内部測距部17を内表面に近づけたり、内部測距部17の傾けてレーザー光の出射方向を変化させて、2つのピークが観測される位置及び角度を探索することが好ましい。また、2つのピークが同時に観測されなくても、ある位置及び角度において内表面反射光によるピークを観測し、別の位置及び角度において界面反射光によるピークを観測するようにしてもよい。また、内部測距部17が内表面に接触することを避けるために、最大近接位置を設定しておいて、ピークが観測されない場合でも、その位置よりも内表面に近づけないようにすることが好ましい。
また、透明層13中に独立した気泡が存在する場合、この気泡からの反射光を内部測距部17が検出してしまい、透明層13と気泡含有層15の界面を適切に検出できない場合がある。従って、ある測定点Aで測定された界面の位置が前後の測定点で測定された界面の位置から大きく(所定の基準値を超えて)ずれている場合には、測定点Aでのデータを除外してもよい。また、その場合、測定点Aからわずかにずれた位置で再度測定を行って、得られたデータを採用してもよい。
If the distance from the internal distance measuring unit 17 to the inner surface is too far, or if the inner surface or interface is locally inclined, two peaks may not be observed. In this case, the position and angle at which two peaks are observed can be searched by moving the internal distance measuring unit 17 closer to the inner surface or by tilting the internal distance measuring unit 17 to change the laser beam emission direction. preferable. Further, even if the two peaks are not observed simultaneously, the peak due to the inner surface reflected light may be observed at a certain position and angle, and the peak due to the interface reflected light may be observed at another position and angle. In order to prevent the internal distance measuring unit 17 from coming into contact with the inner surface, a maximum proximity position is set so that even if no peak is observed, the inner distance measuring unit 17 cannot be closer to the inner surface than that position. preferable.
In addition, when there are independent bubbles in the transparent layer 13, the internal distance measuring unit 17 may detect the reflected light from the bubbles, and the interface between the transparent layer 13 and the bubble-containing layer 15 may not be detected properly. is there. Therefore, when the position of the interface measured at a certain measurement point A is greatly deviated (exceeding a predetermined reference value) from the position of the interface measured at the preceding and following measurement points, the data at the measurement point A is It may be excluded. In that case, data obtained by performing measurement again at a position slightly deviated from the measurement point A may be employed.

また、外部測距部19の出射部19aから出射されたレーザー光は、外表面(気泡含有層15)の表面で反射し、その反射光(外表面反射光)が検出部19bに当たって検出され、検出部19b上での検出位置に基づいて外部測距部19と外表面の間の距離が決定される。図4は、市販のレーザー変位計を用いて測定された実際の測定結果を示す。図4に示すように、1つのピークのみが観察される。ピークが観測されない場合には、外部測距部19を内表面に近づけたり、外部測距部19の傾けてレーザー光の出射方向を変化させて、ピークが観測される位置及び角度を探索することが好ましい。   The laser light emitted from the emitting portion 19a of the external distance measuring section 19 is reflected by the surface of the outer surface (bubble-containing layer 15), and the reflected light (outer surface reflected light) strikes the detecting portion 19b and is detected. The distance between the external distance measuring unit 19 and the outer surface is determined based on the detection position on the detection unit 19b. FIG. 4 shows the actual measurement results measured using a commercially available laser displacement meter. As shown in FIG. 4, only one peak is observed. When the peak is not observed, the external distance measuring unit 19 is brought closer to the inner surface, or the external distance measuring unit 19 is tilted to change the emission direction of the laser light to search for the position and angle at which the peak is observed. Is preferred.

<3.ルツボの内表面のラマンスペクトルの三次元分布の決定方法>
ルツボの内表面の三次元形状が求まった後は、この三次元形状上の複数の測定点において内表面のラマンスペクトルを測定することによって、その三次元分布を決定する。
各測定点でのラマンスペクトルの測定方法は、非接触式であれば特に限定されないが、内表面に向けてレーザー光を照射してそのラマン散乱光を検出することによって測定することができる。
測定点の配置は、特に限定されないが、例えば、ルツボの開口部から底部に向かう方向には5〜20mm間隔で配置し、円周方向には例えば10〜60度間隔である。
具体的な測定は、例えば、ラマンスペクトル測定用プローブを内部ロボットアーム5の先端に取り付け、内部測距部17と同様の方法で、非接触で内表面に沿って移動させる。内部測距部17を移動させる際には、内表面の大雑把な三次元形状が分かっているだけで内表面の正確な三次元形状は分かっていなかったので、その大雑把な三次元形状に基づいて内部測距部17を移動させていたが、ラマンスペクトルの測定時には、内表面の正確な三次元形状が分かっているので、ラマンスペクトル測定用プローブを移動させる際に、内表面とプローブとの距離を高精度に制御することが可能である。
ラマンスペクトル測定用プローブをルツボの開口部から底部まで移動させ、その移動経路上の複数点でラマンスペクトルを測定した後は、回転台9を回転させて、ルツボ11の別の部位のラマンスペクトルの測定を行う。
このような方法でルツボの内表面全体に渡ってラマンスペクトルを測定することができ、その測定結果により、ルツボの内表面のラマンスペクトルの三次元分布を決定することができる。

<3. Method for determining the three-dimensional distribution of the Raman spectrum of the inner surface of the crucible>
After the three-dimensional shape of the inner surface of the crucible is obtained, the three-dimensional distribution is determined by measuring the Raman spectrum of the inner surface at a plurality of measurement points on the three-dimensional shape.
The method of measuring the Raman spectrum at each measurement point is not particularly limited as long as it is a non-contact type, but it can be measured by irradiating a laser beam toward the inner surface and detecting the Raman scattered light.
The arrangement of the measurement points is not particularly limited. For example, the measurement points are arranged at intervals of 5 to 20 mm in the direction from the opening to the bottom of the crucible, and at intervals of 10 to 60 degrees in the circumferential direction, for example.
Specifically, for example, a Raman spectrum measuring probe is attached to the tip of the internal robot arm 5 and moved along the inner surface in a non-contact manner in the same manner as the internal distance measuring unit 17. When the internal distance measuring unit 17 is moved, only the rough three-dimensional shape of the inner surface is known, but the exact three-dimensional shape of the inner surface is not known. Therefore, based on the rough three-dimensional shape. Although the internal distance measuring unit 17 has been moved, since the accurate three-dimensional shape of the inner surface is known when measuring the Raman spectrum, the distance between the inner surface and the probe is determined when the Raman spectrum measuring probe is moved. Can be controlled with high accuracy.
After the Raman spectrum measuring probe is moved from the opening to the bottom of the crucible and the Raman spectrum is measured at a plurality of points on the moving path, the rotating table 9 is rotated to obtain the Raman spectrum of another part of the crucible 11. Measure.
In this way, the Raman spectrum can be measured over the entire inner surface of the crucible, and the three-dimensional distribution of the Raman spectrum of the inner surface of the crucible can be determined based on the measurement result.

Claims (5)

シリカガラスルツボの内表面に沿って非接触で内部測距部を移動させ、
移動経路上の複数の測定点において、内部測距部から前記シリカガラスルツボの内表面に対して斜め方向にレーザー光を照射し、前記レーザー光の反射光をレーザー変位計で測定して2つのピークが観測されるように前記内部測距部と前記内表面との距離や前記レーザー光の出射方向を変化させて、前記2つのピークのうちの前記内表面側のピークの位置によって前記内部測距部と前記内表面との間の内表面距離を測定し、
各測定点の三次元座標と、前記内表面距離を関連付けることによって、前記シリカガラスルツボの内表面の三次元形状を求め、
この三次元形状上の複数の測定点においてラマンスペクトルを測定することによって、前記ラマンスペクトルの三次元分布を決定し、
前記ラマンスペクトルが規定の範囲内に入っているか否かによって前記シリカガラスルツボの品質を検査する工程を備えるシリカガラスルツボの評価方法。
Move the internal distance measuring unit in a non-contact manner along the inner surface of the silica glass crucible,
At a plurality of measurement points on the movement path, laser light is irradiated in an oblique direction to the inner surface of the silica glass crucible from the internal distance measuring unit, and the reflected light of the laser light is measured with a laser displacement meter. By changing the distance between the internal distance measuring unit and the inner surface and the laser beam emission direction so that a peak is observed, the internal measurement is performed according to the position of the peak on the inner surface side of the two peaks. Measure the inner surface distance between the distance portion and the inner surface,
By associating the three-dimensional coordinates of each measurement point with the inner surface distance, the three-dimensional shape of the inner surface of the silica glass crucible is obtained,
Determining a three-dimensional distribution of the Raman spectrum by measuring the Raman spectrum at a plurality of measurement points on the three-dimensional shape;
A method for evaluating a silica glass crucible comprising a step of inspecting the quality of the silica glass crucible depending on whether or not the Raman spectrum is within a specified range.
前記三次元形状上の複数の測定点でのラマンスペクトルの測定方法は、
前記内表面に向けてレーザー光を照射してそのラマン散乱光を検出することによって測定する、請求項1に記載の方法。
A method for measuring a Raman spectrum at a plurality of measurement points on the three-dimensional shape is as follows:
The method of Claim 1 which measures by irradiating a laser beam toward the said inner surface, and detecting the Raman scattered light.
前記三次元形状上の複数の測定点でのラマンスペクトルの測定方法は、
前記ラマンスペクトル測定用のプローブを、前記内部測距部を三次元的に移動させることができるように構成された内部ロボットアームに取り付け、前記内部ロボットアームを前記シリカガラスルツボの内表面に沿って移動させる、請求項1に記載の方法。
A method for measuring a Raman spectrum at a plurality of measurement points on the three-dimensional shape is as follows:
The probe for Raman spectrum measurement is attached to an internal robot arm configured to be able to move the internal distance measuring unit in three dimensions, and the internal robot arm is moved along the inner surface of the silica glass crucible. The method of claim 1, wherein the method is moved.
28インチ以上の前記シリカガラスルツボを測定することを特徴とする請求項1〜3のいずれか1つに記載のシリカガラスルツボの評価方法。   The silica glass crucible evaluation method according to any one of claims 1 to 3, wherein the silica glass crucible of 28 inches or more is measured. 前記シリカガラスルツボ内に保持されたシリコン融液からシリコン単結晶を引き上げる工程を備え、
前記シリコン単結晶の引き上げに用いられる前記シリカガラスルツボが請求項1〜4のいずれか1つに記載の方法によって評価される、シリコン単結晶の製造方法。
A step of pulling up the silicon single crystal from the silicon melt held in the silica glass crucible,
The method for producing a silicon single crystal, wherein the silica glass crucible used for pulling up the silicon single crystal is evaluated by the method according to claim 1.
JP2016108431A 2016-05-31 2016-05-31 Method for evaluating silica glass crucible, method for producing silicon single crystal Active JP6123000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016108431A JP6123000B2 (en) 2016-05-31 2016-05-31 Method for evaluating silica glass crucible, method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016108431A JP6123000B2 (en) 2016-05-31 2016-05-31 Method for evaluating silica glass crucible, method for producing silicon single crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015097794A Division JP5946560B2 (en) 2015-05-13 2015-05-13 Method for determining three-dimensional distribution of Raman spectrum of silica glass crucible, method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JP2016153372A JP2016153372A (en) 2016-08-25
JP6123000B2 true JP6123000B2 (en) 2017-04-26

Family

ID=56760413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016108431A Active JP6123000B2 (en) 2016-05-31 2016-05-31 Method for evaluating silica glass crucible, method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JP6123000B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3322330B2 (en) * 1995-02-06 2002-09-09 三菱マテリアル株式会社 Work implement attitude control device with respect to work target surface, crucible measuring device and coating device having the same
JP3537522B2 (en) * 1995-02-06 2004-06-14 三菱マテリアル株式会社 Crucible measurement method
JP3765368B2 (en) * 1999-06-01 2006-04-12 東芝セラミックス株式会社 Quartz glass crucible and method for producing the same
JP2004271220A (en) * 2003-03-05 2004-09-30 Toshiba Ceramics Co Ltd Evaluation apparatus and method of fused quartz
JP2004292210A (en) * 2003-03-26 2004-10-21 Kuramoto Seisakusho Co Ltd Quartz crucible for pulling silicon single crystal
JP4361452B2 (en) * 2004-09-29 2009-11-11 コバレントマテリアル株式会社 Quartz glass crucible removal object removal device

Also Published As

Publication number Publication date
JP2016153372A (en) 2016-08-25

Similar Documents

Publication Publication Date Title
JP5749151B2 (en) Method for measuring the three-dimensional shape of the Raman spectrum of silica glass crucibles
JP6123001B2 (en) Method for evaluating silica glass crucible, method for producing silicon single crystal
JP5818675B2 (en) Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal
JP5749149B2 (en) Method for measuring three-dimensional shape of silica glass crucible
JP5657515B2 (en) Method for measuring three-dimensional shape of silica glass crucible, method for producing silicon single crystal
JP6123000B2 (en) Method for evaluating silica glass crucible, method for producing silicon single crystal
JP5946560B2 (en) Method for determining three-dimensional distribution of Raman spectrum of silica glass crucible, method for producing silicon single crystal
JP6162847B2 (en) Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible and method for producing silicon single crystal
JP5923644B2 (en) Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal
JP5749150B2 (en) Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, method for producing silicon single crystal
JP6162848B2 (en) Method for producing silicon single crystal
JP5946561B2 (en) Method for determining three-dimensional distribution of surface roughness of silica glass crucible, method for producing silicon single crystal
JP6114795B2 (en) Method for determining three-dimensional distribution of bubble distribution in silica glass crucible, method for producing silicon single crystal
JP6162870B2 (en) Method for producing silica glass crucible
JP2017215325A (en) Measuring method of silica glass crucible
JP5749152B2 (en) Method for measuring three-dimensional shape of surface roughness of silica glass crucible
JP5996718B2 (en) Method for measuring three-dimensional shape of silica glass crucible, method for producing silicon single crystal
JP6162867B2 (en) Method for producing silicon single crystal
JP2017138322A (en) Method for determining three-dimensional arrangement of air bubble of silica grass crucible and method for evaluating silica glass crucible
JP5709737B2 (en) Method for producing silicon single crystal
JP5925348B2 (en) Method for producing silicon single crystal
JP6301531B2 (en) Method for producing silica glass crucible
JP6142052B2 (en) Method for producing silica glass crucible
JP5978343B2 (en) Method for producing silicon single crystal
JP5968505B2 (en) Equipment that supports setting of manufacturing conditions for silica glass crucible

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R150 Certificate of patent or registration of utility model

Ref document number: 6123000

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250