JP5749067B2 - Proteoglycan production method - Google Patents

Proteoglycan production method Download PDF

Info

Publication number
JP5749067B2
JP5749067B2 JP2011104768A JP2011104768A JP5749067B2 JP 5749067 B2 JP5749067 B2 JP 5749067B2 JP 2011104768 A JP2011104768 A JP 2011104768A JP 2011104768 A JP2011104768 A JP 2011104768A JP 5749067 B2 JP5749067 B2 JP 5749067B2
Authority
JP
Japan
Prior art keywords
proteoglycan
extract
producing
cartilage
citric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011104768A
Other languages
Japanese (ja)
Other versions
JP2012236776A (en
Inventor
薫 児島
薫 児島
Original Assignee
株式会社グライコスモ研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グライコスモ研究所 filed Critical 株式会社グライコスモ研究所
Priority to JP2011104768A priority Critical patent/JP5749067B2/en
Publication of JP2012236776A publication Critical patent/JP2012236776A/en
Application granted granted Critical
Publication of JP5749067B2 publication Critical patent/JP5749067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

本発明は、軟骨型プロテオグリカンの製造方法に関する。特に魚類などから効率的に、食用、医療用及び化粧品などに応用できる高純度のプロテオグリカンを環境に配慮した方法で工業的に製造する方法に関するものである。   The present invention relates to a method for producing cartilage-type proteoglycans. More particularly, the present invention relates to a method for industrially producing a high-purity proteoglycan that can be efficiently applied to food, medicine, cosmetics, and the like from fish and the like in an environmentally friendly manner.

プロテオグリカンは、コアの蛋白質に長鎖の硫酸化グリコサミノグリカンが結合した複合糖質の一つである。糖タンパクでは、アスパラギンに結合したN型糖鎖、スレオニンあるいはセリンに結合したO型糖鎖がタンパクの糖鎖修飾として代表的なものであるが、プロテオグリカンの場合は、コンドロイチン硫酸やヘパラン硫酸、デルマタン硫酸などのグリコサミノグリカン糖鎖がタンパクに結合した複合生体物質である。
これまで、その構造の複雑性のために高純度のプロテオグリカンを効率よく製造する方法が確立しておらず、わずかに酢酸を用いた軟骨型プロテオグリカンの精製方法(特許文献1)、アルカリ溶液を用いた抽出方法(特許文献2)等が報告されているに過ぎない。
Proteoglycan is one of complex carbohydrates in which a long chain sulfated glycosaminoglycan is bound to a core protein. In glycoproteins, N-type sugar chains bound to asparagine, O-type sugar chains bound to threonine or serine are typical modifications of the protein, but in the case of proteoglycans, chondroitin sulfate, heparan sulfate, dermatan It is a complex biological material in which glycosaminoglycan sugar chains such as sulfuric acid are bound to proteins.
Until now, due to the complexity of its structure, a method for efficiently producing high-purity proteoglycans has not been established. A method for purifying cartilage-type proteoglycans using slightly acetic acid (Patent Document 1), using an alkaline solution However, only the extraction method (Patent Document 2) and the like have been reported.

しかし、上記酢酸を用いる方法は、4%という大量の酢酸溶液、アルコールを用いることから、これを工業的に応用するには多くの改良が必要である。また酢酸が結合した副産物が得られる可能性が免れないという課題があった。さらにこの方法では、抽出効率が必ずしも満足するものではない。
一方、上記アルカリを用いた方法では、タンパク質の変性・分解に加えプロテオグリカンの糖鎖の脱離が懸念されるほか、狭雑するタンパク質の含量が多くなり、純度の高いプロテオグリカンを得るにはさらに何段階もの精製過程が必要となる。
また、両方法においては混入する脂質の除去操作がないために、調製したプロテオグリカン標品が褐色を呈したり、保存中に脂質の酸化による異臭が生ずるという問題があった。
However, since the method using acetic acid uses a large amount of 4% acetic acid solution and alcohol, many improvements are required for industrial application. In addition, there is a problem in that the possibility of obtaining a by-product bound with acetic acid is inevitable. Furthermore, this method does not always satisfy the extraction efficiency.
On the other hand, in the method using the above-mentioned alkali, in addition to protein denaturation / degradation, there is a concern about the detachment of proteoglycan sugar chains, and the amount of protein that is congested increases, so what is more suitable for obtaining high-purity proteoglycans? A step-by-step purification process is required.
In addition, in both methods, since there is no operation for removing contaminating lipids, the prepared proteoglycan preparation has a brown color, and there is a problem that a bad odor due to lipid oxidation occurs during storage.

特開2002−069097号公報JP 2002-069097 A 国際公開第2007/094248号パンフレットInternational Publication No. 2007/094248 Pamphlet

そこで本発明は、軟骨型プロテオグリカンのより効率で、かつ脂質およびタンパクが狭雑しない、環境に配慮した工業的製造法を提供することを目的とする。   Therefore, an object of the present invention is to provide an environmentally friendly industrial production method that is more efficient than cartilage-type proteoglycans and that does not contaminate lipids and proteins.

本発明者は、上記課題を解決すべく種々の溶液による軟骨型プロテオグリカンの抽出を検討したところ、サケ鼻軟骨等からクエン酸の希薄溶液でプロテオグリカンが効率よく抽出できることを見出し本発明に到った。   The present inventor studied the extraction of cartilage-type proteoglycan with various solutions to solve the above-mentioned problems, and found that proteoglycan can be efficiently extracted with a dilute solution of citric acid from salmon nasal cartilage and the like, and reached the present invention. .

即ち、本発明は、次の発明に係るものである。
(1)軟骨型プロテオグリカンを含有する魚類試料を、0.05重量%〜重量%のクエン酸水溶液に浸漬し、プロテオグリカンを抽出してプロテオグリカン抽出液を得る工程、および得られたプロテオグリカン抽出液からプロテオグリカンを回収する工程を含むプロテオグリカンの製造方法。
(2)上記浸漬し、抽出する工程を室温にて行う前記(1)に記載のプロテオグリカンの製造方法。
(3)上記プロテオグリカン抽出液を濾過分離後、濾液を疎水性担体又は疎水性プラスチックビーズに接触させ、脂質を除去する工程を更に含む前記(1)又は(2)に記載のプロテオグリカンの製造方法。
(4)上記脂質を除去する工程の後に、プロテオグリカン抽出液を分子サイズ選択メンブランによって分子量100万以下で10万以上のプロテオグリカンを含有するプロテオグリカン抽出液を分離する工程を含む前記(3)に記載のプロテオグリカンの製造方法。
(5)プロテオグリカン抽出液からプロテオグリカンを回収する工程が、抽出液に食塩飽和エタノールを加えることにより行う工程を含む前記(1)から(4)に記載のプロテオグリカンの製造方法。
(6)軟骨型プロテオグリカンを含有する魚類試料が、サケの頭部またはサメのヒレ部である前記(1)から(5)に記載のプロテオグリカンの製造方法。
(7)軟骨型プロテオグリカンを含有する魚類試料が、サケ鼻軟骨である前記(1)から(5)に記載のプロテオグリカンの製造方法。
That is, the present invention relates to the following invention.
(1) A step of immersing a fish sample containing a cartilage-type proteoglycan in a 0.05 % to 2 % by weight citric acid aqueous solution to extract the proteoglycan to obtain a proteoglycan extract, and the obtained proteoglycan extract A method for producing proteoglycan comprising a step of recovering proteoglycan.
(2) The method for producing proteoglycan according to (1), wherein the step of immersing and extracting is performed at room temperature.
(3) The method for producing proteoglycan according to (1) or (2), further comprising a step of removing the lipid by contacting the filtrate with a hydrophobic carrier or hydrophobic plastic beads after filtering and separating the proteoglycan extract.
(4) The method according to (3), further comprising the step of separating the proteoglycan extract containing a proteoglycan having a molecular weight of 1,000,000 or less and a proteoglycan of 100,000 or more after the step of removing the lipid by a molecular size selection membrane. Proteoglycan production method.
(5) The method for producing a proteoglycan according to (1) to (4) above, wherein the step of recovering proteoglycan from the proteoglycan extract includes a step of adding salt-saturated ethanol to the extract.
(6) The method for producing a proteoglycan according to (1) to (5) above, wherein the fish sample containing cartilage-type proteoglycan is a salmon head or a shark fin .
(7) Fish sample containing cartilage proteoglycan method of producing a proteoglycan according to the a salmon Hana軟bone (1) (5).

本発明は、クエン酸希薄溶液によりきわめて簡単な方法でプロテオグリカンを高収率で抽出、精製できる工業的製法を提供する。また、本発明は、抽出濾液を疎水性担体又は疎水性プラスチックビーズに接触させることにより、脂質を効率的に除去するプロテオグリカンの製造方法を提供する。   The present invention provides an industrial production method capable of extracting and purifying proteoglycan in a very simple manner with a dilute citric acid solution in a high yield. Moreover, this invention provides the manufacturing method of the proteoglycan which removes a lipid efficiently by making an extraction filtrate contact a hydrophobic support | carrier or a hydrophobic plastic bead.

実施例1にかかるプロテオグリカン抽出量(クエン酸0.01wt%)の経時変化を示すグラフである。2 is a graph showing the change over time of the proteoglycan extract amount (citric acid 0.01 wt%) according to Example 1. 実施例1にかかるプロテオグリカン抽出量(クエン酸0.05wt%)の経時変化を示すグラフである。3 is a graph showing the change over time of the proteoglycan extract amount (citric acid 0.05 wt%) according to Example 1. 実施例1にかかるプロテオグリカン抽出量(クエン酸0.1wt%)の経時変化を示すグラフである。3 is a graph showing the change over time of the proteoglycan extract amount (citric acid 0.1 wt%) according to Example 1. 実施例1にかかるプロテオグリカン抽出量(クエン酸0.5wt%)の経時変化を示すグラフである。2 is a graph showing the change over time of the proteoglycan extraction amount (citric acid 0.5 wt%) according to Example 1. 実施例1にかかるプロテオグリカン抽出量(クエン酸1.0wt%)の経時変化を示すグラフである。2 is a graph showing the change over time of the proteoglycan extract amount (citric acid 1.0 wt%) according to Example 1. 実施例1にかかるプロテオグリカン抽出量(クエン酸2.0wt%)の経時変化を示すグラフである。2 is a graph showing the change over time of the proteoglycan extract amount (citric acid 2.0 wt%) according to Example 1. 実施例1にかかるプロテオグリカン抽出量(クエン酸4.0wt%)の経時変化を示すグラフである。3 is a graph showing the change with time of the proteoglycan extract amount (citric acid 4.0 wt%) according to Example 1. 参考例1の酢酸溶液によるプロテオグリカン抽出量の経時変化を示すグラフである。4 is a graph showing the change over time in the amount of proteoglycan extracted by the acetic acid solution of Reference Example 1. 実施例2で得られたプロテオグリカンのHPLCプロファイルである。3 is an HPLC profile of proteoglycan obtained in Example 2. 実施例2で得られたプロテオグリカンの電気泳動プロファイルである。2 is an electrophoresis profile of proteoglycan obtained in Example 2.

以下、本発明について詳細に説明する。
本発明は、軟骨型プロテオグリカンを含有する生物学的試料を、0.03重量%〜3重量%のクエン酸水溶液に浸漬し、プロテオグリカンを抽出してプロテオグリカン抽出液を得る工程、および得られたプロテオグリカン抽出液からプロテオグリカンを回収する工程を含むプロテオグリカンの製造方法に関する。
即ち、本発明は、クエン酸の希薄溶液による軟骨型プロテオグリカンを含有する生物学的試料からのプロテオグリカンの抽出を第一の特徴とする。
ここで、軟骨型プロテオグリカンを含有する生物学的試料としては、魚類、軟体動物、鳥類や哺乳類の軟骨組織由来のプロテオグリカンが例示される。中でも、サケの頭部やサメのヒレ部の軟骨組織由来のプロテオグリカンが好適に使用され、特に、サケの頭部にその平均重量で約3%含まれている鼻軟骨組織由来のものが好適に用いられる。
Hereinafter, the present invention will be described in detail.
The present invention includes a step of immersing a biological sample containing cartilage-type proteoglycan in an aqueous solution of 0.03% to 3% by weight of citric acid, extracting the proteoglycan to obtain a proteoglycan extract, and the obtained proteoglycan The present invention relates to a method for producing proteoglycan comprising a step of recovering proteoglycan from an extract.
That is, the first feature of the present invention is the extraction of proteoglycan from a biological sample containing cartilage-type proteoglycan with a dilute solution of citric acid.
Here, examples of biological samples containing cartilage-type proteoglycans include proteoglycans derived from cartilage tissues of fish, mollusks, birds and mammals. Among them, proteoglycans derived from the cartilage tissue of salmon heads and shark fins are preferably used, and particularly those derived from nasal cartilage tissue whose average weight is about 3% in the salmon head. Used.

ここで、本発明のクエン酸の希薄溶液とは、クエン酸の0.03重量%〜3重量%の水溶液をいう。クエン酸濃度が、0.03重量%未満では抽出に時間がかかり、また抽出時間の経過と共にゲル化や腐敗臭等が発生し易くなる。一方、クエン酸濃度が3重量%を超えると、かえって抽出速度が遅くなる。クエン酸濃度は、好ましくは0.05重量%〜2重量%、より好ましくは0.05重量%〜1重量%、更に好ましくは0.1重量%〜0.5重量%である。   Here, the dilute solution of citric acid of the present invention refers to a 0.03% to 3% by weight aqueous solution of citric acid. When the citric acid concentration is less than 0.03% by weight, extraction takes time, and gelation, spoilage odor, and the like are likely to occur as the extraction time elapses. On the other hand, when the citric acid concentration exceeds 3% by weight, the extraction rate is rather slow. The citric acid concentration is preferably 0.05% to 2% by weight, more preferably 0.05% to 1% by weight, and still more preferably 0.1% to 0.5% by weight.

なお、前記文献1の酢酸による抽出法では、酢酸濃度は4%が最適とされているが、本発明ではより低い濃度のクエン酸を使用することができ、下記の回収工程でのアルコール使用量を低減することが出来るという利点を併有する。   In the extraction method using acetic acid described in Reference 1, an acetic acid concentration of 4% is optimal. However, in the present invention, a lower concentration of citric acid can be used, and the amount of alcohol used in the following recovery step It has the advantage that can be reduced.

本発明においては、抽出温度は、0℃から室温が使用できるが、好ましくは室温である。ここで、室温とは、10℃以上30℃以下の温度であり、好ましくは15℃から25℃である。一般に本発明の対象である生物学的試料は、腐敗しやすいことから出来るだけ低温で処理される。例えば、前記文献1の酢酸による抽出法では、4℃にて抽出を行っており、また、前記文献2のアルカリ金属による抽出でも0℃から4℃の浸漬温度がより好ましい温度とされている。本発明は、クエン酸を使用することにより、室温での浸漬、抽出を可能とし、抽出効率を上げることができる点で画期的である。   In the present invention, the extraction temperature may be from 0 ° C. to room temperature, but is preferably room temperature. Here, the room temperature is a temperature of 10 ° C. or higher and 30 ° C. or lower, preferably 15 ° C. to 25 ° C. In general, biological samples that are the subject of the present invention are processed at as low a temperature as possible because they are susceptible to spoilage. For example, in the extraction method using acetic acid described in Reference 1, extraction is performed at 4 ° C., and in the extraction using alkali metal described in Reference 2, an immersion temperature of 0 ° C. to 4 ° C. is more preferable. The present invention is epoch-making in that by using citric acid, immersion and extraction at room temperature are possible, and extraction efficiency can be increased.

本発明のクエン酸溶液によるプロテオグリカンの抽出は、約40時間前後で飽和に達することから、35時間から50時間が好ましいが、適宜決定することができる。また、抽出方法は、攪拌に伴い生ずる狭雑物をさける観点から、浸漬法が使用される。   The extraction of proteoglycan with the citric acid solution of the present invention reaches saturation in about 40 hours, and is preferably 35 to 50 hours, but can be determined as appropriate. In addition, as the extraction method, a dipping method is used from the viewpoint of avoiding the narrow substances generated with stirring.

次に、本発明では、上記抽出したプロテオグリカンを疎水性担体や疎水プラスチックビーズを用いることにより、混入すると考えられる脂質成分を簡便に吸着除去することが可能である。
疎水性担体としては、例えば、ODS(オクタデシルシリル基)やオクチル基をシリカやポリマーに化学結合した樹脂が使用できる。担体の粒子径は、通常5μm〜10μmのものが好適に使用される。また、疎水性プラスチックビーズとしては、ポリエチレン、ポリプロピレン、ポリスチレン等のプラスチックのビーズが使用でき、ビーズの大きさは、適宜選択できるが、一般には平均直径が0.5mmから3mmのものが挙げられる。上記のうち、疎水性プラスチックビーズが、吸着効率や経済的な観点から好適に使用できる。
Next, in the present invention, by using the extracted proteoglycan with a hydrophobic carrier or hydrophobic plastic beads, it is possible to easily adsorb and remove lipid components that are considered to be mixed.
As the hydrophobic carrier, for example, a resin in which ODS (octadecylsilyl group) or octyl group is chemically bonded to silica or polymer can be used. The particle diameter of the carrier is preferably 5 μm to 10 μm. In addition, as the hydrophobic plastic beads, plastic beads such as polyethylene, polypropylene, polystyrene and the like can be used, and the size of the beads can be selected as appropriate, but generally those having an average diameter of 0.5 mm to 3 mm can be mentioned. Among the above, hydrophobic plastic beads can be suitably used from the standpoint of adsorption efficiency and economical viewpoint.

上記脂質を吸着除去した疎水性担体や疎水性ビーズを濾過分離した濾液から得られるプロテオグリカン抽出液は、通常プロテオグリカンを2%〜4%程度含有し、その濃度が高いため、少量の食塩飽和アルコールで沈澱させることにより収率よく回収することができる。沈殿は、遠心分離を使用することにより効率的に行うことができる。
なお、上記回収工程の少なくとも後に、次の限外濾過による分子量調整、濃縮工程を有することが好ましい。
The proteoglycan extract obtained from the filtrate obtained by filtering and separating the hydrophobic carrier from which the lipid has been adsorbed and the hydrophobic beads usually contains about 2% to 4% of proteoglycan and its concentration is high. By precipitation, it can be recovered with good yield. Precipitation can be done efficiently by using centrifugation.
In addition, it is preferable to have the molecular weight adjustment and concentration step by the following ultrafiltration at least after the recovery step.

即ち、上記脂質を吸着除去した疎水性担体や疎水性ビーズを濾過分離した濾液から得られるプロテオグリカンは、分子サイズ選択メンブランによりプロテオグリカンの分子量を10万以上、100万以下にすることが好ましい。
具体的には、遠心分離によって沈澱したプロテオグリカンを蒸留水に溶解し、メンブランフィルター(分子量100万以上の分子を除去:1000kカット)を通して巨大プロテオグリカンおよび複合物などを除去する。次にこの濾液を10万カット(分子量10万以下の分子を除去:100kカット)のメンブランフィルターによって分子量10万以下のプロテオグリカンやタンパク質およびミネラルなどの塩類を除去する。
That is, the proteoglycan obtained from the above-described hydrophobic carrier from which the lipid has been adsorbed and the filtrate obtained by filtering off the hydrophobic beads is preferably made to have a molecular weight of 100,000 to 1,000,000 by molecular size selection membrane.
Specifically, proteoglycans precipitated by centrifugation are dissolved in distilled water, and giant proteoglycans and composites are removed through a membrane filter (removing molecules having a molecular weight of 1 million or more: 1000 k cut). Next, salt such as proteoglycan having a molecular weight of 100,000 or less, protein, and mineral is removed from the filtrate by a membrane filter having a cut of 100,000 (removing molecules having a molecular weight of 100,000 or less: 100 k cut).

その後、メンブラン上に回収したプロテオグリカンは、上記の食塩飽和エタノールにより選択的に沈殿回収される。
ところで、プロテオグリカン、グリコサミノグリカン糖鎖は、糖鎖中に硫酸基やカルボキシル基の負電荷を持つため、お互いに反発し沈殿ができにくい。そこでエタノール沈殿を行う場合は塩化ナトリウム、酢酸ナトリウムなどをエタノールに加え、糖鎖の負電荷を中和することで、エタノール沈殿の効率を飛躍的に向上することが可能となる。
このようにして得られたプロテオグリカンは、エタノール(好ましくは、100%エタノール)で数回洗浄した後に乾燥させる。乾燥は、一般的な真空乾燥や加熱乾燥にて行われるが、加熱する場合は40℃位の温度が好適に用いられる。
Thereafter, the proteoglycan collected on the membrane is selectively collected by precipitation with the above-mentioned salt-saturated ethanol.
By the way, since proteoglycan and glycosaminoglycan sugar chains have negative charges of sulfate groups and carboxyl groups in the sugar chains, they repel each other and are difficult to precipitate. Therefore, when performing ethanol precipitation, it is possible to dramatically improve the efficiency of ethanol precipitation by adding sodium chloride, sodium acetate or the like to ethanol and neutralizing the negative charge of the sugar chain.
The proteoglycan thus obtained is washed several times with ethanol (preferably 100% ethanol) and then dried. Drying is performed by general vacuum drying or heat drying. When heating, a temperature of about 40 ° C. is preferably used.

上記プロテオグリカンは、陰イオン交換樹脂を用いたカラムクロマトグラフィーやゲル濾過カラムを用い精製することができる。   The proteoglycan can be purified by column chromatography using an anion exchange resin or gel filtration column.

上記のように、本発明により、極めて簡単な方法でサケ鼻軟骨等の生物学的試料からプロテオグリカンを高収率で抽出、精製できる。本発明の利点を以下に示す。   As described above, according to the present invention, proteoglycan can be extracted and purified in high yield from a biological sample such as salmon nasal cartilage by a very simple method. The advantages of the present invention are as follows.

本発明により従来4℃付近で抽出していた方法を室温に変えることができ、より短時間で、高い収率による抽出可能となった。工業生産にかかる設備投資を抑えることができ、従って、これを低価格に反映することが出来る。
なお、従来の酢酸による抽出では、酢酸が糖質、タンパク質の水酸基とエステル結合して酢酸エステルを生成し、これが経時後に問題となる酢酸の戻り臭の原因となっている。そのため、酢酸エステルの生成が危惧される室温での抽出や、長時間に亘る抽出には問題があった。
さらに、本発明では、従来攪拌していた抽出法を浸漬法に変えることによって抽出効力は増加すると共に攪拌によって生ずる狭雑物の分離操作が省けることなり、工業的操作上の大きなメリットとなる。
従来の操作では最後まで脂質の混入を危惧されたが、疎水性担体、あるいは疎水性プラスチックビーズ処理によって簡単に脂質のみを効果的に吸着除去できることになり、以後の操作がスムースに行える。
According to the present invention, the conventional method of extracting at around 4 ° C. can be changed to room temperature, and extraction with a high yield can be performed in a shorter time. The capital investment for industrial production can be suppressed, and this can be reflected in the low price.
In the conventional extraction with acetic acid, acetic acid forms an ester with an ester bond with a carbohydrate and a hydroxyl group of protein, and this causes a return odor of acetic acid which becomes a problem after a lapse of time. Therefore, there is a problem in extraction at room temperature where the production of acetate ester is a concern and extraction for a long time.
Furthermore, in the present invention, the extraction efficiency is increased by changing the extraction method that has been conventionally stirred to a dipping method, and the separation operation of the impurities generated by the stirring can be omitted, which is a great merit in industrial operation.
In the conventional operation, there was a concern about lipid contamination until the end, but only the lipid can be easily adsorbed and removed easily by the treatment with the hydrophobic carrier or the hydrophobic plastic beads, and the subsequent operation can be performed smoothly.

プロテオグリカンの抽出に要するクエン酸は、従来の酢酸に比べ約1/3の容量に減少することができ、その結果、酢酸抽出法に比べ約1/5量の食塩飽和エタノールでプロテオグリカンを沈澱回収することが可能となった。時間的にも経費的にも、環境的にも大きなメリットである。
さらに、分子量10万カットと100万カットのメンブランフィルターを用いることにより連続的にプロテオグリカンを濃縮することが可能となった。
The citric acid required for proteoglycan extraction can be reduced to about 1/3 of the volume of conventional acetic acid, and as a result, the proteoglycan is recovered by precipitation with about 1/5 of sodium chloride saturated ethanol compared to the acetic acid extraction method. It became possible. This is a great advantage both in terms of time, cost and environment.
Furthermore, it became possible to concentrate proteoglycan continuously by using a membrane filter having a molecular weight of 100,000 cut and 1 million cut.

本発明では、特に、抽出溶媒としてクエン酸を使用することから、上記酢酸臭(戻り臭)の危惧がなくなったため、プロテオグリカンの食品や化粧品への応用が大きく広がった。
また、陰イオンカラムクロマトグウフィーによる精製プロテオグリカンの調製は、均一な金属塩として調製することを可能にし、品質管理の方法として重要な意味を持つ。
In the present invention, in particular, since citric acid is used as an extraction solvent, there is no fear of the acetic acid odor (return odor), so the application of proteoglycans to foods and cosmetics has greatly expanded.
In addition, the preparation of purified proteoglycan by anion column chromatography makes it possible to prepare it as a uniform metal salt, which is important as a quality control method.

以下、本発明を実施例により詳しく説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.

1.プロテオグリカンのHPLC分析:
HPLC分析条件は次の通りである。
1)カラム:TOSOH TSK-gel G5000PWXL+TSK-guard column PWXL
G5000PWXL:R0019
guard column PWXL:P0771(東ソー社製)
2)溶出液:0.2M−NaCl
流 速:0.5ml/min
カラム温度:30℃
3)検出器:UV−VIS検出器(215nm)
4)導入量:50μl(サンプル:0.1%溶液)
1. HPLC analysis of proteoglycans:
The HPLC analysis conditions are as follows.
1) Column: TOSOH TSK-gel G5000PWXL + TSK-guard column PWXL
G5000PWXL: R0019
guard column PWXL: P0771 (manufactured by Tosoh Corporation)
2) Eluent: 0.2M NaCl
Flow rate: 0.5ml / min
Column temperature: 30 ° C
3) Detector: UV-VIS detector (215 nm)
4) Introduction volume: 50 μl (sample: 0.1% solution)

2.限外濾過(分子サイズ選択メンブラン):
限外濾過の装置、濾過膜は次の通りである。
1)装置名;送液ポンプMODEL7553(マスターフレックス社)
2)限外濾過膜
・100万カット オメガメンブレンミニメイトTFFカプセル(日本ポール社)
・10万カット オメガメンブレンミニメイトTFFカプセル(日本ポール社)
2. Ultrafiltration (molecular size selection membrane):
The ultrafiltration apparatus and filtration membrane are as follows.
1) Device name: Liquid pump MODEL7553 (Masterflex)
2) Ultrafiltration membrane
・ Million cut OMEGA Membrane Minimate TFF Capsule (Nippon Pole)
・ 100,000 cuts Omega Membrane Minimate TFF Capsule (Nippon Pole)

シロサケの頭部から分離した鼻軟骨部分を凍結保存しておく。
凍結保存した鼻軟骨を鋭利な刃物で2〜3ミリ角に細切する。30gの細切鼻軟骨に対して、0.01重量%、0.05重量%、0.1重量%、0.5重量%、1.0重量%、2.0重量%および4.0重量%クエン酸水溶液をそれぞれ90ml用いて4℃及び室温(22〜24℃)にて浸漬した。30分後、5時間後、12時間後、24時間後、36時間後、56時間後及び72時間後にそれぞれの浸漬液の上澄みから一部をとりウロン酸の定量(カルバゾール硫酸法)を行いプロテオグリカンの抽出効率を調べた。その結果を図1−1から図1−7に示す。
結果は、図1−1に示すように、クエン酸濃度が0.01重量%であると、初期の抽出効率が悪く、抽出液のゲル化や濁りなどの物性変化もみられた。また、24時間以降は腐敗臭の発生や色調・濁りなど、明らかな物性変化が見られた。
一方、図1−7に示すようにクエン酸濃度が4.0重量%になると、それ以下のクエン酸濃度の場合に比べ明らかに抽出効率が低下した。
なお、低温(4℃)に比べ室温の方が抽出効率良いことがわかる。また、低温と室温では、試料の物性変化に差は見られなかった。
The nasal cartilage portion separated from the head of the chum salmon is stored frozen.
The frozen nasal cartilage is cut into 2 to 3 mm squares with a sharp blade. 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.5 wt%, 1.0 wt%, 2.0 wt% and 4.0 wt% for 30 g of minced nasal cartilage 90 ml of each aqueous citric acid solution was used for immersion at 4 ° C. and room temperature (22-24 ° C.). 30 minutes later, 5 hours later, 12 hours later, 24 hours later, 36 hours later, 56 hours later and 72 hours later, uronic acid was quantified (carbazole sulfate method) by aliquoting the supernatant of each soaking solution and proteoglycan The extraction efficiency of was investigated. The results are shown in FIGS. 1-1 to 1-7.
As shown in FIG. 1-1, when the citric acid concentration was 0.01% by weight, the initial extraction efficiency was poor, and changes in physical properties such as gelation and turbidity of the extract were also observed. In addition, after 24 hours, obvious changes in physical properties such as generation of rot odor, color tone, and turbidity were observed.
On the other hand, as shown in FIG. 1-7, when the citric acid concentration was 4.0% by weight, the extraction efficiency was clearly reduced as compared to the case of citric acid concentration lower than that.
It can be seen that the extraction efficiency is better at room temperature than at low temperature (4 ° C.). Further, there was no difference in physical property change between the low temperature and room temperature.

参考例1Reference example 1

実施例1において、クエン酸溶液の代わりに、4.0重量%酢酸溶液を使用した以外は実施例1と同様に行いプロテオグリカンの抽出効率を調べた。その結果を図2に示す。
クエン酸溶液では、室温での処理が可能であり、0.05重量%という希薄溶液でも4重量%酢酸溶液と同様な抽出率を達成できることが分かる。
In Example 1, proteoglycan extraction efficiency was examined in the same manner as in Example 1 except that a 4.0 wt% acetic acid solution was used instead of the citric acid solution. The result is shown in FIG.
It can be seen that the citric acid solution can be treated at room temperature, and even a dilute solution of 0.05% by weight can achieve the same extraction rate as a 4% by weight acetic acid solution.

実施例1と同様に凍結保存したシロサケの鼻軟骨を細切し、20gの鼻軟骨に対して60mlの0.1重量%クエン酸溶液にて、室温でプロテオグリカンを抽出した。
24時間後ステンスメッシュ(150μm)、濾紙(No.2:孔径は10μm)、濾紙(No.5C:孔径は1μm)さらにガラス繊維濾紙(GB−140:孔径は0.4μm)を通して濾過した後、濾液にポリスチレンビーズ20mlを添加して30分ほど緩やかに攪拌して脂質を吸着させ、ステンレスメッシュ(150μm)にて濾過した。
濾液を分子量100万カットのメンブランを装着した限外濾過器にかけ、巨大プロテオグリカンとその複合物を除去した。次に、濾過された溶液を分子量10万カットのメンブランを装着した限外濾過器にかけて小分子を除いた濃縮液(残留液)5mlを得た。
残留液に食塩飽和エタノール15mlを添加して30分攪拌後、プロテオグリカンを遠心分離機(5分間、1500rpm)にて沈澱分離した。
上澄みを除いた後、エタノール5mlを添加して攪拌、遠心分離機(5分間、1500rpm)にてプロテオグリカンを沈澱させた。この洗浄操作を2回繰り返した。沈澱したプロテオグリカンに50mlの蒸留水を添加して、澄明な溶液を得た。本液を凍結乾燥してプロテオグリカン画分(Lot A)を200mg得た。
図3に、この段階で得られたプロテオグリカン標品のHPLC分析の抽出プロファイルを示す。
The salmon nasal cartilage cryopreserved in the same manner as in Example 1 was minced, and proteoglycan was extracted at room temperature with 60 ml of 0.1 wt% citric acid solution per 20 g of nasal cartilage.
24 hours later, after filtering through stain mesh (150 μm), filter paper (No. 2: pore size is 10 μm), filter paper (No. 5C: pore size is 1 μm) and glass fiber filter paper (GB-140: pore size is 0.4 μm) Then, 20 ml of polystyrene beads were added to the filtrate, and the mixture was gently stirred for about 30 minutes to adsorb the lipid, followed by filtration through a stainless mesh (150 μm).
The filtrate was applied to an ultrafilter equipped with a membrane having a molecular weight of 1 million cut to remove giant proteoglycan and its complex. Next, the filtered solution was applied to an ultrafilter equipped with a membrane having a molecular weight of 100,000 cut to obtain 5 ml of a concentrated liquid (residual liquid) from which small molecules were removed.
After adding 15 ml of salt saturated ethanol to the residual liquid and stirring for 30 minutes, the proteoglycan was separated by precipitation with a centrifuge (5 minutes, 1500 rpm).
After removing the supernatant, 5 ml of ethanol was added, stirred, and proteoglycan was precipitated with a centrifuge (1,500 rpm for 5 minutes). This washing operation was repeated twice. 50 ml of distilled water was added to the precipitated proteoglycan to obtain a clear solution. This solution was lyophilized to obtain 200 mg of proteoglycan fraction (Lot A).
FIG. 3 shows the extraction profile of the HPLC analysis of the proteoglycan sample obtained at this stage.

次に、上記操作を繰り返し、 Lot B〜Dの各ロットを作成した。
この各ロットのプロテオグリカンをDEAEセルロースカラムにかけ0.2〜1.0M NaCl、1.0〜2.0M NaClの濃度勾配による抽出を行った。図4に、各ロットの電気泳動プロファイルを示す。DEAEカラムから得られた単一のピークはコンドロイチン硫酸であり、サケ鼻軟骨由来の精製プロテオグリカンは、コンドロイチン硫酸プロテオグリカンであることが示された。なお、図中、HPはヘパリン、ChSはコンドロイチン硫酸、HSはヘパラン硫酸、HAはヒアルロン酸を表す。
分子量はプルランの分子マーカーを用いて上記HPLCのピークの最高値の保持時間から45万と決定された。
脂質成分はプロテオグリカンをクロロフォルム、メタノール2:1混液にて抽出、分析を行ったが検出できなかった。また、タンパク含量は0.51重量%、コラーゲン含量は0.25重量%であった。
Next, the above operation was repeated to prepare lots B to D.
Each lot of proteoglycan was applied to a DEAE cellulose column, and extraction was performed with a concentration gradient of 0.2 to 1.0 M NaCl and 1.0 to 2.0 M NaCl. FIG. 4 shows the electrophoresis profile of each lot. The single peak obtained from the DEAE column was chondroitin sulfate, and the purified proteoglycan derived from salmon nasal cartilage was shown to be chondroitin sulfate proteoglycan. In the figure, HP represents heparin, ChS represents chondroitin sulfate, HS represents heparan sulfate, and HA represents hyaluronic acid.
The molecular weight was determined to be 450,000 from the maximum retention time of the HPLC peak using pullulan molecular markers.
As for the lipid component, proteoglycan was extracted and analyzed with a mixture of chloroform and methanol 2: 1 but could not be detected. The protein content was 0.51% by weight and the collagen content was 0.25% by weight.

アブラツノザメ乾燥胸ヒレ軟骨50gを粉砕し、500mlの0.1重量%クエン酸を加えて1時間放置した。膨潤したヒレを取出し細切し、先の0.1重量%クエン酸溶液に戻し18時間浸漬、抽出した。
ナイロンメッシュ(150μm)にて濾過後、濾液はNo.2、およびNo.5Cの濾紙、さらにガラス繊維濾紙(GB−140)で濾過し400mlの濾液を得た。濾液を1000kカットの限外濾過にかけ、10mlまでの濃縮後、30mlの蒸留水を加え濃縮した。この操作を3回繰り返し、これを1000k残留液(1)とした。
1000kの濾過液は合わせて回収し450mlとなった。これを100kカットの限外濾過にかけた。約10mlになるまで濃縮し、30mlの蒸留水を加えて濾過する操作を3階繰り返し100k濃縮液30ml(2)を得た。一方、100k濾過液は500ml(3)であった。
次に、先の0.1%クエン酸抽出液の残渣を1%クエン酸550mlで抽出し、0.1%クエン酸による抽出と同様の操作にて1000k残留液25ml(4)、1000k濾過液で100k残留液26ml(5)、そして100k濾過液600ml(6)を得た。
上記(1)〜(6)の画分にそれぞれ3倍量の食塩飽和エタノールを加えて4℃にて24時間静置した。沈殿物を遠心分離(10分間、3000rpm)にて分離し、回収した沈殿を100%エタノールで洗浄後に遠心分離(10分間、3000rpm)した。このエタノールによる洗浄沈澱を3回繰り返した。これらの操作後、沈殿を回収、乾燥して重量を測定した。
その結果、分子量1000k以上のプロテオグリカン385.9mg((1)+(4))、分子量100〜1000kのプロテオグリカン531.7mg((2)+(5))、分子量100k以下の成分20.7mg((3)+(6))を得た。分子量100k以上のプロテオグリカンは合わせて917.6mgであり、50gからの回収率は1.8%であった。
50 g of dried whitefish shark fin cartilage was pulverized, 500 ml of 0.1 wt% citric acid was added, and the mixture was allowed to stand for 1 hour. The swollen fins were taken out, chopped, returned to the 0.1 wt% citric acid solution, and immersed and extracted for 18 hours.
After filtration through a nylon mesh (150 μm), the filtrate was No. 2, and no. Filtration through 5C filter paper and glass fiber filter paper (GB-140) gave 400 ml of filtrate. The filtrate was subjected to ultrafiltration of 1000 k cut, concentrated to 10 ml, and then concentrated by adding 30 ml of distilled water. This operation was repeated 3 times, and this was designated as 1000 k residual liquid (1).
The 1000 k filtrate was collected and collected to 450 ml. This was subjected to 100 k cut ultrafiltration. The operation of concentrating to about 10 ml, adding 30 ml of distilled water and filtering was repeated on the third floor to obtain 30 ml (2) of a 100 k concentrate. On the other hand, the 100 k filtrate was 500 ml (3).
Next, the residue of the previous 0.1% citric acid extract was extracted with 550 ml of 1% citric acid, and 25 ml of 1000 k residual liquid (4) and 1000 k filtrate were extracted in the same manner as the extraction with 0.1% citric acid. Yielded 26 ml (5) of 100k residual liquid and 600 ml (6) of 100k filtrate.
Three times the amount of salt-saturated ethanol was added to the fractions (1) to (6), and the mixture was allowed to stand at 4 ° C. for 24 hours. The precipitate was separated by centrifugation (10 minutes, 3000 rpm), and the collected precipitate was washed with 100% ethanol and then centrifuged (10 minutes, 3000 rpm). This washing and precipitation with ethanol was repeated three times. After these operations, the precipitate was collected, dried and weighed.
As a result, 385.9 mg ((1) + (4)) of proteoglycan having a molecular weight of 1000 k or more, 531.7 mg ((2) + (5)) of proteoglycan having a molecular weight of 100 to 1000 k, and 20.7 mg (( 3) + (6)) was obtained. The total proteoglycan having a molecular weight of 100 k or more was 917.6 mg, and the recovery rate from 50 g was 1.8%.

本発明により、軟骨型プロテオグリカンのより効率で、かつ脂質およびタンパクが狭雑しない、環境に配慮した工業的製造法を提供される。本発明の方法で得られたプロテオグリカンは、健康食品やサプリメント、医薬品および化粧品等の原料として利用することができる。   INDUSTRIAL APPLICABILITY According to the present invention, there is provided an environmentally friendly industrial production method in which cartilage-type proteoglycan is more efficient and lipids and proteins are not congested. The proteoglycan obtained by the method of the present invention can be used as a raw material for health foods, supplements, pharmaceuticals and cosmetics.

Claims (7)

軟骨型プロテオグリカンを含有する魚類試料を、0.05重量%〜2重量%のクエン酸水溶液に浸漬し、プロテオグリカンを抽出してプロテオグリカン抽出液を得る工程、および得られたプロテオグリカン抽出液からプロテオグリカンを回収する工程を含むことを特徴とするプロテオグリカンの製造方法。   A step of immersing a fish sample containing cartilage-type proteoglycan in a 0.05% to 2% by weight citric acid aqueous solution to extract the proteoglycan to obtain a proteoglycan extract, and recovering the proteoglycan from the obtained proteoglycan extract A process for producing a proteoglycan, comprising the step of: 上記浸漬し、抽出する工程を室温にて行う請求項1に記載のプロテオグリカンの製造方法。   The method for producing proteoglycan according to claim 1, wherein the step of immersing and extracting is performed at room temperature. 上記プロテオグリカン抽出液を濾過分離後、濾液を疎水性担体又は疎水性プラスチックビーズに接触させ、脂質を除去する工程を更に含む請求項1又は2に記載のプロテオグリカンの製造方法。   The method for producing a proteoglycan according to claim 1 or 2, further comprising a step of removing the lipid by contacting the filtrate with a hydrophobic carrier or hydrophobic plastic beads after filtering and separating the proteoglycan extract. 上記脂質を除去する工程の後に、プロテオグリカン抽出液を分子サイズ選択メンブランによって分子量100万以下で10万以上のプロテオグリカンを含有するプロテオグリカン抽出液を分離する工程を含む請求項3に記載のプロテオグリカンの製造方法。   The method for producing a proteoglycan according to claim 3, further comprising a step of separating the proteoglycan extract containing a proteoglycan having a molecular weight of 1 million or less and a molecular weight of 100,000 or more after the step of removing the lipid by a molecular size selection membrane. . プロテオグリカン抽出液からプロテオグリカンを回収する工程が、抽出液に食塩飽和エタノールを加えることにより行う工程を含む請求項1から4のいずれか一項に記載のプロテオグリカンの製造方法。 The method for producing a proteoglycan according to any one of claims 1 to 4 , wherein the step of recovering the proteoglycan from the proteoglycan extract includes a step of adding sodium chloride saturated ethanol to the extract. 軟骨型プロテオグリカンを含有する魚類試料が、サケの頭部またはサメのヒレ部である請求項1から5のいずれか一項に記載のプロテオグリカンの製造方法。 The method for producing a proteoglycan according to any one of claims 1 to 5 , wherein the fish sample containing a cartilage-type proteoglycan is a salmon head or a shark fin. 軟骨型プロテオグリカンを含有する魚類試料が、サケ鼻軟骨である請求項1から5のいずれか一項に記載のプロテオグリカンの製造方法。 The method for producing proteoglycan according to any one of claims 1 to 5, wherein the fish sample containing cartilage-type proteoglycan is salmon nasal cartilage.
JP2011104768A 2011-05-09 2011-05-09 Proteoglycan production method Active JP5749067B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011104768A JP5749067B2 (en) 2011-05-09 2011-05-09 Proteoglycan production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011104768A JP5749067B2 (en) 2011-05-09 2011-05-09 Proteoglycan production method

Publications (2)

Publication Number Publication Date
JP2012236776A JP2012236776A (en) 2012-12-06
JP5749067B2 true JP5749067B2 (en) 2015-07-15

Family

ID=47460024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011104768A Active JP5749067B2 (en) 2011-05-09 2011-05-09 Proteoglycan production method

Country Status (1)

Country Link
JP (1) JP5749067B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6688498B2 (en) * 2014-10-16 2020-04-28 地方独立行政法人青森県産業技術センター Degradation method and degradation product of proteoglycan
JP6016878B2 (en) * 2014-12-12 2016-10-26 国立大学法人 和歌山大学 Proteoglycan production method
JP6501350B2 (en) * 2015-03-03 2019-04-17 国立大学法人弘前大学 Method of preparing proteoglycan from animal cartilage
JP6782463B2 (en) * 2016-03-25 2020-11-11 日本薬品株式会社 Fractionation and quantification method of chondroitin sulfate proteoglycan and chondroitin sulfate glycosaminoglycan
JP6874972B2 (en) * 2017-03-10 2021-05-19 一丸ファルコス株式会社 Proteoglycan analysis method
JP6875701B2 (en) * 2017-07-04 2021-05-26 一丸ファルコス株式会社 How to make proteoglycan
JP7295572B2 (en) * 2019-02-08 2023-06-21 一丸ファルコス株式会社 Method for producing proteoglycan
JP7220941B1 (en) * 2021-08-06 2023-02-13 一丸ファルコス株式会社 Method for producing cartilage component mixture containing proteoglycan

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001172296A (en) * 1999-10-07 2001-06-26 Japan Science & Technology Corp Method for purifying cartilage type proteoglycan
JP3731150B2 (en) * 2000-08-22 2006-01-05 株式会社角弘 Purification method of cartilage-type proteoglycan
JP3756838B2 (en) * 2002-04-09 2006-03-15 日本メナード化粧品株式会社 Topical skin preparation

Also Published As

Publication number Publication date
JP2012236776A (en) 2012-12-06

Similar Documents

Publication Publication Date Title
JP5749067B2 (en) Proteoglycan production method
JP5566226B2 (en) Method for producing 11-saccharide sialyl-oligosaccharide peptide
KR102611970B1 (en) Hyaluronic acid purification process
JP4863433B2 (en) Method for obtaining fish scale collagen
EP3412683B1 (en) Methods for extracting keratin proteins
JP6046779B2 (en) Rice protein composition and method for producing the same
US20230111991A1 (en) Methods for isolating compounds
CN104250285A (en) Pseudosciaena crocea flesh antioxidative peptide and preparation method and use thereof
EP3397066B1 (en) Process for separating proteins from biomass materials
Baghdadi et al. Pectin purification from plant materials
JP6368305B2 (en) Purification method of oligosaccharide peptide
JP2010285359A (en) Antifreeze agent derived from plant
JP5813294B2 (en) Glycopeptide derivative and method for producing the same
KR100390529B1 (en) Method of extracting nucleic acid complex material from tuna testes and nucleic acid complex material obtained therefrom
JP5501589B2 (en) Purification method of hyaluronic acid and / or salt thereof
CA3134458C (en) Method for obtaining low-molecular-weight heparins by means of tangential flow filtration
JP5261732B2 (en) Method for producing oligosaccharide containing sialic acid
KR20130086855A (en) Method for production of low melting agarose
JP2012176925A (en) Method for producing proteoglycan
RU2748071C1 (en) Method for obtaining individual fractions of matrix hyaluronate of various molecular weights of high fractional and chemical purity in a single technological cycle
JP2008088314A (en) Method for removing endotoxin
TWI617572B (en) Collagen extraction method
WO2024110444A1 (en) Method for purification of a target product using affinity purification technology
JP2013053095A (en) Method for producing trypsin inhibitor inclusion
JP2019199453A (en) Composite containing caffeoylquinic acid compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150513

R150 Certificate of patent or registration of utility model

Ref document number: 5749067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250