JP5747949B2 - Solar heat and power supply panel - Google Patents

Solar heat and power supply panel Download PDF

Info

Publication number
JP5747949B2
JP5747949B2 JP2013129552A JP2013129552A JP5747949B2 JP 5747949 B2 JP5747949 B2 JP 5747949B2 JP 2013129552 A JP2013129552 A JP 2013129552A JP 2013129552 A JP2013129552 A JP 2013129552A JP 5747949 B2 JP5747949 B2 JP 5747949B2
Authority
JP
Japan
Prior art keywords
heat
solar
power supply
solar cells
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013129552A
Other languages
Japanese (ja)
Other versions
JP2015004469A (en
Inventor
智 赤木
智 赤木
畝崎 史武
史武 畝崎
拓未 西山
拓未 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013129552A priority Critical patent/JP5747949B2/en
Publication of JP2015004469A publication Critical patent/JP2015004469A/en
Application granted granted Critical
Publication of JP5747949B2 publication Critical patent/JP5747949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽光を受光して電気と熱とを取得する機能を備えた太陽光熱電併給パネルに関する。   The present invention relates to a solar heat and power combined panel having a function of receiving sunlight and acquiring electricity and heat.

従来技術として、例えば特開2008−151490号公報に記載されているように、太陽光から電気と熱とを取得する太陽光熱電併給パネルが知られている。太陽光熱電併給パネルは、太陽光を受光して発電する発電部を有し、当該発電部の吸収する太陽熱を主に発電部の背面側に熱媒体を循環させて回収するものである。回収した熱は、空調、給湯等により消費される。熱媒体の循環路は、コストダウンを図るために樹脂を用いて作成することもある。   As a prior art, for example, as described in Japanese Patent Application Laid-Open No. 2008-151490, a solar heat and power combined panel that acquires electricity and heat from sunlight is known. The solar heat and power supply panel has a power generation unit that receives sunlight to generate power, and collects solar heat absorbed by the power generation unit by circulating a heat medium mainly on the back side of the power generation unit. The recovered heat is consumed by air conditioning, hot water supply, and the like. The circulation path of the heat medium may be created using resin in order to reduce the cost.

このような従来の太陽光熱電併給パネルについては、例えば特許文献1の段落0062に、次のように開示されている。「集熱パネル91は、上部プレート92と下部プレート93とを接合した板状の熱コレクタからなり、この上部プレート92および/または下部プレート93には、熱媒体を流通させるための溝94が蛇腹状(メアンダ形状)に形成され、熱媒体の流路を成している。上部プレート92と下部プレート93は、例えば透明な強化プラスチック等から形成されている。」   Such a conventional solar heat and power supply panel is disclosed, for example, in paragraph 0062 of Patent Document 1 as follows. “The heat collecting panel 91 is composed of a plate-shaped heat collector in which an upper plate 92 and a lower plate 93 are joined, and the upper plate 92 and / or the lower plate 93 has a groove 94 for circulating a heat medium. The upper plate 92 and the lower plate 93 are formed of, for example, a transparent reinforced plastic or the like.

特開2008−151490号公報JP 2008-151490 A

しかしながら、樹脂成形物を作成する場合には、成形後の樹脂を金型から容易に分離させるために必要な構造及び形状の制約がある上に、コスト的な要求等を考慮すると、複雑な形状の成形物を最初から一体成形することは困難である。即ち、複雑な構造物の樹脂成形時には、個別に樹脂成形した複数の部品を接着、溶着等の手段により組立てることが多い。この結果、例えば熱媒体の循環路を樹脂形成する場合には、ヘッダ部、継手部等の部品について、部品間に多くの結合部を設ける必要が生じる。このような結合部は、樹脂が連続している他の部位と比較して耐熱性が低いので、高温となる発電部に樹脂部品を接触させる場合には、前記結合部が高温とならないように十分配慮する必要がある。
ところが、特許文献1に記載された従来技術では、発電部のうちの特に高温となる部位に対して、樹脂部品の結合部を離して配置することについて配慮されていないという問題がある。このため、従来技術では、例えばヘッダ部等で樹脂部品の結合部が高温に晒されて劣化し、結合部の剥離により作動不良、故障等が誘発される虞れがある。
However, when creating a resin molded product, there are restrictions on the structure and shape necessary to easily separate the resin after molding from the mold, and in addition to the cost requirements, complicated shapes are required. It is difficult to integrally mold the molded product from the beginning. That is, at the time of resin molding of a complicated structure, a plurality of individual resin molded parts are often assembled by means such as adhesion and welding. As a result, for example, when resin is formed in the circulation path of the heat medium, it is necessary to provide a large number of coupling parts between the parts such as the header part and the joint part. Since such a joint has low heat resistance compared to other parts where the resin is continuous, when the resin component is brought into contact with the power generating part that is at a high temperature, the joint is not to be at a high temperature. Careful consideration is required.
However, in the conventional technique described in Patent Document 1, there is a problem in that no consideration is given to disposing the connecting portion of the resin component apart from a particularly high temperature portion of the power generation portion. For this reason, in the prior art, for example, the joint portion of the resin component is deteriorated by being exposed to high temperature in the header portion or the like, and there is a possibility that operation failure or failure may be induced by peeling of the joint portion.

本発明は、上述のような課題を解決するためになされたもので、発電部から熱を回収する熱回収部として樹脂構造物を用いた場合でも、樹脂構造物の結合部が高温に晒されないように配置し、結合部の信頼性を向上させることが可能な太陽光熱電併給パネルを提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when a resin structure is used as a heat recovery part for recovering heat from the power generation part, the joint part of the resin structure is not exposed to a high temperature. It aims at providing the solar heat / electric power supply panel which can arrange | position so that the reliability of a coupling | bond part can be improved.

本発明に係る太陽光熱電併給パネルは、太陽光を受光して発電する複数の太陽電池セルを有し、該各太陽電池セルが互いに間隔をもって平面状に並べて配置された発電部と、熱媒体の流路が内部に設けられた中空の樹脂構造物であって、複数の樹脂部品を結合することにより形成され、発電部の背面に沿って配置された熱回収部と、を備え、熱回収部を構成する複数の樹脂部品の結合部は、各太陽電池セルが配置された平面を垂直方向からみた平面視において、該各太陽電池セルの間の間隔部分に配置する構成としている。   The solar heat and power combined panel according to the present invention has a plurality of solar cells that receive sunlight to generate power, and each of the solar cells is arranged in a plane with a space therebetween, and a heat medium A heat-recovering unit that is formed by joining a plurality of resin parts and is disposed along the back surface of the power generation unit. The connecting portions of the plurality of resin parts constituting the portion are arranged at intervals between the solar cells in a plan view when the plane on which the solar cells are arranged is viewed from the vertical direction.

本発明によれば、樹脂部品同士の結合部を、太陽電池セルのうち最も高温となる背面の中心部から離すことができ、結合部を高温から保護することができる。従って、熱回収部として樹脂構造物を用いた場合でも、その結合部が高温に晒されないように配置し、信頼性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the coupling | bond part of resin components can be separated from the center part of the back surface used as the highest temperature among photovoltaic cells, and a coupling | bond part can be protected from high temperature. Therefore, even when a resin structure is used as the heat recovery part, the connection part can be arranged so as not to be exposed to high temperature, and the reliability can be improved.

本発明の実施の形態1による太陽光熱電併給パネルを示す断面図である。It is sectional drawing which shows the solar heat / electric power supply panel by Embodiment 1 of this invention. 本発明の実施の形態1において、太陽光熱電併給パネルの熱回収部を示す断面図である。In Embodiment 1 of this invention, it is sectional drawing which shows the heat recovery part of a solar heat and power supply panel. 本発明の実施の形態1において、熱回収部を組立てる前の分解図、及び各樹脂部品の断面図を例示したものである。In Embodiment 1 of this invention, the exploded view before assembling a heat recovery part and sectional drawing of each resin component are illustrated. 本発明の実施の形態1において、太陽光熱電併給パネルの縦断面、太陽電池セルの配置及び発電部背面の温度分布を示す説明図である。In Embodiment 1 of this invention, it is explanatory drawing which shows the longitudinal cross-section of a solar heat and power supply panel, arrangement | positioning of a photovoltaic cell, and temperature distribution of the electric power generation part back surface. 本発明の実施の形態1において、太陽電池セルと樹脂部品の結合部との位置関係を示す説明図である。In Embodiment 1 of this invention, it is explanatory drawing which shows the positional relationship of the photovoltaic cell and the coupling | bond part of a resin component. 本発明の実施の形態2において、太陽光熱電併給パネルの熱回収部を示す断面図及び分解図である。In Embodiment 2 of this invention, it is sectional drawing and the exploded view which show the heat recovery part of a solar heat and power supply panel. 本発明の実施の形態2において、太陽電池セルと樹脂部品の結合部との位置関係を示す説明図である。In Embodiment 2 of this invention, it is explanatory drawing which shows the positional relationship of the photovoltaic cell and the coupling | bond part of a resin component. 本発明の変形例による太陽光熱電併給パネルの熱回収部を示す断面図及び分解図である。It is sectional drawing and the exploded view which show the heat recovery part of the solar heat and power combined supply panel by the modification of this invention.

実施の形態1.
以下、図1乃至図5を参照して、本発明の実施の形態1について説明する。なお、本明細書で使用する各図においては、共通する要素に同一の符号を付し、重複する説明を省略するものとする。図1は、本発明の実施の形態1による太陽光熱電併給パネルを示す断面図である。本実施の形態の太陽光熱電併給パネルは、透過層1、上部封止層2、発電層3、下部封止層4及び絶縁層5を表面側から背面側に向けて(上部側から下部側に向けて)順次積層することにより構成されている。また、太陽光熱電併給パネルは、絶縁層5の背面側に面接触した状態で取付けられた熱回収部6を備えている。以下、これらの構成要素について説明する。
Embodiment 1 FIG.
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. In each drawing used in this specification, common elements are denoted by the same reference numerals, and redundant description is omitted. FIG. 1 is a cross-sectional view showing a solar heat and power combined panel according to Embodiment 1 of the present invention. The solar heat and power combined panel of the present embodiment has a transmission layer 1, an upper sealing layer 2, a power generation layer 3, a lower sealing layer 4 and an insulating layer 5 facing from the front side to the back side (from the upper side to the lower side). (Toward) are sequentially stacked. Moreover, the solar heat and power supply panel includes a heat recovery unit 6 attached in a state of surface contact with the back side of the insulating layer 5. Hereinafter, these components will be described.

透過層1は、水分、加重、漏電等から発電層3を保護するための透明な層であり、例えばガラスのように剛性と光透過性を有する物質により構成されている。上部封止層2は、水分、漏電等から発電層3を保護すると共に、透過層1と発電層3との間の熱応力を吸収する透明な層であり、例えばEVAのように透明な樹脂系の弾性体により構成されている。発電層3は、太陽光を受光して発電するもので、複数の太陽電池セル3Aを平板状に並べることにより構成されている。具体例を挙げると、発電層3の各太陽電池セル3Aは、例えば四角形のタイル状に形成され、発電層3を含む平面上で互いに直交する2方向に沿って格子状に並べられている。より詳しく述べると、各太陽電池セル3Aは、予め設定された寸法の間隔をもって平面状に並べて配置されている。   The transmission layer 1 is a transparent layer for protecting the power generation layer 3 from moisture, weight, leakage, etc., and is made of a material having rigidity and light transmission, such as glass. The upper sealing layer 2 is a transparent layer that protects the power generation layer 3 from moisture, electric leakage, and the like and absorbs thermal stress between the transmission layer 1 and the power generation layer 3. For example, a transparent resin such as EVA It is composed of an elastic body. The power generation layer 3 receives sunlight and generates power, and is configured by arranging a plurality of solar cells 3A in a flat plate shape. As a specific example, the solar cells 3A of the power generation layer 3 are formed, for example, in a rectangular tile shape, and are arranged in a lattice shape along two directions orthogonal to each other on a plane including the power generation layer 3. More specifically, each of the solar cells 3A is arranged in a plane with a predetermined size interval.

下部封止層4は、水分、漏電から発電層3を保護すると共に、発電層3絶縁層5との間の熱応力を吸収するものである。下部封止層4は、例えばEVAのような樹脂系の弾性体により構成されているが、透明性は必ずしも必要ではない。絶縁層5は、下部封止層4とほぼ同様に、発電層3を水分、漏電から保護するものである。なお、下部封止層4及び絶縁層5の機能は1つの層により代用してもよい。以下の説明では、これらの透過層1、上部封止層2、発電層3、下部封止層4及び絶縁層5をまとめて、「発電部」と定義するものとする。発電部は、熱を回収せずに太陽光発電だけを実行する既存の太陽光パネルと同様の構成を有しており、一体で形成する構成としてもよい。   The lower sealing layer 4 protects the power generation layer 3 from moisture and electric leakage and absorbs thermal stress between the power generation layer 3 and the insulating layer 5. The lower sealing layer 4 is made of, for example, a resin-based elastic body such as EVA, but transparency is not always necessary. The insulating layer 5 protects the power generation layer 3 from moisture and electric leakage in substantially the same manner as the lower sealing layer 4. The functions of the lower sealing layer 4 and the insulating layer 5 may be substituted by one layer. In the following description, the transmission layer 1, the upper sealing layer 2, the power generation layer 3, the lower sealing layer 4, and the insulating layer 5 are collectively defined as a “power generation unit”. The power generation unit has a configuration similar to that of an existing solar panel that performs only solar power generation without recovering heat, and may be configured to be integrally formed.

熱回収部6は、発電部により太陽光発電が行われたときに発生する熱を回収するための機構であり、コストダウン等を目的として樹脂材料により形成されている。熱回収部6は、発電部の背面に沿って略平板状に広がる中空の樹脂構造物として形成され、各太陽電池セル3Aから熱が効率よく到達するように構成されている。また、熱回収部6の内部には、例えば水、ブライン等の熱媒体が流通する流路が設けられており、この流路の端部には、熱媒体が出入りする流入口6A及び流出口6Bが設けられている。   The heat recovery unit 6 is a mechanism for recovering heat generated when solar power generation is performed by the power generation unit, and is formed of a resin material for the purpose of cost reduction or the like. The heat recovery unit 6 is formed as a hollow resin structure that extends in a substantially flat plate shape along the back surface of the power generation unit, and is configured to efficiently receive heat from each of the solar cells 3A. In addition, a flow path through which a heat medium such as water and brine flows is provided inside the heat recovery section 6, and an inlet 6A and an outlet through which the heat medium enters and exits are provided at the ends of the flow path. 6B is provided.

熱回収部6内の流路は、後述のように複雑な形状を有しているので、熱回収部6を単一の部品として樹脂成形するのは難しい。このため、熱回収部6は、複数の樹脂部品を接着、溶着等の手段によって結合することにより組立てられている。また、複数の太陽光熱電併給パネルを並べて組合わせる場合には、例えば隣接するパネル同士の流入口6Aと流出口6Bとが接続され、複数のパネルの熱回収部6が全体として熱媒体の循環流路を形成する。また、この循環流路の両端には、例えば空調機器、給湯機器等の熱需要機器に対して各パネルから回収した熱を供給する配管が接続される。   Since the flow path in the heat recovery unit 6 has a complicated shape as described later, it is difficult to resin-mold the heat recovery unit 6 as a single component. For this reason, the heat recovery unit 6 is assembled by joining a plurality of resin parts by means such as adhesion and welding. When a plurality of solar heat and power supply panels are combined side by side, for example, the inlet 6A and the outlet 6B of adjacent panels are connected, and the heat recovery units 6 of the plurality of panels circulate the heat medium as a whole. A flow path is formed. Moreover, the piping which supplies the heat | fever collect | recovered from each panel with respect to heat demand apparatuses, such as an air conditioning apparatus and a hot water supply apparatus, for example is connected to the both ends of this circulation flow path.

発電部の背面と熱回収部6との間には、熱応力を吸収する機能と接触熱抵抗を低減する機能とを有する弾性層を介在させてもよい。この弾性層には、例えばEVAやEPDMのような樹脂材料を用いてもよい。また、弾性層は、必ずしも透明である必要はないが、透明であれば、弾性層の外側から内側を点検することができるので、メンテナンス性が向上する。また、発電部の背面と熱回収部6の表面とが十分に平坦で両者の密着が容易である場合、及び、両者の接触面に作用する熱応力が軽微であると判断される場合には、弾性層を省略する構成としてもよい。   An elastic layer having a function of absorbing thermal stress and a function of reducing contact thermal resistance may be interposed between the back surface of the power generation unit and the heat recovery unit 6. For this elastic layer, for example, a resin material such as EVA or EPDM may be used. In addition, the elastic layer is not necessarily transparent, but if it is transparent, the inside can be inspected from the outside of the elastic layer, so that the maintainability is improved. Moreover, when it is judged that the back surface of the power generation unit and the surface of the heat recovery unit 6 are sufficiently flat and easy to adhere to each other, and that the thermal stress acting on the contact surface between the two is slight. The elastic layer may be omitted.

次に、上記太陽光熱電併給パネルの作動について説明する。まず、日中には、発電層3の太陽電池セル3Aが太陽光を受けて発電を行う。また、太陽電池セル3Aは、太陽光エネルギの大部分を吸収することにより、セルの温度が上昇する。このため、太陽光熱電併給パネルの作動時には、各太陽電池セル3Aがパネル中で最も高温の部位となり、この部位から周囲の物質に向けて熱が伝導、拡散していく。   Next, the operation of the solar heat and power combined panel will be described. First, during the daytime, the solar cells 3A of the power generation layer 3 receive sunlight to generate power. In addition, the solar cell 3A absorbs most of the solar energy, so that the temperature of the cell rises. For this reason, at the time of the operation of the solar heat and power supply panel, each solar cell 3A becomes the hottest portion in the panel, and heat is conducted and diffused from this portion toward the surrounding material.

そして、各太陽電池セル3Aから放出された熱は、熱回収部6内を流れる熱媒体により回収される。熱回収部6により回収された熱は、即時の熱需要があれば直接消費されることもあるが、一般的には貯湯タンク等に一旦蓄えられる。一方、各太陽電池セル3Aは、熱回収部6から熱を回収されることにより、セルの温度が低下して冷却されることになる。これにより、各太陽電池セル3Aの発電効率が向上し、発電層3の発電量が増加する。   And the heat | fever discharge | released from each photovoltaic cell 3A is collect | recovered with the heat medium which flows through the inside of the heat recovery part 6. FIG. The heat recovered by the heat recovery unit 6 may be directly consumed if there is an immediate heat demand, but is generally temporarily stored in a hot water storage tank or the like. On the other hand, each solar cell 3 </ b> A is cooled by recovering heat from the heat recovery unit 6, so that the temperature of the cell decreases. Thereby, the power generation efficiency of each photovoltaic cell 3A improves, and the power generation amount of the power generation layer 3 increases.

次に、図2及び図3を参照して、熱回収部6の構成について説明する。図2は、本発明の実施の形態1において、太陽光熱電併給パネルの熱回収部を示す断面図である。より詳しく述べると、図2(a)は、発電層3等と平行な平面に沿って熱回収部6を破断した横断面図であり、図2(b)は、熱回収部6を図2(a)中のA−A′断面で破断した縦断面図である。また、図3は、熱回収部6を組立てる前の分解図、及び各樹脂部品の断面図を例示したものである。   Next, with reference to FIG.2 and FIG.3, the structure of the heat recovery part 6 is demonstrated. FIG. 2 is a cross-sectional view showing a heat recovery part of the solar heat and power supply panel in Embodiment 1 of the present invention. More specifically, FIG. 2 (a) is a cross-sectional view in which the heat recovery unit 6 is broken along a plane parallel to the power generation layer 3 and the like, and FIG. 2 (b) shows the heat recovery unit 6 in FIG. It is the longitudinal cross-sectional view fractured | ruptured by the AA 'cross section in (a). FIG. 3 illustrates an exploded view before assembling the heat recovery unit 6 and a cross-sectional view of each resin component.

図2及び図3に示すように、熱回収部6は、例えば多穴管61、第1ヘッダ部62及び第2ヘッダ部63からなる3種類の樹脂部品61,62,63を、接着、溶着等の手段によって接合することにより形成されている。上記樹脂部品61,62,63は、それぞれ個別に樹脂成形された後に、図2中に示す点線の位置で結合され、熱回収部6として組立てられている。なお、図1では、熱回収部6の流入口6Aと流出口6Bを第1ヘッダ部62と第2ヘッダ部63とに分けて配置する構成を例示したが、図2以降では、流入口6A及び流出口6Bを第2ヘッダ部63に一緒に配置した場合を例示している。熱回収部6内の流路は、図2に示すように、クランク状に屈曲して細長く延びている。2個のヘッダ部62,63は、多穴管61の端部で流路の集約、分岐、連結を行うために必要となる。   As shown in FIGS. 2 and 3, the heat recovery unit 6 bonds, for example, three types of resin parts 61, 62, and 63 including a multi-hole tube 61, a first header unit 62, and a second header unit 63. It is formed by joining by such means. The resin parts 61, 62, and 63 are individually molded with resin and then joined at the position indicated by the dotted line in FIG. 2 and assembled as a heat recovery unit 6. 1 illustrates the configuration in which the inlet 6A and the outlet 6B of the heat recovery unit 6 are divided into the first header 62 and the second header 63, but in FIG. And the case where the outflow port 6B is arrange | positioned together in the 2nd header part 63 is illustrated. As shown in FIG. 2, the flow path in the heat recovery unit 6 is bent in a crank shape and is elongated. The two header parts 62 and 63 are necessary for collecting, branching, and connecting the flow paths at the end of the multi-hole pipe 61.

詳しく述べると、多穴管61の内部には、互いに並列に伸びる複数の流路が形成されている。第1ヘッダ部62は、各流路のうち少なくとも一部を長さ方向の一側で互いに接続するために、該各流路の一側となる位置(結合面P)で多穴管61に結合されている。第2ヘッダ部63は、各流路のうち少なくとも一部を長さ方向の他側で互いに接続するために、該各流路の他側となる位置(結合面P′)で多穴管61に結合されている。   More specifically, a plurality of flow paths extending in parallel with each other are formed inside the multi-hole tube 61. The first header portion 62 is connected to the multi-hole pipe 61 at a position (coupling surface P) on one side of each flow path in order to connect at least a part of each flow path to one side in the length direction. Are combined. The second header portion 63 is connected to the multi-hole pipe 61 at a position (coupling surface P ′) on the other side of each flow path in order to connect at least some of the flow paths to each other on the other side in the length direction. Is bound to.

次に、図4を参照して、発電部の背面における温度分布について説明する。図4は、本発明の実施の形態1において、太陽光熱電併給パネルの縦断面、太陽電池セルの配置及び発電部背面の温度分布を示す説明図である。この図において、図4(a)は、太陽光熱電併給パネルを図2(a)中のA−A′断面で破断したものである。また、図4(b)は、太陽光熱電併給パネルを図4(a)中のF−F′断面で破断した横断面図であり、一定の間隔をもって格子状に並べられた太陽電池セル3Aの配置を示している。一方、図4(c)は、発電部背面の温度分布と太陽電池セル3Aとの位置関係を示している。   Next, with reference to FIG. 4, the temperature distribution on the back surface of the power generation unit will be described. FIG. 4 is an explanatory diagram illustrating a longitudinal section of the solar heat and power combined panel, the arrangement of solar cells, and the temperature distribution on the back of the power generation unit in the first embodiment of the present invention. In this figure, FIG. 4 (a) is a solar heat and power supply panel broken along the line AA 'in FIG. 2 (a). FIG. 4B is a cross-sectional view of the solar heat and power supply panel cut along the line FF ′ in FIG. 4A, and the solar cells 3A arranged in a grid at regular intervals. Shows the arrangement. On the other hand, FIG.4 (c) has shown the positional relationship of the temperature distribution of the electric power generation part back surface, and the photovoltaic cell 3A.

前述したように、太陽光エネルギの大部分は太陽電池セル3Aにより一旦吸収されるので、発電部は、各太陽電池セル3Aが配置された部位が最も高温となる。この結果、熱回収部6の温度は、図4(c)に示すように、各太陽電池セル3Aの背面の中心に重なる位置で最も高温となり、当該背面中央と重なる位置から離れるほど温度が低下する。このことから判るように、樹脂部品同士の結合部を高温から保護するためには、発電部の背面側において、当該結合部を太陽電池セル3Aの背面の中心から水平方向に出来るだけ離して配置する必要がある。なお、水平方向とは、太陽光熱電併給パネルを含む平面が広がる方向を意味している。   As described above, most of the solar energy is once absorbed by the solar cells 3A, and therefore, the power generation unit has the highest temperature at the site where each solar cell 3A is disposed. As a result, as shown in FIG. 4C, the temperature of the heat recovery unit 6 is highest at a position overlapping the center of the back surface of each solar cell 3A, and the temperature decreases as the distance from the position overlapping the center of the back surface increases. To do. As can be seen from this, in order to protect the joint part between the resin parts from high temperature, the joint part is arranged as far as possible in the horizontal direction from the center of the back surface of the solar battery cell 3A on the back side of the power generation part. There is a need to. In addition, the horizontal direction means the direction where the plane including the solar heat and power supply panel expands.

上記考察に基いて、本実施の形態では、熱回収部6の樹脂部品同士の結合部を以下のように構成する。図5は、本発明の実施の形態1において、太陽電池セルと樹脂部品の結合部との位置関係を示す説明図である。この図の上段、中段は、それぞれ図4(a),図4(b)とほぼ等しい図面を示している。また、図5の下段は、図5(a)中のG−G′断面で破断した熱回収部6の横断面図である。本実施の形態では、第1ヘッダ部62と多穴管61とを接着または溶着によって結合面Pの位置で結合し、第2ヘッダ部63と多穴管61とを結合面P′の位置で結合している。   Based on the above consideration, in the present embodiment, the connecting portion between the resin parts of the heat recovery portion 6 is configured as follows. FIG. 5 is an explanatory diagram showing a positional relationship between the solar battery cell and the coupling part of the resin component in the first embodiment of the present invention. The upper and middle stages of this figure show drawings that are substantially the same as FIGS. 4 (a) and 4 (b), respectively. Further, the lower part of FIG. 5 is a cross-sectional view of the heat recovery section 6 broken at the GG ′ section in FIG. In the present embodiment, the first header part 62 and the multi-hole pipe 61 are joined at the position of the joint surface P by bonding or welding, and the second header part 63 and the multi-hole pipe 61 are joined at the position of the joint face P ′. Are connected.

そして、熱回収部6の結合面P,P′は、太陽電池セル3Aの間に確保された間隔の背面に配置されている。換言すれば、結合面P,P′は、各太陽電池セル3Aが配置された平面を垂直方向からみた平面視において、太陽電池セル3Aと重複しない位置、即ち、各太陽電池セル3Aの間の間隔部分に配置されている。   The coupling surfaces P and P ′ of the heat recovery unit 6 are arranged on the back surface of the space secured between the solar cells 3A. In other words, the coupling surfaces P and P ′ are positions that do not overlap with the solar cells 3A in a plan view of the plane in which the solar cells 3A are arranged from the vertical direction, that is, between the solar cells 3A. It is arranged at the interval part.

このような配置を採用することにより、樹脂部品同士の結合部である結合面P,P′を、太陽電池セル3Aのうち最も高温となる背面の中心部から離すことができ、結合面P,P′を高温から保護することができる。従って、本実施の形態によれば、熱回収部6として樹脂構造物を用いた場合でも、その結合面P,P′が高温に晒されないように配置し、信頼性を向上させることができる。しかも、接着または溶着等の低コストな結合方法を用いながらも、結合部の信頼性を長期間にわたって維持することができる。   By adopting such an arrangement, the coupling surfaces P and P ′, which are the coupling portions of the resin parts, can be separated from the center portion of the back surface of the solar battery cell 3A where the temperature is the highest. P ′ can be protected from high temperatures. Therefore, according to the present embodiment, even when a resin structure is used as the heat recovery unit 6, the bonding surfaces P and P 'can be arranged so as not to be exposed to high temperatures, and the reliability can be improved. In addition, the reliability of the joint can be maintained over a long period of time while using a low-cost joining method such as adhesion or welding.

実施の形態2.
次に、図6乃至図8を参照して、本発明の実施の形態2について説明する。本実施の形態の特徴は、熱回収部に存在する結合部の配置が実施の形態1と異なる場合において、各結合部に熱が伝わりにくい構成としたことにある。図6は、本発明の実施の形態2において、太陽光熱電併給パネルの熱回収部を示す断面図及び分解図である。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described with reference to FIGS. The feature of this embodiment is that, when the arrangement of the coupling portions present in the heat recovery unit is different from that of the first embodiment, the configuration is such that heat is not easily transmitted to each coupling unit. FIG. 6 is a cross-sectional view and an exploded view showing a heat recovery part of a solar heat and power supply panel in Embodiment 2 of the present invention.

図6に示すように、本実施の形態の多穴管61は、予め樹脂成形した複数の小型多穴管61Aを接着または溶着によって結合することにより形成されている。各小型多穴管61Aの内部には、それぞれ少なくとも1つの流路が形成されている。そして、複数の小型多穴管61Aは、互いに並列に並べた状態で結合されている。また、ヘッダ部62,63も、それぞれ複数の分割部品62A,63Aを結合することにより形成されている。   As shown in FIG. 6, the multi-hole pipe 61 of the present embodiment is formed by joining a plurality of small multi-hole pipes 61A preliminarily molded by bonding or welding. At least one flow path is formed in each small multi-hole tube 61A. The plurality of small multi-hole tubes 61A are coupled in a state of being arranged in parallel with each other. The header portions 62 and 63 are also formed by joining a plurality of divided parts 62A and 63A, respectively.

図7は、本発明の実施の形態2において、太陽電池セルと樹脂部品の結合部との位置関係を示す説明図である。この図に示すように、本実施の形態では、多穴管61を構成する各小型多穴管61Aの結合面P1,P1′も、平面視において各太陽電池セル3Aの間に配置する構成としている。この構成によれば、並列に並べた複数の小型多穴管61Aを結合して多穴管61を形成する場合でも、前記実施の形態1と同様の効果を得ることができる。即ち、低コストな押し出し成形により多数の流路を並列に形成しつつ、熱回収部6の信頼性を向上させることができる。   FIG. 7 is an explanatory diagram showing a positional relationship between the solar battery cell and the joint portion of the resin component in the second embodiment of the present invention. As shown in this figure, in the present embodiment, the coupling surfaces P1, P1 ′ of the small multi-hole tubes 61A constituting the multi-hole tube 61 are also arranged between the solar cells 3A in plan view. Yes. According to this configuration, even when a plurality of small multi-hole pipes 61A arranged in parallel are combined to form the multi-hole pipe 61, the same effect as in the first embodiment can be obtained. That is, the reliability of the heat recovery unit 6 can be improved while a large number of flow paths are formed in parallel by low-cost extrusion molding.

また、前記実施の形態1,2では、多穴管61を低コストな押し出し成形により形成する場合を例示したが、図8に示す変形例のように、多穴管61は、溝付板70と、平板71とを結合する方法により形成してもよい。また、溝付板70は、厚肉平板の削り加工によって形成してもよいし、真空成形によって形成してもよい。なお、図8は、本発明の変形例による太陽光熱電併給パネルの熱回収部を示す断面図及び分解図である。   In the first and second embodiments, the case where the multi-hole tube 61 is formed by low-cost extrusion molding is illustrated. However, as in the modification shown in FIG. And a method of joining the flat plate 71 to each other. Further, the grooved plate 70 may be formed by machining a thick flat plate or by vacuum forming. FIG. 8 is a cross-sectional view and an exploded view showing a heat recovery part of a solar heat and power supply panel according to a modification of the present invention.

1 透過層,2 上部封止層,3 発電層,3A 太陽電池セル,4 下部封止層,5 絶縁層,6 熱回収部,6A 流入口,6B 流出口,多穴管61(樹脂部品),61A 小型多穴管,62 第1ヘッダ部(樹脂部品),63 第2ヘッダ部(樹脂部品),P,P′,P1,P1′ 結合面(結合部) DESCRIPTION OF SYMBOLS 1 Transmission layer, 2 Upper sealing layer, 3 Electric power generation layer, 3A Solar cell, 4 Lower sealing layer, 5 Insulation layer, 6 Heat recovery part, 6A inlet, 6B outlet, Multi-hole pipe 61 (resin part) , 61A Small multi-hole tube, 62 1st header part (resin part), 63 2nd header part (resin part), P, P ', P1, P1' Joint surface (joint part)

Claims (4)

太陽光を受光して発電する複数の太陽電池セルを有し、該各太陽電池セルが互いに間隔をもって平面状に並べて配置された発電部と、
熱媒体の流路が内部に設けられた中空の樹脂構造物であって、複数の樹脂部品を結合することにより形成され、前記発電部の背面に沿って配置された熱回収部と、を備え、
前記熱回収部を構成する複数の樹脂部品の結合部は、前記各太陽電池セルが配置された平面を垂直方向からみた平面視において、該各太陽電池セルの間の間隔部分に配置する構成とした太陽光熱電併給パネル。
A plurality of solar cells that receive sunlight to generate power, and each of the solar cells is arranged in a plane with an interval between each other,
A heat-recovering unit, which is a hollow resin structure in which a flow path of a heat medium is provided, and is formed by joining a plurality of resin parts, and is disposed along the back surface of the power generation unit. ,
The connecting part of the plurality of resin parts constituting the heat recovery part is arranged in a space portion between the solar cells in a plan view of the plane where the solar cells are arranged as viewed from the vertical direction. Solar combined heat and power panel.
前記熱回収部を構成する前記樹脂部品は、
互いに並列に伸びる複数の流路が形成された多穴管と、
前記各流路のうち少なくとも一部を長さ方向の一側で互いに接続するために、該各流路の一側となる位置で前記多穴管に結合された第1ヘッダ部と、
前記各流路のうち少なくとも一部を長さ方向の他側で互いに接続するために、該各流路の他側となる位置で前記多穴管に結合された第2ヘッダ部と、を備え、
前記第1ヘッダ部と前記多穴管との結合部及び前記第2ヘッダ部と前記多穴管との結合部を前記各太陽電池セルの間の間隔部分に配置する構成としてなる請求項1に記載の太陽光熱電併給パネル。
The resin component constituting the heat recovery unit is:
A multi-hole tube in which a plurality of flow paths extending in parallel with each other are formed;
A first header portion coupled to the multi-hole pipe at a position on one side of each flow path in order to connect at least some of the flow paths to each other on one side in the length direction;
A second header portion coupled to the multi-hole pipe at a position on the other side of each flow path in order to connect at least some of the flow paths to each other on the other side in the length direction; ,
The configuration is such that the coupling portion between the first header portion and the multi-hole tube and the coupling portion between the second header portion and the multi-hole tube are arranged in a space portion between the solar cells. The solar heat and power supply panel described.
前記多穴管は、それぞれ前記流路が形成された複数の小型多穴管を並列に並べて結合することにより形成し、前記各小型多穴管の結合部を前記各太陽電池セルの間の間隔部分に配置する構成としてなる請求項2に記載の太陽光熱電併給パネル。 The multi-hole tube is formed by juxtaposing and connecting a plurality of small multi-hole tubes each having the flow path formed therein in parallel, and a connecting portion of the small multi-hole tubes is spaced between the solar cells. The solar heat and power supply panel according to claim 2 , wherein the solar heat and power supply panel is configured to be arranged in a portion. 前記結合部は接着または溶着により形成してなる請求項1乃至3のうち何れか1項に記載の太陽光熱電併給パネル。   The solar heat and power supply panel according to any one of claims 1 to 3, wherein the coupling portion is formed by adhesion or welding.
JP2013129552A 2013-06-20 2013-06-20 Solar heat and power supply panel Expired - Fee Related JP5747949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013129552A JP5747949B2 (en) 2013-06-20 2013-06-20 Solar heat and power supply panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013129552A JP5747949B2 (en) 2013-06-20 2013-06-20 Solar heat and power supply panel

Publications (2)

Publication Number Publication Date
JP2015004469A JP2015004469A (en) 2015-01-08
JP5747949B2 true JP5747949B2 (en) 2015-07-15

Family

ID=52300522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013129552A Expired - Fee Related JP5747949B2 (en) 2013-06-20 2013-06-20 Solar heat and power supply panel

Country Status (1)

Country Link
JP (1) JP5747949B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017015357A (en) * 2015-07-06 2017-01-19 株式会社システック Photovoltaic power generation/solar heat collection panel hybrid system
JP7211618B2 (en) * 2018-11-01 2023-01-24 俊明 前田 Heat shield and heat exchange device
WO2023021851A1 (en) * 2021-08-17 2023-02-23 株式会社神戸製鋼所 Heat-collecting member and agricultural house

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003303989A (en) * 2002-04-10 2003-10-24 Shimizu Corp Solar battery module
JP2003303990A (en) * 2002-04-10 2003-10-24 Shimizu Corp Solar battery module
JP2008151490A (en) * 2006-12-20 2008-07-03 Electric Power Dev Co Ltd Photovoltaic power generation heat collection unit
US20080302405A1 (en) * 2007-06-05 2008-12-11 Michael Intrieri Supplemental solar energy collector
US9103564B2 (en) * 2009-10-16 2015-08-11 Soleeva Corporation Solar energy converter and method for converting solar energy
JP4881996B2 (en) * 2009-12-02 2012-02-22 リンナイ株式会社 Solar power collection unit

Also Published As

Publication number Publication date
JP2015004469A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
WO2016133003A1 (en) Hybrid solar cell module
CN104064616B (en) Solar photovoltaic module
JP5589201B2 (en) Solar cogeneration module with heat sink
JP5747949B2 (en) Solar heat and power supply panel
US20160268967A1 (en) Modular unit for attachment to solar panel
US10804841B2 (en) Solar thermal energy collector
KR101803832B1 (en) Liquid Type Photohvoltaic-thermal Collector
KR20170141185A (en) Hybrid solar cell module
KR101573575B1 (en) Battery module
CN102563891A (en) Capillary tube radiation cooling type photovoltaic electricity and heat combined using device
KR102168493B1 (en) Panel for Photovoltaic-Thermal Power Generation
KR20140036083A (en) Photovoltaic module having double glazing insulation glass
ES2772308B2 (en) HYBRID SOLAR PANEL FOR THE PRODUCTION OF ELECTRIC AND THERMAL ENERGY
JP6552893B2 (en) Hybrid solar cell module
KR20070061965A (en) Solar heating collector
JP5699998B2 (en) Photovoltaic heat and power supply panel and mounting method thereof
JP2002310516A (en) Solar heat collecting apparatus and light/heat hybrid module
JP2001152631A (en) Solar heat hybrid panel and building provided therewith
JP2014190669A (en) Solar light/heat hybrid panel and solar system
CN1716642B (en) Mixed photoelectric light and heat collector
CN206004616U (en) Photovoltaic and photothermal integral assembly
CN102544178A (en) Photovoltaic power generation and heat collection device
JP6190878B2 (en) Solar array field and vacuum solar panel
JP2000179949A (en) Solar energy utilizing apparatus
JP2017163662A (en) Photothermal hybrid panel and photothermal hybrid system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees