JP5747654B2 - Water pressure measuring device, depth measuring device and penetration probe - Google Patents

Water pressure measuring device, depth measuring device and penetration probe Download PDF

Info

Publication number
JP5747654B2
JP5747654B2 JP2011114895A JP2011114895A JP5747654B2 JP 5747654 B2 JP5747654 B2 JP 5747654B2 JP 2011114895 A JP2011114895 A JP 2011114895A JP 2011114895 A JP2011114895 A JP 2011114895A JP 5747654 B2 JP5747654 B2 JP 5747654B2
Authority
JP
Japan
Prior art keywords
pressure
water pressure
depth
water
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011114895A
Other languages
Japanese (ja)
Other versions
JP2012242328A (en
Inventor
西尾 伸也
伸也 西尾
安部 透
透 安部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2011114895A priority Critical patent/JP5747654B2/en
Publication of JP2012242328A publication Critical patent/JP2012242328A/en
Application granted granted Critical
Publication of JP5747654B2 publication Critical patent/JP5747654B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Description

本発明は、大水深域で用いるのに適した水圧計測装置、深度計測装置および貫入プローブに関するものである。   The present invention relates to a water pressure measurement device, a depth measurement device, and an intrusion probe that are suitable for use in deep water.

近年、メタンハイドレートは、石油・天然ガスに代わる次世代資源として脚光を浴びている。日本周辺海域においても、日本の天然ガスの年間消費量の100倍のメタンハイドレートが賦存しており、それを安全にしかも経済的に産出する技術の開発が求められている。その中でも、特にメタンハイドレートおよびメタンハイドレート堆積地盤の物性把握は重要課題として位置付けられている。   In recent years, methane hydrate has been spotlighted as a next-generation resource that can replace oil and natural gas. Even in the sea area around Japan, methane hydrate that is 100 times the annual consumption of natural gas in Japan exists, and the development of technology to produce it safely and economically is required. Among them, grasping the physical properties of methane hydrate and methane hydrate sedimentation ground is particularly important.

通常、試料の物性を調べるためには、サンプリングした試料を実験室に運搬して室内試験を行うのが一般的である。しかし、メタンハイドレートは低温高圧条件では安定しているが、常温常圧条件では容易に水とガスに分解する性質を有しているため、採取した堆積土試料はサンプリング時の応力解放の影響を受け、ハイドレート分解に伴うガス発生および溶存ガスの体積増加による構造的な乱れが発生する可能性が指摘されている。すなわち、応力解放による乱れの影響を受けない高品質な特性値を把握することが重要である。   Usually, in order to investigate the physical properties of a sample, it is common to carry a laboratory test by transporting the sampled sample to a laboratory. However, methane hydrate is stable under low temperature and high pressure conditions, but easily decomposes into water and gas under normal temperature and normal pressure conditions. In view of this, it has been pointed out that structural turbulence may occur due to gas generation accompanying hydrate decomposition and volume increase of dissolved gas. That is, it is important to grasp high-quality characteristic values that are not affected by the disturbance due to stress release.

メタンハイドレートが存在するのは水深300m以深の海底地盤であることから、従来、このような条件では、コーン圧入・引抜き装置、データ収録装置などを搭載したユニットおよび信号ケーブルを海底に降ろし、そこから反力を取りながらコーン貫入試験を行っていた。しかし、そのユニットおよび信号ケーブルの上げ下ろし等の操作を行うためには大きなウインチを有する掘削船や掘削リグが不可欠であり、調査には多大な費用と時間を要するため、こうした大水深域での測定例は極めて少ないのが現状である。   Since methane hydrate exists on the seabed ground at a depth of 300m or more, under these conditions, units and signal cables equipped with cone press-in / pull-out devices, data recording devices, etc. have been lowered to the seabed. The cone penetration test was conducted while taking the reaction force. However, in order to perform operations such as raising and lowering the unit and signal cables, drilling vessels and drilling rigs with large winches are indispensable, and surveys are very expensive and time consuming. There are very few examples at present.

このような問題を解決するため、本発明者の一人は、特許文献1に示されるコーン貫入試験機を提案している。図4に、このコーン貫入試験機に用いる貫入プローブを示す。図4に示すように、この貫入プローブ1は、コーン2と中空のロッド3とからなる。ロッド3内部にはコーン2に作用する貫入圧力を検知するための圧力センサ4と、データ記録手段5と、バッテリ6が内蔵されている。   In order to solve such a problem, one of the inventors of the present invention has proposed a cone penetration testing machine shown in Patent Document 1. FIG. 4 shows a penetration probe used in this cone penetration tester. As shown in FIG. 4, the penetration probe 1 includes a cone 2 and a hollow rod 3. Inside the rod 3, a pressure sensor 4 for detecting an intrusion pressure acting on the cone 2, a data recording means 5, and a battery 6 are incorporated.

特開2008−223378号公報JP 2008-223378 A 特開2004−257858号公報JP 2004-257858 A

ところで、貫入抵抗計測時の貫入深度は直接計測できないことから、プローブの貫入速度を一定と仮定して経過時間に対応した値を計算し、これを貫入深度とみなしてきた。しかし、このような手法では、貫入抵抗の深度方向の変化を正確に評価することができず、大きな課題となっていた。これに対し、水圧から換算した水深に基づいて貫入深度を計測する手法が有効と考えられるが、従来の大水深用の水圧計(耐圧20MPa、水深2000m相当)(例えば、特許文献2参照)では、水深計測の分解能が不足するという問題があった。   By the way, since the penetration depth at the time of penetration resistance measurement cannot be directly measured, a value corresponding to the elapsed time is calculated assuming that the penetration speed of the probe is constant, and this is regarded as the penetration depth. However, with such a method, the change in the depth direction of the penetration resistance cannot be accurately evaluated, which is a big problem. On the other hand, although the method of measuring the penetration depth based on the water depth converted from the water pressure is considered to be effective, a conventional water pressure gauge for large water depth (withstand pressure of 20 MPa, equivalent to a water depth of 2000 m) (for example, see Patent Document 2). There was a problem that the resolution of water depth measurement was insufficient.

本発明は、上記に鑑みてなされたものであって、大水深域の水底地盤へのコーン貫入試験用プローブの貫入深度を精度よく計測するのに適した高分解能の水圧計測装置、深度計測装置および貫入プローブを提供することを目的とする。   The present invention has been made in view of the above, and is a high-resolution water pressure measurement apparatus and depth measurement apparatus suitable for accurately measuring the penetration depth of a probe for a cone penetration test into the bottom of deep water. And to provide an intrusion probe.

上記した課題を解決し、目的を達成するために、本発明の請求項1に係る水圧計測装置は、水底地盤内の水圧を計測する装置であって、高圧側導入部と低圧側導入部とからなり、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧の差圧を計測する差圧計と、水中で基準となる水圧を導入可能な水圧室と、この水圧室と外部との連通を開閉する開閉弁とを有し、低圧側導入部は、水圧室の圧力を導入するものであり、差圧計により計測した水底地盤内の過剰間隙水圧から静水圧を推定することを特徴とする。 In order to solve the above-described problems and achieve the object, a water pressure measuring device according to claim 1 of the present invention is a device for measuring the water pressure in the bottom ground, and includes a high pressure side introducing portion, a low pressure side introducing portion, A differential pressure gauge for measuring the differential pressure between the water pressure introduced by the high pressure side introduction portion and the water pressure introduced by the low pressure side introduction portion, a water pressure chamber capable of introducing a reference water pressure in water, and the water pressure chamber It has an on-off valve that opens and closes communication with the outside, and the low-pressure side introduction part introduces the pressure in the hydraulic chamber, and estimates the hydrostatic pressure from the excess pore water pressure in the bottom of the ground measured by a differential pressure gauge It is characterized by.

また、本発明の請求項2に係る深度計測装置は、上述した請求項1に記載の水圧計測装置で計測した水圧に基づいて水底地盤内における深度を計測することを特徴とする。 Moreover, the depth measuring apparatus which concerns on Claim 2 of this invention measures the depth in a water bottom ground based on the water pressure measured with the water pressure measuring apparatus of Claim 1 mentioned above.

また、本発明の請求項3に係る貫入プローブは、コーン貫入試験用の貫入プローブであって、上述した請求項1に記載の水圧計測装置または請求項2に記載の深度計測装置を内蔵し、計測した水圧または深度に基づいて自身の貫入深度を計測する機能を有することを特徴とする。   Moreover, the penetration probe which concerns on Claim 3 of this invention is a penetration probe for cone penetration tests, Comprising: The water pressure measuring device of Claim 1 mentioned above or the depth measuring device of Claim 2 is incorporated, It has a function of measuring its own penetration depth based on the measured water pressure or depth.

本発明に係る水圧計測装置によれば、高圧側導入部と低圧側導入部とからなり、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧の差圧を計測する差圧計と、水中で基準となる水圧を導入可能な水圧室と、この水圧室と外部との連通を開閉する開閉弁とを有し、低圧側導入部は、水圧室の圧力を導入するので、差圧計は、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧室の水圧の差圧により水圧を計測する。水中で開閉弁を閉じると水圧室にはその位置での水圧が導入される。高圧側導入部により導入される外部の水圧が変化しても、水圧室内はこの基準水圧に保たれ、差圧計はこの基準水圧からの差圧を計測する。このため、大水深域の高圧下でも水圧変化を精度よく計測することができるという効果を奏する。   The water pressure measuring device according to the present invention comprises a high-pressure side introduction part and a low-pressure side introduction part, and measures the differential pressure between the water pressure introduced by the high-pressure side introduction part and the water pressure introduced by the low-pressure side introduction part. Since it has a pressure gauge, a water pressure chamber capable of introducing a reference water pressure in water, and an open / close valve that opens and closes communication between the water pressure chamber and the outside, the low pressure side introduction portion introduces the pressure of the water pressure chamber. The differential pressure gauge measures the water pressure based on the differential pressure between the water pressure introduced by the high pressure side introduction portion and the water pressure in the water pressure chamber introduced by the low pressure side introduction portion. When the on-off valve is closed in water, the water pressure at that position is introduced into the water pressure chamber. Even if the external water pressure introduced by the high-pressure side introduction section changes, the water pressure chamber is kept at this reference water pressure, and the differential pressure gauge measures the differential pressure from this reference water pressure. For this reason, there is an effect that it is possible to accurately measure a change in water pressure even under a high pressure in a deep water region.

また、本発明に係る深度計測装置によれば、上述した水圧計測装置で計測した水圧に基づいて深度を計測するので、差圧計は、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧室の水圧の差圧により水圧を計測する。水中で開閉弁を閉じると水圧室にはその位置での水圧が導入される。高圧側導入部により導入される外部の水圧が変化しても、水圧室内はこの基準水圧に保たれ、差圧計は水圧室内の基準水圧からの差圧に基いて静水圧分布を設定し、水中深度を推定する。特に、貫入プローブを水底地盤に一定速度で貫入していく場合には、過剰間隙水圧が計測されるので、この過剰間隙水圧分布の傾向から水底地盤内の静水圧分布を推定し、この静水圧分布に基づいて地盤内の貫入深度を推定する。静水圧分布の値は直近の基準水圧からの差圧に基づくことから、大水深域の高圧下でも深度変化を精度よく計測することができるという効果を奏する。   Moreover, according to the depth measuring apparatus according to the present invention, since the depth is measured based on the water pressure measured by the above-described water pressure measuring apparatus, the differential pressure gauge is formed by the water pressure introduced by the high-pressure side introducing unit and the low-pressure side introducing unit. The water pressure is measured by the differential pressure of the water pressure in the introduced water pressure chamber. When the on-off valve is closed in water, the water pressure at that position is introduced into the water pressure chamber. Even if the external water pressure introduced by the high-pressure side inlet changes, the water pressure chamber is kept at this reference water pressure, and the differential pressure gauge sets the hydrostatic pressure distribution based on the differential pressure from the reference water pressure in the water pressure chamber. Estimate depth. In particular, when the penetration probe penetrates into the bottom ground at a constant speed, the excess pore water pressure is measured. Therefore, the hydrostatic pressure distribution in the bottom ground is estimated from the tendency of this excess pore water pressure distribution. Based on the distribution, the penetration depth in the ground is estimated. Since the value of the hydrostatic pressure distribution is based on the differential pressure from the latest reference water pressure, there is an effect that the depth change can be accurately measured even under a high pressure in a large water depth region.

また、本発明に係る貫入プローブによれば、コーン貫入試験用の貫入プローブであって、上述した水圧計測装置または深度計測装置を内蔵し、計測した水圧または深度に基づいて自身の貫入深度を計測する機能を有するので、水圧計測装置または深度計測装置により計測された水圧や深度を用いることで、大水深域の高圧下でも水底地盤への貫入プローブの貫入深度を精度よく計測することができるという効果を奏する。   Further, according to the penetration probe according to the present invention, it is a penetration probe for a cone penetration test, and includes the above-described water pressure measuring device or depth measuring device, and measures its own penetration depth based on the measured water pressure or depth. Therefore, by using the water pressure and depth measured by the water pressure measuring device or depth measuring device, it is possible to accurately measure the penetration depth of the penetrating probe into the bottom of the ground even under high pressure in the deep water. There is an effect.

図1は、本発明に係る水圧計測装置、深度計測装置および貫入プローブの実施例を示す図である。FIG. 1 is a diagram showing an embodiment of a water pressure measuring device, a depth measuring device, and a penetrating probe according to the present invention. 図2は、水圧計測による深度計測の概念を説明する図である。FIG. 2 is a diagram for explaining the concept of depth measurement by water pressure measurement. 図3は、本発明による貫入プローブの貫入深度の計測概念図である。FIG. 3 is a conceptual diagram of measurement of the penetration depth of the penetration probe according to the present invention. 図4は、従来のコーン貫入試験機の貫入プローブの側断面図である。FIG. 4 is a side sectional view of a penetration probe of a conventional cone penetration tester.

以下に、本発明に係る水圧計測装置、深度計測装置および貫入プローブの実施の形態を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。   Hereinafter, embodiments of a water pressure measurement device, a depth measurement device, and an penetration probe according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

[水圧計測装置]
まず、本発明に係る水圧計測装置について説明する。
図1に示すように、本発明に係る水圧計測装置10は、差圧計16と、水中で基準となる水圧を導入可能な水圧室18と、この水圧室18と外部との連通を開閉する開閉弁22とを有する。
[Water pressure measuring device]
First, the water pressure measuring device according to the present invention will be described.
As shown in FIG. 1, a water pressure measuring device 10 according to the present invention includes a differential pressure gauge 16, a water pressure chamber 18 capable of introducing a reference water pressure in water, and an open / close that opens and closes communication between the water pressure chamber 18 and the outside. And a valve 22.

差圧計16は、高圧側導入部12と低圧側導入部14とからなり、高圧側導入部12により導入された外部の水圧と低圧側導入部14により導入された水圧の差圧を計測するものである。差圧計16は市販のものを用いることができ、例えば分解能が比較的高い計測範囲50〜100kPaの差圧計を用いてもよい。   The differential pressure gauge 16 includes a high pressure side introduction portion 12 and a low pressure side introduction portion 14, and measures a differential pressure between the external water pressure introduced by the high pressure side introduction portion 12 and the water pressure introduced by the low pressure side introduction portion 14. It is. A commercially available differential pressure gauge 16 can be used. For example, a differential pressure gauge with a relatively high measurement range of 50 to 100 kPa may be used.

低圧側導入部14は、水圧室18の圧力を導入するので、差圧計16は、高圧側導入部12により導入された外部の水圧と低圧側導入部14により導入された水圧室18の水圧の差圧により水圧を計測する。水中で開閉弁22を閉じると、水圧室18にはその位置での水圧が導入される。高圧側導入部12により導入される外部の水圧が変化しても、水圧室18内はこの基準水圧に保たれ、差圧計16はこの基準水圧からの差圧を計測する。このため、大水深域の高圧下でも水圧変化を精度よく計測することができる。   Since the low pressure side introduction part 14 introduces the pressure of the water pressure chamber 18, the differential pressure gauge 16 calculates the external water pressure introduced by the high pressure side introduction part 12 and the water pressure of the water pressure chamber 18 introduced by the low pressure side introduction part 14. The water pressure is measured by the differential pressure. When the on-off valve 22 is closed in water, the water pressure at that position is introduced into the water pressure chamber 18. Even if the external water pressure introduced by the high pressure side introduction unit 12 changes, the inside of the water pressure chamber 18 is maintained at this reference water pressure, and the differential pressure gauge 16 measures the differential pressure from this reference water pressure. For this reason, it is possible to accurately measure a change in water pressure even under a high pressure in a deep water region.

[深度計測装置]
次に、本発明に係る深度計測装置について説明する。
図1に示すように、本発明に係る深度計測装置20は、上述した水圧計測装置10で計測した水圧に基づいて深度を計測するものである。差圧計16は水圧室18内の基準水圧からの差圧に基いて静水圧分布を設定し、水中深度を推定する。特に、貫入プローブを水底地盤に一定速度で貫入していく場合には、図2の左図に示すように、過剰間隙水圧が計測されるので、この過剰間隙水圧分布の傾向から水底地盤内の静水圧分布を推定し(図2の右図を参照)、この静水圧分布に基づいて地盤内の貫入深度を推定する。静水圧分布の値は直近の基準水圧からの差圧に基づくことから、大水深域の高圧下でも深度変化を精度よく計測することができる。
[Depth measurement device]
Next, the depth measuring apparatus according to the present invention will be described.
As shown in FIG. 1, the depth measurement device 20 according to the present invention measures depth based on the water pressure measured by the above-described water pressure measurement device 10. The differential pressure gauge 16 sets the hydrostatic pressure distribution based on the differential pressure from the reference water pressure in the hydraulic chamber 18 and estimates the underwater depth. In particular, when the penetration probe penetrates into the bottom ground at a constant speed, the excess pore water pressure is measured as shown in the left figure of FIG. The hydrostatic pressure distribution is estimated (see the right diagram in FIG. 2), and the penetration depth in the ground is estimated based on the hydrostatic pressure distribution. Since the value of the hydrostatic pressure distribution is based on the differential pressure from the latest reference water pressure, it is possible to accurately measure changes in depth even under high water depth.

[貫入プローブ]
次に、本発明に係る貫入プローブについて説明する。
図1に示すように、本発明に係る貫入プローブ100は、コーン貫入試験用の貫入プローブであって、コーン24と中空のロッド26とからなる。ロッド26内部には、水圧計測装置10または深度計測装置20が内蔵してある。貫入プローブ100は、水圧計測装置10または深度計測装置20が計測した水圧または深度に基づいて自身の貫入深度を計測する機能を有する。
[Penetration probe]
Next, the penetration probe according to the present invention will be described.
As shown in FIG. 1, a penetration probe 100 according to the present invention is a penetration probe for a cone penetration test, and includes a cone 24 and a hollow rod 26. The water pressure measuring device 10 or the depth measuring device 20 is built in the rod 26. The penetration probe 100 has a function of measuring its own penetration depth based on the water pressure or depth measured by the water pressure measurement device 10 or the depth measurement device 20.

なお、ロッド26内部には、従来の貫入プローブのように、コーン24に作用する貫入圧力を検知するための圧力センサ、データ記録手段、バッテリ(いずれも図示せず)をさらに内蔵してもよい。また、開閉弁22の開閉操作方法としては、メッセンジャーウェイトによる開閉操作、電磁バルブによる遠隔操作等を利用することができる。   The rod 26 may further include a pressure sensor for detecting the penetration pressure acting on the cone 24, a data recording means, and a battery (none of which are shown) as in a conventional penetration probe. . Moreover, as an opening / closing operation method of the opening / closing valve 22, an opening / closing operation using a messenger weight, a remote operation using an electromagnetic valve, or the like can be used.

上記構成の動作および作用について説明する。
貫入プローブ100を水中で降下する場合には、開閉弁22を開とし、水圧室18内と外部の圧力を等しくさせる。そして、貫入プローブ100を水底地盤に貫入する直前に開閉弁22を閉とする。こうすることで、水圧室18に基準水圧が導入される。
The operation and action of the above configuration will be described.
When the penetrating probe 100 is lowered in water, the on-off valve 22 is opened, and the pressure inside the hydraulic pressure chamber 18 and the outside pressure are made equal. And the on-off valve 22 is closed immediately before penetrating the penetration probe 100 into the water bottom ground. By doing so, the reference water pressure is introduced into the water pressure chamber 18.

次に、開閉弁22を閉としたまま、貫入プローブ100を地盤内に貫入して行く。貫入の最中に、差圧計16の高圧側導入部12で外部の水圧を導入し、低圧側導入部14で水圧室18の水圧を導入することにより、水圧室18の内外の圧力差を計測する。開閉弁22が閉のままでは水圧室18は基準水圧(地盤表面の水圧)に保たれるので、貫入深度における水圧は、この基準水圧からの差分として計測される。この計測水圧を地盤表面からの貫入深度に換算することで、貫入プローブ100の貫入深度を精度よく計測することができる。   Next, the penetration probe 100 is penetrated into the ground with the on-off valve 22 being closed. During the penetration, the external water pressure is introduced by the high pressure side introduction portion 12 of the differential pressure gauge 16, and the water pressure of the water pressure chamber 18 is introduced by the low pressure side introduction portion 14, thereby measuring the pressure difference inside and outside the water pressure chamber 18. To do. Since the water pressure chamber 18 is maintained at the reference water pressure (water pressure on the ground surface) with the on-off valve 22 closed, the water pressure at the penetration depth is measured as a difference from the reference water pressure. By converting this measured water pressure into a penetration depth from the ground surface, the penetration depth of the penetration probe 100 can be accurately measured.

貫入プローブ100を引き上げる場合には、再度、開閉弁22を開とし、水圧室18の内外の圧力を等しくさせればよい。   When the penetrating probe 100 is pulled up, the on-off valve 22 may be opened again to equalize the pressure inside and outside the hydraulic chamber 18.

このように、本発明の貫入プローブ100によれば、水圧計測装置10または深度計測装置20により計測された水圧や深度を用いることで、大水深域の高圧下でも水底地盤への貫入プローブの貫入深度を精度よく計測することができる。   Thus, according to the penetration probe 100 of the present invention, by using the water pressure and the depth measured by the water pressure measurement device 10 or the depth measurement device 20, the penetration probe penetrates into the water bottom ground even under high pressure in a large depth region. Depth can be measured accurately.

図3は、本発明による貫入プローブの貫入深度の計測概念を示した図である。図3(a)は通常の堆積地盤、図3(b)はメタンハイドレートが深度2m以深に堆積する地盤でのコーン先端抵抗値の測定を想定したものである。図3に示すように、貫入抵抗の深度方向の変化を正確に評価でき、堆積地盤の強度特性、メタンハイドレート堆積深度の推定が容易となると期待される。   FIG. 3 is a view showing the concept of measuring the penetration depth of the penetration probe according to the present invention. Fig. 3 (a) assumes the measurement of the cone tip resistance value in the normal sedimentary ground, and Fig. 3 (b) assumes the corn tip resistance value in the ground where the methane hydrate is deposited at a depth of 2 m or more. As shown in FIG. 3, it is expected that changes in the penetration resistance in the depth direction can be accurately evaluated, and that it is easy to estimate the strength characteristics of the sedimentary ground and the methane hydrate sedimentation depth.

なお、本発明の水圧計測装置、深度計測装置および貫入プローブは、大水深域の水底(海底・湖底)地盤の表層数mの範囲を主な適用対象としている。これは、まさに水底の地盤表層に存在するメタンハイドレートの堆積深度であり、上述したように、測定例は極めて少ないのが現状であるが、本発明の水圧計測装置、深度計測装置および貫入プローブを用いることで今後測定例が増えていくものと思われる。   The water pressure measuring device, depth measuring device, and penetration probe of the present invention are mainly applied in the range of the surface layer number m of the bottom of the deep water (sea bottom / lake bottom). This is exactly the depth of deposition of methane hydrate that exists on the ground surface of the bottom of the water. As described above, there are very few measurement examples, but the water pressure measurement device, depth measurement device, and penetration probe of the present invention are present. The number of measurement examples is expected to increase in the future.

また、上述した従来型のコーン貫入試験では、さらに深部までの調査が可能であるが、表層のみの調査を行う場合でも、深部調査と同様の費用と時間が必要であった。しかし、本発明の水圧計測装置、深度計測装置および貫入プローブは、表層型ハイドレート調査だけではなく、海底・湖底の表層地盤の力学特性が求められる調査に広く効果を発揮することが可能である。   Further, in the conventional cone penetration test described above, it is possible to investigate even deeper, but even when only the surface layer is investigated, the same cost and time as the deeper investigation are required. However, the water pressure measuring device, depth measuring device, and penetration probe of the present invention can be widely used not only for surface hydrate surveys but also for surveys where the mechanical properties of the surface layer of the seabed and lake bottom are required. .

以上説明したように、本発明に係る水圧計測装置によれば、高圧側導入部と低圧側導入部とからなり、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧の差圧を計測する差圧計と、水中で基準となる水圧を導入可能な水圧室と、この水圧室と外部との連通を開閉する開閉弁とを有し、低圧側導入部は、水圧室の圧力を導入するので、差圧計は、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧室の水圧の差圧により水圧を計測する。水中で開閉弁を閉じると水圧室にはその位置での水圧が導入される。高圧側導入部により導入される外部の水圧が変化しても、水圧室内はこの基準水圧に保たれ、差圧計はこの基準水圧からの差圧を計測する。このため、大水深域の高圧下でも水圧変化を精度よく計測することができる。   As described above, according to the water pressure measuring device according to the present invention, the high pressure side introduction portion and the low pressure side introduction portion are used, the water pressure introduced by the high pressure side introduction portion and the water pressure introduced by the low pressure side introduction portion. It has a differential pressure gauge that measures the differential pressure, a water pressure chamber that can introduce a reference water pressure in the water, and an on-off valve that opens and closes communication between the water pressure chamber and the outside. Since the pressure is introduced, the differential pressure gauge measures the water pressure by the differential pressure between the water pressure introduced by the high-pressure side introducing portion and the water pressure of the water pressure chamber introduced by the low-pressure side introducing portion. When the on-off valve is closed in water, the water pressure at that position is introduced into the water pressure chamber. Even if the external water pressure introduced by the high-pressure side introduction section changes, the water pressure chamber is kept at this reference water pressure, and the differential pressure gauge measures the differential pressure from this reference water pressure. For this reason, it is possible to accurately measure a change in water pressure even under a high pressure in a deep water region.

また、本発明に係る深度計測装置によれば、上述した水圧計測装置で計測した水圧に基づいて深度を計測するので、差圧計は、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧室の水圧の差圧により水圧を計測する。水中で開閉弁を閉じると水圧室にはその位置での水圧が導入される。高圧側導入部により導入される外部の水圧が変化しても、水圧室内はこの基準水圧に保たれ、差圧計は水圧室内の基準水圧からの差圧に基いて静水圧分布を設定し、水中深度を推定する。特に、貫入プローブを水底地盤に一定速度で貫入していく場合には、過剰間隙水圧が計測されるので、この過剰間隙水圧分布の傾向から水底地盤内の静水圧分布を推定し、この静水圧分布に基づいて地盤内の貫入深度を推定する。静水圧分布の値は直近の基準水圧からの差圧に基づくことから、大水深域の高圧下でも深度変化を精度よく計測することができる。   Moreover, according to the depth measuring apparatus according to the present invention, since the depth is measured based on the water pressure measured by the above-described water pressure measuring apparatus, the differential pressure gauge is formed by the water pressure introduced by the high-pressure side introducing unit and the low-pressure side introducing unit. The water pressure is measured by the differential pressure of the water pressure in the introduced water pressure chamber. When the on-off valve is closed in water, the water pressure at that position is introduced into the water pressure chamber. Even if the external water pressure introduced by the high-pressure side inlet changes, the water pressure chamber is kept at this reference water pressure, and the differential pressure gauge sets the hydrostatic pressure distribution based on the differential pressure from the reference water pressure in the water pressure chamber. Estimate depth. In particular, when the penetration probe penetrates into the bottom ground at a constant speed, the excess pore water pressure is measured. Therefore, the hydrostatic pressure distribution in the bottom ground is estimated from the tendency of this excess pore water pressure distribution. Based on the distribution, the penetration depth in the ground is estimated. Since the value of the hydrostatic pressure distribution is based on the differential pressure from the latest reference water pressure, it is possible to accurately measure changes in depth even under high water depth.

また、本発明に係る貫入プローブによれば、コーン貫入試験用の貫入プローブであって、上述した水圧計測装置または深度計測装置を内蔵し、計測した水圧または深度に基づいて自身の貫入深度を計測する機能を有するので、水圧計測装置または深度計測装置により計測された水圧や深度を用いることで、大水深域の高圧下でも水底地盤への貫入プローブの貫入深度を精度よく計測することができる。   Further, according to the penetration probe according to the present invention, it is a penetration probe for a cone penetration test, and includes the above-described water pressure measuring device or depth measuring device, and measures its own penetration depth based on the measured water pressure or depth. Therefore, by using the water pressure and depth measured by the water pressure measuring device or the depth measuring device, it is possible to accurately measure the penetration depth of the penetration probe into the bottom ground even under a high pressure in a large water depth region.

以上のように、本発明に係る水圧計測装置、深度計測装置および貫入プローブは、大水深域の水底地盤に対するコーン貫入試験に有用であり、特に、貫入プローブの貫入深度を精度よく計測するのに適している。   As described above, the water pressure measurement device, the depth measurement device, and the penetration probe according to the present invention are useful for the cone penetration test on the bottom of the deep water, and particularly for accurately measuring the penetration depth of the penetration probe. Is suitable.

10 水圧計測装置
12 高圧側導入部
14 低圧側導入部
16 差圧計
18 水圧室
20 深度計測装置
22 開閉弁
24 コーン
26 ロッド
100 貫入プローブ
DESCRIPTION OF SYMBOLS 10 Water pressure measuring device 12 High pressure side introduction part 14 Low pressure side introduction part 16 Differential pressure gauge 18 Water pressure chamber 20 Depth measurement device 22 On-off valve 24 Cone 26 Rod 100 Penetration probe

Claims (3)

水底地盤内の水圧を計測する装置であって、
高圧側導入部と低圧側導入部とからなり、高圧側導入部により導入された水圧と低圧側導入部により導入された水圧の差圧を計測する差圧計と、水中で基準となる水圧を導入可能な水圧室と、この水圧室と外部との連通を開閉する開閉弁とを有し、
低圧側導入部は、水圧室の圧力を導入するものであり、
差圧計により計測した水底地盤内の過剰間隙水圧から静水圧を推定することを特徴とする水圧計測装置。
A device for measuring the water pressure in the bottom of the ground ,
It consists of a high-pressure side introduction part and a low-pressure side introduction part, and introduces a differential pressure gauge that measures the differential pressure between the water pressure introduced by the high-pressure side introduction part and the water pressure introduced by the low-pressure side introduction part, and the reference water pressure in the water A possible hydraulic chamber and an on-off valve that opens and closes communication between the hydraulic chamber and the outside,
The low pressure side introduction part introduces the pressure of the hydraulic chamber ,
A water pressure measuring device for estimating a hydrostatic pressure from an excess pore water pressure in a water bottom ground measured by a differential pressure gauge .
請求項1に記載の水圧計測装置で計測した水圧に基づいて水底地盤内における深度を計測することを特徴とする深度計測装置。 A depth measuring device that measures the depth in the bottom of the ground based on the water pressure measured by the water pressure measuring device according to claim 1. コーン貫入試験用の貫入プローブであって、請求項1に記載の水圧計測装置または請求項2に記載の深度計測装置を内蔵し、計測した水圧または深度に基づいて自身の貫入深度を計測する機能を有することを特徴とする貫入プローブ。   A penetration probe for a cone penetration test, comprising the water pressure measuring device according to claim 1 or the depth measuring device according to claim 2, and a function of measuring its own penetration depth based on the measured water pressure or depth. A penetrating probe characterized by comprising:
JP2011114895A 2011-05-23 2011-05-23 Water pressure measuring device, depth measuring device and penetration probe Active JP5747654B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011114895A JP5747654B2 (en) 2011-05-23 2011-05-23 Water pressure measuring device, depth measuring device and penetration probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011114895A JP5747654B2 (en) 2011-05-23 2011-05-23 Water pressure measuring device, depth measuring device and penetration probe

Publications (2)

Publication Number Publication Date
JP2012242328A JP2012242328A (en) 2012-12-10
JP5747654B2 true JP5747654B2 (en) 2015-07-15

Family

ID=47464180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114895A Active JP5747654B2 (en) 2011-05-23 2011-05-23 Water pressure measuring device, depth measuring device and penetration probe

Country Status (1)

Country Link
JP (1) JP5747654B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012062A (en) * 2019-07-04 2021-02-04 Tdk株式会社 Pressure detector and water depth gage

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072178A (en) * 2013-10-02 2015-04-16 清水建設株式会社 Water bottom ground penetration-depth measuring device
CN107504936A (en) * 2017-09-25 2017-12-22 江苏省水利科学研究院 Mud detecting system and mud detection method
CN107807406B (en) * 2017-09-29 2018-08-17 中国海洋大学 Abyssal floor rheology observation device based on differential pressure measurement

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01163809U (en) * 1988-05-06 1989-11-15
JPH0480611A (en) * 1990-07-23 1992-03-13 Dengiyoushiya Kikai Seisakusho:Kk Device and method for surveying underwater ground level
JP2696099B2 (en) * 1992-01-10 1998-01-14 株式会社共和電業 Electric pressure transducer
JP3653347B2 (en) * 1996-07-02 2005-05-25 株式会社鶴見精機 Underwater information measuring device
JP4929435B2 (en) * 2001-07-31 2012-05-09 学校法人日本大学 Pressure transducer
JP4868362B2 (en) * 2007-03-14 2012-02-01 清水建設株式会社 Water-bottom cone penetration tester and its test method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021012062A (en) * 2019-07-04 2021-02-04 Tdk株式会社 Pressure detector and water depth gage
JP7200860B2 (en) 2019-07-04 2023-01-10 Tdk株式会社 Pressure sensor and depth gauge

Also Published As

Publication number Publication date
JP2012242328A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
CN104164860B (en) For the gravity type hole pressure power feeler inspection device of the sea-bottom shallow soil body
CN103144751B (en) A kind of beach shallow sea sediment strength in situ detection device and method
CN106480870B (en) A kind of static sounding probe
JP5747654B2 (en) Water pressure measuring device, depth measuring device and penetration probe
CN107807406B (en) Abyssal floor rheology observation device based on differential pressure measurement
JP4868362B2 (en) Water-bottom cone penetration tester and its test method
JP2007530923A (en) An improved ball penetration tester for soft soil investigations.
CN205388474U (en) Deep sea seabed shallow layer deposit in situ test device
CN206428688U (en) A kind of static sounding probe
CN203078741U (en) In-situ detection device of strength of beach and shallow sea sediments
CN107700458A (en) Feeler inspection is flowed entirely with the pyriform base expanding and base expanding of Yu Haiyang ultra-soft soil in-situ test to pop one's head in
CN110397015B (en) Processing method of seabed in-situ test data
CN105258683A (en) Deep sea floor shallow sediment in-situ testing device
CN107761694A (en) A kind of underwater hole pressure touching methods probe
CN105910598A (en) In-situ layered acoustic measuring sampler detection system
CN105784408A (en) Submarine sediment in-situ layering acoustic measurement synchronous sampler
CN115598217B (en) Device and method for in-situ measurement of low-frequency acoustic characteristics of seabed sediment layer
CN106290103B (en) Method for measuring porosity of clay micropores in shale gas reservoir
CN109556653A (en) A kind of pipeclay in situ effect test macro and its test method with hydraulic suction cylinder basis
CN105571931A (en) Multifunctional underwater dynamic penetration and in-situ test device
CN107747306A (en) A kind of cross with Yu Haiyang ultra-soft soil in-situ test flows feeler inspection probe entirely
CN110158568B (en) Dynamic calibration method for sounding probe coefficient
JP6425086B2 (en) Underwater ground penetration depth measuring device
Liu et al. Pore pressure observation: pressure response of probe penetration and tides
NO20110651A1 (en) Procedure for Oct Electromagnetic Sensitivity under a Surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5747654

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150