JP5745960B2 - Method for determination of metals and metal-containing catalysts in heavy oil - Google Patents

Method for determination of metals and metal-containing catalysts in heavy oil Download PDF

Info

Publication number
JP5745960B2
JP5745960B2 JP2011153338A JP2011153338A JP5745960B2 JP 5745960 B2 JP5745960 B2 JP 5745960B2 JP 2011153338 A JP2011153338 A JP 2011153338A JP 2011153338 A JP2011153338 A JP 2011153338A JP 5745960 B2 JP5745960 B2 JP 5745960B2
Authority
JP
Japan
Prior art keywords
heavy oil
metal
centrifugation
mixed
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011153338A
Other languages
Japanese (ja)
Other versions
JP2013019763A (en
Inventor
幸子 三島
幸子 三島
裕三 杉原
裕三 杉原
悠佑 西村
悠佑 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2011153338A priority Critical patent/JP5745960B2/en
Publication of JP2013019763A publication Critical patent/JP2013019763A/en
Application granted granted Critical
Publication of JP5745960B2 publication Critical patent/JP5745960B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

本発明は、重質油中の金属及び金属含有触媒の迅速定量方法に関するものである。   The present invention relates to a method for rapid determination of metals and metal-containing catalysts in heavy oil.

石油精製操作においては、精製して得られた精製留分(製品)について、組成や性状を分析して品質を調整し管理している。この調整・管理を円滑に行うには、精製留分の分析を正確かつ迅速に行うことが要求される。
一方、重質油は、水素化分解装置、重油直接脱硫装置、流動接触分解(FCC)装置、重油流動接触分解(RFCC)装置など、触媒と接触する精製工程を経て得られるものが多い。したがって、このような重質油中には精製工程で使用した触媒が混入する可能性がある。特に、FCC装置やRFCC装置においては、通常、アルミナ系触媒やシリカ−アルミナ系触媒、ゼオライト系触媒等の金属を含有する触媒が使用され、原料油が50〜100μm程度の微細な前記触媒と流動接触して分解されることにより液化石油ガス(LPG)、分解ガソリン、分解軽油、分解重油等が製造されている。そのため、より微細な前記触媒が流動接触分解過程で生成した分解生成物とともに飛散したり、触媒同士、あるいは反応塔の側壁等との衝突により粉砕したりして、より微細な触媒が前記製品中に混入してくる場合がある。特に、流動接触分解生成物の残渣油であってC重油等の基材でもある分解重油(クラリファイド油:CLO)中に多量に混入する。
CLO中の微細触媒は、内燃機関のピストンリングやシリンダーダイナー等にスカッフィングや摩耗を引き起こすことが知られており、CLOの品質管理においては、CLO中に混入した触媒量の管理が特に重要である。しかしながら、該触媒量を直接測定することは極めて困難であり、かつ長時間を要するため、通常は、CLO中に混入した触媒に由来する金属量を定量することにより触媒量を測定している。
ところで、従来の重質油中の金属定量方法としては、「石油製品−金属分試験方法」(JPI−5S−62−2000)に準拠してICP発光分光分析法が用いられていた(非特許文献1参照)。しかし、この方法では、測定試料から有機物を除去して金属を取り出し、さらに酸処理して測定溶液とする前処理が必要である。そのため定量結果を得るには8時間程度の長時間を要する。
したがって、この方法では、重質油の品質管理においてよりきめ細かく調整・管理を行う上で障害となっていた。このような状況から重質油中の金属もしくは金属含有触媒の迅速定量方法が必要とされていた。
In petroleum refining operations, the composition and properties of refined fractions (products) obtained by refining are analyzed and the quality is adjusted and managed. In order to smoothly perform the adjustment and management, it is required to analyze the refined fraction accurately and quickly.
On the other hand, heavy oil is often obtained through a refining process in contact with a catalyst, such as a hydrocracking apparatus, a heavy oil direct desulfurization apparatus, a fluid catalytic cracking (FCC) apparatus, or a heavy oil fluid catalytic cracking (RFCC) apparatus. Therefore, the catalyst used in the refining process may be mixed in such heavy oil. In particular, in the FCC apparatus and the RFCC apparatus, a catalyst containing a metal such as an alumina catalyst, a silica-alumina catalyst, or a zeolite catalyst is usually used, and the feedstock oil flows with the fine catalyst of about 50 to 100 μm. Liquefied petroleum gas (LPG), cracked gasoline, cracked light oil, cracked heavy oil, and the like are produced by contacting and cracking. Therefore, the finer catalyst is scattered with the decomposition products generated in the fluid catalytic cracking process, or pulverized by collision with the catalysts or the side walls of the reaction tower, etc. May come in. In particular, it is mixed in a large amount in cracked heavy oil (clarified oil: CLO) which is a residual oil of fluid catalytic cracking products and a base material such as C heavy oil.
The fine catalyst in CLO is known to cause scuffing and wear on piston rings and cylinder diners of internal combustion engines, and management of the amount of catalyst mixed in CLO is particularly important in CLO quality control. . However, it is extremely difficult to directly measure the catalyst amount and it takes a long time. Therefore, the catalyst amount is usually measured by quantifying the amount of metal derived from the catalyst mixed in the CLO.
By the way, as a conventional method for quantifying metals in heavy oil, ICP emission spectroscopic analysis has been used in accordance with “Petroleum product-metal content test method” (JPI-5S-62-2000) (non-patent document). Reference 1). However, in this method, it is necessary to remove the organic substance from the measurement sample, take out the metal, and further perform a pretreatment for acid measurement to obtain a measurement solution. Therefore, it takes a long time of about 8 hours to obtain a quantitative result.
Therefore, this method has been an obstacle to finer adjustment and management in heavy oil quality control. Under these circumstances, a rapid method for quantitative determination of metals or metal-containing catalysts in heavy oil has been required.

「石油製品−金属分試験方法」(JPI−5S−62−2000)"Petroleum products-Metal content test method" (JPI-5S-62-2000)

本発明は、このような状況下で、重質油中の金属及び重質油中の金属含有触媒の含有量を迅速に定量する方法を提供することを目的とする。   An object of this invention is to provide the method of determining rapidly the content of the metal in heavy oil, and the metal containing catalyst in heavy oil under such a condition.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、重質油を特定の条件下で遠心分離し、その沈殿層の量に着目することによって、本発明の目的を効果的に達成できることを見出した。本発明はかかる知見に基づいて完成したものである。 The present inventors have made intensive studies in order to achieve the object, centrifuged heavy oil under certain conditions, by focusing on the capacity of the precipitate layer, the object of the present invention We found that it can be achieved effectively. The present invention has been completed based on such findings.

すなわち、本発明は、
[1](1)重質油試料を芳香族系溶剤と混合し、(2)該混合液を遠心分離処理し、(3)遠心分離後の沈殿層の量を計測し、(4)予め作成した遠心分離後の沈殿層の量と重質油中の金属含有量との関係を示す検量線に基づき、前記沈殿層の容量に対応する重質油試料中の金属含有量を測定することを特徴とする重質油中の金属の定量方法、
[2]前記重質油が流動接触分解重油(クラリファイド油:CLO)である上記[1]に記載の重質油中の金属の定量方法、
[3]前記芳香族系溶剤がトルエン及び/又はキシレンである上記[1]又は[2]に記載の重質油中の金属の定量方法、
[4]前記重質油中の金属がアルミニウムである上記[1]〜[3]に記載の重質油中の金属の定量方法、
[5](1)重質油試料を芳香族系溶剤と混合し、(2)該混合液を遠心分離処理し、(3)遠心分離後の沈殿層の容量を計測し、(4’)予め作成した遠心分離後の沈殿層の容量と重質油中の混入触媒量との関係を示す検量線に基づき、前記沈殿層の容量に対応する重質油試料中の混入触媒量を測定することを特徴とする重質油中の混入金属含有触媒量の定量方法、
を提供するものである。
That is, the present invention
[1] (1) a heavy oil sample was mixed with an aromatic solvent, (2) the mixture was centrifuged, measured (3) capacity of the sedimentation layer after centrifugation, (4) based on the calibration curve showing the relationship between the previously prepared capacity of the sedimentation layer after centrifugation and metal content of the heavy oil, the measurement of metal content of the heavy oil in the sample corresponding to the volume of the precipitated layer A method for quantifying metals in heavy oil, characterized by
[2] The method for quantifying metals in heavy oil according to the above [1], wherein the heavy oil is fluid catalytic cracked heavy oil (clarified oil: CLO),
[3] The method for quantifying metals in heavy oil according to the above [1] or [2], wherein the aromatic solvent is toluene and / or xylene,
[4] The method for quantifying a metal in heavy oil according to the above [1] to [3], wherein the metal in the heavy oil is aluminum,
[5] (1) A heavy oil sample is mixed with an aromatic solvent, (2) the mixture is centrifuged, (3) the volume of the precipitated layer after centrifugation is measured, and (4 ′) Measure the amount of mixed catalyst in the heavy oil sample corresponding to the volume of the precipitated layer based on a calibration curve showing the relationship between the volume of the precipitated layer after centrifugation and the amount of mixed catalyst in the heavy oil. A method for quantifying the amount of mixed metal-containing catalyst in heavy oil,
Is to provide.

本発明によれば、重質油中の金属及び重質油中の金属含有触媒の含有量を迅速に定量することができる。   ADVANTAGE OF THE INVENTION According to this invention, content of the metal in heavy oil and the metal containing catalyst in heavy oil can be quantified rapidly.

本発明の実施例で用いた遠心分離後の沈殿層の容量とICP発光分光分析法によるアルミニウム定量値との相関関係を表す検量線を示す図(グラフ)である。It is a figure (graph) which shows the calibration curve showing the correlation with the capacity | capacitance of the sedimentation layer after the centrifugation used in the Example of this invention, and the aluminum quantitative value by ICP emission spectrometry.

本発明の第一の発明は、(1)重質油試料を芳香族系溶剤と混合し、(2)該混合液を遠心分離処理し、(3)遠心分離後の沈殿量の量を計測し、(4)予め作成した遠心分離後の沈殿層の容量と重質油中の金属含有量との関係を示す検量線に基づき、前記沈殿層の量に対応する重質油試料中の金属含有量を測定することを特徴とする重質油中の金属の定量方法である。
なお、本発明において「重質油」は、特に厳格な制限はなく、金属含有触媒が含まれる可能性がある比較的重質な石油留分を意味する。例えば、(重油)流動接触分解重油(CLO)、C重油、船舶用C重油などが例示できる。
以下(1)〜(4)の各操作について説明する。
The first invention of the present invention is mixed with an aromatic solvent (1) a heavy oil sample, (2) the mixture was centrifuged, the amount of (3) precipitation capacity after centrifugation measured, (4) based on the preliminarily prepared calibration curve showing the relationship between the capacitance and the metal content of the heavy oil precipitate layer after centrifugation, heavy oil sample to be corresponding to the capacity of the sedimentation layer This is a method for quantifying a metal in heavy oil, characterized by measuring the metal content of the oil.
In the present invention, “heavy oil” is not particularly limited and means a relatively heavy petroleum fraction that may contain a metal-containing catalyst. Examples include (heavy oil) fluid catalytic cracking heavy oil (CLO), C heavy oil, marine C heavy oil, and the like.
Hereinafter, the operations (1) to (4) will be described.

[(1)の操作]
本発明においては、まず、重質油試料を芳香族系溶剤と混合する。これは、CLO等の重質油は高粘度であるため、粉砕されたより微細な(重油)流動接触分解触媒等は重質油に浮遊した状態にあるが、芳香族系溶剤を混合することにより粘度を低下させた重質油との混合油とすることで、前記触媒等が均質に分散された重質油混合溶液が得られ、次の遠心分離操作で、触媒と重質油との正確な分離が達成できる。
溶剤として芳香族系溶剤を用いるのは、芳香族系溶剤が重質油に対して溶解性が高いことから、より均質な重質油混合溶液が得られるという効果がある。芳香族系溶剤の具体例としては、トルエンやキシレンが好ましく、それらを各単独で用いてもよく、両者を混合して用いてもよい。トルエンとキシレンを混合して用いる場合の混合割合は、特に制限はないが、重質油に対する溶解性と安全性(引火点)などの観点から、トルエン:キシレンが5〜40:95〜60(容量%)が好ましく、10〜30:90〜70(容量%)がより好ましい。
重質油試料と芳香族系溶剤との割合については、特に制限はないが、通常等容量ずつ混合する。
上記(1)の操作は、遠心分離装置の遠沈管に、重質油試料と芳香族系溶剤を採取して行う。
この場合、重質油試料と芳香族系溶剤とを採取後、遠沈管を密栓して遠沈管を逆さにし、重質油試料と芳香族系溶剤とをよく混合し均一にする。遠沈管を加温するとさらに均一に混合できるので好ましい。
[Operation (1)]
In the present invention, first, a heavy oil sample is mixed with an aromatic solvent. This is because heavy oil such as CLO has high viscosity, so finely divided (heavy oil) fluid catalytic cracking catalyst etc. are in a state of floating in heavy oil, but by mixing aromatic solvent By using a mixed oil with a heavy oil with a reduced viscosity, a heavy oil mixed solution in which the catalyst and the like are homogeneously dispersed is obtained, and in the next centrifugation operation, the catalyst and the heavy oil are accurately mixed. Separation can be achieved.
The use of an aromatic solvent as the solvent has an effect that a more homogeneous heavy oil mixed solution can be obtained because the aromatic solvent is highly soluble in heavy oil. Specific examples of the aromatic solvent are preferably toluene and xylene, and these may be used alone or in combination. The mixing ratio in the case of using a mixture of toluene and xylene is not particularly limited, but from the viewpoint of solubility in heavy oil and safety (flash point), toluene: xylene is 5-40: 95-60 ( Volume%) is preferable, and 10 to 30:90 to 70 (volume%) is more preferable.
Although there is no restriction | limiting in particular about the ratio of a heavy oil sample and an aromatic solvent, Usually, equal volume is mixed.
The operation (1) is performed by collecting a heavy oil sample and an aromatic solvent in a centrifuge tube of a centrifuge.
In this case, after collecting the heavy oil sample and the aromatic solvent, the centrifuge tube is sealed and the centrifuge tube is inverted, and the heavy oil sample and the aromatic solvent are mixed well and made uniform. Heating the centrifuge tube is preferable because it allows more uniform mixing.

[(2)の操作]
本発明は、(2)の操作において、(1)の操作で得た重質油混合溶液を遠心分離処理する。この操作によって、重質油中の芳香族系溶剤に可溶な有機化合物を溶解して除去し、芳香族系溶剤に不溶な金属を主成分とする金属分の沈殿層に分離することができる。
遠心分離操作方法については、特に制限はなく、通常公知の方法で行えばよい。例えば、遠心分離の相対遠心力回転数は15000rpm程度、あるいは相対遠心力600程度、遠心分離時間は10分間程度などである。また、遠心分離処理は一回でもよいが、二回又は三回以上行ってもよい。具体的には、一回目の遠心分離操作によって分離された溶液部分を除去し、残った沈殿層にさらに芳香族系溶剤を混合し、二回目の遠心分離操作を行う。通常は、二回の遠心分離操作で十分であるが、これを複数回繰り返すことにより、有機化合物を含まない沈殿層を分離することができ、重質油中の触媒の分離を完全に行うことができる。
[Operation (2)]
In the operation (2) of the present invention, the heavy oil mixed solution obtained by the operation (1) is centrifuged. By this operation, the organic compound soluble in the aromatic solvent in the heavy oil can be dissolved and removed, and separated into a precipitation layer of a metal component mainly composed of a metal insoluble in the aromatic solvent. .
The centrifugation operation method is not particularly limited and may be performed by a generally known method. For example, the relative centrifugal force rotational speed of the centrifugal separation is about 15000 rpm, or the relative centrifugal force is about 600, and the centrifugation time is about 10 minutes. Further, the centrifugation treatment may be performed once, but may be performed twice or three times or more. Specifically, the solution portion separated by the first centrifugation operation is removed, an aromatic solvent is further mixed into the remaining precipitate layer, and the second centrifugation operation is performed. Normally, two centrifugation steps are sufficient, but by repeating this multiple times, the precipitate layer that does not contain organic compounds can be separated, and the catalyst in heavy oil can be completely separated. Can do.

[(3)の操作]
本発明の(3)の操作は、遠心分離後の沈殿層の量を計測する。
沈殿層の量の計測は、重量を計測してもよいが、迅速な測定である点で、容量を計測することが好ましい。すなわち、遠沈管底部の固形物の体積を読みとればよい。
したがって、遠心分離装置の遠沈管として、管の底部を細くし、かつ容量目盛を付した管を用いることが好ましい。
[Operation (3)]
Operation (3) of the present invention measures the capacity of the sedimentation layer after centrifugation.
Measurement of capacity of the precipitation layer may be weighed, in that they are rapid measurement, it is preferable to measure the capacitance. That is, the volume of the solid at the bottom of the centrifuge tube may be read.
Therefore, it is preferable to use a tube with a narrowed bottom and a capacity scale as the centrifuge tube of the centrifugal separator.

[(4)の操作]
本発明においては、(4)予め求めた遠心分離後の沈殿層の量と金属含有量との関係を示す検量線に基づき、前記沈殿層の量に対応する重質油試料中の金属含有量を測定する。
金属含有量とは、従来公知の金属含有量、例えばICP発光分光分析法で測定した金属含有量である。
以上、(1)〜(4)の操作によって重質油試料中の金属含有量を測定することができる。
[Operation (4)]
In the present invention, (4) determined in advance on the basis of a calibration curve showing the relationship between the capacity and the metal content of the precipitate layer after centrifugation, metals heavy oil samples corresponding to capacity of the sedimentation layer Measure the content.
The metal content is a conventionally known metal content, for example, a metal content measured by ICP emission spectroscopy.
As described above, the metal content in the heavy oil sample can be measured by the operations (1) to (4).

本発明の第二の発明は、(1)重質油試料を芳香族系溶剤と混合し、(2)該混合液を遠心分離処理し、(3)遠心分離後の沈殿層の量を計測し、(4’)予め作成した遠心分離後の沈殿層の量と重質油中の混入触媒量との関係を示す検量線に基づき、前記沈殿層の量に対応する重質油試料中の混入触媒量を測定することを特徴とする重質油中の混入金属含有触媒量の定量方法である。
すなわち(1)〜(3)の操作は、第一発明と同様である。
The second invention of the present invention is mixed with an aromatic solvent (1) a heavy oil sample, (2) the mixture was centrifuged, the capacity of the sedimentation layer after (3) centrifugation measured, (4 ') on the basis of the preliminarily prepared calibration curve showing the relationship between the capacity and the mixed catalytic amount of heavy oil precipitate layer after centrifugation, heavy oil corresponding to capacity of the sedimentation layer This is a method for quantifying the amount of mixed metal-containing catalyst in heavy oil, characterized by measuring the amount of mixed catalyst in a sample.
That is, the operations (1) to (3) are the same as in the first invention.

(4’)の操作は、予め作成した遠心分離後の沈殿層の量と重質油中の混入金属含有触媒量との関係を示す検量線に基づき、前記沈殿層の量に対応する重質油試料中の混入触媒量を測定することを特徴とする重質油中の混入金属含有触媒量の定量方法である。
この操作は、第一発明の金属を金属含有触媒に置き替えたものであり、それ以外は第一発明と同様である。
したがって、沈殿層の量と重質油中の混入金属含有触媒量との関係を示す検量線を準備する必要がある。この検量線を作成する場合の混入金属含有触媒量は、ICP発光分光分析法による金属定量値から、用いられている触媒組成に基づいて換算すればよい。
Operation of (4 ') is based on a calibration curve showing the relationship between the previously prepared capacity of the sedimentation layer after centrifugation and mixed metal-containing catalyst of heavy oil, corresponding to the capacity of the sedimentation layer This is a method for quantifying the amount of mixed metal-containing catalyst in heavy oil, characterized by measuring the amount of mixed catalyst in a heavy oil sample.
This operation is the same as that of the first invention except that the metal of the first invention is replaced with a metal-containing catalyst.
Therefore, it is necessary to prepare a calibration curve showing the relationship between the capacity and the mixed metal-containing catalyst of heavy oil precipitate layer. What is necessary is just to convert the mixed metal containing catalyst amount in the case of preparing this calibration curve from the metal quantitative value by ICP emission spectrometry based on the catalyst composition used.

本発明を実施例によりさらに説明するが、本発明はこれらの例によって何ら限定されるものではない。
実施例1
重質油試料として、重油流動接触分解(RFCC)装置から得られた流動接触分解重油(CLO)を用い、以下のようにしてアルミニウムを定量した。
(1)試料採取
全容量が115mLの遠沈管(底部に容量目盛付)にCLO50mLと溶剤(トルエン20容量%、キシレン80容量%)50mLを採取した。次いで遠沈管を密栓し、それを逆さにして振動させ、CLOと溶剤を十分に混合させた。
(2)遠心分離処理
前記遠沈管を遠心分離機に設置して、遠心分離処理(第1回)を10分間行った。終了後、遠沈管内の上澄み液を除去し、新たに前記溶剤を加えて液量を100mLとし、遠心分離処理(第2回)を10分間行った。
遠心分離における相対遠心力は、いずれも600であった。
(3)沈殿層の量の計測
上記遠心分離処理後沈殿層の容量を遠沈管底部の容量目盛に従って読み取った。結果は0.005容量%であった。
(4)アルミニウム含有量の測定
アルミニウム含有量が異なる6種類のCLOについて、「石油製品−金属分試験方法」(JPI−5S−62−2000)に準拠してICP発光分光分析法で測定したアルミニウム含有量(濃度)と、本発明の方法で読み取った遠沈管底部の沈殿層の容量を測定し、両者の相関関係を示す検量線を作成した。該検量線を図1に示した。
図1の検量線で、上記(3)で読み取った沈殿層の容量0.005容量%に対応するアルミニウム含有量を求めると20質量ppmである。
(5)測定時間
上記アルミニウムの定量に要した時間は、30分であった。
Examples The present invention will be further described with reference to examples, but the present invention is not limited to these examples.
Example 1
As a heavy oil sample, fluid catalytic cracking heavy oil (CLO) obtained from a heavy oil fluid catalytic cracking (RFCC) apparatus was used, and aluminum was quantified as follows.
(1) Sample collection 50 mL of CLO and 50 mL of solvent (toluene 20 vol%, xylene 80 vol%) were collected in a centrifuge tube (volume scale at the bottom) having a total volume of 115 mL. The centrifuge tube was then sealed, and it was inverted and vibrated to thoroughly mix the CLO and the solvent.
(2) Centrifugation treatment The centrifuge tube was installed in a centrifuge and subjected to a centrifugation treatment (first time) for 10 minutes. After the completion, the supernatant liquid in the centrifuge tube was removed, the solvent was newly added to bring the liquid volume to 100 mL, and centrifugation (second time) was performed for 10 minutes.
The relative centrifugal force in the centrifugation was 600 in all cases.
(3) the capacity of the capacity of the measurement the centrifugation after precipitation layer of precipitated layer was read according to the volume scale of the centrifuge tube bottom. The result was 0.005% by volume.
(4) Measurement of aluminum content Aluminum measured by ICP emission spectrometry in accordance with "Petroleum products-Metal content test method" (JPI-5S-62-2000) for 6 types of CLO with different aluminum contents The content (concentration) and the volume of the sedimentation layer at the bottom of the centrifuge tube read by the method of the present invention were measured, and a calibration curve showing the correlation between the two was prepared. The calibration curve is shown in FIG.
When the aluminum content corresponding to the volume 0.005% by volume of the precipitation layer read in the above (3) is determined by the calibration curve in FIG. 1, it is 20 ppm by mass.
(5) Measurement time The time required for the determination of the aluminum was 30 minutes.

比較例1
実施例1と同じCLOを用い、従来の「石油製品−金属分試験方法」(JPI−5S−62−2000)に準拠したICP発光分光分析法でアルミニウム含有量を定量した。具体的方法は以下のとおりである。
CLO約10mLを白金皿に採り、ホットプレート上で煙が出なくなるまで燃焼させた。次いでこれを550℃の電気炉で4時間灰化した後、電気炉を925℃に昇温し、前記白金皿に混合融離剤を加えて5分間保持し、混合融離剤が灰化していることを確認し、さらに10分間電気炉内に置いた。電気炉から白金皿を取り出し室温まで冷却後、酒石酸の塩酸溶液を加え、融解凝固物が完全に溶解するまでホットプレートで加熱した。
次いで、白金皿の溶液を純水で希釈し、その希釈液を用いてICP発光分光分析法でアルミニウム含有量を測定した。
測定結果は20質量ppmであった。この測定に要した時間は8時間であった。
Comparative Example 1
Using the same CLO as in Example 1, the aluminum content was quantified by ICP emission spectroscopic analysis based on a conventional “petroleum product-metal content test method” (JPI-5S-62-2000). The specific method is as follows.
About 10 mL of CLO was placed in a platinum dish and burned on the hot plate until no smoke was produced. Next, after ashing for 4 hours in an electric furnace at 550 ° C., the temperature of the electric furnace is raised to 925 ° C., and the mixed fusing agent is added to the platinum plate and held for 5 minutes. And placed in an electric furnace for another 10 minutes. After removing the platinum dish from the electric furnace and cooling to room temperature, a hydrochloric acid solution of tartaric acid was added and heated on a hot plate until the molten coagulum was completely dissolved.
Next, the platinum dish solution was diluted with pure water, and the aluminum content was measured by ICP emission spectroscopic analysis using the diluted solution.
The measurement result was 20 ppm by mass. The time required for this measurement was 8 hours.

本発明では、重質油中の金属及び重質油中の金属含有触媒の含有量を迅速に定量することができる。したがって、重質油の品質管理において調整・管理を円滑に行うことができる方法として有効に利用することができる。具体的には、重油流動接触分解(RFCC)装置のスタートアップ時に、原料油と流動接触して該原料油を分解するアルミニウム含有触媒の、分解生成油中への飛散状態や、残渣油である流動接触分解重油(CLO)中への混入状況を迅速に把握することができ、RFCC装置の運転状態を適切に管理することができる。また、重質油中の触媒微粒子が内燃機関の燃料ポンプやピストンリング、シリンダーライナーに摩耗を発生させることが問題となり、触媒微粒子の含有量を厳格に管理する必要がある船舶用内燃機関用燃料については、その製造の際に迅速に運転条件を変更するなどの調整をすることができる。   In the present invention, the contents of the metal in the heavy oil and the metal-containing catalyst in the heavy oil can be quickly quantified. Therefore, it can be effectively used as a method that can be smoothly adjusted and managed in quality control of heavy oil. Specifically, when the heavy oil fluid catalytic cracking (RFCC) apparatus is started up, the aluminum-containing catalyst that is in fluid contact with the raw material oil and decomposes the raw material oil is scattered in the cracked product oil or the residual oil flow It is possible to quickly grasp the state of mixing in catalytic cracked heavy oil (CLO), and it is possible to appropriately manage the operating state of the RFCC device. In addition, fuel for marine internal combustion engines where the catalyst fine particles in heavy oil cause wear on the fuel pumps, piston rings, and cylinder liners of internal combustion engines, and the content of catalyst fine particles must be strictly controlled. As for, it is possible to make adjustments such as quickly changing the operating conditions during the production.

Claims (5)

(1)重質油試料を芳香族系溶剤と混合し、(2)該混合液を遠心分離処理し、(3)遠心分離後の沈殿層の量を計測し、(4)予め作成した遠心分離後の沈殿層の量と重質油中の金属含有量との関係を示す検量線に基づき、前記沈殿層の容量に対応する重質油試料中の金属含有量を測定することを特徴とする重質油中の金属の定量方法。 (1) a heavy oil sample was mixed with an aromatic solvent, (2) the mixture was centrifuged, (3) measures the capacity of the sedimentation layer after centrifugation, was prepared (4) in advance based on the calibration curve showing the relationship between the capacity and the metal content of the heavy oil precipitate layer after centrifugation, measuring the metal content of the heavy oil in the sample corresponding to the volume of the precipitated layer A method for quantitative determination of metals in heavy oil. 前記重質油が重油流動接触分解重油(クラリファイド油:CLO)である請求項1に記載の重質油中の金属の定量方法。   The method for quantifying metals in heavy oil according to claim 1, wherein the heavy oil is heavy oil fluid catalytic cracking heavy oil (clarified oil: CLO). 前記芳香族系溶剤がトルエン及び/又はキシレンである請求項1又は2に記載の重質油中の金属の定量方法。   The method for quantifying a metal in heavy oil according to claim 1 or 2, wherein the aromatic solvent is toluene and / or xylene. 前記重質油中の金属がアルミニウムである請求項1〜3に記載の重質油中の金属の定量方法。   The method for quantifying a metal in heavy oil according to claim 1, wherein the metal in the heavy oil is aluminum. (1)重質油試料を芳香族系溶剤と混合し、(2)該混合液を遠心分離処理し、(3)遠心分離後の沈殿層の容量を計測し、(4’)予め作成した遠心分離後の沈殿層の容量と重質油中の混入触媒量との関係を示す検量線に基づき、前記沈殿層の容量に対応する重質油試料中の混入触媒量を測定することを特徴とする重質油中の混入金属含有触媒量の定量方法。   (1) A heavy oil sample is mixed with an aromatic solvent, (2) the mixture is centrifuged, (3) the volume of the precipitated layer after centrifugation is measured, and (4 ′) prepared in advance. Based on a calibration curve showing the relationship between the volume of the precipitated layer after centrifugation and the amount of mixed catalyst in the heavy oil, the amount of mixed catalyst in the heavy oil sample corresponding to the volume of the precipitated layer is measured. Quantifying method of the amount of metal-containing catalyst in heavy oil.
JP2011153338A 2011-07-11 2011-07-11 Method for determination of metals and metal-containing catalysts in heavy oil Active JP5745960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011153338A JP5745960B2 (en) 2011-07-11 2011-07-11 Method for determination of metals and metal-containing catalysts in heavy oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011153338A JP5745960B2 (en) 2011-07-11 2011-07-11 Method for determination of metals and metal-containing catalysts in heavy oil

Publications (2)

Publication Number Publication Date
JP2013019763A JP2013019763A (en) 2013-01-31
JP5745960B2 true JP5745960B2 (en) 2015-07-08

Family

ID=47691342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011153338A Active JP5745960B2 (en) 2011-07-11 2011-07-11 Method for determination of metals and metal-containing catalysts in heavy oil

Country Status (1)

Country Link
JP (1) JP5745960B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849352B2 (en) * 2013-02-27 2016-01-27 コスモ石油株式会社 Method for measuring FCC catalyst content
GB201515921D0 (en) 2015-09-08 2015-10-21 Parker Hannifin Mfg Uk Ltd Method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431493A (en) * 1990-05-25 1992-02-03 Tonen Corp Manufacture of superclean carbonaceous pitch
JP3469069B2 (en) * 1997-11-20 2003-11-25 三菱重工業株式会社 Oil suspension detection device
PL191153B1 (en) * 1998-12-23 2006-03-31 Ge Energy Usa Filtration of feed to integration of solvent deasphalting and gasification
CA2727661C (en) * 2002-02-06 2013-09-10 Jx Nippon Oil & Energy Corporation Method for preparing hydrogenation purification catalyst
EP1572840A2 (en) * 2002-12-20 2005-09-14 ENI S.p.A. Process for the conversion of heavy feedstocks such as heavy crude oils and distillation residues
US7674369B2 (en) * 2006-12-29 2010-03-09 Chevron U.S.A. Inc. Process for recovering ultrafine solids from a hydrocarbon liquid
JP4907377B2 (en) * 2007-02-19 2012-03-28 Jx日鉱日石エネルギー株式会社 Trace metal analysis method

Also Published As

Publication number Publication date
JP2013019763A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
CN101203739B (en) Process for evaluating quality of coke and bitumen of refinery feedstocks
US7955497B2 (en) Process for recovering ultrafine solids from a hydrocarbon liquid
AlHumaidan et al. Studies on thermal cracking behavior of vacuum residues in Eureka process
AU2008227472B2 (en) A method for determining the content of metallic elements in fischer-tropsch waxes
CZ304523B6 (en) Flexible process for preparing basic oils and middle distillates from a charge containing heteroatoms
Powers Characterization and asphaltene precipitation modeling of native and reacted crude oils
JP5745960B2 (en) Method for determination of metals and metal-containing catalysts in heavy oil
Imanbayev et al. Changing the structure of resin-asphaltenes molecules in cracking
CN103540347B (en) Method of producing high aromatic rubber operating oil during catalytic cracking
Nafi’u Tijjani et al. Trace elemental analysis of Nigerian petroleum products using AAS method
RU2771162C2 (en) Method for predicting critical solvent capacity of viscosity breaking residue flow
US8574427B2 (en) Process for removing refractory nitrogen compounds from vacuum gas oil
JP5314546B2 (en) Method for pyrolysis of heavy oil
JP5849352B2 (en) Method for measuring FCC catalyst content
JIAO et al. Effect of characteristics of inferior residues on thermal coke induction periods
CN113433021B (en) Method for measuring solid content of catalytic slurry oil
Xu et al. Investigation on alternative disposal methods for froth treatment tailings—part 2, Recovery of asphaltenes
JP2007513248A (en) Quality improvement method of diesel fuel feedstock by sulfuric acid treatment
Rostani Effect of crude oil vanadyl porphyrin content and blending on heat exchanger fouling
CN117405716A (en) Method for measuring solid content of slurry oil
JP2007513246A (en) A method for improving the quality of lube oil boiling range feed streams by treatment with sulfuric acid solution.
EA025338B1 (en) Method for production of light petroleum products from heavy petroleum residues
Lee et al. Resids
Schabron et al. Residua Upgrading Efficiency Improvement Models: WRI Coking Indexes
Biskupski et al. Choice of the optimum method for determination of stability of Heavy oils

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130418

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150507

R150 Certificate of patent or registration of utility model

Ref document number: 5745960

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150