JP4907377B2 - Trace metal analysis method - Google Patents

Trace metal analysis method Download PDF

Info

Publication number
JP4907377B2
JP4907377B2 JP2007038139A JP2007038139A JP4907377B2 JP 4907377 B2 JP4907377 B2 JP 4907377B2 JP 2007038139 A JP2007038139 A JP 2007038139A JP 2007038139 A JP2007038139 A JP 2007038139A JP 4907377 B2 JP4907377 B2 JP 4907377B2
Authority
JP
Japan
Prior art keywords
acid
hydrocarbon oil
trace metal
analysis method
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007038139A
Other languages
Japanese (ja)
Other versions
JP2008203032A (en
Inventor
幸男 村井
洋佑 加倉井
晃 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Oil and Energy Corp filed Critical JX Nippon Oil and Energy Corp
Priority to JP2007038139A priority Critical patent/JP4907377B2/en
Publication of JP2008203032A publication Critical patent/JP2008203032A/en
Application granted granted Critical
Publication of JP4907377B2 publication Critical patent/JP4907377B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

本発明は、炭化水素油中に含まれる微量金属を、高感度且つ高精度に定量分析する方法に関し、特には1ppm以下の微量金属を定量する方法に関する。   The present invention relates to a method for quantitatively analyzing trace metals contained in hydrocarbon oils with high sensitivity and high accuracy, and more particularly to a method for quantitatively determining trace metals of 1 ppm or less.

従来の炭化水素油中の微量金属の定量方法としては、大きく2つの技術があった。第1の技術は、炭化水素油を燃焼させ無機水溶液化した後に誘導結合プラズマ(ICP)発光分析又はICP質量分析によって定量する技術である(下記特許文献1参照)。しかしながら、この方法は手順が煩雑であり、前処理工程等での環境汚染を受けやすく、1ppm以下の微量金属の定量では正確な値が得られない欠点があった。   There are two major techniques for quantifying trace metals in conventional hydrocarbon oils. The first technique is a technique of quantifying by inductively coupled plasma (ICP) emission analysis or ICP mass spectrometry after burning hydrocarbon oil into an inorganic aqueous solution (see Patent Document 1 below). However, this method has a complicated procedure, and is susceptible to environmental pollution in the pretreatment process and the like, and has a drawback that an accurate value cannot be obtained by quantifying trace metals of 1 ppm or less.

また、第2の技術は、炭化水素油をそのまま、又は別の炭化水素油で希釈してICP発光分析又はICP質量分析によって定量する技術である(下記非特許文献1参照)。この方法としては、潤滑油中の金属分の試験法としてJPI−5S−44−95:使用潤滑油中のFe,Cu,Al,Pb,Cr及びSn分試験方法(溶媒希釈−ICP発光分析法)やJPI−5S−38−03:潤滑油−添加元素試験方法−誘導結合プラズマ発光分光分析法等が知られているが、いずれも1ppm以上の定量しかできない。   The second technique is a technique in which a hydrocarbon oil is directly or diluted with another hydrocarbon oil and quantified by ICP emission analysis or ICP mass spectrometry (see Non-Patent Document 1 below). As this method, as a test method for metal content in lubricating oil, JPI-5S-44-95: test method for Fe, Cu, Al, Pb, Cr and Sn content in used lubricating oil (solvent dilution-ICP emission analysis method) ) And JPI-5S-38-03: Lubricating oil-added element test method-inductively coupled plasma emission spectroscopic analysis method, etc. are known, but all can only determine 1 ppm or more.

1ppm以下の金属分の定量が成り立つためには、単に定量系を高感度にするだけではなく、実サンプル及び標準サンプル中で被検成分が均一に存在している必要がある。本発明者の精密な調査により、炭化水素油中の1ppm以下の微量金属が均一に存在しないことが多々あることが明らかになった。そのため、従来、炭化水素油中の1ppm以下の微量金属については、正確な定量値が得られなかった。   In order to achieve the determination of a metal content of 1 ppm or less, it is necessary not only to make the determination system highly sensitive but also to have the test component uniformly present in the actual sample and the standard sample. Detailed investigations by the present inventor have revealed that there are many cases in which trace metals of 1 ppm or less in hydrocarbon oil do not exist uniformly. Therefore, conventionally, an accurate quantitative value could not be obtained for trace metals of 1 ppm or less in hydrocarbon oil.

炭化水素油中の金属を定量する際、含有量が1ppm以下であるか否かで、その取り扱いが異なってくる。被検成分の比重が1の粒であると仮定した場合、含有量が1ppmであれば1mL当たり100万個が存在し、この1mLの溶液をICP発光分析装置内に噴霧すると一般的に99%はドレインとして除かれるので、1%、即ち1万個の粒による信号が得られる。しかし、含有量が1ppbである場合には1mL当たり1000個しか存在しない。この1mLの溶液を分析装置に噴霧すると、その約1%、即ち10個の粒による信号しか得られないので、その測定精度は低くなる。1ppm以上であれば粒で存在しても十分に振とうすること等で定量分析は可能であるが、ppbレベルでは、測定用試料中に被検成分が均一に溶解した状態で存在しないと精度のよい定量分析を行うことができない。   When quantifying metals in hydrocarbon oil, the handling differs depending on whether the content is 1 ppm or less. Assuming that the specific gravity of the test component is 1 particle, if the content is 1 ppm, there are 1 million per mL, and when this 1 mL of solution is sprayed into an ICP emission spectrometer, it is generally 99% Is removed as a drain, so a signal with 1% or 10,000 grains is obtained. However, when the content is 1 ppb, there are only 1000 per mL. When this 1 mL of solution is sprayed on the analyzer, only about 1% of the signal, that is, signals from 10 grains can be obtained, so that the measurement accuracy becomes low. If it is 1 ppm or more, it can be quantitatively analyzed by shaking sufficiently even if it is present in the form of grains, but at the ppb level, it is accurate if the test component does not exist in a homogeneously dissolved state in the measurement sample. Cannot perform good quantitative analysis.

特開平11−344440号公報JP-A-11-344440 AKBAR MONTASER編,「誘導結合プラズマ質量分析法」,p.741〜758,化学工業日報社,2000年発行AKBAR MONTASER, “Inductively coupled plasma mass spectrometry”, p. 741-758, Chemical Industry Daily, 2000

上述のように、炭化水素油中の微量金属は、加水分解によるゲル状物質や浮遊粒子状物質として不均一に存在する。激しく振り混ぜても沈降、器壁吸着等を起こすことから、均一な状態を作れない。不均一な溶液を噴霧させて、ICP発光分析又はICP質量分析での定量を行っても、不正確で、低精度の結果しか得られない。   As described above, the trace metals in the hydrocarbon oil are present unevenly as gel-like substances and suspended particulate substances due to hydrolysis. Even if shaken violently, sedimentation, vessel wall adsorption, etc. occur, so a uniform state cannot be created. Even if a non-uniform solution is sprayed and quantification is performed by ICP emission analysis or ICP mass spectrometry, only inaccurate and low-accuracy results are obtained.

本発明は、上記欠点を解決したもので、炭化水素油中の微量金属をICP発光分析又はICP質量分析で定量する際に、正確に、且つ高精度に測定する分析方法を提供することを課題とする。   The present invention solves the above-described drawbacks, and it is an object of the present invention to provide an analysis method for accurately and highly accurately measuring trace metals in hydrocarbon oils by ICP emission spectrometry or ICP mass spectrometry. And

本発明者等は、鋭意研究した結果、炭化水素油中に含有される1ppm以下の微量の金属を分析する際に、酸を添加混合することにより、炭化水素油中の微量金属を均一な溶解状態にでき、その結果、ICP発光分析又はICP質量分析で正確に且つ高精度に定量できることを見出し、本発明に想到した。   As a result of diligent research, the present inventors have uniformly dissolved trace metals in hydrocarbon oils by adding and mixing acids when analyzing trace metals of 1 ppm or less contained in hydrocarbon oils. As a result, it was found that it can be accurately and accurately quantified by ICP emission analysis or ICP mass spectrometry, and the present invention has been conceived.

すなわち、本発明は、
(1)炭化水素油に含まれる1ppm以下の微量金属を、ICP発光分析又はICP質量分析で定量するにあたり、炭化水素油に酸を混合する微量金属の分析方法;
(2)前記酸が、硝酸、塩酸、硫酸、フッ化水素酸、りん酸、過塩素酸、酢酸及び蟻酸から選ばれる1種以上である(1)に記載の微量金属の分析方法;
(3)2−プロパノール、エタノール、メタノール、2−エトキシエタノール及び2−ブトキシエタノールから選ばれる1種以上を補助溶剤として、前記炭化水素油に混合する(1)又は(2)に記載の微量金属の分析方法;及び
(4)(1)〜(3)のいずれかに記載の微量金属の分析方法を用いて、炭化水素油中の金属分の分析を行い、品質管理をする品質管理方法である
That is, the present invention
(1) A method for analyzing a trace metal in which an acid is mixed with a hydrocarbon oil when quantifying a trace metal of 1 ppm or less contained in a hydrocarbon oil by ICP emission analysis or ICP mass spectrometry;
(2) The trace metal analysis method according to (1), wherein the acid is at least one selected from nitric acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, perchloric acid, acetic acid, and formic acid;
(3) The trace metal according to (1) or (2), wherein one or more selected from 2-propanol, ethanol, methanol, 2-ethoxyethanol, and 2-butoxyethanol are mixed with the hydrocarbon oil as an auxiliary solvent. analysis method; and (4) (1) with an assay of trace metals as described in any one of the - (3) was analyzed for metal content in the hydrocarbon oil, in the quality control method of a quality control There is .

本発明によれば、簡易な前処理を行うことにより、従来の装置を用いても、より高精度な定量値を得ることができる。また、本発明の分析方法により、炭化水素油中の金属分を定量して品質管理を行うことにより、製品品質の保証ばかりでなく、製造工程での問題点の発見等も可能となる。そのため、本発明の分析方法は、製品の品質保証、製造工程での問題点の発見等にも有用に活用することができる。   According to the present invention, by performing simple preprocessing, a more accurate quantitative value can be obtained using a conventional apparatus. Further, by performing quality control by quantifying the metal content in the hydrocarbon oil by the analysis method of the present invention, it becomes possible not only to guarantee product quality but also to find problems in the manufacturing process. Therefore, the analysis method of the present invention can be effectively used for quality assurance of products, discovery of problems in the manufacturing process, and the like.

以下に、本発明を詳細に説明する。本発明の微量金属の分析方法は、炭化水素油に含まれる1ppm以下の微量金属を、ICP発光分析又はICP質量分析で定量するにあたり、炭化水素油に酸を混合することを特徴とする。   The present invention is described in detail below. The trace metal analysis method of the present invention is characterized by mixing an acid with a hydrocarbon oil when quantifying a trace metal of 1 ppm or less contained in the hydrocarbon oil by ICP emission analysis or ICP mass spectrometry.

炭化水素油中に酸を混合することにより、炭化水素油中の微量金属元素は、加水分解してゲル状になっていたものが金属イオンとして溶解し、また、浮遊粒子状物質であったものも金属イオンとなって溶解するため、溶液中に均一に存在するようになる。   By mixing acid in hydrocarbon oil, trace metal elements in hydrocarbon oil are hydrolyzed and dissolved in gel form, and dissolved as metal ions. Since it also dissolves as metal ions, it comes to exist uniformly in the solution.

前記酸としては、無機酸、有機酸を問わず使用できるが、本発明者等の検討結果から、硝酸、塩酸、硫酸、フッ化水素酸、りん酸、過塩素酸、酢酸及び蟻酸から選ばれる1種以上が好ましいことが分かった。   The acid can be used regardless of whether it is an inorganic acid or an organic acid, but is selected from nitric acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, perchloric acid, acetic acid, and formic acid, based on the results of studies by the present inventors. It has been found that one or more are preferred.

また、前記酸の添加量は、炭化水素油に対して0.001〜50容量%の範囲が好ましく、0.01〜5容量%の範囲が更に好ましい。酸の添加量が0.001容量%未満では、酸の添加効果がなく、重金属を均一に溶解することができないため好ましくない。また、50容量%を超えて酸を添加すると、炭化水素油の採取比率が小さくなって、微量分析が困難になることから好ましくない。なお、使用する酸の濃度は、市販試薬の濃厚品が好ましいが、水で1.1〜10倍に希釈したものでも構わない。市販試薬の濃厚品とは、硝酸では含量60.0〜62.0wt%、塩酸では含量35.0〜37.0wt%、硫酸では含量95.0wt%以上、フッ化水素酸では含量46.0〜48.0wt%、りん酸では含量85.0%wt以上、過塩素酸では含量60.0〜62.0wt%、酢酸では含量99.5wt%以上、蟻酸では含量88.0〜92.0wt%又は98wt%以上を指す。希釈した酸を用いると、希釈に用いた水により炭化水素油と相分層する可能性が大きくなり、好ましくない。   Moreover, the amount of the acid added is preferably in the range of 0.001 to 50% by volume, more preferably in the range of 0.01 to 5% by volume with respect to the hydrocarbon oil. An acid addition amount of less than 0.001% by volume is not preferable because there is no effect of acid addition, and heavy metals cannot be dissolved uniformly. Moreover, it is not preferable to add an acid exceeding 50% by volume because the collection ratio of hydrocarbon oil becomes small and trace analysis becomes difficult. In addition, although the concentration of the acid to be used is preferably a concentrated commercial reagent, it may be diluted 1.1 to 10 times with water. Concentrated products of commercially available reagents are 66.0 to 62.0 wt% in nitric acid, 35.0 to 37.0 wt% in hydrochloric acid, 95.0 wt% or more in sulfuric acid, and 46.0 in hydrofluoric acid. ~ 48.0 wt%, phosphoric acid content 85.0% wt or more, perchloric acid content 60.0-62.0 wt%, acetic acid content 99.5 wt% or more, formic acid content 88.0-92.0 wt% % Or 98 wt% or more. Use of a diluted acid is not preferable because it increases the possibility of phase separation with the hydrocarbon oil by the water used for dilution.

本発明の別の実施形態において、炭化水素油に酸を混合するに際して、更に補助溶剤を使用する方法がある。炭化水素油に酸を混合した際、酸の添加量によっては、炭化水素油と酸が相分層することがある。相分離すると、試料を分析装置内で均一に噴霧できない、即ち均一に検出部に導入できないため好ましくない。そのため、補助溶剤として、炭化水素油及び酸の両方と相溶する溶剤を添加して試料全体を均一にする必要がある。補助溶剤としては、1種又は2種以上を使用することができる。この補助溶剤としては、2−プロパノール、エタノール、メタノール、2−エトキシエタノール及び2−ブトキシエタノールから選ばれる1種以上を使用することが好ましく、これらの中でも、2−ブトキシエタノールが特に好ましく用いられる。また、補助溶剤の添加量は、適宜調節して構わないが、炭化水素油に対して0.1〜80容量%の範囲が好ましく、5〜30容量%の範囲が更に好ましく、5〜20容量%の範囲が特に好ましい。   In another embodiment of the present invention, there is a method of further using a co-solvent when mixing the acid with the hydrocarbon oil. When an acid is mixed with a hydrocarbon oil, the hydrocarbon oil and the acid may be phase-separated depending on the amount of acid added. The phase separation is not preferable because the sample cannot be sprayed uniformly in the analyzer, that is, cannot be uniformly introduced into the detector. Therefore, it is necessary to add a solvent compatible with both hydrocarbon oil and acid as an auxiliary solvent to make the entire sample uniform. As an auxiliary solvent, 1 type (s) or 2 or more types can be used. As this auxiliary solvent, it is preferable to use at least one selected from 2-propanol, ethanol, methanol, 2-ethoxyethanol and 2-butoxyethanol, and among these, 2-butoxyethanol is particularly preferably used. The amount of the auxiliary solvent added may be adjusted as appropriate, but is preferably in the range of 0.1 to 80% by volume, more preferably in the range of 5 to 30% by volume, and 5 to 20% by volume with respect to the hydrocarbon oil. % Range is particularly preferred.

本発明での炭化水素油とは、芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素及びこれらの混合物からなる炭化水素油であり、該炭化水素油には、石油精製工程で得られる石化原料としてのベンゼン、キシレン、トルエン、シクロヘキサン等の有機溶剤や、ガソリン、灯軽油といった燃料油、特には燃料電池用の燃料も含まれる。また、本発明の分析方法は、これら炭化水素油に極性溶剤が添加されている混合溶剤にも適用できる。   The hydrocarbon oil in the present invention is a hydrocarbon oil comprising an aromatic hydrocarbon, an aliphatic hydrocarbon, an alicyclic hydrocarbon, and a mixture thereof, and the hydrocarbon oil is obtained in a petroleum refining process. Also included are organic solvents such as benzene, xylene, toluene and cyclohexane as petrochemical raw materials, fuel oils such as gasoline and kerosene, especially fuel cells. The analysis method of the present invention can also be applied to a mixed solvent in which a polar solvent is added to these hydrocarbon oils.

本発明の実施において、炭化水素油に酸を混合するに際して、炭化水素油をそのまま分析に供すこともできるが、ICP質量分析は極めて高感度なので、炭化水素油を他の炭化水素溶剤で希釈して分析に供すこともできる。希釈溶剤として使用する炭化水素溶剤は、検出対象元素をできるだけ含まなく、希釈対象の炭化水素油に性状が近く、相溶するものが好ましい。   In the practice of the present invention, when mixing the acid with the hydrocarbon oil, the hydrocarbon oil can be used for analysis as it is, but since ICP mass spectrometry is extremely sensitive, the hydrocarbon oil is diluted with another hydrocarbon solvent. Can also be used for analysis. The hydrocarbon solvent used as the dilution solvent is preferably one that does not contain the detection target element as much as possible, has close properties to the dilution target hydrocarbon oil, and is compatible.

本発明の微量金属の分析方法は、炭化水素油に含まれる1ppm以下の微量金属の定量に用いられる。なお、本発明の分析方法の検出下限は、測定対象とする金属の種類にもより、特に限定されるものではないが、好ましくは1ppbであり、より好ましくは0.1ppb、特には0.01ppbである。   The trace metal analysis method of the present invention is used for the determination of trace metals of 1 ppm or less contained in hydrocarbon oil. The lower limit of detection of the analysis method of the present invention is not particularly limited depending on the type of metal to be measured, but is preferably 1 ppb, more preferably 0.1 ppb, and particularly 0.01 ppb. It is.

本発明で測定対象とする金属としては、リチウム、ベリリウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、ゲルマニウム、ルビジウム、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、カドミウム、インジウム、すず、アンチモン、バリウム、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、金、水銀、タリウム、鉛、ビスマス、トリウム、ウラン、ランタン、セリウム、プラセオジム、ネオジム、ユーロピウム、ガドリニウム、テルビウム、ディスプロシウム、エルビウム、ツリウム、イッテルビウム及びルテチウムが挙げられる。   The metals to be measured in the present invention include lithium, beryllium, sodium, magnesium, aluminum, potassium, calcium, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, and rubidium. Strontium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, cadmium, indium, tin, antimony, barium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, thallium, lead , Bismuth, thorium, uranium, lanthanum, cerium, praseodymium, neodymium, europium, gadolinium, terbium, dysprosium, erbium, thulium, ytterbium and Techiumu and the like.

ICP発光分析装置又はICP質量分析装置による定量方法は、従前の方法と同様の方法で行えばよく、例えば、先ず標準試料の測定を行って検量線を作成し、次いで試験試料を測定して、定量値を求めればよい。従って、検出対象元素の選定は適宜行い、分析に必要な標準液を調製して検量線作成を行えばよい。   The quantification method by the ICP emission spectrometer or the ICP mass spectrometer may be performed by the same method as the conventional method. For example, first, a standard sample is measured to create a calibration curve, and then a test sample is measured. What is necessary is just to obtain | require a quantitative value. Therefore, the detection target element may be selected as appropriate, and a standard solution necessary for analysis may be prepared to create a calibration curve.

また、本願発明の品質管理方法は、前記の微量金属の分析方法を用いて、炭化水素油中の金属分の分析を行い、炭化水素油中の金属分の管理をする品質管理方法である。具体的には、本願発明の品質管理方法は、当該炭化水素油の製造工程と製品出荷工程の間に、本願発明の微量金属の分析方法による分析工程を有し、炭化水素油中の金属分分析結果と予め定めた規定値とを対比し、規定値以下の性状の炭化水素油を製品と判断し、規定値以上の性状の炭化水素油を製品としないと判断する工程を具備することにより、製品の炭化水素中の金属分を一定以下に保つことができる。なお、規定値を外れた炭化水素油は、別途の処理工程、例えば、蒸留工程へ再循環しての再処理や、吸着剤、分離膜等での処理工程等を行うことにより生産ロスを防ぐことができる。また、本発明の品質管理方法は、製造工程での異常を検知する手段としても応用が可能である。   The quality control method of the present invention is a quality control method for analyzing the metal content in the hydrocarbon oil by using the trace metal analysis method described above to manage the metal content in the hydrocarbon oil. Specifically, the quality control method of the present invention has an analysis step by the trace metal analysis method of the present invention between the production process and the product shipment process of the hydrocarbon oil. By comparing the analysis result with a predetermined specified value, judging that a hydrocarbon oil having a property below the specified value is a product, and determining that a hydrocarbon oil having a property above the specified value is not a product The metal content in the hydrocarbon of the product can be kept below a certain level. For hydrocarbon oils that deviate from the specified value, loss of production can be prevented by performing a separate processing step, for example, reprocessing by recycling to the distillation step, or processing step using an adsorbent, separation membrane, etc. be able to. The quality control method of the present invention can also be applied as means for detecting an abnormality in the manufacturing process.

前記の品質管理方法により、管理した炭化水素組成物は、含有される不純分としての重金属が一定規格値であるため、真にクリーンな性状が要求される燃料電池用燃料、半導体洗浄用溶剤、医薬品製造用溶剤、高純度プラスチック原材料等の含有微量金属を重視する分野において極めて有用である。   The hydrocarbon composition managed by the quality control method described above, because the heavy metal contained as an impure component is a fixed standard value, fuel for fuel cells, a solvent for semiconductor cleaning, for which a truly clean property is required, It is extremely useful in fields where emphasis is placed on trace metals, such as solvents for pharmaceutical production and high-purity plastic raw materials.

本発明の酸添加効果の一例を以下に説明する。コバルト、インジウム、ビスマスの各標準液のトルエン希釈溶液(濃度:5ng/mL)について、ICP質量分析計により測定を行った際の検出信号強度を表1に示す(測定装置及び測定条件は後述する条件と同じ)。   An example of the acid addition effect of the present invention will be described below. Table 1 shows detection signal intensities when measuring with a ICP mass spectrometer with respect to toluene diluted solutions (concentration: 5 ng / mL) of cobalt, indium, and bismuth standard solutions (measurement apparatus and measurement conditions will be described later). Same as condition).

Figure 0004907377
Figure 0004907377

表1から、前記試料に硝酸(濃度70%)を0.02容量%以上添加することにより、コバルト、インジウム、ビスマスともに検出信号強度が2〜3倍に大きくなることがわかる。   From Table 1, it can be seen that by adding 0.02% by volume or more of nitric acid (concentration 70%) to the sample, the detection signal intensity is increased two to three times for all of cobalt, indium and bismuth.

また、マグネシウム、アルミニウム、マンガン、鉄、ニッケル、銅、亜鉛、カドミウムの各標準溶液をトルエン/2−ブトキシエタノール=900mL/100mLを用いて各元素の濃度を5ng/mLに調整した試料に、硝酸を0.1容量%添加した際の相対信号強度(硝酸添加試料の信号強度÷無添加試料の信号強度)を表2に示す。   In addition, each standard solution of magnesium, aluminum, manganese, iron, nickel, copper, zinc, and cadmium was adjusted to 5 ng / mL with a sample prepared by adjusting the concentration of each element to 5 ng / mL using toluene / 2-butoxyethanol = 900 mL / 100 mL. Table 2 shows the relative signal intensity (signal intensity of the nitric acid-added sample ÷ signal intensity of the non-added sample) when 0.1 vol% is added.

Figure 0004907377
Figure 0004907377

表2の結果から、酸を添加することにより炭化水素油中に含有される各種の微量金属元素の濃度は同じにも関わらず、信号強度が増加することがわかる。すなわち、酸を添加することにより炭化水素油中に含有される各種の微量金属元素の形態が、加水分解によるゲル状物質や浮遊粒子状物質として存在していたものから、溶解して金属イオンとなり、試料溶液中に微量金属が均一に分散したと推察される。したがって、微量の金属元素であっても、容器やサンプリング器具等の内壁への吸着や測定成分の沈降等を起こさない均一な状態とすれば、検出強度が大きくなるため、より正確な値の定量が可能となる。   From the results shown in Table 2, it can be seen that the signal intensity increases by adding an acid even though the concentrations of various trace metal elements contained in the hydrocarbon oil are the same. In other words, by adding acid, various trace metal elements contained in hydrocarbon oils are dissolved into gel ions and suspended particulates from the presence of hydrolyzed gels and suspended particulates. It is inferred that trace metals were uniformly dispersed in the sample solution. Therefore, even if it is a trace amount of metal elements, the detection intensity will be increased if it is in a uniform state that does not cause adsorption to the inner wall of a container or sampling instrument, or sedimentation of the measured component. Is possible.

以下に、実施例により本発明をより具体的に説明するが、本発明はこれらの例により何ら制限されるものではない。   Hereinafter, the present invention will be described more specifically by way of examples. However, the present invention is not limited to these examples.

(標準溶液の調製)
(1)内標準用インジウム溶液の調製
コノコ社製CONOSTAN単元素標準(インジウム:5000ppm)の1.00gを精秤し、トルエン/2−ブトキシエタノール/硝酸(900mL:100mL:1mL)溶液に溶解し、100mLにメスアップしてインジウム内標準原液(50μg/mL)とした。次いでインジウム内標準原液(50μg/mL)をトルエン−2−ブトキシエタノール−硝酸(900mL:100mL:1mL)溶液により10000倍に希釈して、内標準用インジウム溶液(50ng/mL)を調製した。
(Preparation of standard solution)
(1) Preparation of indium solution for internal standard 1.00 g of CONOSTAN single element standard (indium: 5000 ppm) manufactured by Conoco Corporation is precisely weighed and dissolved in a solution of toluene / 2-butoxyethanol / nitric acid (900 mL: 100 mL: 1 mL). The indium standard stock solution (50 μg / mL) was made up to 100 mL. Next, the indium internal standard stock solution (50 μg / mL) was diluted 10,000 times with a toluene-2-butoxyethanol-nitric acid (900 mL: 100 mL: 1 mL) solution to prepare an indium solution for internal standard (50 ng / mL).

(2)21元素標準溶液の調製
コノコ社製CONOSTAN多元素標準S−21(Ag、Al、B、Ba、Ca、Cd、Cr、Cu、Fe、Mg、Mn、Mo、Na、Ni、P、Pb、Si、Sn、Ti、V及びZn:各900ppm)の1.00gを精秤し、トルエン/2−ブトキシエタノール/硝酸(900mL:100mL:1mL)溶液に溶解し、正しく100mLにして21元素標準原液(9μg/mL)とした。21元素標準原液(9μg/mL)をトルエン/2−ブトキシエタノール/硝酸(900mL:100mL:1mL)溶液により100倍に希釈して、21元素標準二次原液(90ng/mL)を調製した。21元素二次原液(90ng/mL)10mLを採取し、これに内標準用インジウム溶液(50ng/mL)10mLを添加し、トルエン/2−ブトキシエタノール/硝酸(900mL:100mL:1mL)で100mLに定容として21元素標準溶液(9ng/mL)を調製した。
(2) Preparation of 21 element standard solution CONOSTAN multi-element standard S-21 (Ag, Al, B, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, manufactured by Conoco Corporation 1.00 g of Pb, Si, Sn, Ti, V, and Zn (each 900 ppm) are precisely weighed and dissolved in a toluene / 2-butoxyethanol / nitric acid (900 mL: 100 mL: 1 mL) solution to make exactly 100 mL and 21 elements. A standard stock solution (9 μg / mL) was used. A 21-element standard stock solution (9 μg / mL) was diluted 100-fold with a toluene / 2-butoxyethanol / nitric acid (900 mL: 100 mL: 1 mL) solution to prepare a 21-element standard secondary stock solution (90 ng / mL). Take 10 mL of the 21 element secondary stock solution (90 ng / mL), add 10 mL of the indium solution for internal standard (50 ng / mL), and add 100 mL with toluene / 2-butoxyethanol / nitric acid (900 mL: 100 mL: 1 mL). A 21 element standard solution (9 ng / mL) was prepared as a constant volume.

(実施例1)
市販灯油Aを10mL採取し、内標準用インジウム溶液(50ng/mL)の10mLを添加し、トルエン/2−ブトキシエタノール/硝酸/塩酸(900mL:100mL:1mL:1mL)で100mLに定容とし、試料溶液を調製した。これをICP質量分析計により測定を行った。
Example 1
10 mL of commercially available kerosene A was collected, 10 mL of indium solution for internal standard (50 ng / mL) was added, and the volume was adjusted to 100 mL with toluene / 2-butoxyethanol / nitric acid / hydrochloric acid (900 mL: 100 mL: 1 mL: 1 mL), A sample solution was prepared. This was measured with an ICP mass spectrometer.

(比較例1)
市販灯油Aを10mL採取し、トルエンで100mLに定容とし、試料溶液を調製した。これをICP質量分析計により測定を行った。
(Comparative Example 1)
10 mL of commercial kerosene A was sampled and made up to a constant volume of 100 mL with toluene to prepare a sample solution. This was measured with an ICP mass spectrometer.

(実施例2)
市販灯油Aを市販灯油Bにした以外は実施例1と同様の方法で試料溶液を調製して、測定を行った。
(Example 2)
A sample solution was prepared in the same manner as in Example 1 except that the commercial kerosene A was changed to the commercial kerosene B, and measurement was performed.

(比較例2)
市販灯油Aを市販灯油Bにした以外は比較例1と同様の方法で試料溶液を調製して、測定を行った。
(Comparative Example 2)
A sample solution was prepared in the same manner as in Comparative Example 1 except that the commercial kerosene A was changed to the commercial kerosene B, and the measurement was performed.

(実施例3)
市販灯油Cを10mL採取し、内標準用インジウム溶液(50ng/mL)の10mLを添加し、トルエン/2−ブトキシエタノール/塩酸(200mL:100mL:1mL)で100mLに定容とし、試料溶液を調製した。これをICP質量分析計により測定を行った。
Example 3
Collect 10 mL of commercially available kerosene C, add 10 mL of indium solution for internal standard (50 ng / mL), adjust to 100 mL with toluene / 2-butoxyethanol / hydrochloric acid (200 mL: 100 mL: 1 mL), and prepare sample solution did. This was measured with an ICP mass spectrometer.

(比較例3)
市販灯油Aを市販灯油Cにした以外は比較例1と同様の方法で試料溶液を調製して、測定を行った。
(Comparative Example 3)
A sample solution was prepared in the same manner as in Comparative Example 1 except that the commercial kerosene A was changed to the commercial kerosene C, and measurement was performed.

(実施例4)
市販灯油Cを市販灯油Dにした以外は実施例3と同様の方法で試料溶液を調製して、測定を行った。
Example 4
A sample solution was prepared in the same manner as in Example 3 except that commercial kerosene C was changed to commercial kerosene D, and measurement was performed.

(比較例4)
市販灯油Cを市販灯油Dにした以外は比較例3と同様の方法で試料溶液を調製して、測定を行った。
(Comparative Example 4)
A sample solution was prepared in the same manner as in Comparative Example 3 except that the commercial kerosene C was changed to the commercial kerosene D, and the measurement was performed.

尚、上記で使用した酸、溶剤等は次のものである。
1)トルエン:関東化学製、電子工業用
2)2−ブトキシエタノール:純正化学製、純正一級
3)硝酸:和光純薬製、電子工業用、濃度70%
4)塩酸:和光純薬製、電子工業用、濃度35%
The acid, solvent, etc. used above are as follows.
1) Toluene: manufactured by Kanto Chemical, for electronics industry 2) 2-butoxyethanol: manufactured by Junsei Chemical, genuine grade 1) Nitric acid: manufactured by Wako Pure Chemicals, for electronics industry, concentration 70%
4) Hydrochloric acid: Wako Pure Chemicals, electronics industry, concentration 35%

前記のようにして調製した試料溶液及び分析用標準溶液をICP質量分析により測定した。
ICP質量分析装置:アジレントテクノロジー社製7500cs
高周波出力:1.6kW
反射波出力:5W以下
プラズマガス(アルゴン)流量:15L/分
キャリアガス(アルゴン)流量:1.0L/分
サンプリング深さ(プラズマに対するサンプリングオリフィスの位置):10mm
ドウェル時間:20m秒
スウィーブ回数:400
The sample solution and the analytical standard solution prepared as described above were measured by ICP mass spectrometry.
ICP mass spectrometer: 7500cs manufactured by Agilent Technologies
High frequency output: 1.6kW
Reflected wave output: 5 W or less Plasma gas (argon) flow rate: 15 L / min Carrier gas (argon) flow rate: 1.0 L / min Sampling depth (position of sampling orifice with respect to plasma): 10 mm
Dwell time: 20 ms Number of sweeps: 400

上記の条件で行った分析の結果を表3に示す。   Table 3 shows the results of the analysis performed under the above conditions.

Figure 0004907377
Figure 0004907377

Claims (4)

炭化水素油に含まれる1ppm以下の微量金属を、ICP発光分析又はICP質量分析で定量するにあたり、炭化水素油に酸を混合することを特徴とする微量金属の分析方法。   A method for analyzing a trace metal, which comprises mixing an acid with a hydrocarbon oil when quantifying a trace metal of 1 ppm or less contained in a hydrocarbon oil by ICP emission analysis or ICP mass spectrometry. 前記酸が、硝酸、塩酸、硫酸、フッ化水素酸、りん酸、過塩素酸、酢酸及び蟻酸から選ばれる1種以上である請求項1に記載の微量金属の分析方法。   The trace metal analysis method according to claim 1, wherein the acid is at least one selected from nitric acid, hydrochloric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, perchloric acid, acetic acid, and formic acid. 2−プロパノール、エタノール、メタノール、2−エトキシエタノール及び2−ブトキシエタノールから選ばれる1種以上を補助溶剤として、前記炭化水素油に混合する請求項1又は2に記載の微量金属の分析方法。   The trace metal analysis method according to claim 1 or 2, wherein one or more selected from 2-propanol, ethanol, methanol, 2-ethoxyethanol, and 2-butoxyethanol are mixed with the hydrocarbon oil as an auxiliary solvent. 請求項1乃至3のいずれかに記載の微量金属の分析方法を用いて、炭化水素油中の金属分の分析を行い、品質管理をする品質管理方法。   A quality control method for performing quality control by analyzing a metal content in a hydrocarbon oil using the trace metal analysis method according to claim 1.
JP2007038139A 2007-02-19 2007-02-19 Trace metal analysis method Expired - Fee Related JP4907377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038139A JP4907377B2 (en) 2007-02-19 2007-02-19 Trace metal analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038139A JP4907377B2 (en) 2007-02-19 2007-02-19 Trace metal analysis method

Publications (2)

Publication Number Publication Date
JP2008203032A JP2008203032A (en) 2008-09-04
JP4907377B2 true JP4907377B2 (en) 2012-03-28

Family

ID=39780711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038139A Expired - Fee Related JP4907377B2 (en) 2007-02-19 2007-02-19 Trace metal analysis method

Country Status (1)

Country Link
JP (1) JP4907377B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048312A (en) * 2012-12-18 2013-04-17 浙江经济职业技术学院 Hydraulic power steering system oil detection method based on atomic emission spectrometry

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169678B2 (en) * 2008-09-24 2013-03-27 住友金属鉱山株式会社 High precision analysis of metal elements by inductively coupled plasma optical emission spectrometry
JP5745960B2 (en) * 2011-07-11 2015-07-08 出光興産株式会社 Method for determination of metals and metal-containing catalysts in heavy oil
CN102735514A (en) * 2012-07-23 2012-10-17 武钢集团昆明钢铁股份有限公司 Method for measuring contents of Fe, Al, Ca, Mg, Pb, Cu, Zn and P in manganese ore
RU2519520C1 (en) * 2012-12-24 2014-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Томский государственный архитектурно-строительный университет" (ТГАСУ) Detection of impurities in of working oil and estimation of its fouling for determination of conditions of machine assembly units and parts
CN103323447B (en) * 2013-05-31 2015-08-19 中国一拖集团有限公司 The assay method of sulfur content in a kind of extreme pressure cutting fluid
CN103293144B (en) * 2013-06-26 2015-06-24 天津虹炎科技有限公司 ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) measurement of content of impurity phosphorus in steel
CN103389233B (en) * 2013-07-17 2015-04-29 攀钢集团攀枝花钢铁研究院有限公司 Method for measuring metal contents in oil product and sample pretreatment method thereof
CN103389239A (en) * 2013-08-12 2013-11-13 攀枝花学院 Mixed flux and method for measuring silicon content of silicon iron by perchloric acid dehydration gravimetric method
CN103616433B (en) * 2013-12-09 2016-01-20 通标标准技术服务(天津)有限公司 A kind of method utilizing ICP-MS to measure oil rare earth elements
CN112834486B (en) * 2020-12-29 2022-09-30 河钢股份有限公司 Method for measuring chromium content in nickel-based alloy

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180673A (en) * 1983-03-31 1984-10-13 Sumitomo Bakelite Co Ltd Testing device of external appearance
JPH11344440A (en) * 1998-06-02 1999-12-14 Nec Corp Method and instrument for analyzing organic substance for impurity
JP4112703B2 (en) * 1998-09-25 2008-07-02 株式会社コスモ総合研究所 Method for estimating the sulfated ash content of lubricating oils
JP2001004565A (en) * 1999-06-24 2001-01-12 Fuji Electric Co Ltd Analytical method for metal in petroleum-based lubricating oil
JP2001305056A (en) * 2000-04-21 2001-10-31 Mitsubishi Heavy Ind Ltd Measurement method for trace metal carbonyl compound
JP2002080885A (en) * 2000-09-07 2002-03-22 Nisshin Oil Mills Ltd:The Plant for manufacturing cooking oil and method for manufacturing cooking oil
JP4729780B2 (en) * 2000-09-25 2011-07-20 株式会社村田製作所 Method for solution of inorganic glass sample and method for quantitative analysis of inorganic glass sample
JP2002277359A (en) * 2001-03-19 2002-09-25 Rigaku Industrial Co Method of preparing oil sample for fluorescent x-ray analysis
JP4671012B2 (en) * 2001-09-03 2011-04-13 三菱瓦斯化学株式会社 Method for analyzing metal components of high purity adamantanes
JP3917457B2 (en) * 2002-05-08 2007-05-23 株式会社三徳 Method for analyzing metals contained in organic phase samples
JP3694277B2 (en) * 2002-05-28 2005-09-14 トライボ・テックス株式会社 Lubrication target part diagnosis method and lubrication target part diagnosis system
US20050009194A1 (en) * 2003-07-08 2005-01-13 Franklin Randall M. Analytical method and device for determining metal concentration in liquid hydrocarbon matrices
JP2006184109A (en) * 2004-12-27 2006-07-13 Mitsubishi Rayon Co Ltd Method for analyzing ultratrace metal in polymer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048312A (en) * 2012-12-18 2013-04-17 浙江经济职业技术学院 Hydraulic power steering system oil detection method based on atomic emission spectrometry

Also Published As

Publication number Publication date
JP2008203032A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4907377B2 (en) Trace metal analysis method
Costley et al. Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation
Li et al. Ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples
Stanisz et al. Mercury species determination by task specific ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with cold vapour generation atomic absorption spectrometry
Naseri et al. Rapid determination of lead in water samples by dispersive liquid–liquid microextraction coupled with electrothermal atomic absorption spectrometry
Martinis et al. Trace mercury determination in drinking and natural water samples by room temperature ionic liquid based-preconcentration and flow injection-cold vapor atomic absorption spectrometry
Pueyo et al. Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure
Begerow et al. New horizons in human biomonitoring of environmentally and occupationally relevant metals—sector-field ICP-MS versus electrothermal AAS
Limbeck et al. ETAAS determination of palladium in environmental samples with on-line preconcentration and matrix separation
Tuzen et al. Pressure-assisted ionic liquid dispersive microextraction of vanadium coupled with electrothermal atomic absorption spectrometry
Ojeda et al. Preconcentration of cadmium in environmental samples by cloud point extraction and determination by FAAS
Mohammadi et al. Applicability of cloud point extraction for the separation trace amount of lead ion in environmental and biological samples prior to determination by flame atomic absorption spectrometry
Mitani et al. Automated headspace single-drop microextraction via a lab-in-syringe platform for mercury electrothermal atomic absorption spectrometric determination after in situ vapor generation
Krawczyk et al. Silver nanoparticles as a solid sorbent in ultrasound-assisted dispersive micro solid-phase extraction for the atomic absorption spectrometric determination of mercury in water samples
Saçmacl et al. Dispersive liquid-liquid microextraction procedure for the determination of palladium by flame atomic absorption spectroscopy
Minamisawa et al. Determination of indium by graphite furnace atomic absorption spectrometry after coprecipitation with chitosan
Horstkotte et al. Online coupling of fully automatic in-syringe dispersive liquid-liquid microextraction with oxidative back-extraction to inductively coupled plasma spectrometry for sample clean-up in elemental analysis: A proof of concept
Liang et al. Determination of trace palladium in complicated matrices by displacement dispersive liquid-liquid microextraction and graphite furnace atomic absorption spectrometry
Meeravali et al. Interference free ultra trace determination of Pt, Pd and Au in geological and environmental samples by inductively coupled plasma quadrupole mass spectrometry after a cloud point extraction
CN106404515A (en) Detection method for determining multiple elements in solid cosmetic powder
Bulska et al. Atomic absorption spectrometric determination of mercury in soil standard reference material following microwave sample pretreatment
Chiweshe et al. Evaluation of different internal standards for precious metals quantification
Höl et al. Ion pair-dispersive liquid-liquid microextraction coupled to microsample injection system-flame atomic absorption spectrometry for determination of gold at trace level in real samples
Arunachalam et al. Multielement characterization of soil samples with ICP-MS for environmental studies
JP5705632B2 (en) Analytical method for heavy metal or rare earth metal ion concentration

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4907377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees