JP5745623B2 - Surface treatment mold and mold surface treatment method - Google Patents
Surface treatment mold and mold surface treatment method Download PDFInfo
- Publication number
- JP5745623B2 JP5745623B2 JP2013514910A JP2013514910A JP5745623B2 JP 5745623 B2 JP5745623 B2 JP 5745623B2 JP 2013514910 A JP2013514910 A JP 2013514910A JP 2013514910 A JP2013514910 A JP 2013514910A JP 5745623 B2 JP5745623 B2 JP 5745623B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- mold
- surface treatment
- silazane
- heat resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004381 surface treatment Methods 0.000 title claims description 35
- 238000000034 method Methods 0.000 title claims description 22
- 238000012360 testing method Methods 0.000 claims description 26
- 239000000178 monomer Substances 0.000 claims description 13
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 12
- 238000007493 shaping process Methods 0.000 claims description 12
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 10
- 239000001301 oxygen Substances 0.000 claims description 10
- 229910052760 oxygen Inorganic materials 0.000 claims description 10
- 238000009832 plasma treatment Methods 0.000 claims description 8
- 238000001771 vacuum deposition Methods 0.000 claims description 7
- 238000001746 injection moulding Methods 0.000 claims description 5
- 238000006068 polycondensation reaction Methods 0.000 claims description 5
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 3
- 239000000956 alloy Substances 0.000 claims description 3
- 229910052723 transition metal Inorganic materials 0.000 claims description 2
- 150000003624 transition metals Chemical class 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 90
- 239000000463 material Substances 0.000 description 22
- 238000000465 moulding Methods 0.000 description 12
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000011651 chromium Substances 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- -1 perfluoro group Chemical group 0.000 description 3
- 238000005546 reactive sputtering Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229920000742 Cotton Polymers 0.000 description 2
- 229920001774 Perfluoroether Polymers 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000003667 anti-reflective effect Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000002086 nanomaterial Substances 0.000 description 2
- UJMWVICAENGCRF-UHFFFAOYSA-N oxygen difluoride Chemical compound FOF UJMWVICAENGCRF-UHFFFAOYSA-N 0.000 description 2
- 239000010702 perfluoropolyether Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KSFBTBXTZDJOHO-UHFFFAOYSA-N diaminosilicon Chemical compound N[Si]N KSFBTBXTZDJOHO-UHFFFAOYSA-N 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229920002313 fluoropolymer Polymers 0.000 description 1
- 239000004811 fluoropolymer Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 239000002061 nanopillar Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 150000003961 organosilicon compounds Chemical class 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C33/00—Moulds or cores; Details thereof or accessories therefor
- B29C33/56—Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
- B29C33/68—Release sheets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/12—Organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2027/00—Use of polyvinylhalogenides or derivatives thereof as moulding material
- B29K2027/12—Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2083/00—Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as moulding material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Description
本発明は、金型の少なくとも賦形面において、母材に直接又は中間膜を介して最表層にシラザン膜を備えた表面処理金型に関する。本願明細書及び特許請求の範囲において、「金型」とは、基本的には可動型と固定型とからなり、閉じられたときキャビテイを形成する割型をいい、平板状やロール形状のスタンパは除かれるものである。 The present invention relates to a surface-treated mold having a silazane film on the outermost layer directly or via an intermediate film on at least a shaping surface of the mold. In the specification and claims of the present application, the “metal mold” basically includes a movable mold and a fixed mold, and refers to a split mold that forms a cavity when closed, and is a flat plate or roll stamper. Is excluded.
特に、賦形面が、サイズ100μm以下、更には、nmサイズの凹凸を持つ金型の離型性改善に効果がある。たとえば、ナノ構造体で構成された反射防止成形品の製造・ナノピラーが形成されたバイオチップ・マイクロメータサイズの凹凸が形成された導光板など、微細凹凸の成形において有用な表面処理金型である。 In particular, it is effective in improving mold releasability of a mold having a shaping surface having a size of 100 μm or less and further having a nanometer size unevenness. For example, it is a surface treatment mold that is useful in the production of anti-reflective molded products composed of nanostructures, biochips with nanopillars, and light guide plates with micrometer-sized irregularities, etc. .
従来、微細なμmサイズ(100μm以下)からnmサイズの凹凸が表面に形成された金型や高精度な面精度が要求されるような金型などを用いて成形品を製造する場合、成形工程において、金型と樹脂の成形品との離型性が課題となって、成形品に不良が発生することが問題になっている。 Conventionally, when manufacturing molded products using molds with irregularities ranging from fine μm size (100 μm or less) to nm size on the surface or molds that require high surface accuracy, the molding process However, the mold releasability between the mold and the resin molded product becomes a problem, and it is a problem that defects occur in the molded product.
これらの問題点を解決するために、金型の最表面を表面処理して離型性向上を行っていた。 In order to solve these problems, the outermost surface of the mold has been surface treated to improve the releasability.
例えば、特許文献1では、nmサイズの凹凸を備えた金型(インプリント加工用モールド)において、金型の材料(母材)と化学的に反応する官能基(例えば、ケイ素原子を含む加水分解性基;段落0012参照)を導入した特定ペルフルオロポリエーテルで表面処理(浸漬)して、離型性を改善した発明が提案されている(要約、請求の範囲等参照)。
For example, in
しかし、当該表面処理では、離型耐熱性(加熱下離型性)や離型耐久性(成形繰り返し後離型性)に問題があることが分かった。 However, it has been found that the surface treatment has problems in release heat resistance (release property under heating) and release durability (release property after repeated molding).
なお、本発明の特許性に影響を与えるものではないが、特許文献2において、本発明で使用するのと同一の表面処理薬剤(ペルフルオロアルキル基含有トリアミノシラン)を用いて光学部材(有機ガラス)に撥水性薄膜を形成する技術が提案されている。
Although it does not affect the patentability of the present invention, in
しかし、光学部材においては、金型賦形面におけるような離型耐熱性や離型耐久性は要求されない。金型賦形面においては、射出成形時等に高熱・高圧流体(溶融樹脂;200℃以上)に繰り返し晒され、さらには、熱硬化性樹脂の場合、樹脂硬化が完了するまで加熱する必要がある。このような、高度の耐熱性・耐久性は、光学部材においては想定外である。 However, the optical member does not require release heat resistance and release durability as in the mold shaping surface. The mold shaping surface is repeatedly exposed to high heat and high pressure fluid (molten resin; 200 ° C. or higher) during injection molding, etc. Further, in the case of a thermosetting resin, it is necessary to heat until the resin curing is completed. is there. Such high heat resistance and durability are unexpected in the optical member.
本発明の目的は、高度の離型耐熱性および離型耐久性を実現し、良好な成形品を繰り返し安定生産できる表面処理金型および金型の表面処理方法を提供することにある。 An object of the present invention is to provide a surface treatment mold and a mold surface treatment method capable of realizing high mold release heat resistance and mold release durability and capable of repeatedly and stably producing good molded products.
特に、100μm以下の凹凸(例えば、導光板やマイクロレンズアレーなど)や更にはnmサイズの凹凸(例えば、反射防止機能付成形品)を持った成形品の成形に適用した場合効果が顕著となる表面処理金型および金型の表面処理方法を提供することを目的とする。 In particular, the effect becomes remarkable when applied to molding of a molded article having irregularities of 100 μm or less (for example, a light guide plate, a microlens array, etc.), or even nm-sized irregularities (for example, a molded product with an antireflection function). An object is to provide a surface treatment mold and a surface treatment method for the mold.
本発明者らは、上記目的を達成するために、鋭意開発に努力をした結果、下記構成とすれば、格段に表面処理金型の離型性が向上することを知見した。 As a result of diligent development in order to achieve the above object, the present inventors have found that the releasability of the surface treatment mold is remarkably improved if the following configuration is adopted.
金型の少なくとも賦形面において、最表層にシラザン膜を備えた表面処理金型であって、
前記シラザン膜が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、金型母材に又は隣接する中間膜に化学結合していることを特徴とする表面処理金型。At least on the shaping surface of the mold, a surface treatment mold having a silazane film on the outermost layer,
The silazane film is composed of a polycondensation crosslinked product having a perfluoroalkyl group-containing triaminosilane represented by the following structural formula as a monomer or a main monomer, and is chemically bonded to a mold base material or an adjacent intermediate film. Surface treatment mold characterized by.
CnF2n+1CmH2mSi(NH2)3(但し:n=2〜10、m=1〜4)
金型の少なくとも賦形面において、金型母材に直接又は中間膜を介して最表層にシラザン膜を備えた表面処理金型であって、
前記シラザン膜が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、前記金型母材又は隣接する中間膜に化学結合していることを特徴とする。C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (however, n = 2 to 10, m = 1 to 4)
At least on the shaping surface of the mold, a surface treatment mold comprising a silazane film on the outermost layer directly or via an intermediate film on the mold base material,
The silazane film is composed of a polycondensation crosslinked product having a perfluoroalkyl group-containing triaminosilane represented by the following structural formula as a monomer or a main monomer, and is chemically bonded to the mold base material or an adjacent intermediate film. It is characterized by.
なお、上記n及びmの範囲は、シラザン材料の入手乃至合成のし易さから定めたものであり、相対的なものである。 The ranges of n and m are determined from the availability of silazane materials and the ease of synthesis, and are relative.
上記構成の表面処理金型は、従来の特許文献1における加水分解性シラン基導入ペルフルオロポリエーテル(ケイ素含有有機フッ素ポリマー:段落0022参照)で被覆したものに比して、格段に離型耐熱性が向上するとともに離型耐久性も向上する。当該離型耐熱性・耐久性はシラザン膜形成面がプラズマ処理面である場合は、更に、向上する。 The surface treatment mold having the above-described structure is remarkably release heat resistant as compared with the conventional surface-treated mold coated with hydrolyzable silane group-introduced perfluoropolyether (silicon-containing organic fluoropolymer: see paragraph 0022). As well as improved mold release durability. The release heat resistance / durability is further improved when the silazane film forming surface is a plasma treated surface.
なお、金型の賦形面をナノ構造体とする場合は、金型母材自体が硬くても、HV1000以上(JIS 2244:ISO6507)の超硬膜で中間膜を形成する必要がある。金型母材自体がHV1000未満の場合は、超硬膜で中間層を形成することにより、金型の賦形面耐久性の向上も期待できる。該超硬膜としては、Siの窒化物・炭化物ないし酸化物の1種又は2種以上で形成することが望ましい。 When the mold forming surface is a nanostructure, it is necessary to form an intermediate film with a super hard film of HV1000 or higher (JIS 2244: ISO6507) even if the mold base material itself is hard. In the case where the mold base material itself is less than HV1000, it is possible to expect improvement in the shaping surface durability of the mold by forming an intermediate layer with a super hard film. The super hard film is desirably formed of one or more of Si nitrides / carbides or oxides.
また、中間膜が、前記超硬膜と金型母材との密着性が不十分と予測される場合は、第3周期4〜10属の群から1種又は2種以上選択される遷移金属で又はそれらの合金で密着膜を形成する。
Moreover, when it is predicted that the adhesion between the cemented carbide film and the mold base material is insufficient, the intermediate film is a transition metal selected from the group of the
本発明のシラザン膜は、離型耐熱性試験(300℃×24h)における接触角低下度が20%以内、望ましくは、10%以内を示すものとする。 The silazane film of the present invention has a contact angle decrease in a release heat resistance test (300 ° C. × 24 h) within 20%, preferably within 10%.
上記各構成の表面処理金型は、賦形面がnmサイズの凹凸を有する金型に適用する場合、シラザン膜の膜厚を5〜50nmとすることが望ましい。膜厚が薄すぎると、耐久性を得難く、膜厚が厚すぎると、nmサイズの凹凸が埋まってしまうおそれがある。 When the surface treatment mold having each of the above configurations is applied to a mold having an irregular surface with a shaping surface of nm size, it is desirable that the thickness of the silazane film is 5 to 50 nm. If the film thickness is too thin, it is difficult to obtain durability, and if the film thickness is too thick, there is a risk that nm-sized irregularities will be buried.
上記表面処理金型の表面処理方法は、シラザン膜の形成を真空蒸着により行うことが望ましい。シラザン膜の膜均一性(レベリング性)を、浸漬法に比して確保し易い。 In the surface treatment method of the surface treatment mold, it is desirable to form the silazane film by vacuum deposition. The film uniformity (leveling property) of the silazane film is easy to ensure compared to the dipping method.
更に、前記シラザン膜を形成するに先立ち、シラザン膜形成面を酸素プラズマ処理することが望ましい。シラザン膜の離型耐熱性および離型耐久性が向上する。 Further, prior to forming the silazane film, the silazane film forming surface is preferably subjected to oxygen plasma treatment. The release heat resistance and release durability of the silazane film are improved.
上記酸素プラズマの条件を、RFパワー50〜1000W×5〜3600sとする。上記条件の下限値未満では、酸素プラズマによりシラザン膜形成面に所要の親水性を付与し難く、シラザン膜との間に化学結合を得難い。上限値超では、それ以上の親水性の向上を望めず無駄である。
The oxygen plasma conditions are
本発明の技術的思想は、撥水性(耐汚染性)が要求される構造体にも適用でき、当該表面処理構造体は、下記の如く表現できる。 The technical idea of the present invention can be applied to a structure requiring water repellency (contamination resistance), and the surface treatment structure can be expressed as follows.
シラザン膜を、表面処理膜として、金型母材に直接又は中間膜を介して最表層に備えた表面処理構造体(光学部材を除く。)であって、
前記シラザン膜が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシラン(モノマー)の縮重合架橋体からなり、かつ、金型母材又は隣接する中間膜に化学結合していることを特徴とする。A surface treatment structure (excluding an optical member) provided with a silazane film as a surface treatment film on the outermost layer directly or via an intermediate film on a mold base material,
The silazane film is made of a polycondensation crosslinked product of a perfluoroalkyl group-containing triaminosilane (monomer) represented by the following structural formula, and is chemically bonded to a mold base material or an adjacent intermediate film. .
CnF2n+1CmH2mSi(NH2)3(但し:n=2〜10、m=1〜4)
また、該表面処理構造体の表面処理方法は、下記の如く表現できる。C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (however, n = 2 to 10, m = 1 to 4)
The surface treatment method of the surface treatment structure can be expressed as follows.
前記表面処理構造体の表面処理方法であって、前記シラザン膜を形成するに先立ち、シラザン膜形成面を酸素プラズマ処理することを特徴とする。 In the surface treatment method of the surface treatment structure, the silazane film forming surface is subjected to oxygen plasma treatment before the silazane film is formed.
以下、本発明の一実施形態について詳細に説明する。図1に、金型10の部分断面図を示す。 Hereinafter, an embodiment of the present invention will be described in detail. In FIG. 1, the fragmentary sectional view of the metal mold | die 10 is shown.
金型10は、少なくとも賦形面10aにおいて、金型母材11に直接又は中間膜13を介して最表層にシラザン膜(離型膜)15を備えた表面処理金型である。
The
なお、金型10の種類は、特に限定されない。例えば、射出成形用、プレス成形用、キャスト成形用、トランスファー成形用、等の各種金型を挙げることができる。 In addition, the kind of metal mold | die 10 is not specifically limited. For example, various molds for injection molding, press molding, cast molding, transfer molding and the like can be mentioned.
ここで、金型10の形成材としては、特に限定されない。例えば、Fe、Al、Ni、Zr、Si等の金属又はそれらの合金;WC、SiC、NiP等のセラミック;エポキシ、ポリエステル、アクリル樹脂、ポリカーボネート等の硬質樹脂、その他、無機ガラスや有機ガラスを挙げることができる。特にこれらの内で、NiP、SUS、WCが好ましい。高硬度で耐熱性に優れており、金型材として適しているためである。NiPやSUSは射出成形用の金型材として、WCはガラス成形の金型材としてそれぞれ実績を有する。
Here, the forming material of the
前記シラザン膜15が、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、金型母材11に又は隣接する中間膜(超硬膜)13bに化学結合している。
The
CnF2n+1CmH2mSi(NH2)3(但し:n=2〜10、m=1〜4)
ここで、「n=1」では、重合体繰り返し単位のペルフルオロ基(CF2)が不足して必要な離型性を得難く、「n≧11」では、モノマー分子量が大きくなって、溶剤溶解性に問題が発生し易く、取り扱い性が低下する。なお、上市品は、n=8までである。C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (however, n = 2 to 10, m = 1 to 4)
Here, when “n = 1”, the perfluoro group (CF 2 ) of the polymer repeating unit is insufficient and it is difficult to obtain the required releasability. When “n ≧ 11”, the monomer molecular weight increases and the solvent dissolves. Problems are likely to occur, and handling is reduced. In addition, the number of products on the market is up to n = 8.
また、「m=0」のものは合成し難く、「m」が5以上であると、重合体繰り返し単位のペルフルオロ基(CF2)が不足して離型性を得難い。Also, those having “m = 0” are difficult to synthesize, and if “m” is 5 or more, the perfluoro group (CF 2 ) of the polymer repeating unit is insufficient and it is difficult to obtain releasability.
なお、入手のし易さ(合成のし易さ)および本発明の効果(シラザン膜の耐熱性、耐久性(密着性))の得やすさの見地から、n=4〜8、m=2〜4とすることが望ましい。 From the viewpoint of easy availability (ease of synthesis) and ease of obtaining the effects of the present invention (heat resistance and durability (adhesiveness) of the silazane film), n = 4 to 8, m = 2. It is desirable to set to ~ 4.
ここで、ペルフルオロアルキル基含有トリアミノシランを主体モノマーとした場合、組み合わせるモノマーとしては、ペルフルオロアルキル基を含有する又は他の官能性置換基を有するジアミノシラン、モノアミノシラン等を挙げることができる。それらの各種アミノシランは、本発明の効果(シラザン膜の耐熱性、耐久性(密着性))を阻害しない範囲の量を適宜配合可能である。 Here, when a perfluoroalkyl group-containing triaminosilane is used as a main monomer, examples of the monomer to be combined include a diaminosilane and a monoaminosilane containing a perfluoroalkyl group or having other functional substituents. These various aminosilanes can be appropriately blended in amounts that do not impair the effects of the present invention (heat resistance and durability (adhesiveness) of the silazane film).
そして、本発明においてアミノシランは、アミノ基相互が脱アンモニア(NH3)縮合して縮重合架橋体となるとともに、部分的にアミノ基がシランカップラーと同様に脱水的に金型母材ないし中間膜上の水酸基等の活性水素と化学結合すると考えられる。In the present invention, the aminosilane is condensed with deammonia (NH 3 ) to form a condensation polymerized crosslinked product, and the amino group is partially dehydrated in the same manner as the silane coupler. It is thought to be chemically bonded to active hydrogen such as the above hydroxyl group.
そして、シラザン膜形成面を、酸素プラズマ処理することにより上記水酸基の表面密度が増大すると考えられ、後述の実施例で示す如く、密着性の増大に伴い、耐熱性とともに耐久性も増大する。 Then, it is considered that the surface density of the hydroxyl group is increased by subjecting the silazane film forming surface to oxygen plasma treatment, and as shown in the examples to be described later, the heat resistance and the durability increase as the adhesion increases.
ここで、シラザン膜の厚みは、5〜50nm、望ましくは5〜30nmとする。 Here, the thickness of the silazane film is 5 to 50 nm, preferably 5 to 30 nm.
なお、シラザン膜の成膜は、通常、前記アミノシランの溶解溶液を用いて、慣用の成膜方法で行なう。例えば、ディッピング法、スピンコート法、スプレー法、気相法および真空蒸着法のいずれでもよい。 The silazane film is usually formed by a conventional film forming method using the aminosilane solution. For example, any of a dipping method, a spin coating method, a spray method, a gas phase method, and a vacuum deposition method may be used.
上記中間膜13は、必然的ではないが、金型母材がビッカース硬さ(JIS Z 2244(ISO 6507);以下単に「硬さ」という。)1000HV未満のとき、内側の密着膜13aと外側の超硬膜13bとからなるものとすることが、耐久性(特に耐擦り性)の見地から望ましい。例えば、ビッカース硬さは、金型に多用されているSCr440(クロム鋼)で320HV、SKH4(高速度工具鋼)でも722HVである。
The
そして、上記密着膜13aの形成材としては、第4〜6周期の4〜11族の群(Ti,Ta,Nb,Cu,W,Cr,Ni,Zr,Mo,Pt,Au,Ag,Ir,Re,Pd等)から選択される遷移金属およびSiやAl等を使用可能であるが、特に、第4周期の4〜10族の群(Ti,V,Cr,Mn,Co,Ni)が、さらには、Ti、Ni、Crが、密着性増大作用が高くて望しい。これらのものは金属間の密着膜として実績を有する。
The material for forming the
この密着膜は、真空蒸着、スパッタリング、イオンプレーティング等により成膜する。 This adhesion film is formed by vacuum deposition, sputtering, ion plating, or the like.
上記超硬膜としては、Si3N4,SiC,SiO2,TiN,Al2O3,DLC,C3N4等の各種窒化物、炭化物、酸化物などを挙げることができるが、ケイ素の窒化物(Si3N4)、炭化物(SiC)、酸化物(SiO2)が望ましい。シラザン膜との親和性(密着性)に優れているためである。Examples of the super hard film include various nitrides such as Si 3 N 4 , SiC, SiO 2 , TiN, Al 2 O 3 , DLC, and C 3 N 4 , carbides, and oxides. Nitride (Si 3 N 4 ), carbide (SiC), and oxide (SiO 2 ) are desirable. This is because it has excellent affinity (adhesion) with the silazane film.
当該超硬膜の厚みは5〜1000nm、望ましくは10〜600nmとする。 The superhard film has a thickness of 5 to 1000 nm, preferably 10 to 600 nm.
この超硬膜は、反応スパッタリングで成膜することが、超硬膜の形成が容易で望ましい。 It is desirable to form this super hard film by reactive sputtering because it is easy to form the super hard film.
以下、本発明の効果を確認するために比較例とともに行なった実施例について説明する。 Examples carried out together with comparative examples to confirm the effects of the present invention will be described below.
A.試験片の調製
<実施例1>
無機ガラス基板(金型母材:26mm×76mm×1mmt)に、反応性スパッタリング装置を用いて、密着膜(Cr、膜厚10nm)を成膜した。当該成膜条件は、真空度:0.5Pa、基板温度:300℃とした。A. Preparation of test piece <Example 1>
An adhesion film (Cr, film thickness: 10 nm) was formed on an inorganic glass substrate (mold base material: 26 mm × 76 mm × 1 mmt) using a reactive sputtering apparatus. The film forming conditions were such that the degree of vacuum was 0.5 Pa and the substrate temperature was 300 ° C.
該密着膜上に、反応性スパッタリング装置で、超硬膜(Si3N4、膜厚500nm)を成膜した。当該成膜条件は、密着膜の場合と同じとした。A super hard film (Si 3 N 4 ,
その後、酸素プラズマ処理(RF:500W、処理時間600s)し、ペルフルオロアルキル基含有シラザン化合物(KP-801M 信越化学工業株式会社製)を用いて、真空蒸着法でシラザン膜(膜厚15nm)を成膜して試験片とした。当該成膜条件は、真空度:2×10-3Pa、基板温度:60℃とした。
なお、上記ペルフルオロアルキル基含有シラザン化合物(特定有機ケイ素化合物)は、モノマー(ペルフルオロアルキル基含有トリアミノシラン)およびそのオリゴマーの混合物である。Thereafter, oxygen plasma treatment (RF: 500 W, treatment time 600 s) was performed, and a silazane film (film thickness: 15 nm) was formed by a vacuum deposition method using a perfluoroalkyl group-containing silazane compound (KP-801M manufactured by Shin-Etsu Chemical Co., Ltd.). A film was prepared as a test piece. The film forming conditions were as follows: degree of vacuum: 2 × 10 −3 Pa, substrate temperature: 60 ° C.
The perfluoroalkyl group-containing silazane compound (specific organosilicon compound) is a mixture of a monomer (perfluoroalkyl group-containing triaminosilane) and an oligomer thereof.
<実施例2>
上記実施例1において、酸素プラズマ処理の工程を無くした以外は、同様にして試験片を調製した。<Example 2>
A test piece was prepared in the same manner as in Example 1 except that the oxygen plasma treatment step was omitted.
<比較例1>
上記実施例1において、シラザン化合物の代わりに加水分解性シラン基含有ペルフルオロエーテル(KY-130 信越化学工業株式会社製)を用いた以外は、同様にして試験片を調製した。<Comparative Example 1>
A test piece was prepared in the same manner as in Example 1 except that hydrolyzable silane group-containing perfluoroether (KY-130, Shin-Etsu Chemical Co., Ltd.) was used instead of the silazane compound.
B.評価試験
上記各試験片について、下記1)離型耐熱性試験と、2)離型耐久性試験(こすり試験)とを行なった。B. Evaluation test Each of the above test pieces was subjected to the following 1) release heat resistance test and 2) release durability test (rubbing test).
1)離型耐熱性試験:300℃のオーブンに試験片を入れ、各経過時間後の接触角の測定を行った。接触角の測定は、接触角計(協和界面化学(株)製:CA−D型)を用いて、蒸留水による液滴法で測定した。図2に試験結果を示す。 1) Mold release heat resistance test: A test piece was placed in an oven at 300 ° C., and the contact angle after each elapsed time was measured. The contact angle was measured by a droplet method using distilled water using a contact angle meter (Kyowa Interface Chemical Co., Ltd .: CA-D type). FIG. 2 shows the test results.
図2から、本発明のシラザン膜は比較例の加水分解性シラン基含有ペルフルオロエーテルの処理膜に比して格段(予想以上)に離型耐熱性に優れていることが分かる。 FIG. 2 shows that the silazane film of the present invention is remarkably excellent in mold release heat resistance (more than expected) as compared with the hydrolyzable silane group-containing perfluoroether-treated film of the comparative example.
特に、プラズマ処理をした実施例1は24時間経過後も殆ど接触角が低下せず、さらに離型耐熱性に優れていることが分かる。 In particular, it can be seen that Example 1 subjected to the plasma treatment hardly shows a decrease in contact angle even after 24 hours, and is excellent in heat resistance for releasing.
即ち、耐熱性試験(300℃×24h)における実施例1の接触角低下度は10%以内を、実施例2の接触角低下度は20%以内を示すことが確認できた。これに対して、比較例1では、接触角低下度は12時間で約80%であった。 That is, it was confirmed that the contact angle reduction degree of Example 1 in the heat resistance test (300 ° C. × 24 h) was within 10% and the contact angle reduction degree of Example 2 was within 20%. On the other hand, in Comparative Example 1, the contact angle reduction degree was about 80% in 12 hours.
2)離型耐久性試験(こすり試験):こすり試験器(ラビングテスター)を用いて、1Kg荷重でコットン(木綿布)でこすり試験を行って、100回毎に、前記方法で接触角を測定し、3000回まで行った。図3にこすり試験の結果を示す。 2) Release durability test (rubbing test): Using a rubbing tester (rubbing tester), a rubbing test is performed with cotton (cotton cloth) at a load of 1 kg, and the contact angle is measured by the above method every 100 times. And up to 3000 times. FIG. 3 shows the result of the rubbing test.
図3から、本発明の実施例1・2は、比較例に比して明らかに離型耐久性が優れていることが分かる。特に、プラズマ処理をした実施例1は、さらに離型耐久性に優れていることが分かる。 From FIG. 3, it can be seen that Examples 1 and 2 of the present invention are clearly superior in mold release durability as compared with the comparative example. In particular, it can be seen that the plasma-treated Example 1 is further excellent in mold release durability.
C.実機金型における離型耐久性試験
ステンレス(SUS304)製の金型(3インチ平面金型)母材のキャビティ面に上記と同様の条件で、反応性スパッタリング装置を用いて密着膜(Cr、膜厚10nm)を成膜後、超硬膜(Si3N4、膜厚500nm)を成膜し、更に、成形品に反射防止凹凸の転写を行うためにナノメートルサイズの凹凸を賦形面所要部位に形成した。該凹凸は可視域の波長間隔以下に制御されたもの(反射防止構造)とした。C. Release durability test in actual machine mold Adhesive film (Cr, film) on reactive cavity surface of stainless steel (SUS304) mold (3-inch flat mold) base material under the same conditions as above After forming a 10 nm thick film, a super hard film (Si 3 N 4 , 500 nm thick) is formed, and in order to transfer the anti-reflective unevenness to the molded product, nanometer-sized unevenness is required for the shaping surface. Formed in the site. The unevenness was controlled to be less than or equal to the wavelength interval in the visible range (antireflection structure).
該反射防止構造は、例えば、300nm以下の間隔で制御された凹凸間隔で、高さ160nmの凹凸を形成する。これら超硬膜へのナノメートルサイズの凹凸形成方法は、マスク(マスク材:Ag)後、慣用のドライエッチングにより形成した。 For example, the antireflection structure forms unevenness with a height of 160 nm at unevenness intervals controlled at intervals of 300 nm or less. The nanometer-sized unevenness forming method on these super hard films was formed by conventional dry etching after a mask (mask material: Ag).
その後、酸素プラズマ処理(RF:500W、処理時間600s)し、ペルフルオロアルキル基含有シラザン化合物(「KP-801M」信越化学工業株式会社製)を用いて、真空蒸着法でシラザン膜(膜厚15nm)を成膜して試験片とした。 Then, oxygen plasma treatment (RF: 500 W, treatment time 600 s), and using a perfluoroalkyl group-containing silazane compound (“KP-801M” manufactured by Shin-Etsu Chemical Co., Ltd.), a silazane film (film thickness: 15 nm) by a vacuum deposition method. Was used as a test piece.
真空蒸着の条件は、前記実施例1・2と同様である。 The conditions for vacuum deposition are the same as in Examples 1 and 2.
続いて、上記のようにして調製した実機金型を用いて、下記条件で1万回の成形耐久性実験を行った。 Subsequently, a molding durability experiment was performed 10,000 times under the following conditions using the actual mold prepared as described above.
成形機:全電動射出成形機(住友重機械工業株式会社製)
成形材料:PMMA
成形条件:金型温度110℃、樹脂温度280℃、保圧60mPa
その実験結果を図4に示す。図4から、1万回連続成形を行っても成形品の反射率特性がほぼ同じでほとんど変動していないことが分かる。このことは、離型膜(シラザン膜)の劣化が無かったことを示しており、実機金型においても充分に離型耐久性があることが確認できた。Molding machine: All-electric injection molding machine (manufactured by Sumitomo Heavy Industries, Ltd.)
Molding material: PMMA
Molding conditions:
The experimental results are shown in FIG. FIG. 4 shows that the reflectance characteristics of the molded product are almost the same and hardly fluctuate even if continuous molding is performed 10,000 times. This indicates that there was no deterioration of the release film (silazane film), and it was confirmed that the actual mold had sufficient release durability.
10 金型
11 金型母材
13 中間膜
13a 密着膜
13b 超硬膜
15 離型膜(シラザン膜)
DESCRIPTION OF
Claims (7)
該シラザン膜の内側に隣接してnmサイズの凹凸を有する中間膜を備え、
該中間膜の外側がSi 3 N 4 又はSiO 2 からなる超硬膜で形成されるとともに、
前記シラザン膜が、膜厚5〜50nmの膜厚を有するとともに、下記構造式で示されるペルフルオロアルキル基含有トリアミノシランをモノマー又は主体モノマーとする縮重合架橋体からなり、かつ、前記超硬膜に化学結合している、
CnF2n+1CmH2mSi(NH2)3(但し:n=2〜10、m=1〜4)
ことを特徴とする表面処理金型。 A surface treatment mold having a silazane film on the outermost layer, at least on the shaping surface of a mold for injection molding ,
An intermediate film having nm-sized irregularities adjacent to the inside of the silazane film,
The outer side of the intermediate film is formed of a super hard film made of Si 3 N 4 or SiO 2 ,
The silazane film has a film thickness of 5 to 50 nm and is composed of a polycondensation crosslinked product having a perfluoroalkyl group-containing triaminosilane represented by the following structural formula as a monomer or a main monomer, and the superhard film Chemically bonded,
C n F 2n + 1 C m H 2m Si (NH 2 ) 3 (where n = 2 to 10, m = 1 to 4)
A surface treatment mold characterized by that.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2011/061283 WO2012157073A1 (en) | 2011-05-17 | 2011-05-17 | Surface-treated mold and mold surface treatment method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2012157073A1 JPWO2012157073A1 (en) | 2014-07-31 |
JP5745623B2 true JP5745623B2 (en) | 2015-07-08 |
Family
ID=47176440
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013514910A Active JP5745623B2 (en) | 2011-05-17 | 2011-05-17 | Surface treatment mold and mold surface treatment method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5745623B2 (en) |
WO (1) | WO2012157073A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6164730B2 (en) * | 2013-06-11 | 2017-07-19 | Hoya株式会社 | Imprint mold and manufacturing method thereof |
JP6446095B2 (en) * | 2017-06-16 | 2018-12-26 | Hoya株式会社 | Patterned media manufacturing substrate, patterned media, and methods of manufacturing the same |
WO2022179852A1 (en) | 2021-02-25 | 2022-09-01 | Folex Ag | Mold release film |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0550473A (en) * | 1991-08-28 | 1993-03-02 | Toshiba Corp | Injection mold |
JP2000254923A (en) * | 2000-02-21 | 2000-09-19 | Citizen Watch Co Ltd | Mold for resin and method for forming hard coating film to mold for resin |
JP2004109728A (en) * | 2002-09-20 | 2004-04-08 | Tokai Kogaku Kk | Plastic lens for spectacles |
JP2007053715A (en) * | 2004-11-22 | 2007-03-01 | Ricoh Co Ltd | Image reader and recorder with image reader |
JP2007505220A (en) * | 2004-06-04 | 2007-03-08 | アプライド マイクロストラクチャーズ,インコーポレイテッド | Controlled vapor deposition of multilayer coatings bonded by oxide layers |
JP2007178724A (en) * | 2005-12-28 | 2007-07-12 | Mitsubishi Rayon Co Ltd | Method of manufacturing molding having uneven microstructure on its surface, and antireflection article |
JP2007266384A (en) * | 2006-03-29 | 2007-10-11 | Toppan Printing Co Ltd | Mold for imprinting and manufacturing method thereof |
WO2008001847A1 (en) * | 2006-06-30 | 2008-01-03 | Mitsubishi Rayon Co., Ltd. | Mold, process for manufacturing mold, and process for producing sheet |
JP2008164401A (en) * | 2006-12-27 | 2008-07-17 | Seiko Epson Corp | Manufacturing method for timepiece dial, timepiece dial, and timepiece |
JP2008184117A (en) * | 2007-01-31 | 2008-08-14 | Hino Motors Ltd | Extension structure |
JP2009184117A (en) * | 2008-02-01 | 2009-08-20 | Konica Minolta Opto Inc | Resin molding die and method of manufacturing the same |
JP2009294651A (en) * | 2008-05-02 | 2009-12-17 | Mitsubishi Rayon Co Ltd | Molding and method for manufacturing the same |
JP2010085409A (en) * | 2008-09-30 | 2010-04-15 | Robert Bosch Gmbh | Workpiece complex and use of the same |
-
2011
- 2011-05-17 JP JP2013514910A patent/JP5745623B2/en active Active
- 2011-05-17 WO PCT/JP2011/061283 patent/WO2012157073A1/en active Application Filing
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0550473A (en) * | 1991-08-28 | 1993-03-02 | Toshiba Corp | Injection mold |
JP2000254923A (en) * | 2000-02-21 | 2000-09-19 | Citizen Watch Co Ltd | Mold for resin and method for forming hard coating film to mold for resin |
JP2004109728A (en) * | 2002-09-20 | 2004-04-08 | Tokai Kogaku Kk | Plastic lens for spectacles |
JP2007505220A (en) * | 2004-06-04 | 2007-03-08 | アプライド マイクロストラクチャーズ,インコーポレイテッド | Controlled vapor deposition of multilayer coatings bonded by oxide layers |
JP2007053715A (en) * | 2004-11-22 | 2007-03-01 | Ricoh Co Ltd | Image reader and recorder with image reader |
JP2007178724A (en) * | 2005-12-28 | 2007-07-12 | Mitsubishi Rayon Co Ltd | Method of manufacturing molding having uneven microstructure on its surface, and antireflection article |
JP2007266384A (en) * | 2006-03-29 | 2007-10-11 | Toppan Printing Co Ltd | Mold for imprinting and manufacturing method thereof |
WO2008001847A1 (en) * | 2006-06-30 | 2008-01-03 | Mitsubishi Rayon Co., Ltd. | Mold, process for manufacturing mold, and process for producing sheet |
JP2008164401A (en) * | 2006-12-27 | 2008-07-17 | Seiko Epson Corp | Manufacturing method for timepiece dial, timepiece dial, and timepiece |
JP2008184117A (en) * | 2007-01-31 | 2008-08-14 | Hino Motors Ltd | Extension structure |
JP2009184117A (en) * | 2008-02-01 | 2009-08-20 | Konica Minolta Opto Inc | Resin molding die and method of manufacturing the same |
JP2009294651A (en) * | 2008-05-02 | 2009-12-17 | Mitsubishi Rayon Co Ltd | Molding and method for manufacturing the same |
JP2010085409A (en) * | 2008-09-30 | 2010-04-15 | Robert Bosch Gmbh | Workpiece complex and use of the same |
Also Published As
Publication number | Publication date |
---|---|
WO2012157073A1 (en) | 2012-11-22 |
JPWO2012157073A1 (en) | 2014-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Saha et al. | A review on the importance of surface coating of micro/nano-mold in micro/nano-molding processes | |
Zhong et al. | Facile fabrication of durable superhydrophobic silica/epoxy resin coatings with compatible transparency and stability | |
US7687007B2 (en) | Mold for nano imprinting | |
US6649266B1 (en) | Substrates provided with a microstructured surface, methods for the production thereof, and their use | |
JP5309579B2 (en) | Resin molding die and method for manufacturing the same | |
JP5865906B2 (en) | Method and apparatus for producing nanostructured or smooth polymer articles | |
JP5062521B2 (en) | Method for manufacturing replica mold and replica mold | |
WO2016171273A1 (en) | Coated metal mold and method for manufacturing same | |
WO2012018048A1 (en) | Resin mold for nanoimprinting and manufacturing method thereof | |
EP2602081A1 (en) | Resin mold, production method thereof, and use thereof | |
EP2998326B1 (en) | Novel composite material, and polymer coating material precursor produced using same | |
JP5745623B2 (en) | Surface treatment mold and mold surface treatment method | |
Bandl et al. | Application of organosilane coatings for improved anti‐adhesive properties enabling facilitated demolding in polymer processing | |
CN109594042B (en) | Anti-adhesion hard coating for injection mold and preparation method thereof | |
CN109642023A (en) | The manufacturing method of fluorine-containing ether compound | |
Yilbas et al. | Solvent‐induced crystallization of a polycarbonate surface and texture copying by polydimethylsiloxane for improved surface hydrophobicity | |
JP2022017617A (en) | Fluorine-containing ether composition, coating liquid, article and production method thereof | |
Calderon et al. | Multilayer coatings based on the combination of perfluorinated organosilanes and nickel films for injection moulding tools | |
Kodihalli Shivaprakash et al. | Continuous manufacturing of reentrant structures via roll‐to‐roll process | |
US12104240B2 (en) | Substrate with water-and-oil repellent layer, vapor deposition material, and method for producing substrate with water-and-oil repellent layer | |
JP5195372B2 (en) | Substrate having a fluoropolymer thin film and method for producing the same | |
JP2007320142A (en) | Mold for nanoimprinting | |
JP7272359B2 (en) | Antifouling article and its manufacturing method | |
JP2010084162A (en) | Method for manufacturing replica mold | |
WO2020100759A1 (en) | Substrate with water repellent oil repellent layer, vapor deposition material, and method for producing substrate with water repellent oil repellent layer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140930 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150223 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150407 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150501 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5745623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |