JP5745248B2 - Curing agent composition for epoxy resin, curable resin composition and cured product thereof - Google Patents

Curing agent composition for epoxy resin, curable resin composition and cured product thereof Download PDF

Info

Publication number
JP5745248B2
JP5745248B2 JP2010228037A JP2010228037A JP5745248B2 JP 5745248 B2 JP5745248 B2 JP 5745248B2 JP 2010228037 A JP2010228037 A JP 2010228037A JP 2010228037 A JP2010228037 A JP 2010228037A JP 5745248 B2 JP5745248 B2 JP 5745248B2
Authority
JP
Japan
Prior art keywords
weight
curing agent
parts
acid
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010228037A
Other languages
Japanese (ja)
Other versions
JP2012082271A (en
Inventor
裕之 平川
裕之 平川
篤志 佐藤
篤志 佐藤
高井 英行
英行 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Priority to JP2010228037A priority Critical patent/JP5745248B2/en
Priority to KR1020137001289A priority patent/KR20140009102A/en
Priority to PCT/JP2011/070990 priority patent/WO2012046553A1/en
Priority to CN201180033599.3A priority patent/CN102985460B/en
Priority to TW100135135A priority patent/TWI591090B/en
Publication of JP2012082271A publication Critical patent/JP2012082271A/en
Application granted granted Critical
Publication of JP5745248B2 publication Critical patent/JP5745248B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/003Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor characterised by the choice of material
    • B29C39/006Monomers or prepolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • B29C39/02Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C39/10Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. casting around inserts or for coating articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • C08G59/4284Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Description

本発明は、光半導体封止用等として有用な硬化性樹脂組成物を調製する上で有用なエポキシ樹脂用硬化剤組成物、該エポキシ樹脂用硬化剤組成物を含む硬化性樹脂組成物、該硬化性樹脂組成物の硬化物、及び該硬化物によって光半導体素子が封止された光半導体装置に関する。   The present invention relates to a curing agent composition for an epoxy resin useful for preparing a curable resin composition useful for optical semiconductor encapsulation, etc., a curable resin composition containing the curing agent composition for an epoxy resin, The present invention relates to a cured product of a curable resin composition and an optical semiconductor device in which an optical semiconductor element is sealed with the cured product.

発光ダイオード(LED)、光センサ、光通信用の発光素子、受光素子等の光半導体素子を封止するための樹脂としては、透明性が高いことからエポキシ樹脂が用いられている。   An epoxy resin is used as a resin for sealing an optical semiconductor element such as a light emitting diode (LED), an optical sensor, a light emitting element for optical communication, and a light receiving element because of its high transparency.

このようなエポキシ樹脂を硬化させるエポキシ樹脂用硬化剤組成物として、酸無水物系硬化剤と第三級アミン等の硬化促進剤とからなる硬化剤組成物が一般に用いられる。しかし、酸無水物と第三級アミン等の硬化促進剤との混合物を長期間貯蔵すると、混合物が着色したり、脱炭酸反応により二酸化炭素が発生して容器が膨らむといった問題が生じる。特許文献1(特公昭55−30728号公報)では、このような問題を解決するため、無水マレイン酸を0〜1重量%含む酸無水物と第三級アミンにエチレングリコール等を特定量含有させることが提案されている。   As a curing agent composition for an epoxy resin for curing such an epoxy resin, a curing agent composition comprising an acid anhydride curing agent and a curing accelerator such as a tertiary amine is generally used. However, when a mixture of an acid anhydride and a curing accelerator such as a tertiary amine is stored for a long period of time, there arises a problem that the mixture is colored or carbon dioxide is generated due to a decarboxylation reaction to swell the container. In Patent Document 1 (Japanese Patent Publication No. 55-30728), in order to solve such a problem, a specific amount of ethylene glycol or the like is contained in an acid anhydride containing 0 to 1% by weight of maleic anhydride and a tertiary amine. It has been proposed.

一方、特許文献2(特開2005−75915号公報)では、エポキシ樹脂用の酸無水物系硬化剤と第三級アミン系硬化促進剤との混合物の貯蔵安定性を向上させるため、特定構造のヒドロキシ安息香酸エステルからなる貯蔵安定性向上剤を配合することが提案されている。   On the other hand, in Patent Document 2 (Japanese Patent Laid-Open No. 2005-75915), in order to improve the storage stability of a mixture of an acid anhydride curing agent for epoxy resin and a tertiary amine curing accelerator, It has been proposed to incorporate a storage stability improver comprising a hydroxybenzoic acid ester.

特公昭55−30728号公報Japanese Patent Publication No. 55-30728 特開2005−75915号公報JP 2005-75915 A

しかし、特許文献1のように、酸無水物と第三級アミン等の硬化促進剤との混合液にエチレングリコールを配合して長期間貯蔵すると、二酸化炭素の発生は抑制されるものの、次第に析出物(沈殿物)が生じ、混合液が白濁するという問題が生じる。また、特許文献2に記載の方法では、入手が容易とは言えない特殊なヒドロキシ安息香酸エステルを使用する必要があり、コスト高になるという難点がある。   However, as in Patent Document 1, when ethylene glycol is blended in a mixed solution of an acid anhydride and a curing accelerator such as a tertiary amine and stored for a long period of time, the generation of carbon dioxide is suppressed, but gradually precipitated. There arises a problem that a product (precipitate) is generated and the mixed solution becomes cloudy. In addition, the method described in Patent Document 2 requires the use of a special hydroxybenzoic acid ester that cannot be said to be easily available, resulting in a high cost.

従って、本発明の目的は、長期間貯蔵しても、二酸化炭素の発生が極めて少なく、また、析出物(沈殿物)による白濁もなく透明であり、しかも安価に調製できるエポキシ樹脂用硬化剤組成物と、該エポキシ樹脂用硬化剤組成物を含む硬化性樹脂組成物、及び該硬化性樹脂組成物の硬化物、並びに該硬化物によって光半導体素子が封止された光半導体装置を提供することにある。
本発明の他の目的は、上記に加え、さらに、硬化時においても気泡の発生を抑制できるエポキシ樹脂用硬化剤組成物と、該エポキシ樹脂用硬化剤組成物を含む硬化性樹脂組成物、及び該硬化性樹脂組成物の硬化物、並びに該硬化物によって光半導体素子が封止された光半導体装置を提供することにある。
Accordingly, an object of the present invention is to provide a curing agent composition for epoxy resins that is extremely low in carbon dioxide generation even when stored for a long period of time, is transparent without white turbidity due to precipitates, and can be prepared at low cost. And a curable resin composition containing the epoxy resin curing agent composition, a cured product of the curable resin composition, and an optical semiconductor device in which an optical semiconductor element is sealed with the cured product It is in.
In addition to the above, the other object of the present invention is to provide an epoxy resin curing agent composition capable of suppressing the generation of bubbles even during curing, a curable resin composition containing the epoxy resin curing agent composition, and It is in providing the hardened | cured material of this curable resin composition, and the optical semiconductor device by which the optical semiconductor element was sealed with this hardened | cured material.

本発明者は、上記目的を達成するため鋭意検討した結果、酸無水物系硬化剤と硬化促進剤に特定の化合物を配合すると、長期間貯蔵しても、二酸化炭素の発生だけでなく、析出物の生成も顕著に抑制できること、また、さらにはエポキシ樹脂硬化時においても気泡の発生を抑制できることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventor has formulated a specific compound into an acid anhydride curing agent and a curing accelerator. It was found that the production of the product can be remarkably suppressed, and furthermore, the generation of bubbles can be suppressed even when the epoxy resin is cured, and the present invention has been completed.

すなわち、本発明は、酸無水物系硬化剤(A)、硬化促進剤(B)、及び、ネオペンチルグリコールおよび1,3−ブタンジオールから選択された少なくとも1種のジオール(C)を含有し、前記酸無水物系硬化剤(A)、前記硬化促進剤(B)及び前記ジオール(C)の総量のエポキシ樹脂用硬化剤組成物に占める割合が、50重量%以上であるエポキシ樹脂用硬化剤組成物を提供する。 That is, the present invention is an acid anhydride curing agent (A), the curing accelerator (B), and contains at least one diol selected from neopentyl glycol and 1,3-butanediol (C) The ratio of the total amount of the acid anhydride curing agent (A), the curing accelerator (B) and the diol (C) to the epoxy resin curing agent composition is 50% by weight or more. An agent composition is provided.

、ジオール(C)の使用量としては、酸無水物系硬化剤(A)100重量部に対して0.5〜15重量部の割合が好ましい。   As a usage-amount of diol (C), the ratio of 0.5-15 weight part is preferable with respect to 100 weight part of acid anhydride type hardening | curing agents (A).

本発明は、また、分子内にエポキシ基を2以上有するエポキシ化合物(D)と、前記エポキシ樹脂用硬化剤組成物とを必須成分として含む硬化性樹脂組成物を提供する。   The present invention also provides a curable resin composition comprising, as essential components, an epoxy compound (D) having two or more epoxy groups in the molecule and the epoxy resin curing agent composition.

前記エポキシ化合物(D)として、少なくとも1種の脂環式エポキシ化合物を用いるのが好ましい。   It is preferable to use at least one alicyclic epoxy compound as the epoxy compound (D).

本発明は、さらに、前記硬化性樹脂組成物を硬化して得られる硬化物を提供する。   The present invention further provides a cured product obtained by curing the curable resin composition.

本発明は、さらにまた、光半導体素子が前記硬化性樹脂組成物の硬化物によって封止されている光半導体装置を提供する。   The present invention further provides an optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable resin composition.

本発明によれば、酸無水物系硬化剤と硬化促進剤に特定のジオール化合物を配合するので、貯蔵安定性が大幅に向上し、エポキシ樹脂用硬化剤組成物を長期間貯蔵しても、二酸化炭素の発生が極めて少なく、析出物による白濁も生じない。また、入手容易で安価な化合物を用いるので低コストである。さらに、エポキシ樹脂硬化時においても、気泡の発生を顕著に抑制できる。従って、信頼性の極めて高い光半導体装置を安定して供給することができ、工業的に極めて価値が高い。   According to the present invention, since a specific diol compound is blended with an acid anhydride curing agent and a curing accelerator, the storage stability is greatly improved, and even when the curing agent composition for epoxy resin is stored for a long period of time, The generation of carbon dioxide is extremely small, and white turbidity due to precipitates does not occur. Further, since an inexpensive and inexpensive compound is used, the cost is low. Furthermore, even when the epoxy resin is cured, the generation of bubbles can be remarkably suppressed. Therefore, an optical semiconductor device with extremely high reliability can be stably supplied, which is extremely valuable industrially.

本発明のエポキシ樹脂用硬化剤組成物は、酸無水物系硬化剤(A)、硬化促進剤(B)、及び、ネオペンチルグリコールおよび1,3−ブタンジオールから選択された少なくとも1種のジオール(C)を含有する。   The curing agent composition for epoxy resin of the present invention comprises an acid anhydride curing agent (A), a curing accelerator (B), and at least one diol selected from neopentyl glycol and 1,3-butanediol. (C) is contained.

[酸無水物系硬化剤(A)]
酸無水物系硬化剤(A)としては、一般にエポキシ化合物の硬化に使用される硬化剤を用いることができるが、常温で液状のものが好ましい。具体的には、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸、2,4−ジエチルペンタン二酸無水物、シクロヘキサン−1,2,4−トリカルボン酸−1,2−無水物等を挙げることができる。また、成形作業性を損なわない範囲で、常温で固体の酸無水物、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物等を使用することができる。常温で固体の酸無水物を使用する場合には、常温で液状の酸無水物に溶解させ、常温で液状の混合物として使用することが好ましい。酸無水物系硬化剤(A)は1種単独で又は2種以上を組み合わせて使用できる。
[Acid anhydride curing agent (A)]
As the acid anhydride-based curing agent (A), a curing agent generally used for curing an epoxy compound can be used, but a liquid one at room temperature is preferable. Specifically, for example, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, methylendomethylenetetrahydrophthalic anhydride, 2,4-diethylpentanedioic anhydride, cyclohexane-1,2, Examples include 4-tricarboxylic acid-1,2-anhydride. In addition, acid anhydrides that are solid at room temperature, such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride, and the like, can be used within a range that does not impair molding workability. When an acid anhydride that is solid at room temperature is used, it is preferably dissolved in a liquid acid anhydride at room temperature and used as a liquid mixture at room temperature. The acid anhydride curing agent (A) can be used alone or in combination of two or more.

酸無水物系硬化剤(A)として、商品名「リカシッド MH−700」(新日本理化社製)、商品名「リカシッド MH」(新日本理化社製)、商品名「HN−5500」(日立化成工業社製)などの市販品を使用することもできる。   As the acid anhydride-based curing agent (A), the trade name “Ricacid MH-700” (manufactured by Shin Nippon Rika Co., Ltd.), the trade name “Rikacid MH” (manufactured by Shin Nippon Rika Co., Ltd.), the trade name “HN-5500” (Hitachi Commercial products such as those manufactured by Kasei Kogyo Co., Ltd. can also be used.

[硬化促進剤(B)]
硬化促進剤(B)としては、エポキシ化合物の硬化促進に一般に使用される硬化促進剤であれば特に制限はなく、例えば、第三級アミン、第三級アミン塩、イミダゾール類、有機リン系化合物、第四級アンモニウム塩、第四級ホスホニウム塩、有機金属塩、ホウ素化合物等を用いることができる。硬化促進剤(B)は1種単独で又は2種以上を組み合わせて使用できる。
[Curing accelerator (B)]
The curing accelerator (B) is not particularly limited as long as it is a curing accelerator generally used for accelerating the curing of epoxy compounds. For example, tertiary amines, tertiary amine salts, imidazoles, organophosphorus compounds Quaternary ammonium salts, quaternary phosphonium salts, organometallic salts, boron compounds, and the like can be used. A hardening accelerator (B) can be used individually by 1 type or in combination of 2 or more types.

第三級アミンとしては、例えば、ラウリルジメチルアミン、N,N−ジメチルシクロヘキシルアミン、N,N−ジメチルベンジルアミン、N,N−ジメチルアニリン、(N,N−ジメチルアミノメチル)フェノール、2,4,6−トリス(N,N−ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)、1,5−ジアザビシクロ[4.3.0]ノネン−5(DBN)などが挙げられる。   Examples of the tertiary amine include lauryl dimethylamine, N, N-dimethylcyclohexylamine, N, N-dimethylbenzylamine, N, N-dimethylaniline, (N, N-dimethylaminomethyl) phenol, 2,4. , 6-Tris (N, N-dimethylaminomethyl) phenol, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene-5 ( DBN).

第三級アミン塩としては、例えば、前記第三級アミンのカルボン酸塩、スルホン酸塩、無機酸塩などが挙げられる。カルボン酸塩としては、オクチル酸塩等の炭素数1〜30(特に、炭素数1〜10)のカルボン酸の塩(特に、脂肪酸の塩)などが挙げられる。スルホン酸塩としては、p−トルエンスルホン酸塩、ベンゼンスルホン酸塩、メタンスルホン酸塩、エタンスルホン酸塩などが挙げられる。第三級アミン塩の代表的な例として、1,8−ジアザビシクロ[5.4.0]ウンデセン−7(DBU)の塩(例えば、p−トルエンスルホン酸塩、オクチル酸塩)などが挙げられる。   Examples of the tertiary amine salt include carboxylates, sulfonates, and inorganic acid salts of the tertiary amine. Examples of the carboxylate include salts of carboxylic acids having 1 to 30 carbon atoms (particularly 1 to 10 carbon atoms) such as octylates (particularly salts of fatty acids). Examples of the sulfonate include p-toluenesulfonate, benzenesulfonate, methanesulfonate, and ethanesulfonate. Typical examples of the tertiary amine salt include salts of 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) (for example, p-toluenesulfonate, octylate). .

イミダゾール類としては、例えば、2−メチルイミダゾール、2−エチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、1,2−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、2,4−ジアミノ−6−(2−メチルイミダゾリルエチル)−1,3,5−トリアジン、2,4−ジアミノ−6−(2−ウンデシルイミダゾリルエチル)−1,3,5−トリアジン、2,4−ジアミノ−6−(2−エチル−4−メチルイミダゾリルエチル)−1,3,5−トリアジン、2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールなどが挙げられる。   Examples of imidazoles include 2-methylimidazole, 2-ethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1 -Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 2,4-diamino-6- (2-methylimidazolylethyl) -1,3,5-triazine, 2,4-diamino-6- (2-Undecylimidazolyl ethi ) -1,3,5-triazine, 2,4-diamino-6- (2-ethyl-4-methylimidazolylethyl) -1,3,5-triazine, 2-phenyl-4,5-dihydroxymethylimidazole, Examples include 2-phenyl-4-methyl-5-hydroxymethylimidazole.

有機リン系化合物としては、例えば、トリフェニルホスフィン、亜リン酸トリフェニルなどが挙げられる。   Examples of the organic phosphorus compound include triphenylphosphine and triphenyl phosphite.

第四級アンモニウム塩としては、例えば、テトラエチルアンモニウムブロミド、テトラブチルアンモニウムブロミドなどが挙げられる。   Examples of the quaternary ammonium salt include tetraethylammonium bromide and tetrabutylammonium bromide.

第四級ホスホニウム塩としては、例えば、下記式(1)

Figure 0005745248
(式中、R1、R2、R3、R4は、同一又は異なって、炭素数1〜16の炭化水素基を示す。Xはカルボン酸又は有機スルホン酸のアニオン残基を示す)
で表される化合物などが挙げられる。 As a quaternary phosphonium salt, for example, the following formula (1)
Figure 0005745248
(In the formula, R 1 , R 2 , R 3 and R 4 are the same or different and represent a hydrocarbon group having 1 to 16 carbon atoms. X represents an anion residue of carboxylic acid or organic sulfonic acid)
The compound etc. which are represented by these are mentioned.

前記炭素数1〜16の炭化水素基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s−ブチル、t−ブチル、ペンチル、ヘキシル、オクチル、デシル、ドデシル基などの直鎖状又は分岐鎖状のアルキル基;ビニル、アリル、クロチル基などの直鎖状又は分岐鎖状のアルケニル基;フェニル、トルイル、キシリル、ナフチル、アンスリル、フェナンスリル基などのアリール基;ベンジル、フェネチル基などのアラルキル基などが挙げられる。これらの中でも、炭素数1〜6の直鎖状又は分岐鎖状のアルキル基、特にブチル基が好ましい。   Examples of the hydrocarbon group having 1 to 16 carbon atoms include linear chains such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s-butyl, t-butyl, pentyl, hexyl, octyl, decyl, and dodecyl groups. Or branched alkyl group; linear or branched alkenyl group such as vinyl, allyl, crotyl group; aryl group such as phenyl, toluyl, xylyl, naphthyl, anthryl, phenanthryl group; benzyl, phenethyl group, etc. And aralkyl groups. Among these, a linear or branched alkyl group having 1 to 6 carbon atoms, particularly a butyl group is preferable.

前記「カルボン酸又は有機スルホン酸のアニオン残基」における「カルボン酸」としては、例えば、オクタン酸、デカン酸、ラウリン酸、ミリスチン酸、パルミチン酸などの炭素数1〜20の脂肪族モノカルボン酸;1,2,4,5−シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸などの脂環式カルボン酸(単環の脂環式モノ又はポリカルボン酸、架橋環式モノ又はポリカルボン酸)などが挙げられる。なお、脂環式カルボン酸の脂環には、メチル基などの炭素数1〜4の直鎖状又は分岐鎖状アルキル基、メトキシ基などの炭素数1〜4のアルコキシ基、塩素原子などのハロゲン原子等の置換基が結合していてもよい。前記カルボン酸としては、なかでも、炭素数10〜18の脂肪族モノカルボン酸、炭素数8〜18の脂環式ポリカルボン酸が好ましい。   Examples of the “carboxylic acid” in the “anionic residue of carboxylic acid or organic sulfonic acid” include aliphatic monocarboxylic acids having 1 to 20 carbon atoms such as octanoic acid, decanoic acid, lauric acid, myristic acid, and palmitic acid. 1,2,4,5-cyclohexanetetracarboxylic acid, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, etc. Examples thereof include alicyclic carboxylic acids (monocyclic alicyclic mono- or polycarboxylic acids, cross-linked cyclic mono- or polycarboxylic acids). The alicyclic ring of the alicyclic carboxylic acid includes a linear or branched alkyl group having 1 to 4 carbon atoms such as a methyl group, an alkoxy group having 1 to 4 carbon atoms such as a methoxy group, and a chlorine atom. A substituent such as a halogen atom may be bonded. As the carboxylic acid, an aliphatic monocarboxylic acid having 10 to 18 carbon atoms and an alicyclic polycarboxylic acid having 8 to 18 carbon atoms are preferable.

前記「カルボン酸又は有機スルホン酸のアニオン残基」における「有機スルホン酸」としては、例えば、メタンスルホン酸、エタンスルホン酸、1−プロパンスルホン酸、2−プロパンスルホン酸、1−ブタンスルホン酸、1−ペンタンスルホン酸、1−ヘキサンスルホン酸、1−オクタンスルホン酸、1−デカンスルホン酸、1−ドデカンスルホン酸などの脂肪族スルホン酸(例えば、炭素数1〜16の脂肪族スルホン酸など);ベンゼンスルホン酸、p−トルエンスルホン酸、4−エチルベンゼンスルホン酸、3−(直鎖状又は分岐鎖状オクチル)ベンゼンスルホン酸、4−(直鎖状又は分岐鎖状オクチル)ベンゼンスルホン酸、3−(直鎖状又は分岐鎖状ドデシル)ベンゼンスルホン酸、4−(直鎖状又は分岐鎖状ドデシル)ベンゼンスルホン酸、2,4−ジメチルベンゼンスルホン酸、2,5−ジメチルベンゼンスルホン酸、4−メトキシベンゼンスルホン酸、4−エトキシベンゼンスルホン酸、4−クロロベンゼンスルホン酸などが挙げられる。   Examples of the “organic sulfonic acid” in the “anionic residue of carboxylic acid or organic sulfonic acid” include methanesulfonic acid, ethanesulfonic acid, 1-propanesulfonic acid, 2-propanesulfonic acid, 1-butanesulfonic acid, Aliphatic sulfonic acids such as 1-pentanesulfonic acid, 1-hexanesulfonic acid, 1-octanesulfonic acid, 1-decanesulfonic acid and 1-dodecanesulfonic acid (for example, aliphatic sulfonic acids having 1 to 16 carbon atoms) Benzenesulfonic acid, p-toluenesulfonic acid, 4-ethylbenzenesulfonic acid, 3- (linear or branched octyl) benzenesulfonic acid, 4- (linear or branched octyl) benzenesulfonic acid, 3 -(Linear or branched dodecyl) benzenesulfonic acid, 4- (linear or branched dodecyl) benzene Sulfonic acid, 2,4-dimethylbenzene sulfonic acid, 2,5-dimethylbenzene sulfonic acid, 4-methoxy benzenesulfonic acid, 4-ethoxy-benzenesulfonic acid, 4-chlorobenzene sulfonic acid.

第四級ホスホニウム塩の代表的な例として、テトラブチルホスホニウムデカン酸塩、テトラブチルホスホニウムラウリン酸塩、テトラブチルホスホニウムミリスチン酸塩、テトラブチルホスホニウムパルミチン酸塩、テトラブチルホスホニウムカチオンとビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸及び/又はメチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸のアニオンとの塩、テトラブチルホスホニウムカチオンと1,2,4,5−シクロヘキサンテトラカルボン酸のアニオンとの塩、テトラブチルホスホニウムカチオンとメタンスルホン酸のアニオンとの塩、テトラブチルホスホニウムカチオンとベンゼンスルホン酸のアニオンとの塩、テトラブチルホスホニウムカチオンとp−トルエンスルホン酸のアニオンとの塩、テトラブチルホスホニウムカチオンと4−クロロベンゼンスルホン酸のアニオンとの塩、テトラブチルホスホニウムカチオンとドデシルベンゼンスルホン酸のアニオンとの塩などが挙げられる。   Representative examples of quaternary phosphonium salts include tetrabutylphosphonium decanoate, tetrabutylphosphonium laurate, tetrabutylphosphonium myristate, tetrabutylphosphonium palmitate, tetrabutylphosphonium cation and bicyclo [2.2. .1] Salts of heptane-2,3-dicarboxylic acid and / or methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid with anions, tetrabutylphosphonium cation and 1,2,4,5- Salt of cyclohexanetetracarboxylic acid anion, salt of tetrabutylphosphonium cation and anion of methanesulfonic acid, salt of tetrabutylphosphonium cation and anion of benzenesulfonic acid, anion of tetrabutylphosphonium cation and p-toluenesulfonic acid Salts with a salt of the anion of tetrabutylphosphonium cation and 4-chlorobenzene sulfonic acid, and salts with anions of tetrabutylphosphonium cation and dodecylbenzenesulfonic acid.

有機金属塩としては、例えば、オクチル酸スズ、オクチル酸亜鉛、ジラウリン酸ジブチルスズ、アルミニウムアセチルアセトン錯体などが挙げられる。   Examples of the organic metal salt include tin octylate, zinc octylate, dibutyltin dilaurate, and aluminum acetylacetone complex.

ホウ素化合物としては、例えば、三フッ化ホウ素、トリフェニルボレートなどが挙げられる。   Examples of the boron compound include boron trifluoride and triphenyl borate.

硬化促進剤(B)として、商品名「U−CAT SA−506」、「U−CAT SA−102」、「U−CAT 5003」(以上、サンアプロ社製)などの市販品を使用することもできる。   As the curing accelerator (B), commercially available products such as trade names “U-CAT SA-506”, “U-CAT SA-102”, “U-CAT 5003” (manufactured by San Apro) may be used. it can.

硬化促進剤(B)の配合量は、酸無水物系硬化剤(A)の種類によっても異なるが、通常、酸無水物系硬化剤(A)100重量部に対して、0.01〜15重量部、好ましくは0.1〜10重量部、さらに好ましくは0.5〜8重量部である。   Although the compounding quantity of a hardening accelerator (B) changes also with the kind of acid anhydride type hardening | curing agent (A), it is 0.01-15 normally with respect to 100 weight part of acid anhydride type hardening | curing agents (A). Parts by weight, preferably 0.1 to 10 parts by weight, more preferably 0.5 to 8 parts by weight.

[ジオール(C)]
本発明では、ネオペンチルグリコールおよび1,3−ブタンジオールから選択された少なくとも1種のジオール(C)を必須成分として用いる。ネオペンチルグリコール及び/又は1,3−ブタンジオールを配合することにより、硬化剤組成物の長期間貯蔵安定性が著しく向上し、硬化剤組成物を長期間保存しても、二酸化炭素の発生がほとんどなく、しかも析出物による白濁も生じず、透明性を維持できる。
[Diol (C)]
In the present invention, at least one diol (C) selected from neopentyl glycol and 1,3-butanediol is used as an essential component. By blending neopentyl glycol and / or 1,3-butanediol, the long-term storage stability of the curing agent composition is remarkably improved, and carbon dioxide is generated even when the curing agent composition is stored for a long period of time. There is almost no white turbidity due to precipitates, and transparency can be maintained.

ジオール(C)の配合量は、酸無水物系硬化剤(A)の種類によっても異なるが、通常、酸無水物系硬化剤(A)100重量部に対して、0.5〜15重量部、好ましくは1〜10重量部、さらに好ましくは1.5〜8重量部である。ジオール(C)の配合量が少なすぎると添加効果が小さくなり、逆に多すぎると、硬化性樹脂組成物を調製した際に増粘の速度が速くなってポットライフが短くなりやすい。   The blending amount of the diol (C) varies depending on the type of the acid anhydride curing agent (A), but is usually 0.5 to 15 parts by weight with respect to 100 parts by weight of the acid anhydride curing agent (A). The amount is preferably 1 to 10 parts by weight, more preferably 1.5 to 8 parts by weight. If the amount of the diol (C) is too small, the effect of addition becomes small. On the other hand, if the amount is too large, the viscosity increases when the curable resin composition is prepared, and the pot life tends to be shortened.

本発明のエポキシ樹脂用硬化剤組成物は、前記酸無水物系硬化剤(A)、硬化促進剤(B)、ジオール(C)のみで構成されていてもよいが、必要に応じて、本発明の効果を妨げない範囲で、他の成分を含んでいてもよい。酸無水物系硬化剤(A)、硬化促進剤(B)及びジオール(C)の総量の本発明のエポキシ樹脂用硬化剤組成物に占める割合は、例えば50重量%以上、好ましくは80重量%以上、さらに好ましくは95重量%以上である。   The epoxy resin curing agent composition of the present invention may be composed of only the acid anhydride curing agent (A), the curing accelerator (B), and the diol (C). Other components may be included as long as the effects of the invention are not hindered. The proportion of the total amount of the acid anhydride curing agent (A), curing accelerator (B) and diol (C) in the curing agent composition for epoxy resin of the present invention is, for example, 50% by weight or more, preferably 80% by weight. As mentioned above, More preferably, it is 95 weight% or more.

[硬化性樹脂組成物]
本発明の硬化性樹脂組成物は、分子内にエポキシ基を2以上有するエポキシ化合物(D)と、前記本発明のエポキシ樹脂用硬化剤組成物とを必須成分として含む。
[Curable resin composition]
The curable resin composition of this invention contains the epoxy compound (D) which has 2 or more of epoxy groups in a molecule | numerator, and the said hardening | curing agent composition for epoxy resins of this invention as an essential component.

[分子内にエポキシ基を2以上有するエポキシ化合物(D)]
分子内にエポキシ基を2以上有するエポキシ化合物(D)としては、特に限定されず、例えば、脂環式エポキシ化合物、ビスフェノール型ジエポキシ化合物、脂肪族多価アルコールポリグリシジルエーテルなどを使用できる。エポキシ化合物(D)は1種単独で又は2種以上を組み合わせて使用できる。
[Epoxy compound having two or more epoxy groups in the molecule (D)]
It does not specifically limit as an epoxy compound (D) which has two or more epoxy groups in a molecule | numerator, For example, an alicyclic epoxy compound, a bisphenol-type diepoxy compound, an aliphatic polyhydric alcohol polyglycidyl ether, etc. can be used. An epoxy compound (D) can be used individually by 1 type or in combination of 2 or more types.

前記脂環式エポキシ化合物としては、分子内に環状脂肪族骨格と2個以上のエポキシ基を有する化合物であればよく、特に限定されないが、(i)エポキシ基が環状脂肪族骨格を構成する隣接する2つの炭素原子を含んで形成されている脂環エポキシ基を2以上有するエポキシ化合物が好ましい。このような脂環式エポキシ化合物として下記式(2)で表される化合物が挙げられる。   The alicyclic epoxy compound is not particularly limited as long as it is a compound having a cycloaliphatic skeleton and two or more epoxy groups in the molecule. (I) Adjacent one in which the epoxy group constitutes the cycloaliphatic skeleton An epoxy compound having two or more alicyclic epoxy groups formed containing two carbon atoms is preferred. Examples of such alicyclic epoxy compounds include compounds represented by the following formula (2).

Figure 0005745248
Figure 0005745248

上記一般式(2)で表される脂環式エポキシ化合物は、対応する脂環式オレフィン化合物を脂肪族過カルボン酸等によって酸化することにより製造され、実質的に無水の脂肪族過カルボン酸を用いて製造されたものが高いエポキシ化率を有する点で好ましい(特開2002−275169号公報等)。   The alicyclic epoxy compound represented by the general formula (2) is produced by oxidizing a corresponding alicyclic olefin compound with an aliphatic percarboxylic acid or the like. What was manufactured using it is preferable at the point which has a high epoxidation rate (Unexamined-Japanese-Patent No. 2002-275169 etc.).

上記一般式(2)において、Yは単結合又は連結基を示し、連結基としては、例えば、2価の炭化水素基、カルボニル基(−CO−)、エーテル結合(−O−)、エステル結合(−COO−)、アミド結合(−CONH−)、カーボネート結合(−OCOO−)、及びこれらが複数個連結した基などが挙げられる。上記2価の炭化水素基としては、炭素数1〜18(特に1〜6)の直鎖状又は分岐鎖状のアルキレン基や2価の脂環式炭化水素基(特に2価のシクロアルキレン基)等が好ましく例示される。前記直鎖状又は分岐鎖状のアルキレン基としては、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基などが挙げられる。また、2価の脂環式炭化水素基としては、1,2−シクロペンチレン、1,3−シクロペンチレン、シクロペンチリデン、1,2−シクロへキシレン、1,3−シクロへキシレン、1,4−シクロへキシレン、シクロヘキシリデン基などが挙げられる。   In the general formula (2), Y represents a single bond or a linking group, and examples of the linking group include a divalent hydrocarbon group, a carbonyl group (—CO—), an ether bond (—O—), and an ester bond. (-COO-), an amide bond (-CONH-), a carbonate bond (-OCOO-), and a group in which a plurality of these are linked. Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms (particularly 1 to 6) and a divalent alicyclic hydrocarbon group (particularly a divalent cycloalkylene group). And the like are preferably exemplified. Examples of the linear or branched alkylene group include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, Examples include 1,4-cyclohexylene and cyclohexylidene groups.

上述の化合物としては、具体的には、下記の化合物が例示される。   Specific examples of the compound described above include the following compounds.

Figure 0005745248
Figure 0005745248

上記式中、nは、1〜30の整数である。   In said formula, n is an integer of 1-30.

脂環式エポキシ化合物としては、上記のほか、(ii)2つのエポキシ基のうち1つのみが環状脂肪族骨格を構成する隣接する2つの炭素原子を含んで形成されている脂環エポキシ基であるエポキシ化合物(例えば、リモネンジエポキシド)、(iii)エポキシ基を構成する炭素原子が環状脂肪族骨格を構成する炭素原子と単結合で結合しているエポキシ化合物、(iv)グリシジルエーテル化合物(例えば、環状脂肪族骨格とグリシジルエーテル基を有するグリシジルエーテル型エポキシ化合物など)も使用可能である。上述の化合物としては、具体的には下記の化合物が例示される。   As the alicyclic epoxy compound, in addition to the above, (ii) only one of the two epoxy groups is an alicyclic epoxy group formed by including two adjacent carbon atoms constituting the cycloaliphatic skeleton. An epoxy compound (for example, limonene diepoxide), (iii) an epoxy compound in which a carbon atom constituting an epoxy group is bonded to a carbon atom constituting a cyclic aliphatic skeleton by a single bond, (iv) a glycidyl ether compound (for example, Also, a glycidyl ether type epoxy compound having a cyclic aliphatic skeleton and a glycidyl ether group can be used. Specific examples of the above compound include the following compounds.

Figure 0005745248
Figure 0005745248

上記式中、Rはq価のアルコール[R−(OH)q]からq個のOHを除した基、pは1〜50の整数、qは1〜10の整数を示す。q個の括弧内の基において、pはそれぞれ同一であっても異なっていてもよい。q価のアルコール[R−(OH)q]としては、メタノール、エタノール、1−プロパノール、イソプロピルアルコール、1−ブタノール等の1価のアルコール;エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,4−ブタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール等の2価のアルコール;グリセリン、ジグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、ソルビトールなどの3価以上のアルコールが挙げられる。前記アルコールは、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリオレフィンポリオール等であってもよい。前記アルコールとしては、炭素数1〜10の脂肪族アルコール(特に、トリメチロールプロパン等の脂肪族多価アルコール)が好ましい。 In the above formula, R is a group obtained by dividing q OH from a q-valent alcohol [R— (OH) q ], p is an integer of 1 to 50, and q is an integer of 1 to 10. In the groups in q parentheses, p may be the same or different. As the q-valent alcohol [R- (OH) q ], monovalent alcohols such as methanol, ethanol, 1-propanol, isopropyl alcohol, 1-butanol; ethylene glycol, 1,2-propanediol, 1,3- Divalent alcohols such as propanediol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, polypropylene glycol; glycerin, diglycerin, erythritol , Trivalent or higher alcohols such as trimethylolethane, trimethylolpropane, pentaerythritol, dipentaerythritol and sorbitol. The alcohol may be polyether polyol, polyester polyol, polycarbonate polyol, polyolefin polyol, or the like. As said alcohol, C1-C10 aliphatic alcohol (especially aliphatic polyhydric alcohols, such as a trimethylol propane), is preferable.

さらに、その他にも、(v)3以上のエポキシ基を有する多官能エポキシ化合物を用いることも可能である。具体的には下記の化合物が例示される。   In addition, (v) a polyfunctional epoxy compound having 3 or more epoxy groups can also be used. Specifically, the following compounds are exemplified.

Figure 0005745248
Figure 0005745248

上記式中、a、b、c、d、e、fは、0〜30の整数である。   In the above formula, a, b, c, d, e and f are integers of 0 to 30.

前記ビスフェノール型ジエポキシ化合物としては、公知のものを使用でき、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などが挙げられる。   As the bisphenol diepoxy compound, known compounds can be used, and examples thereof include bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin.

前記脂肪族多価アルコールポリグリシジルエーテルとしては、特に限定されない。該脂肪族多価アルコールポリグリシジルエーテルにおける「脂肪族多価アルコール」としては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、ネオペンチルグリコール、1,6−ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、ジプロピレングリコール、ポリプロピレングリコール等の2価のアルコール;グリセリン、ジグリセリン、ポリグリセリン、エリスリトール、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトールなどの3価以上のアルコールが挙げられる。   The aliphatic polyhydric alcohol polyglycidyl ether is not particularly limited. Examples of the “aliphatic polyhydric alcohol” in the aliphatic polyhydric alcohol polyglycidyl ether include, for example, ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, 1,4- Divalent alcohols such as butanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol, polypropylene glycol; glycerin, di Examples include trivalent or higher alcohols such as glycerin, polyglycerin, erythritol, trimethylolethane, trimethylolpropane, pentaerythritol, and dipentaerythritol.

脂肪族多価アルコールポリグリシジルエーテルの代表的な例として、1,6−ヘキサンジオールジグリシジルエーテル、1,4−ブタンジオールジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテルなどが挙げられる。   Representative examples of the aliphatic polyhydric alcohol polyglycidyl ether include 1,6-hexanediol diglycidyl ether, 1,4-butanediol diglycidyl ether, trimethylolpropane polyglycidyl ether, diethylene glycol diglycidyl ether, neopentyl glycol Examples include diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, and polyethylene glycol diglycidyl ether.

本発明において、エポキシ化合物(D)は、調合時、注型時の作業性を向上させる観点から、液状であることが好ましい。ただし、単体としては固形のエポキシ化合物であっても、各成分を配合した後の硬化性樹脂組成物の粘度(25℃)として、例えば20000mPa・s以下になるものであれば使用可能である。エポキシ化合物(D)(使用する全てのエポキシ化合物の混合物)の粘度(25℃)は、例えば、50〜50000mPa・s、好ましくは100〜30000mPa・s、さらに好ましくは200〜20000mPa・sである。この粘度が大きすぎると、注型作業性等の成形作業性が低下しやすくなる。   In the present invention, the epoxy compound (D) is preferably in the form of a liquid from the viewpoint of improving workability during preparation and casting. However, even if it is a solid epoxy compound as a simple substance, it can be used as long as the viscosity (25 ° C.) of the curable resin composition after blending each component is, for example, 20000 mPa · s or less. The viscosity (25 ° C.) of the epoxy compound (D) (a mixture of all epoxy compounds used) is, for example, 50 to 50000 mPa · s, preferably 100 to 30000 mPa · s, and more preferably 200 to 20000 mPa · s. When this viscosity is too large, molding workability such as casting workability tends to be lowered.

上記のエポキシ化合物のなかでも、脂環式エポキシ化合物(特に、エポキシ基が環状脂肪族骨格を構成する隣接する2つの炭素原子を含んで形成されている脂環エポキシ基を有するエポキシ化合物)は、硬化樹脂の透明性、耐熱性に優れるものの、硬化時に気泡が発生しやすい。このため、本発明は、硬化性樹脂組成物が脂環式エポキシ化合物を含む場合に特に有用である。本発明において、エポキシ化合物(D)中の脂環式エポキシ化合物(特に、エポキシ基が環状脂肪族骨格を構成する隣接する2つの炭素原子を含んで形成されている脂環エポキシ基を有するエポキシ化合物)の割合は、好ましくは30重量%以上、より好ましくは50重量%以上、特に好ましくは80重量%以上である。   Among the above epoxy compounds, alicyclic epoxy compounds (particularly, epoxy compounds having an alicyclic epoxy group formed by including two adjacent carbon atoms in which the epoxy group constitutes a cycloaliphatic skeleton) Although the cured resin is excellent in transparency and heat resistance, bubbles are easily generated during curing. Therefore, the present invention is particularly useful when the curable resin composition contains an alicyclic epoxy compound. In the present invention, an alicyclic epoxy compound in the epoxy compound (D) (in particular, an epoxy compound having an alicyclic epoxy group in which the epoxy group is formed to include two adjacent carbon atoms constituting the cycloaliphatic skeleton) ) Is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 80% by weight or more.

本発明の硬化性樹脂組成物において、分子内にエポキシ基を2以上有するエポキシ化合物(D)と前記本発明のエポキシ樹脂用硬化剤組成物との配合割合は、硬化性等を考慮して選択できる。例えば、硬化性樹脂組成物における酸無水物系硬化剤(A)の量が、硬化性樹脂組成物中に含まれる全てのエポキシ化合物のエポキシ基1当量当たり、0.5〜1.5当量となるように、前記エポキシ化合物(D)と前記エポキシ樹脂用硬化剤組成物とを配合するのが好ましい。酸無水物系硬化剤(A)の使用量が少なすぎると硬化が不十分となり、硬化物の強靱性が低下する傾向となり、逆に多すぎると、硬化物が着色して色相が悪化する場合がある。   In the curable resin composition of the present invention, the blending ratio of the epoxy compound (D) having two or more epoxy groups in the molecule and the epoxy resin curing agent composition of the present invention is selected in consideration of curability and the like. it can. For example, the amount of the acid anhydride-based curing agent (A) in the curable resin composition is 0.5 to 1.5 equivalents per equivalent of epoxy groups of all epoxy compounds contained in the curable resin composition. It is preferable to mix | blend the said epoxy compound (D) and the said hardening | curing agent composition for epoxy resins so that it may become. When the amount of the acid anhydride-based curing agent (A) used is too small, the curing becomes insufficient, and the toughness of the cured product tends to decrease. On the other hand, when the amount is too large, the cured product is colored and the hue deteriorates. There is.

本発明の硬化性樹脂組成物において、硬化促進剤(B)の量は、前記エポキシ化合物(D)100重量部に対して、例えば、0.01〜15重量部、好ましくは0.1〜10重量部、さらに好ましくは0.5〜8重量部である。硬化促進剤の配合量が少なすぎると硬化促進効果が不十分となる場合があり、また多すぎると、硬化物における色相が悪化する場合がある。   In the curable resin composition of the present invention, the amount of the curing accelerator (B) is, for example, 0.01 to 15 parts by weight, preferably 0.1 to 10 parts per 100 parts by weight of the epoxy compound (D). Part by weight, more preferably 0.5 to 8 parts by weight. When the blending amount of the curing accelerator is too small, the curing accelerating effect may be insufficient, and when it is too large, the hue in the cured product may be deteriorated.

[その他の成分]
本発明の硬化性樹脂組成物には、必要に応じて、各種添加剤を添加してもよい。該添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリン等の水酸基を有する化合物(多価アルコール等)を使用すると、反応を穏やかに進行させることができる。このような水酸基を有する化合物(多価アルコール等)の使用量は、エポキシ化合物(D)100重量部に対して、例えば、0.1〜10重量部、好ましくは0.5〜5重量部である。なお、前記のように、エチレングリコール等を硬化剤組成物中に添加しておくと、貯蔵中に白濁が生じるので、予めエポキシ化合物(D)と混合しておくか、又は硬化性樹脂組成物調製時に添加するのが好ましい。
[Other ingredients]
You may add various additives to the curable resin composition of this invention as needed. For example, when a compound having a hydroxyl group (polyhydric alcohol or the like) such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is used as the additive, the reaction can be allowed to proceed gently. The amount of such a hydroxyl group-containing compound (polyhydric alcohol or the like) used is, for example, 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the epoxy compound (D). is there. As described above, when ethylene glycol or the like is added to the curing agent composition, white turbidity occurs during storage. Therefore, it may be mixed with the epoxy compound (D) in advance or the curable resin composition. It is preferable to add at the time of preparation.

また、添加剤として、多価カルボン酸無水物(脂環式多価カルボン酸無水物等)と多価アルコール(ポリアルキレングリコール等)とのエステル(ジエステル等)を用いると、硬化物の可撓性を向上させることができる。該エステルの使用量は、本発明の硬化性樹脂組成物に含まれるエポキシ化合物(D)100重量部に対して、例えば、0.1〜10重量部、好ましくは0.5〜8重量部である。   Further, when an ester (such as a diester) of a polyhydric carboxylic acid anhydride (such as an alicyclic polycarboxylic acid anhydride) and a polyhydric alcohol (such as a polyalkylene glycol) is used as an additive, the flexibility of the cured product can be improved. Can be improved. The amount of the ester used is, for example, 0.1 to 10 parts by weight, preferably 0.5 to 8 parts by weight, based on 100 parts by weight of the epoxy compound (D) contained in the curable resin composition of the present invention. is there.

また、必要に応じて、硬化性樹脂組成物の粘度や硬化物の透明性等を損なわない範囲で、シリコーン系やフッ素系の消泡剤、レベリング剤、シランカップリング剤、界面活性剤、無機充填剤、有機系のゴム粒子、難燃剤、着色剤、可塑剤、帯電防止剤、離型剤、酸化防止剤、紫外線吸収剤、光安定剤、イオン吸着体、顔料、染料、蛍光体などを使用することもできる。これら各種の添加剤の配合量は硬化性樹脂組成物全体に対して、例えば5重量%以下である。本発明の硬化性樹脂組成物は溶剤を含んでいてもよいが、溶剤の量があまり多いと硬化樹脂に気泡が生じる場合があるので、好ましくは硬化性組成物全体に対して10重量%以下、特に1重量%以下である。   In addition, if necessary, silicone-based or fluorine-based antifoaming agent, leveling agent, silane coupling agent, surfactant, inorganic, as long as the viscosity of the curable resin composition and the transparency of the cured product are not impaired. Fillers, organic rubber particles, flame retardants, colorants, plasticizers, antistatic agents, mold release agents, antioxidants, UV absorbers, light stabilizers, ion adsorbers, pigments, dyes, phosphors, etc. It can also be used. The compounding quantity of these various additives is 5 weight% or less with respect to the whole curable resin composition, for example. The curable resin composition of the present invention may contain a solvent, but if the amount of the solvent is too large, bubbles may be formed in the cured resin, and preferably 10% by weight or less based on the entire curable composition. In particular, it is 1% by weight or less.

本発明の硬化性樹脂組成物において、エポキシ化合物(D)と、酸無水物系硬化剤(A)、硬化促進剤(B)、ジオール(C)及びその他の成分の総量との割合は、エポキシ化合物(D)100重量部に対して、酸無水物系硬化剤(A)、硬化促進剤(B)、ジオール(C)及びその他の成分の総量が70〜200重量部であることが好ましく、80〜160重量部であることがより好ましい。また、酸無水物系硬化剤(A)、硬化促進剤(B)、ジオール(C)及びエポキシ化合物(D)の総量の、本発明の硬化性樹脂組成物に占める割合は、例えば、50重量%以上、好ましくは70重量%以上、さらに好ましくは90重量%以上である。   In the curable resin composition of the present invention, the ratio of the epoxy compound (D) to the total amount of the acid anhydride-based curing agent (A), the curing accelerator (B), the diol (C), and other components is epoxy. The total amount of the acid anhydride curing agent (A), the curing accelerator (B), the diol (C) and other components is preferably 70 to 200 parts by weight with respect to 100 parts by weight of the compound (D). More preferably, it is 80-160 weight part. Moreover, the ratio for which the total amount of an acid anhydride type hardening | curing agent (A), a hardening accelerator (B), diol (C), and an epoxy compound (D) accounts for the curable resin composition of this invention is 50 weight, for example. % Or more, preferably 70% by weight or more, and more preferably 90% by weight or more.

本発明の硬化性樹脂組成物の粘度(25℃)は、例えば、50〜5000mPa・s、好ましくは100〜4000mPa・s、さらに好ましくは200〜3000mPa・sである。この粘度が大きすぎると、気泡が抜けにくくなるとともに、封止作業性、注型作業性等の成形作業性が低下しやすくなる。   The viscosity (25 degreeC) of the curable resin composition of this invention is 50-5000 mPa * s, for example, Preferably it is 100-4000 mPa * s, More preferably, it is 200-3000 mPa * s. When this viscosity is too large, it is difficult for bubbles to escape, and molding workability such as sealing workability and casting workability tends to deteriorate.

本発明の硬化性樹脂組成物は、例えば、エポキシ化合物(D)、及び必要に応じて加えられるその他の成分を混合してA剤(すなわち、エポキシ樹脂組成物)を調製するとともに、酸無水物系硬化剤(A)、硬化促進剤(B)、ジオール(C)、及び必要に応じて加えられるその他の成分を混合してB剤(すなわち、エポキシ樹脂用硬化剤組成物)を調製し、次いで、A剤とB剤とを所定の割合で撹拌・混合し、必要に応じて真空下で脱泡することにより製造される。B剤(エポキシ樹脂用硬化剤組成物)調製時における各成分の添加順序は、特に限定されず、最初に酸無水物系硬化剤(A)と硬化促進剤(B)を混合し、これにジオール(C)を添加して混合してもよいし、最初に酸無水物系硬化剤(A)とジオール(C)を混合し、これに硬化促進剤(B)を添加して混合してもよく、これにより均一な組成物を効率よく調製することができる。A剤(2成分以上で構成される場合)を調製する際の撹拌・混合時の温度は、例えば、30〜150℃、好ましくは35〜130℃である。B剤を調製する際の撹拌・混合時の温度は、例えば、30〜100℃、好ましくは35〜80℃である。撹拌・混合には、公知の装置、例えば、自転公転型ミキサー、プラネタリーミキサー、ニーダー、ディソルバーなどを使用できる。   The curable resin composition of the present invention is prepared, for example, by mixing an epoxy compound (D) and other components added as necessary to prepare an agent A (that is, an epoxy resin composition), and an acid anhydride. A B agent (that is, a curing agent composition for epoxy resin) is prepared by mixing the system curing agent (A), the curing accelerator (B), the diol (C), and other components added as necessary. Subsequently, it manufactures by stirring and mixing A agent and B agent in a predetermined | prescribed ratio, and degas | defoaming under vacuum as needed. The order of addition of each component at the time of preparation of the B agent (curing agent composition for epoxy resin) is not particularly limited. First, the acid anhydride curing agent (A) and the curing accelerator (B) are mixed, The diol (C) may be added and mixed. First, the acid anhydride curing agent (A) and the diol (C) are mixed, and then the curing accelerator (B) is added and mixed. As a result, a uniform composition can be efficiently prepared. The temperature at the time of stirring and mixing at the time of preparing A agent (when comprised with 2 or more components) is 30-150 degreeC, for example, Preferably it is 35-130 degreeC. The temperature at the time of stirring and mixing at the time of preparing B agent is 30-100 degreeC, for example, Preferably it is 35-80 degreeC. For stirring and mixing, a known apparatus such as a rotation / revolution mixer, a planetary mixer, a kneader, a dissolver, or the like can be used.

[硬化物]
本発明の硬化性樹脂組成物を、所望の場所又は型に注入し、硬化させることにより硬化物が得られる。硬化温度は、例えば、45〜200℃、好ましくは80〜190℃、さらに好ましくは100〜180℃である。硬化時間は、例えば、30〜1440分、好ましくは45〜900分、さらに好ましくは60〜600分である。硬化を多段階で行うこともできる。
[Cured product]
A cured product is obtained by injecting the curable resin composition of the present invention into a desired place or mold and curing it. Curing temperature is 45-200 degreeC, for example, Preferably it is 80-190 degreeC, More preferably, it is 100-180 degreeC. The curing time is, for example, 30 to 1440 minutes, preferably 45 to 900 minutes, and more preferably 60 to 600 minutes. Curing can also be performed in multiple stages.

硬化物のガラス転移温度は、耐熱性の観点から、90℃以上が好ましく、より好ましくは110℃以上である。   From the viewpoint of heat resistance, the glass transition temperature of the cured product is preferably 90 ° C. or higher, more preferably 110 ° C. or higher.

[光半導体装置]
本発明の光半導体装置は、光半導体素子が本発明の硬化性樹脂組成物の硬化物で封止されている。
[Optical semiconductor device]
In the optical semiconductor device of the present invention, the optical semiconductor element is sealed with a cured product of the curable resin composition of the present invention.

光半導体素子としては、例えば、発光ダイオード、光センサ、光通信用の発光素子、受光素子などが挙げられる。光半導体素子の封止は、例えば、光半導体素子が設置された所定の成型型内に上記硬化性樹脂組成物を注入し(又は、成型型内に上記硬化性樹脂組成物を注入し、光半導体素子を設置し)、所定の条件で加熱硬化させることにより行うことができる。硬化条件は上記と同様である。   Examples of the optical semiconductor element include a light emitting diode, an optical sensor, a light emitting element for optical communication, a light receiving element, and the like. The optical semiconductor element is sealed by, for example, injecting the curable resin composition into a predetermined mold in which the optical semiconductor element is installed (or injecting the curable resin composition into the mold, It can be performed by installing a semiconductor element) and heating and curing under predetermined conditions. The curing conditions are the same as above.

本発明によれば、エポキシ樹脂用硬化性組成物を長期間貯蔵しても、気泡の発生や沈殿物の生成が極めて少ない。また、硬化時における気泡の発生も極めて少ない。このため、信頼性の極めて高い光半導体装置を安定して供給することができる。   According to the present invention, even when the curable composition for epoxy resins is stored for a long period of time, generation of bubbles and generation of precipitates are extremely small. In addition, the generation of bubbles during curing is extremely small. For this reason, an optical semiconductor device with extremely high reliability can be stably supplied.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

実施例1
硬化剤のリカシッドMH−700(新日本理化(株)製;4−メチルヘキサヒドロ無水フタル酸:ヘキサヒドロ無水フタル酸=70:30)100重量部に、硬化促進剤の2−エチル−4−メチルイミダゾール1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液(硬化剤組成物)を得た。
Example 1
The curing agent Rikacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd .; 4-methylhexahydrophthalic anhydride: hexahydrophthalic anhydride = 70: 30) was added to 100 parts by weight of the curing accelerator 2-ethyl-4-methyl. 1 part by weight of imidazole was added and dissolved by heating and stirring at 60 ° C. for 30 minutes, then cooled to 50 ° C., and further 3.2 parts by weight of neopentyl glycol was added and dissolved by heating and stirring for 4 hours at 50 ° C. Then, it cooled to room temperature and obtained the transparent liquid hardening | curing agent liquid (hardening agent composition) at normal temperature.

実施例2
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤の2−エチル−4−メチルイミダゾール1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 2
To 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), 1 part by weight of the curing accelerator 2-ethyl-4-methylimidazole is added, and 60 After stirring and dissolving at 30 ° C. for 30 minutes, the mixture was cooled to 50 ° C., and further 3.2 parts by weight of neopentyl glycol was added and dissolved by heating and stirring for 4 hours at 50 ° C., followed by cooling to room temperature. A transparent liquid curing agent solution was obtained.

実施例3
硬化剤のリカシッドMH−700(新日本理化(株)製;4−メチルヘキサヒドロ無水フタル酸:ヘキサヒドロ無水フタル酸=70:30)100重量部に、硬化促進剤の2−エチル−4−メチルイミダゾール1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更に1,3−ブタンジオールを2.8重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 3
The curing agent Rikacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd .; 4-methylhexahydrophthalic anhydride: hexahydrophthalic anhydride = 70: 30) was added to 100 parts by weight of the curing accelerator 2-ethyl-4-methyl. Add 1 part by weight of imidazole, dissolve with heating and stirring at 60 ° C. for 30 minutes, cool to 50 ° C., add 2.8 parts by weight of 1,3-butanediol, and heat and stir at 50 ° C. for 4 hours. After dissolution, the mixture was cooled to room temperature to obtain a transparent liquid curing agent liquid at room temperature.

実施例4
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤の2−エチル−4−メチルイミダゾール1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更に1,3−ブタンジオールを2.8重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 4
To 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), 1 part by weight of the curing accelerator 2-ethyl-4-methylimidazole is added, and 60 After stirring and dissolving at 30 ° C. for 30 minutes, the mixture was cooled to 50 ° C., and 2.8 parts by weight of 1,3-butanediol was further added and dissolved by heating and stirring for 4 hours at 50 ° C., followed by cooling to room temperature. Then, a transparent liquid curing agent liquid was obtained at room temperature.

実施例5
硬化剤のリカシッドMH−700(新日本理化(株)製;4−メチルヘキサヒドロ無水フタル酸:ヘキサヒドロ無水フタル酸=70:30)100重量部に、硬化促進剤のN,N−ジメチルベンジルアミン1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 5
Curing agent Ricacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd .; 4-methylhexahydrophthalic anhydride: hexahydrophthalic anhydride = 70: 30) is added to 100 parts by weight of curing accelerator N, N-dimethylbenzylamine. Add 1 part by weight, dissolve by heating and stirring at 60 ° C. for 30 minutes, then cool to 50 ° C. Add 3.2 parts by weight of neopentyl glycol and dissolve by heating and stirring at 50 ° C. for 4 hours. Then, it was cooled to room temperature to obtain a transparent liquid curing agent liquid at room temperature.

実施例6
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤のN,N−ジメチルベンジルアミン1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 6
Add 1 part by weight of N, N-dimethylbenzylamine, a curing accelerator, to 100 parts by weight of curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; main component is 4-methylhexahydrophthalic anhydride), and The mixture was dissolved by heating and stirring for 30 minutes, and then cooled to 50 ° C. Further, 3.2 parts by weight of neopentyl glycol was added and dissolved by heating and stirring for 4 hours at 50 ° C, and then cooled to room temperature. A transparent liquid curing agent solution was obtained.

実施例7
硬化剤のリカシッドMH−700(新日本理化(株)製;4−メチルヘキサヒドロ無水フタル酸:ヘキサヒドロ無水フタル酸=70:30)100重量部に、硬化促進剤の「U−CAT 5003」(サンアプロ(株)製;第4級ホスホニウムブロマイド)を1重量部加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 7
Curing accelerator Rikacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd .; 4-methylhexahydrophthalic anhydride: hexahydrophthalic anhydride = 70: 30) was added to 100 parts by weight of curing accelerator “U-CAT 5003” ( 1 part by weight of San Apro Co., Ltd. (quaternary phosphonium bromide) was added, dissolved by heating and stirring at 60 ° C. for 30 minutes, cooled to 50 ° C., and further added with 3.2 parts by weight of neopentyl glycol. The mixture was dissolved by heating and stirring for 4 hours while maintaining the temperature, and then cooled to room temperature to obtain a transparent liquid curing agent liquid at room temperature.

実施例8
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤の「U−CAT 5003」(サンアプロ(株)製;第4級ホスホニウムブロマイド)を1重量部加え、を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 8
Curing agent Rikacid MH (manufactured by Shin Nippon Rika Co., Ltd .; main component is 4-methylhexahydrophthalic anhydride) and curing accelerator “U-CAT 5003” (manufactured by San Apro Co., Ltd .; No. 4) 1 part by weight of phosphonium bromide) was added, dissolved by heating and stirring at 60 ° C. for 30 minutes, cooled to 50 ° C., and further 3.2 parts by weight of neopentyl glycol was added and kept at 50 ° C. for 4 hours. After dissolving by heating and stirring, the solution was cooled to room temperature, and a transparent liquid curing agent solution was obtained at room temperature.

実施例9
硬化剤のリカシッドMH−700(新日本理化(株)製;4−メチルヘキサヒドロ無水フタル酸:ヘキサヒドロ無水フタル酸=70:30)100重量部に、硬化促進剤の1,8−ジアザビシクロ[5.4.0]ウンデセン−7のp−トルエンスルホン酸塩を1重量部加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 9
Curing agent Ricacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd .; 4-methylhexahydrophthalic anhydride: hexahydrophthalic anhydride = 70: 30) was added to 1,8-diazabicyclo [5 4.0] 1 part by weight of p-toluenesulfonic acid salt of undecene-7 was added, dissolved by heating and stirring at 60 ° C. for 30 minutes, then cooled to 50 ° C., and further 3.2 parts by weight of neopentyl glycol. In addition, the mixture was dissolved by heating and stirring for 4 hours at 50 ° C., and then cooled to room temperature to obtain a transparent liquid curing agent liquid at room temperature.

実施例10
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤の1,8−ジアザビシクロ[5.4.0]ウンデセン−7のp−トルエンスルホン酸塩を1重量部加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 10
Curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; main component is 4-methylhexahydrophthalic anhydride) and curing accelerator 1,8-diazabicyclo [5.4.0] undecene-7 1 part by weight of p-toluenesulfonic acid salt was added, dissolved by heating and stirring at 60 ° C. for 30 minutes, then cooled to 50 ° C., and further 3.2 parts by weight of neopentyl glycol was added and left at 50 ° C. for 4 hours. After dissolving by heating and stirring, the solution was cooled to room temperature, and a transparent liquid curing agent solution was obtained at room temperature.

実施例11
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤のテトラブチルホスホニウムデカン酸塩1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 11
Add 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and add 1 part by weight of the curing accelerator tetrabutylphosphonium decanoate at 60 ° C. After stirring and dissolving for 30 minutes, cooling to 50 ° C, adding 3.2 parts by weight of neopentyl glycol, dissolving by heating and stirring for 4 hours at 50 ° C, cooling to room temperature, and transparent at room temperature A liquid curing agent liquid was obtained.

実施例12
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤のテトラブチルホスホニウムラウリン酸塩1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 12
Add 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), 1 part by weight of a curing accelerator, tetrabutylphosphonium laurate, at 60 ° C. After stirring and dissolving for 30 minutes, cooling to 50 ° C, adding 3.2 parts by weight of neopentyl glycol, dissolving by heating and stirring for 4 hours at 50 ° C, cooling to room temperature, and transparent at room temperature A liquid curing agent liquid was obtained.

実施例13
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤のテトラブチルホスホニウムミリスチン酸塩1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 13
Add 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and add 1 part by weight of the curing accelerator tetrabutylphosphonium myristate at 60 ° C. After stirring and dissolving for 30 minutes, cooling to 50 ° C, adding 3.2 parts by weight of neopentyl glycol, dissolving by heating and stirring for 4 hours at 50 ° C, cooling to room temperature, and transparent at room temperature A liquid curing agent liquid was obtained.

実施例14
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤のテトラブチルホスホニウムパルミチン酸塩1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 14
Add 100 parts by weight of the curing agent Rikacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and add 1 part by weight of the curing accelerator tetrabutylphosphonium palmitate at 60 ° C. After stirring and dissolving for 30 minutes, cooling to 50 ° C, adding 3.2 parts by weight of neopentyl glycol, dissolving by heating and stirring for 4 hours at 50 ° C, cooling to room temperature, and transparent at room temperature A liquid curing agent liquid was obtained.

実施例15
テトラブチルホスホニウムヒドロキシドの40重量%水溶液100重量部に、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸/メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸(重量比1/4)混合物42重量部を加えて中和し、得られた反応混合物から減圧蒸留法を用いて脱水することにより、硬化促進剤、即ち、テトラブチルホスホニウムカチオンとビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸/メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸(重量比1/4)混合物由来の混合アニオン残基との塩80重量部を得た。この硬化促進剤1重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、80℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 15
To 100 parts by weight of a 40% by weight aqueous solution of tetrabutylphosphonium hydroxide, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid / methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid ( Weight ratio 1/4) Neutralization was performed by adding 42 parts by weight of the mixture, and the resulting reaction mixture was dehydrated by using a vacuum distillation method to obtain a curing accelerator, that is, tetrabutylphosphonium cation and bicyclo [2.2. .1] 80 parts by weight of a salt with a mixed anion residue derived from a mixture of heptane-2,3-dicarboxylic acid / methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid (weight ratio 1/4) Obtained. 1 part by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and dissolved by heating and stirring at 80 ° C. for 30 minutes. After cooling to 50 ° C., 3.2 parts by weight of neopentyl glycol was further added and dissolved by heating and stirring for 4 hours at 50 ° C., followed by cooling to room temperature to obtain a transparent liquid curing agent solution at room temperature. It was.

実施例16
テトラブチルホスホニウムヒドロキシドの40重量%水溶液100重量部に、1,2,4,5−シクロヘキサンテトラカルボン酸38重量部を加えて中和し、得られた反応混合物から減圧蒸留法を用いて脱水することにより硬化促進剤、即ち、テトラブチルホスホニウムカチオンと1,2,4,5−シクロヘキサンテトラカルボン酸のアニオン残基との塩76重量部を得た。この硬化促進剤1重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、80℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 16
Neutralizing by adding 38 parts by weight of 1,2,4,5-cyclohexanetetracarboxylic acid to 100 parts by weight of a 40% by weight aqueous solution of tetrabutylphosphonium hydroxide, and dehydrating the resulting reaction mixture by using a vacuum distillation method As a result, 76 parts by weight of a curing accelerator, that is, a salt of a tetrabutylphosphonium cation and an anion residue of 1,2,4,5-cyclohexanetetracarboxylic acid was obtained. 1 part by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and dissolved by heating and stirring at 80 ° C. for 30 minutes. After cooling to 50 ° C., 3.2 parts by weight of neopentyl glycol was further added and dissolved by heating and stirring for 4 hours at 50 ° C., followed by cooling to room temperature to obtain a transparent liquid curing agent solution at room temperature. It was.

実施例17
テトラn−ブチルホスホニウムヒドロキシドの40重量%水溶液100重量部に、メタンスルホン酸(関東化学(株)製試薬)14重量部を加えて中和した。中和後、得られた反応混合物を、減圧蒸留法を用いて脱水することにより硬化促進剤、即ち、テトラn−ブチルホスホニウムカチオンとメタンスルホン酸のアニオンとの塩51重量部を得た。この硬化促進剤1.3重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 17
14 parts by weight of methanesulfonic acid (a reagent manufactured by Kanto Chemical Co., Inc.) was added to 100 parts by weight of a 40% by weight aqueous solution of tetra n-butylphosphonium hydroxide for neutralization. After neutralization, the resulting reaction mixture was dehydrated using a vacuum distillation method to obtain 51 parts by weight of a curing accelerator, that is, a salt of a tetra n-butylphosphonium cation and an anion of methanesulfonic acid. 1.3 parts by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), and heated and stirred at 60 ° C. for 30 minutes. After dissolution, the mixture is cooled to 50 ° C., 3.2 parts by weight of neopentyl glycol is further added, and the mixture is dissolved by heating and stirring for 4 hours at 50 ° C., and then cooled to room temperature. Got.

実施例18
テトラn−ブチルホスホニウムヒドロキシドの40重量%水溶液100重量部に、ベンゼンスルホン酸(東京化成工業(株)製試薬)23重量部を加えて中和した。中和後、得られた反応混合物を、減圧蒸留法を用いて脱水することにより硬化促進剤、即ち、テトラn−ブチルホスホニウムカチオンとベンゼンスルホン酸のアニオンとの塩61重量部を得た。この硬化促進剤1.3重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 18
To 100 parts by weight of a 40% by weight aqueous solution of tetra n-butylphosphonium hydroxide, 23 parts by weight of benzenesulfonic acid (a reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added for neutralization. After neutralization, the resulting reaction mixture was dehydrated using a vacuum distillation method to obtain 61 parts by weight of a curing accelerator, that is, a salt of a tetra n-butylphosphonium cation and an anion of benzenesulfonic acid. 1.3 parts by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), and heated and stirred at 60 ° C. for 30 minutes. After dissolution, the mixture is cooled to 50 ° C., 3.2 parts by weight of neopentyl glycol is further added, and the mixture is dissolved by heating and stirring for 4 hours at 50 ° C., and then cooled to room temperature. Got.

実施例19
テトラn−ブチルホスホニウムヒドロキシドの40重量%水溶液100重量部に、p−トルエンスルホン酸・1水和物(関東化学(株)製試薬)25重量部を加えて中和した。中和後、得られた反応混合物を、減圧蒸留法を用いて脱水することにより硬化促進剤、即ち、テトラn−ブチルホスホニウムカチオンとp−トルエンスルホン酸のアニオンとの塩57重量部を得た。この硬化促進剤1.3重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、60℃ で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 19
25 parts by weight of p-toluenesulfonic acid monohydrate (reagent manufactured by Kanto Chemical Co., Inc.) was added to 100 parts by weight of a 40% by weight aqueous solution of tetra n-butylphosphonium hydroxide for neutralization. After neutralization, the resulting reaction mixture was dehydrated using a vacuum distillation method to obtain 57 parts by weight of a curing accelerator, that is, a salt of a tetra n-butylphosphonium cation and an anion of p-toluenesulfonic acid. . Add 1.3 parts by weight of this curing accelerator to 100 parts by weight of Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and stir at 60 ° C. for 30 minutes. After dissolution, the mixture is cooled to 50 ° C., 3.2 parts by weight of neopentyl glycol is further added, and the mixture is dissolved by heating and stirring for 4 hours at 50 ° C., and then cooled to room temperature. Got.

実施例20
テトラn−ブチルホスホニウムヒドロキシドの40重量%水溶液100重量部に、4−クロロベンゼンスルホン酸・n水和物(東京化成工業(株)製試薬)28重量部を加えて中和した。中和後、得られた反応混合物を、減圧蒸留法を用いて脱水することにより硬化促進剤、即ち、テトラn−ブチルホスホニウムカチオンと4−クロロベンゼンスルホン酸のアニオンとの塩60重量部を得た。この硬化促進剤1.3重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、60℃ で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 20
To 100 parts by weight of a 40% by weight aqueous solution of tetra n-butylphosphonium hydroxide, 28 parts by weight of 4-chlorobenzenesulfonic acid / n hydrate (reagent manufactured by Tokyo Chemical Industry Co., Ltd.) was added for neutralization. After neutralization, the obtained reaction mixture was dehydrated using a vacuum distillation method to obtain 60 parts by weight of a curing accelerator, that is, a salt of tetra n-butylphosphonium cation and 4-chlorobenzenesulfonic acid anion. . Add 1.3 parts by weight of this curing accelerator to 100 parts by weight of Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and stir at 60 ° C. for 30 minutes. After dissolution, the mixture is cooled to 50 ° C., 3.2 parts by weight of neopentyl glycol is further added, and the mixture is dissolved by heating and stirring for 4 hours at 50 ° C., and then cooled to room temperature. Got.

実施例21
テトラn−ブチルホスホニウムヒドロキシドの40重量%水溶液100重量部にメタノール120重量部を加え、n−ドデシルベンゼンスルホン酸(純度90%、関東化学(株)製)52重量部を加えて中和した。中和後、得られた反応混合物を、減圧蒸留法を用いてメタノール水を除去することにより硬化促進剤、即ち、テトラn−ブチルホスホニウムカチオンとn−ドデシルベンゼンスルホン酸のアニオンとの塩85重量部を得た。この硬化促進剤1.3重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にネオペンチルグリコールを3.2重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Example 21
120 parts by weight of methanol was added to 100 parts by weight of a 40% by weight aqueous solution of tetra-n-butylphosphonium hydroxide and neutralized by adding 52 parts by weight of n-dodecylbenzenesulfonic acid (purity 90%, manufactured by Kanto Chemical Co., Inc.). . After neutralization, the obtained reaction mixture was subjected to removal of methanol water using a vacuum distillation method to obtain a curing accelerator, that is, a salt of tetra n-butylphosphonium cation and n-dodecylbenzenesulfonic acid anion 85 wt. Got a part. 1.3 parts by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), and heated and stirred at 60 ° C. for 30 minutes. After dissolution, the mixture is cooled to 50 ° C., 3.2 parts by weight of neopentyl glycol is further added, and the mixture is dissolved by heating and stirring for 4 hours at 50 ° C., and then cooled to room temperature. Got.

比較例1
硬化剤のリカシッドMH−700(新日本理化(株)製;4−メチルヘキサヒドロ無水フタル酸:ヘキサヒドロ無水フタル酸=70:30)100重量部に、硬化促進剤の2−エチル−4−メチルイミダゾール1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Comparative Example 1
The curing agent Rikacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd .; 4-methylhexahydrophthalic anhydride: hexahydrophthalic anhydride = 70: 30) was added to 100 parts by weight of the curing accelerator 2-ethyl-4-methyl. Add 1 part by weight of imidazole, dissolve by heating and stirring at 60 ° C. for 30 minutes, cool to 50 ° C., dissolve by heating and stirring for 4 hours at 50 ° C., cool to room temperature, A curing agent solution was obtained.

比較例2
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤の2−エチル−4−メチルイミダゾール1重量部を加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Comparative Example 2
To 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), 1 part by weight of the curing accelerator 2-ethyl-4-methylimidazole is added, and 60 After dissolving by heating and stirring at 30 ° C. for 30 minutes, the solution was cooled to 50 ° C., dissolved by heating and stirring for 4 hours at 50 ° C., and then cooled to room temperature to obtain a transparent liquid curing agent solution at room temperature.

比較例3
硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に、硬化促進剤のテトラブチルホスホニウムデカン酸塩1重量部を加え、60℃で30分加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Comparative Example 3
Add 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and add 1 part by weight of the curing accelerator tetrabutylphosphonium decanoate at 60 ° C. After dissolving by heating and stirring for 30 minutes, the mixture was cooled to room temperature to obtain a transparent liquid curing agent liquid at room temperature.

比較例4
テトラブチルホスホニウムヒドロキシドの40重量%水溶液100重量部に、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸/メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸( 重量比1/4)混合物42重量部を加えて中和し、得られた反応混合物から減圧蒸留法を用いて脱水することにより、硬化促進剤、即ち、テトラブチルホスホニウムカチオンとビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸/メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸(重量比1/4)混合物由来の混合アニオン残基との塩80重量部を得た。この硬化促進剤1重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、80℃ で30分加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Comparative Example 4
To 100 parts by weight of a 40% by weight aqueous solution of tetrabutylphosphonium hydroxide, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid / methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid ( Weight ratio 1/4) Neutralization was performed by adding 42 parts by weight of the mixture, and the resulting reaction mixture was dehydrated by using a vacuum distillation method to obtain a curing accelerator, that is, tetrabutylphosphonium cation and bicyclo [2.2. .1] 80 parts by weight of a salt with a mixed anion residue derived from a mixture of heptane-2,3-dicarboxylic acid / methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid (weight ratio 1/4) Obtained. 1 part by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride) and dissolved by heating and stirring at 80 ° C. for 30 minutes. After cooling to room temperature, a transparent liquid curing agent liquid was obtained at room temperature.

比較例5
テトラn−ブチルホスホニウムヒドロキシドの40重量%水溶液100重量部にメタノール120重量部を加え、n−ドデシルベンゼンスルホン酸(純度90%、関東化学(株)製)52重量部を加えて中和した。中和後、得られた反応混合物を、減圧蒸留法を用いてメタノール水を除去することにより硬化促進剤、即ち、テトラn−ブチルホスホニウムカチオンとn−ドデシルベンゼンスルホン酸のアニオンとの塩85重量部を得た。この硬化促進剤1.3重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、60℃で30分加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Comparative Example 5
120 parts by weight of methanol was added to 100 parts by weight of a 40% by weight aqueous solution of tetra-n-butylphosphonium hydroxide and neutralized by adding 52 parts by weight of n-dodecylbenzenesulfonic acid (purity 90%, manufactured by Kanto Chemical Co., Inc.). . After neutralization, the obtained reaction mixture was subjected to removal of methanol water using a vacuum distillation method to obtain a curing accelerator, that is, a salt of tetra n-butylphosphonium cation and n-dodecylbenzenesulfonic acid anion 85 wt. Got a part. 1.3 parts by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), and heated and stirred at 60 ° C. for 30 minutes. After dissolution, the mixture was cooled to room temperature to obtain a transparent liquid curing agent liquid at room temperature.

比較例6
テトラn−ブチルホスホニウムヒドロキシドの40重量%水溶液100重量部にメタノール120重量部を加え、n−ドデシルベンゼンスルホン酸(純度90%、関東化学(株)製)52重量部を加えて中和した。中和後、得られた反応混合物を、減圧蒸留法を用いてメタノール水を除去することにより硬化促進剤、即ち、テトラn−ブチルホスホニウムカチオンとn−ドデシルベンゼンスルホン酸のアニオンとの塩85重量部を得た。この硬化促進剤1.3重量部を硬化剤のリカシッドMH(新日本理化(株)製;主成分は4−メチルヘキサヒドロ無水フタル酸)100重量部に加え、60℃で30分加熱撹拌して溶解した後、50℃まで冷却し、更にエチレングリコールを1.9重量部加えて50℃のまま4時間加熱撹拌して溶解した後、室温まで冷却し、常温で透明液状の硬化剤液を得た。
Comparative Example 6
120 parts by weight of methanol was added to 100 parts by weight of a 40% by weight aqueous solution of tetra-n-butylphosphonium hydroxide and neutralized by adding 52 parts by weight of n-dodecylbenzenesulfonic acid (purity 90%, manufactured by Kanto Chemical Co., Inc.). . After neutralization, the obtained reaction mixture was subjected to removal of methanol water using a vacuum distillation method to obtain a curing accelerator, that is, a salt of tetra n-butylphosphonium cation and n-dodecylbenzenesulfonic acid anion 85 wt. Got a part. 1.3 parts by weight of this curing accelerator is added to 100 parts by weight of the curing agent Ricacid MH (manufactured by Shin Nippon Rika Co., Ltd .; the main component is 4-methylhexahydrophthalic anhydride), and heated and stirred at 60 ° C. for 30 minutes. After dissolution, the mixture was cooled to 50 ° C., 1.9 parts by weight of ethylene glycol was further added, dissolved by heating and stirring for 4 hours at 50 ° C., then cooled to room temperature, and a transparent liquid curing agent solution was added at room temperature. Obtained.

<評価試験>
実施例及び比較例で得られた硬化剤液を用い、下記の評価1〜3を行った。結果を表1〜3に示す。
<Evaluation test>
The following evaluations 1 to 3 were performed using the curing agent liquids obtained in Examples and Comparative Examples. The results are shown in Tables 1-3.

評価1
得られた硬化剤液を500mlのスチール缶に300g充填し、窒素ガスを封入密閉した。この缶を30℃の環境下に6ヶ月間保管した後、缶の外観を目視観察し、缶が膨れていれば不合格「×」、膨れていなければ合格「○」とした。
Evaluation 1
The obtained hardener solution was filled in 300 g in a 500 ml steel can and sealed with nitrogen gas. After the can was stored for 6 months in an environment of 30 ° C., the appearance of the can was visually observed. If the can was swollen, it was judged as “failed”, and if it was not swollen, it was judged as “good”.

評価2
得られた硬化剤液を50mlのガラス容器に30g充填し、窒素ガスを封入密閉した。この容器を23℃の環境下に1ヶ月間保管した後、硬化剤液を目視観察し、析出物が生じ白濁していれば不合格「×」、透明のままを維持していれば合格「○」とした。
Evaluation 2
30 g of the obtained curing agent solution was filled in a 50 ml glass container, and nitrogen gas was sealed in a sealed manner. After storing this container in an environment of 23 ° C. for one month, the curing agent solution is visually observed. If the precipitate is generated and becomes cloudy, it is rejected “x”, and if it remains transparent, it is “accepted”. ○ ”.

評価3
得られた硬化剤液125重量部に対し、ダイセル化学工業(株)製、商品名「セロキサイド2021P」[3,4−エポキシシクロヘキシルメチル(3,4−エポキシ)シクロヘキサンカルボキシレート]を100重量部、シンキー(株)製「あわとり練太郎」を用いて、均一に混合し(2000rpm、5分)、光半導体封止用樹脂組成物(硬化性樹脂組成物)を得た。光半導体素子(InGaN)付きリードフレームに、得られた光半導体封止用樹脂組成物を注型して加熱硬化させて光半導体装置を作製した。硬化は、110℃で2時間加熱した後、一旦、型から外し、150℃で3時間ほど後硬化を行うという手順で行った。光半導体装置を顕微鏡観察し、光半導体装置の封止部分に気泡が残っている割合が20%を超えている場合を不合格「×」、20%以下の場合を「○」とした。
Evaluation 3
100 parts by weight of Daicel Chemical Industries, Ltd., trade name “Celoxide 2021P” [3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate], with respect to 125 parts by weight of the obtained curing agent liquid, Using “Shintaro Awatori” manufactured by Shinky Corporation, the mixture was uniformly mixed (2000 rpm, 5 minutes) to obtain an optical semiconductor sealing resin composition (curable resin composition). The obtained resin composition for encapsulating an optical semiconductor was cast into a lead frame with an optical semiconductor element (InGaN) and cured by heating to produce an optical semiconductor device. Curing was performed by the procedure of heating at 110 ° C. for 2 hours, once removing from the mold, and post-curing at 150 ° C. for about 3 hours. The optical semiconductor device was observed with a microscope, and the case where the ratio of bubbles remaining in the sealed portion of the optical semiconductor device exceeded 20% was judged as “Fail”, and the case where it was 20% or less was judged as “◯”.

また、総合評価として、評価1〜3の全ての評価が「○」のものを「合格」、1つでも「×」があるものを「不合格」とし、各表の「合否判定」の欄に記入した。   In addition, as a comprehensive evaluation, all evaluations of evaluations 1 to 3 are “pass” if one evaluation is “good”, “fail” if there is even one “×”, and “pass / fail judgment” column in each table Filled in.

Figure 0005745248
Figure 0005745248

Figure 0005745248
Figure 0005745248

Figure 0005745248
Figure 0005745248

Claims (6)

酸無水物系硬化剤(A)、硬化促進剤(B)、及び、ネオペンチルグリコールおよび1,3−ブタンジオールから選択された少なくとも1種のジオール(C)を含有し、前記酸無水物系硬化剤(A)、前記硬化促進剤(B)及び前記ジオール(C)の総量のエポキシ樹脂用硬化剤組成物に占める割合が、50重量%以上であるエポキシ樹脂用硬化剤組成物。 An acid anhydride-based curing agent (A), a curing accelerator (B), and at least one diol (C) selected from neopentyl glycol and 1,3-butanediol , The hardening | curing agent composition for epoxy resins whose ratio to the hardening | curing agent composition for epoxy resins of the total amount of a hardening | curing agent (A), the said hardening accelerator (B), and the said diol (C) is 50 weight% or more . 酸無水物系硬化剤(A)100重量部に対して、ジオール(C)を0.5〜15重量部の割合で含有する請求項1記載のエポキシ樹脂用硬化剤組成物。   The hardening | curing agent composition for epoxy resins of Claim 1 which contains a diol (C) in the ratio of 0.5-15 weight part with respect to 100 weight part of acid anhydride type hardening | curing agents (A). 分子内にエポキシ基を2以上有するエポキシ化合物(D)と、請求項1又は2記載のエポキシ樹脂用硬化剤組成物とを必須成分として含む硬化性樹脂組成物。   A curable resin composition comprising, as essential components, an epoxy compound (D) having two or more epoxy groups in a molecule and the epoxy resin curing agent composition according to claim 1 or 2. エポキシ化合物(D)として、少なくとも1種の脂環式エポキシ化合物を用いる請求項3記載の硬化性樹脂組成物。   The curable resin composition according to claim 3, wherein at least one alicyclic epoxy compound is used as the epoxy compound (D). 請求項3又は4記載の硬化性樹脂組成物を硬化して得られる硬化物。   A cured product obtained by curing the curable resin composition according to claim 3. 光半導体素子が請求項5記載の硬化性樹脂組成物の硬化物によって封止されている光半導体装置。   An optical semiconductor device in which an optical semiconductor element is sealed with a cured product of the curable resin composition according to claim 5.
JP2010228037A 2010-10-08 2010-10-08 Curing agent composition for epoxy resin, curable resin composition and cured product thereof Expired - Fee Related JP5745248B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010228037A JP5745248B2 (en) 2010-10-08 2010-10-08 Curing agent composition for epoxy resin, curable resin composition and cured product thereof
KR1020137001289A KR20140009102A (en) 2010-10-08 2011-09-14 Curing agent composition for epoxy resin, curable resin composition, and cured product thereof
PCT/JP2011/070990 WO2012046553A1 (en) 2010-10-08 2011-09-14 Curing agent composition for epoxy resin, curable resin composition, and cured product thereof
CN201180033599.3A CN102985460B (en) 2010-10-08 2011-09-14 Curing agent composition for epoxy resin, curable resin composition, and cured product thereof
TW100135135A TWI591090B (en) 2010-10-08 2011-09-29 Hardener composition for epoxy resin, curable resin composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228037A JP5745248B2 (en) 2010-10-08 2010-10-08 Curing agent composition for epoxy resin, curable resin composition and cured product thereof

Publications (2)

Publication Number Publication Date
JP2012082271A JP2012082271A (en) 2012-04-26
JP5745248B2 true JP5745248B2 (en) 2015-07-08

Family

ID=45927550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228037A Expired - Fee Related JP5745248B2 (en) 2010-10-08 2010-10-08 Curing agent composition for epoxy resin, curable resin composition and cured product thereof

Country Status (5)

Country Link
JP (1) JP5745248B2 (en)
KR (1) KR20140009102A (en)
CN (1) CN102985460B (en)
TW (1) TWI591090B (en)
WO (1) WO2012046553A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150210846A1 (en) * 2012-04-27 2015-07-30 Dow Global Technologies Llc Curable epoxy resin compositions and composites made therefrom
CN102702682A (en) * 2012-05-25 2012-10-03 嘉兴市嘉港合成材料有限公司 Liquid epoxy resin composition for packaging LED (Light Emitting Diode)
WO2013183736A1 (en) * 2012-06-07 2013-12-12 日本化薬株式会社 Epoxy resin composition, cured product thereof, and curable resin composition
CN103633226B (en) * 2012-08-21 2016-12-21 广州市晶鑫光电科技有限公司 Phosphor gel preparation and corresponding LED encapsulation method
JP2015063661A (en) * 2013-08-29 2015-04-09 北興化学工業株式会社 Epoxy resin-based compositions
CN104961883B (en) * 2014-10-09 2017-06-20 东莞英铭化工有限公司 Modified epoxy that a kind of epoxy resin is engaged with alcohol and preparation method thereof
JP6386907B2 (en) * 2014-12-26 2018-09-05 株式会社ダイセル Curable epoxy resin composition
JP7012012B2 (en) * 2016-07-29 2022-01-27 北興化学工業株式会社 New phosphonium compound
CN108117721A (en) * 2016-11-29 2018-06-05 京瓷株式会社 transparent epoxy resin composition and optical semiconductor device
JP2022177333A (en) * 2019-10-25 2022-12-01 東洋合成工業株式会社 Onium salt, curing agent, curing accelerator, curable composition, and method for manufacturing device
CN113549108B (en) * 2021-08-25 2023-10-20 宝鸡文理学院 Preparation of halogen-free quaternary phosphonium salt alkylbenzene sulfonic acid ionic liquid and application of halogen-free quaternary phosphonium salt alkylbenzene sulfonic acid ionic liquid as titanium alloy lubricant

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6361016A (en) * 1986-08-29 1988-03-17 New Japan Chem Co Ltd Curing agent composition for epoxy resin
JPH0326718A (en) * 1989-06-23 1991-02-05 Tonen Corp Epoxy resin curing agent composition
US5766670A (en) * 1993-11-17 1998-06-16 Ibm Via fill compositions for direct attach of devices and methods for applying same
JPH10306088A (en) * 1997-03-06 1998-11-17 Dainippon Ink & Chem Inc Epoxy compound, its synthetic precursor and curable composition containing the same compound
US6617401B2 (en) * 2001-08-23 2003-09-09 General Electric Company Composition comprising cycloaliphatic epoxy resin, 4-methylhexahydrophthalic anhydride curing agent and boron catalyst
DE60312143T2 (en) * 2003-06-16 2007-11-29 Abb Technology Ltd. Epoxy resin compositions and methods of making molded articles therefrom
JP2005075915A (en) * 2003-08-29 2005-03-24 New Japan Chem Co Ltd Curing agent composition for epoxy resin and epoxy resin composition containing the same
EP1978049B1 (en) * 2007-04-03 2010-02-24 ABB Research Ltd Curable Epoxy Resin Composition
JP5258205B2 (en) * 2007-04-26 2013-08-07 ソマール株式会社 Two-component curable resin composition
JP5179839B2 (en) * 2007-11-08 2013-04-10 株式会社ダイセル Epoxy resin composition and cured product thereof

Also Published As

Publication number Publication date
CN102985460A (en) 2013-03-20
JP2012082271A (en) 2012-04-26
WO2012046553A1 (en) 2012-04-12
TWI591090B (en) 2017-07-11
KR20140009102A (en) 2014-01-22
CN102985460B (en) 2017-02-22
TW201219441A (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP5745248B2 (en) Curing agent composition for epoxy resin, curable resin composition and cured product thereof
JP5832740B2 (en) Curable epoxy resin composition
US9169418B2 (en) Thermosetting epoxy resin composition and uses thereof
CN107266661B (en) Curable resin composition and cured product thereof
JP5298411B2 (en) Epoxy resin composition and use thereof
JP4876732B2 (en) Epoxy resin composition, cured product thereof, and optical semiconductor device
JP2018009090A (en) Resin composition for optical semiconductors and method for producing the same, and optical semiconductor device
JP6171284B2 (en) High-purity alicyclic diepoxy compound, curable epoxy resin composition, cured product, transparent sealing material, and light emitting device
JP2007308601A (en) Thermosetting epoxy resin composition
JP2005325178A (en) Epoxy resin composition for sealing optical semiconductor
WO2013035542A1 (en) Resin composition for sealing optical semiconductor, and optical semiconductor device using same
JP2009102510A (en) Epoxy resin curing agent, epoxy resin composition, cured product thereof, and photosemiconductor device
JPH02255827A (en) Cure accelerator for epoxy resin, curing agent composition containing same and epoxy resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5745248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees